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Abstract

In this work, we deal with the two types of variational inclusions. Firstly, we consider

the variational inclusion problem of the form

0€((5)+9(5) +£(5), (A)

where & and T are Banach spaces, ( : & — T is differentiable in a neighborhood T C § of
a solution s* of (A), g : & — T is differentiable at s* but may not differentiable in T and
£:S = 27 is a set-valued mapping with closed graph. This work consists three parts and
the main works we have done in this dissertation that are organized as follows.

In the first part, particularly in Chapter 3, we study the Newton-type method for solv-
ing the variational inclusion problem (A) which is introduced in [2]. Under some suitable
assumptions on the Fréchet derivative of the differentiable function and divided difference
admissible function, we establish the existence of any sequence generated by the Newton-
type method and prove that the sequence generated by the method (3.1.3) converges linearly,
quadratically and superlinearly to a solution of the variational inclusion (A). Specifically,
when the Fréchet derivative of the differentiable function is continuous, Lipschitz continu-
ous and Holder continuous, divided difference admissible function admits first order divided
difference and the set-valued mapping is pseudo-Lipschitz continuous, we show the linear,
quadratic and superlinear convergence by the method (3.1.3).

In Chapter 4, we introduce and study the extended Newton-type method for solving the
variational inclusion (LA). We establish the convergence criteria of the extended Newton-
type method, which guarantees the existence and the convergence of any sequence under
the conditions that n > 1, V( is continuous, Lipschitz continuous and Holder continuous,
g admits first order divided difference as well as ({ + g + 5)_1 is Lipschitz-like. To validate
our theoretical result we have presented numerical experiments and these works extend and
improve the result corresponding to [13, 62, 103, 105]. More precisely, semilocal and local
convergence of the extended Newton-type method are analyzed.

Next, when ¢ = 0 in (A), we are motivated to study the special type of nonsmooth
VI
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variational inclusion of the following form:

0 € ((5) +£(5), (B)

where (: T C S — T be a nonsmooth single-valued function that admits (n, «)-point-based
approximation A on T with a constant L > 0 and ¢: S = 27 be a set-valued mapping with
closed graph.

In the second part, especially in Chapter 5, we introduce and study an extended Newton-
type method for solving the nonsmooth variational inclusion (B) and analyze its semilocal
and local convergence under the conditions that (¢ + &)~! is Lipschitz-like and ¢ admits a
(n, @)-point-based approximation. For smooth functions in the cases n = 1 and n = 2 as
well as for normal maps, we provide applications of (n, «)-point-based approximation, that
is, (1, «)-point-based approximation and (2, a)-point-based approximation are provided for
the smooth functions and we construct a (n, a)-point-based approximation for the normal
maps (¢ + & when ¢ has a (n,a)-point-based approximation. At the end we have given a

numerical experiment to illustrates our theoretical result.

Keywords: Set-valued mappings, pseudo-Lipschitz continuity, Lipschitz-like mappings,
variational inclusions, extended Newton-type method, local convergence, semilocal conver-

gence, (n, a)-point-based approximation.

(2000) AMS (MOS) Subject Classification: 49J53, 47H04, 65K10, 90C30.
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Chapter 1

Introduction

Robinson [113, 114] introduced variational inclusion as an abstract model for various prob-
lems and it has been explored as a general tool for solving, analyzing and describing different
problems in a unified manner. These type of inclusion problems have been studied extensive-
ly; see for examples [31, 40-42, 49, 53, 55, 71, 76, 91]. It has been well recognized that this
model provide a convenient framework for the unified study of optimal solutions in many
optimization-related are as including variational inequalities, mathematical programming,
optimal control, systems of inequalities, linear and nonlinear complementarity problems,
systems of nonlinear equations, equilibrium problems, game theory, etc. also have a lot
of applications in engineering (traffic equilibrium problems, analysis of elastoplastic struc-
tures etc.) and economics (Nash equilibrium, Walrasian equilibrium etc.). For more details
on these applications and others we have not mention here, one can read one can refer to

[39, 75, 113-115].

Let S and T be two Banach spaces and T be an open subset of S. Suppose that { : T — T
is a function, which is Fréchet differentiable and the derivative of this function is denoted
by V( , the linear function g : T — 7T is differentiable at s* but may not differentiable in a
neighborhood T and its FODD on the points s and ¢ is denoted by [s,t;g] and ¢: S = 27
be a set-valued mapping with closed graph.

By smooth variational inclusion we mean a variational inclusion involving a smooth single-
valued function, while by nonsmooth variational inclusion we mean a variational inclusion

involving a nonsmooth single-valued function.
1



2 Chapter 1 Introduction

Here we consider a variational inclusion problem to approximate a point 5 € T satisfying

the following form:

0€((5)+9g(5)+£(5). (1.0.1)

When & = {0}, (1.0.1) is reduced to the classical problem of solving systems of nonlinear
equations: 0 € ((3) + ¢(5). Catinas [21] proposed the following method for solving 0 €
¢(3) + ¢(3) by using the combination of Newton’s method with the secants method when
¢ is differentiable and ¢ is a continuous function admitting first and second order divided

differences:

0 € ((sk) + g(sk) + (V{(sk) + [Sk=1, Sk3 9])(Sk1 — 5%), Kk =1,2,..,

where the FODD of g is denoted by [s, t; g] and the Fréchet derivative of  at sj is denoted
by V((sk).

For solving (1.0.1), Jean-Alexis and Piétrus [2] presented the method (3.1.1). They proved
that the sequence generated by the method (3.1.1) converges superlinearly by considering
that V¢ and the FODD of g are p-Holder continuous around a solution s* and that ((+g+¢&)~!
is pseudo-Lipschitz around (0, s*) with £ having closed graph. In recent time, Rashid et al.
[109] have been presented the improvement of the result corresponding one in Jean-Alexis
and Piétrus [2] by fixing a gap and show that if V{ and the FODD of g are p-Holder
continuous at a solution s*, then the method (3.1.1) converges superlinearly. A vast number
of iterative procedures have been introduced and studied for solving (1.0.1); see for details

in [9, 101-104, 110].

For solving (1.0.1) various iterative methods have been studied. To solve the problem
(1.0.1), Geoffroy and Piétrus [43] associate the method (3.1.3). They studied this method by
using the conditions that V{ and the SODD of g are Lipschitz continuous around a solution

s*. They proved that the sequence generated by (3.1.3) converges superlinearly.

Moreover, for solving (1.0.1), Hilout et al. [50] associate the following sequence:

so and s; are given two starting points
tr = asp + (1 — a)sg_1; when « is fixed in (0, 1) (1.0.2)
0 € Csk) + [trs sk CJ(Sk1 — s1) + E(sk41),
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where the FODD of the function ¢ on the points ¢ and sy, is [tx, sk; /zeta]. They have proven
that the sequence generated by the method (1.0.2) converges superlinearly. Further, in the
case when ¢ = {0}, for solving (1.0.1), it should be noteded that Argyros [8] has studied
local as well as semilocal convergence analysis for two-point Newton-type (N-type) methods
in a Banach space setting under very general Lipschitz type conditions. An extensive study
on these issues has been investigated by Rashid [100, 103, 104] and other researchers when

= 0. In the case when £ is either zero mapping or nonzero mapping, a large number of

N-type iterative methods have been studied and we are not mention here all in detail.

In the case when g = 0, Rashid et al. [110] introduced GN method to obtain the solution
of the variational inclusion (1.0.1) and established its semilocal convergence. Moreover, in
the same case, Rashid [105, 106, 108] introduced different kinds of methods for obtaining

the solution of (1.0.1) and attained the local and semilocal convergence.

In the framework of the variational inclusion (1.0.1), we assume that the single-valued
function ( is smooth function, that is, { is Fréchet differentiable and it can be expressed as

a classical linearization ((s) + V((s)(- — s) for given s.

When the single-valued functions involved in (1.0.1) are differentiable, N-type methods
can be considered to solve this variational inclusion, such an approach has been used in
many contributions to this subject; see for example [26, 27, 89, 90]. In particular, when ( is
smooth function, the classical method to find an approximate solution is the N-type method,
which was introduced by Dontchev [27] and is defined by the method (3.1.3) (see subsection
3.1.1 in Chapter 3).

In other words, Dontchev in [27], applied the Newton method to the smooth part ¢ of the
variational inclusion only (or leaving the nonsmooth part) by keeping the set-valued map
¢ unchanged and showed that the sequence constructed by the method (3.1.3) converges
quadratically to a solution s of (1.0.1). Moreover, when V( is Lipschitz on a neighborhood
of §, Dontchev[29], showed that the stability of this method and certain Lipschitz condition

is satisfied.

It is pointed out that the method (3.1.3) viewed as a N-type method based on a partial
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linearization of (. When applying Newton’s method, ¢ is replaced by its linearization ((s)+
V{(s)(- — s) for given s. We still cover known methods for solving variational problems by
leaving the set-valued map £ unchanged. If £ = {0}, then the method (3.1.3) becomes the
classical Newton method which is widely used and well known for finding an approximate
solution of (1.0.1) where ¢ has Lipschitz continuous Fréchet derivatives. Semilocal and local
convergence results for Newton method can be found in the survey [12, 45, 47, 61, 83, 94]

and its references.

For solving (1.0.1) various iterative methods have been studied. Piétrus [90] showed that
the sequence generated by the N-type method (3.1.3) converges superlinearly when V( is
Holder continuous on a neighborhood of § and certain Lipschitz condition is satisfied, while
in [89], he also showed the stability of this method under mild conditions. Furthermore, for
analysing (1.0.1), Hilout et al. [50] considered the sequence (1.0.2), when ( is only continuous
and also differentiable at 5. They proved the sequence converges superlinearly which is

generated by the method (3.1.3).

Usually, there are two types of convergence issues focus on about the EN-type method
( Algorithm 2 or Algorithm 3). One of them is local convergence and another one is semi-
local convergence analysis. Local convergence analysis is concerned with the convergence
ball based on the information in a neighborhood of a solution of (1.0.1) and semi-local
convergence analysis is concerned with the convergence criterion based on the information

around initial point.

If ¢ = {0}, Algorithm 2 reduces the famous GN method which is well recognized iterative
procedure for solving nonlinear least squares (model fitting) problems. To see an extensive
study on this subject one can refer to [24, 74, 131]. On the other hand, if £ = C, where
a closed convex cone is denoted by C', Algorithm 2 is turned to the EN-type method for
analysing convex inclusion problem, which was introduced and studied by Robinson [116].
For solving convex composite optimization problems the GN method are studied in [20, 73]

and its references.

In the case when £ = {0} and g = 0, a number of useful results have been invented on

semilocal convergence analysis for the GN method. For the detail one can refer to Dedieu
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and Kim [24]; Dedieu and Shub [25]; He, Wang and Li [49]; Xu and Li [130] or in the case
when £ = C' and g = 0 we can also refer to Li and Ng [72] for more details. Nevertheless, to
our best knowledge, there is no study on semilocal convergence analysis discovered for the

general case, even for the N-type method (3.1.3) or for the Algorithm 2.

The first main study of this thesis we present in Chapter 3 and Chapter 4 are as follows:

In chapter 3 we analyze the local convergence for the N-type method, which is defined by
the method (3.1.3) for finding the solution of (1.0.1). The main tool is the FODD of g and V¢
is continuous, Lipschitz continuous and Hdélder continuous for studying the method (3.1.3),
Or, the reader could refer to [63] in our paper to see the achievement on this topic. Relevant
research topic for smooth analysis, there have been studied by many mathematician; see for

example [13, 30, 50, 55, 90] and the references therein.

In this study, particularly in chapter 4, Argyros and Hilout [13, Theorem 4.1] showed
that, for any point in T, there exists a sequence which is constructed by Algorithm 1 is
quadratically convergent by using some suitable assumptions around the solution s* of the
variational inclusion (1.0.1). This reflection we definitely understood that the convergence
result guarantees the existence of a convergent sequence, which is mentioned in [13]. Con-
sequently, for any initial point close to a solution, the sequences which is constructed by
Algorithm 1, in the section 4.1 are not identically defined and not each constructed sequence
is convergent. Therefore, from a numerical computational point of view this type of method
is not convenient to apply in numerical practice. This difficulty inspired us to introduce a
kind of method “so-called” extended Newton-type (EN-type) method which is employed in
Algorithm 2. The reader could refer to Khaton et al. [62] to know on this issue for more
detail.

In section 4.3, we provide the EN-type method, (see Algorithm 3 in Chapter 4), for
solving the variational inclusion (1.0.1) by using the weaker conditions than that are used in
Khaton et al. [62]. We analyze this method under the conditions that, the Fréchet derivative
of ¢ and the FODD of g are Holder continuous on Y. In fact, semilocal and local convergence

analysis are presented for EN-type method for solving (1.0.1). The reader could refer to [64]
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to see the contribution on this issue. To validate our theoretical result we have presented

numerical experiments.

For the second part of this work, established in Chapter 5, when g = 0, in (1.0.1) we

consider the special type of nonsmooth variational inclusion for the following form:

0 € ((5)+&(5), (1.0.3)

where (: T C S — T be a nonsmooth single-valued function that admits (n, «)-point-based
approximation (in short PBA ) A on T with a constant L > 0 and £: S = 27 be a set-valued

mapping which has closed graph.

Now in the framework of the variational inclusion (1.0.3), we assume that the single-
valued function ( is nonsmooth function, that is, ( doesn’t possess Fréchet derivative and
its classical linearization is no longer available. Then no one can give the clear result that
how one can give a design of the Newton algorithm. So that it needs to seek a replacement
for such type of linearization. A lot of researchers have worked on this question and a
number of methods have been introduced and justified in particular cases of its importance
in applications. A number of papers have worked on the N-type methods for nonsmooth
equations and variational inequalities; see for example [18, 66, 69, 77, 87, 118, 119, 123, 129]

for inspiration and advanced works on these areas.

In particular, Wilson [128] proposed an idea for solving nonlinear programming problems
by replacing the original problem with a sequence of quadratic programming problems whose
data depended on the progress of the solution. In [117], Robinson established a local con-
vergence theorem explaining the quadratic convergence observed in Wilson’s method. Eaves
[37] and Robinson [120] each suggested N-type linearization methods for solving nonlinear
variational inequalities in finite-dimensional spaces. This approach was developed by Jose-
phy [57] to extend Newton’s method for solving variational inequalities and complementarity
problems. He also extended his analysis to quasi-Newton methods [58], and applied it to a

particular problem in energy modeling [59, 60].

Numerous other authors have investigated N-type methods for solving various problems
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with some types of nonsmoothness: see for example [19, 22, 47, 54, 67, 84-86, 92, 93, 120].
Also, methods of damping and other modifications have been proposed for ensuring con-
vergence: see [46, 48, 97]. All the methods discussed above were developed for solving the

nonsmooth variational inclusions (1.0.1) in case of £ = {0}.

Moreover, Robinson introduced (see [115] and also [118] based on his earlier preprint) the
concept of PBA and proposed a N-type method to solve nonsmooth generalized equations
(1.0.3) when ¢ = {0}. Further, he considered PBA in [118, Theorem 3.2] to show the
Newton’s method converges under Newton-Kantorovich-type hypothesis. In a recent work,
Argyros [11] presented a semilocal convergence analysis of Newton’s method based on a
suitable PBA. More pricisely, in order to solve a more comprehensive problem than those
discussed in [118], he was taken weaker conditions in PBA by considering it as Holderian
property rather than Lipschitzian property and therefore he showed the result of convergence

for Newton’s method.

In addition, for superlinear convergence Kummer [70] presented a necessary and adequate
conditions of the Newton method and the conditions of a nonsmooth function was originally
designed for derivative-type approximations around an isolated zero. Contextual results, for

finding the solution of the nonsmooth variational inclusion (1.0.3) are given in [38, 65, 103].

In case of nonsmoothness of ¢, for solving (1.0.3), Dontchev [26] introduced the N-type
method (5.1.2), (see subsection 5.1.1 in Chapter 5), which is a nonsmooth version of the
method (3.1.3) and presented the nonsmooth analogue of the Kantorovich-type theorem for
this procedure by assuming the Aubin continuity of the map (A(sg,-) + &(+))~! at (0, s).
In [42], Geoffory and Piétrus presented a general iterative procedure (5.1.2) for solving
variational inclusions in the nonsmooth frame-work (1.0.3) by considering a class of functions
admitting a certain type of approximation and established a local convergence theorem. It
is obvious that if £ = {0}, the procedure (5.1.2) reduces to the N-type method which is

proposed by Robinson [118].

Genearally, the method (5.1.2) guarantees the existence of a sequence and the sequence
is a convergent. Therefore, for a starting point near to a solution, we know that, the se-

quences are not uniquely defined, which is constructed by the method (5.1.2). For example,
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Dontchev presented a convergence result which is established in [42, Theorem 3.3] and the
result confirms the existence of a convergent sequence. Thus, in view of numerical compu-
tation, this kind of Newton-type methods are not convenient in practical application. This
drawback allows us to propose the iterative procedure “so-called” extended Newton-type

method (ENM) to solve the nonsmooth variational inclusion (1.0.3).

The second main purpose in this work, established in Chapter 5, is to study the semilocal
and local convergence for the extended Newton-type (ENM) method defined by Algorith-
m 4 for solving the nonsmooth variational inclusion (1.0.3) using the notion of (n,a)-PBA
introduced by Geoffroy and Piétrus [42] and Lipschitz-like property. The main results, estab-
lished in section 5.3, are the convergence criterion, which based on the information around
the initial point, provides convergence criteria for starting point to determine condition en-
suring the convergence to a solution of any sequence which is constructed by Algorithm 4.

As consequences, local convergence results for the ENM method are obtained.

Rashid et al. [110] presented a method which called the GN-type method. They replaced
A by the classical linearization of ( and then the Algorithm 4 is turned into the GN-type
method. For obtaining the solution of (1.0.3) Rashid [103] presented and worked the same
algorithm. When the involved single-valued function does not possess Fréchet derivatives, he
studied this method under the condition that ( has a PBA and ( is Lipsctiz-like mapping and
he presented local and semilocal convergence results. Furthermore, the single-valued function
is smooth when it involved in (1.0.3). Many mathematician show their interset on semilocal
and local convergence analysis with this method (see, for example, [103-105, 109, 110] and
the references therein). Finally, we have given some applications of (n,«)-PBA for smooth
functions in the case when n = 1, n = 2 and 0 < a < 1 and for normal maps (¢ + £ which
is reformulated by Rashid [103]. We have given a numerical experiment to illustrates the

theoretical result.

The materials in this thesis are divided into six Chapters. The introduction is enclosed
in the first Chapter. Chapter 2 contains a review of some basic definitions, notations and
some preliminary results that are used in the subsequent Chapters. In Chapter 3, we study

a N-type method for solving the variational inclusion defined by the sums of a Fréchet dif-
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ferentiable function, divided difference admissible function and a set-valued mapping with
closed graph. Under some suitable assumptions on the Fréchet derivative of the differen-
tiable function and divided difference admissible function, we establish the existence of any
sequence constructed by the N-type method and prove that the sequence constructed by this
method converges linearly, quadratically and superlinearly to a solution of the variational in-
clusion. Specifically, when the Fréchet derivative of the differentiable function is continuous,
Lipschitz continuous and Holder continuous, divided difference admissible function admits
first order divided difference and the set- valued mapping is pseudo-Lipschitz continuous, we

show the linear, quadratic and superlinear convergence respectively of the method.

In Chapter 4, specifically in section 4.1, the EN-type method, which is defined by Al-
gorithm 2, is introduced for obtaining the solution of the variational inclusion (1.0.1). In
the section 4.2, we show the existence of a sequence and establish the linear and quardatic
convergence results of the sequence constructed by Algorithm 2 by using the conditions that
V( is continuous, Lipschitz continuous and g admits the FODD. The purpose of this section
4.2. is to analyze the semilocal convergence of the EN-type method which is defined by
Algorithm 2. A detailed discussion on this topic, we have mentioned in our paper Khaton
et al. [62]. The objective of the section 4.3. is to analyze the semilocal and local convergence
for the EN-type method under the weaker conditions than [62], that is, V( is (L, ¢)-Holder
continuous and g admits the FODD satisfying g-Holderian condition. The main result of the
section 4.3. is semilocal analysis for the EN-type method, that is, based on the information
around the initial point, the main results are the convergence criteria, which provide few
suitable conditions ensuring the convergence to a solution of any sequence constructed by
Algorithm 3. Consequently, the results of the local convergence for the EN-type method are

attained.

In Chapter 5, we introduce the EN-type method, which is defined by Algorithm 4, for
solving the nonsmooth variational inclusion (1.0.3) under the conditions n > 1, ((+ &)~ !is
Lipschitz-like and the nonsmooth function ¢ has a (n,«)-PBA and we prove the existence
and establish the (n 4+ «) order convergence results of the sequence which is constructed by

Algorithm 4. Moreover, we have given the applications of (n,a)-PBA for smooth functions
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in the cases n = 1 and n = 2 with 0 < a < 1. In addition, we have given another application
of (n,a)-PBA for normal maps (¢ + £ which extends the concept of PBA reformulated by
Rashid [103]. That is, we have shown that if ¢ has a (n,a)-PBA, it is easy to construct a
(n,a)-PBA for the (¢ + &.

Finally, a summary of the main finding of this study is presented in Chapter 6.



Chapter 2

Notations and Preliminaries

Throughout the whole thesis, we assume that S and T are two real or complex Banach
spaces and N is the set of all Natural numbers and N* = N — {0}. Suppose that ( : T — T
is a function, which is Fréchet differentiable, ( : S — T is a Fréchet differentiable function
and £: S = 27 is a set-valued map which has closed graph. Let s € S and B,(s) = {u € S :
|lu — s|| <} be denoted for the closed ball centered at s with radius r > 0. All the norms
are denoted by || - ||, while £(S,T) stands for the set of all bounded linear operators from S
to T.

The domain of £, denoted by dom &, is defined by
dom¢ :={s e S: &(s) # 0}
The inverse of &, denoted by ¢!, is defined by
Elt) ={seS:te&(s)} foreachteT.
Let D C S. The distance from a point s to a set D is defined by
dist(s, D) := inf{||s —a|| : a € D} for each s € S,

while the excess from the set D to the set C' C S is defined by

e(C, D) = sup{dist(s, D) : s € C}.

Definition 2.0.1. A sequence is a function whose domain is the set of natural numbers
N ={1,2,3,---}. A sequence {s,} in S is said to be convergent if 3’s a point s in S such

that for each € > 0, 3’s a positive integer (ng) such that n > ng = d(s,, s) < e.
11
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Definition 2.0.2. A sequence {s,} in (S,d) is said to be Cauchy sequence if for every
e > 0, 3’s some ngy such that d(sy, sm) < €, for all n,m > ng. Again, a metric space (S,d)

1s complete if every Cauchy sequence in it converges.

Definition 2.0.3. Consider the set-valued mapping € : S = 27. Then the graph of £ is
defined by

gph& = {(s,t) e SxT :t€&(s)}.

Definition 2.0.4. A set-valued function ¢ : S = 27 is said to be a closed graph if
the set {(s,t) : t € &(s)} is a closed subset of S x T in the product topology i.e. for all

sequences {si}re n and {ty}ren such that sy — s and ty — t and ty, € &(sg) for all n, we

have t € &(s).

The following definitions of continuity, Lipschitz continuity and Holder continuity are

taken from the book [21].
Definition 2.0.5. A map ( : T C S — T is said to be continuous at 5 € T if for every
€ > 0, there exist a 6 > 0 such that
IC(s) = ¢(5)]] <e€, forallse X, for which ||s —§|| <.
Definition 2.0.6. A map ( : YT C S§ — T is said to be Lipschitz continuous if there
exist constant 0 < ¢ < 1 and such that
1C(s) = ¢(3)|| <c|ls—t], forallseX, foralls and?¢ in the domain of .
Definition 2.0.7. A map ( : Y C S — T is said to be Hélder continuous if there exist
a constant ¢ > 0 and 0 < p <1 such that
IC(s) = C(5)|| < cl]s—t||P, forall s and ¢ in the domain of (.

The following definitions of linear convergence, quadratic convergence and super linear

convergence are taken from the book [71].
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Definition 2.0.8. Let {s,} be a sequence which converges to the number 5. Then the se-
quence {s,} is said to be converges linearly to s, if there exists a number 0 < ¢ < 1 such

that

[8n+1 = 5] < clsn = 5]

Definition 2.0.9. Let {s,} be a sequence which converges to the number 5. Then the se-
quence {s,} is said to be converges quadratically to s, if there exists a number 0 < ¢ < 1
such that

Isn+1 = 5l < ellsn — 51"

Definition 2.0.10. Let {s,} be a sequence which converges to the number s. Then the
sequence {s,} is said to be converges super-linearly to s, if there exists a number ¢ > 1
and 0 < p <1 such that

[8n+1 = 5l < cllsn — 5]”.

Aubin [15, 16] introduced the notions of pseudo-Lipschitz and Lipchitz-like set-valued
mappings and have been studied extensively. For more details one could refer to [1, 2, 8, 13,

27, 30, 35, 50, 55, 90, 127]. We recall the following notions from [110].

Definition 2.0.11. Let £ : T = 25 be a set-valued mapping and let (t,5) € gph €. Let rs, 17

and M are positive constants. Then £ is said to be

(a) Lipchitz-like on B, (1) relative to B, (5) with constant M if the following inequality
holds:

e(ﬁ(tl) N Brg(g),f(tg)) S MHtl — tQH, fOT any tl,tg < Br{(f). (201)

(b) pseudo-Lipschitz around (t,5) if there exist constants r; > 0, r% > 0 and M’ > 0

such that & is Lipchitz-like on B,.(t) relative to B, (8) with constant M'.

The following lemma is due to Lemma 2.1 of Rashid, Yu, Li & Wu. This lemma is useful
and it was proven by Rashid et al. in [110].

Lemma 2.0.1. Let (,3) € gph€ and let & : T = 25 be a set-valued mapping. Suppose that
¢ is Lipschitz-like on B,,(t) relative to B, (5) with constant M. Then

dist(s, £(t)) < Mdist(t, £ (s))
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holds for each s € B,_(5) and t € B%@ satisfying dist(t,&71(s)) <

Remark 2.0.1. The concept of pseudo-Lipschitz property of a set-valued mapping & is e-
quivalent to the openness with linear rate of £~' and to the metric reqularity of 71 (see

[7, 15-17, 23, 32, 33, 86, 44, 52, 718, 80, 81, 124, 126] for more details).

Remark 2.0.2. Equivalently for the property (a) we can say that & is Lipschitz-like at
(to; s0) € gph§ on By, (to) x B,, (so) with constant M if for each si,sys € By, (s0) and

for every s; € £(t1) N B, (s0), 3’s s € &(t2) such that

T‘SO
[s1 = sal| < M|ty —tall,  for every ti,ts € By, (to).

The definition of the first and second order divided difference operators are collected from

(43, 109):

Definition 2.0.12. Let g € L(S,T). Then g is said to have the FODD on the points
s, t €S (s#t) if the following properties hold:

(a) [5, 6 g)(t —5) = g(t) — g(s) for s £ 1.

(b) If g is Fréchet differentiable at s € S then [s, s; g] = Vg(s).

Definition 2.0.13. Let g € L(S, T). Then g is said to have the SODD on the points
s,t,z €S (s #t# z) if the following properties hold:

(a) [s,t,z;9](z — s) = [t, z; 9] — [s,; 9], for the distinct points s,t and z;
V2g(s)
5

(b) If g is twice differentiable at s € S then [s,s,s; g] =

The notion of point based-approximation (PBA) is given in [118] and studied many
mathematicians; see for example [11, 12, 61| and the references therein. We employ the

following concept of PBA which is introduced by Robinson in [118].

Definition 2.0.14. Let ¢ be a function from an open subset Y of S to T. Consider a scalar
k and a function A : T x T — T such that, for each p,q € Y, the following assertions are
hold:

(@) (0) = Ap.0)]| < 35l — al? and
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(b) The function A(p,-) — A(q,-) is Lipschitz continuous on Y which have a Lipschitz

constant k||p — q||.

Then A is said to be a PBA on Y for ( with modulus k.
In that time we say that ¢ has a PBA on T with modulus x.

Remark 2.0.3. The definition of PBA actually captures some very familiar properties of
linearizations. The easiest way to observe that a PBA of a function { which is Fréchet
differentiable in Y and the functions derivatives is Lipschitz continuous on Y with modulus

K, is the function
Az (p,q) — ((p) +V{(p)(g—p) (2.0.2)

is a PBA for ( with modulus k on Y.
Then we get from the part (a) of Definition (2.0.14) that

I6(a) ~ <) ~ V<)a — ) < gl — all>

Furthermore,

1[A(p, s) — Alg, s)] = [A(p,t) — A(g. )]l = [I(VC(p) — V{(g)(s =)
< [IV¢(p) — V<(@)lllls — ¢
< &llp—qlllls —t|.

Here we prove that the part (b) of Definition (2.0.14) is equivalent to the Lipschitzian property
of V( with modulus k.

The following concept of (n,«)-PBA is extracted from Geoffroy and Piétrus [42].

Definition 2.0.15. Let ( : Y C S — T be a function and n € N*, o > 0. Then a function
A: YT xYT = T is said to be a (n,a)-PBA on Y for ¢ with modulus k if there erists a

scalar k such that, for each p,q € Y, the following assertions are hold:

K
(a) lI<(q) — Ap, @)l < p a||p — q||"**, where

n

T = Iy (@ +4); (2.0.3)
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(b) The function A(p,-) — A(q,-) is Lipschitz continuous on T with modulus k||p — q||* .

It is clear that when n = 1 and o = 1, Definition 2.0.15 agrees with Robinson’s definition

of point-based approximation introduced in [118].

Recall the following definition of strict differentiability, which has been taken from [26].

Definition 2.0.16. A function ( : S — T is said to be strictly differentiable at s* with
strict derivative V(s*) if for every e >0 3’s § > 0 such that

IC(s") = C(s") = VC(s)(s" = )| < ells’ = s"[|, for every s, 5" € Bs(s").

The following result is a version of [26, Lemma 2]. The connection between the strict

differentiability of ¢ and (n,a)-PBA of a function ( is established by this result.

Lemma 2.0.2. Let s* € T and let A be a (n,a)-PBA of a function ¢ in T with a scalar
constant k. Then the function A(s*,-) — ((-) is strictly differentiable at the point s* and its

strict derivative at s* is zero.

We recall the following lemma from [31, Corollary 2].

Lemma 2.0.3. Let (,g: S — T be two continuous functions and let € : S = 27 be a
set-valued mapping which has closed graph. Let (s*,t*) € gph&, ((s*) = g(s*) = 0 and the
difference ¢ — g be strictly differentiable at the point s* € S with V(¢ — g)(s*) = 0. Let L be

a positive constant. Then both of the following are equivalent:
(i) At (t*,s*) the feature of the map (¢ + &)~ is Lipschitz-like with modulus < L;
(ii) At (t*,s*) the feature of the map (g + €)' is Lipschitz-like with modulus < L.

Remark 2.0.4. Combining Lemma 2.0.2 and Lemma 2.0.3, we can infer that if A is a (n, «)-
PBA of a function ¢ in an open neighborhood of some s* € (¢ + &)1 (t*), then (¢ +&)7t s

Lipschitz-like at (t*,s*) if and only if the map (A(s*,-)+£(+))™! possesses the same property.

The following theorem on the convergence of the Newton-type method is due to Dontchev;

see [27, Theorem.|:
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Theorem 2.0.1. Let s* be a solution of (1.0.8). Suppose that ( is a Fréchet differentiable
function on an open neighborhood Y of s* and the derivative of Fréchet differentiable function
V( is Lipschitz in Y with constant L. Suppose that & has closed graph and the mapping
(C(s*) + VC(s*)(- — s*) + &(-)) ! is Aubin continuous at (0,s*) with modulus M. Then, for
every ¢ > ——, one can find § > 0 such that, for any starting point sy € Bs(s*), I’s a

2
sequence {si} generated by (3.1.1), which satisfies

it — 1 < clls — 52
The following theorem on the convergence of the nonsmooth function using (n, a)-point-
based approximation is due to Geoffroy and Piétrus; see [42, Theorem 3.3]:

Theorem 2.0.2. Let the solution of (1.0.3) is s*. Fix n € N* and o > 0. Suppose that
€ has closed graph, ¢ admits a (n,«)-PBA with modulus k which is denoted by A, on some
open neighborhood Y of s* and the set-valued map [A(s*,) + £(-)] 7! is M-pseudo-Lipschitz

around (0,s*). Then for every ¢ > , one can find & > 0 such that for every starting

n,o

point so € Bs(s*), I’s a sequence {sy} generated by (5.1.2), which satisfies

Iskrr = 87l < cllsk — s7[".

Dontchev and Hager [31] proved Banach fixed point theorem, which has been employing
the standard iterative concept for contracting mapping. To prove the existence of the se-
quence generated by Algorithm 4, the following lemma will be played an important rule in

this study.

Lemma 2.0.4. Let ¥ : S = 2° be a set-valued mapping. Let s* € S, 0 <A <1 andr >0
be such that

(a) dist(s*, U(s™)) <r(l—A) (2.0.4)
and

(0) e(¥(s1) NB,(s%),¥(s2)) < Allsy — so|| for all  s1,s9 € B,.(s7). (2.0.5)

Then U has a fized point in B,(s*), that is, there exists s € B,(s*) such that s € W¥(s).
Furthermore, if U is single-valued, then there exists a fized point s € B,.(s*) such that s =

U(s).
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The preceding lemma is a generalization of a fixed point theorem and it has been taken

from [51], where in the second assertion the excess e is updated by Hausdorff distance.



Chapter 3

Local Convergence Analysis of a
Newton-type Method for Solving

Variational Inclusions

This Chapter consists three sections. Section 3.1 is dedicated to study the Newton-type
method satisfying (3.1.3) for finding the approximate solution of the variational inclusions
(1.0.1), while in Section 3.2 is devoted to study the linear, quadratic and superlinear con-
vergence of the sequence generated by Newton-type method satisfying (3.1.3) for solving the

variational inclusions (1.0.1).

3.1 Newton-type Method

In numerical analysis, Newton’s method, also known as the Newton-Raphson method, named
after Isaac Newton and Joseph Raphson, is a root finding algorithm which produces suc-
cessively better approximation to the roots or zeroes of a real valued mapping. Newton’s
method is a classical numerical method to solve a system of linear equations. John Wallis
[56] published Newton’s method for the first time in 1685 in ” A Treatise of Algebra both His-
torical and Practical”. For solving general nonlinear equations Thomas Simpson described
Newton’s method as an iterative method using calculus in 1740 and also gives the general-

ization to systems of two equations and notes that by setting the gradient to zero Newton’s
19
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method can be used for solving optimization problems .

The classical Newton method is very widely used and well known for finding zeros of
functions having Lipschitz continuous Fréchet derivatives. For an excellent treatment of this
method and many references, see the book of Ortega and Rheinboldt [82, 112]. However,
when the functions being dealt with do not possess Fréchet derivatives, then no one can
give the clear result that, how one can give a design of the Newton algorithm. In recent
years A lot of researchers have worked on this question and a number of methods have been
presented and justified in particular cases of its importance in applications.

In 1970, Robinson [117] established a local convergence theorem explaining the quadrat-
ic convergence observed in Wilson’s method and Eaves [37] and Robinson [121] each sug-
gested N-type linearization methods for solving nonlinear variational inequalities in finite-

dimensional spaces.

3.1.1 Introduction

Let S and T be two Banach spaces and T C S. Suppose that ( : T — T is a function,
which is Fréchet differentiable and the derivative of this function is denoted by V( , the
linear function g : T — 7T is differentiable at s*, but in a neighborhood Y of s* it may not
be differentiable and its FODD on the points s and ¢ is denoted by [s,t;g] and ¢ : S = 27 is
a set-valued mapping which has closed graph. We are concerned with the problem of finding

a solution s* € T satisfying the variational inclusion (1.0.1) such as

0 € ((5) + 9(5) +&(9).

For obtaining the solution of (1.0.1), Jean-Alexis and Piétrus [2] introduced the method

as follows:

0 € C(sk) +9(sk) + (VC(sk) + 28541 — sy 55 91) (sk41 — k) + E(Sk11)- (3.1.1)

They proved that the sequence generated by the method (3.1.1) converges superlinearly by
considering that V({ and the FODD of g are p-Holder continuous around a solution s* and
that (¢ + g + &) ! is pseudo-Lipschitz around (0, s*) with £ having closed graph. In recent

time, Rashid et al. [109] have been presented the improvement of the result corresponding
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one Jean-Alexis and Piétrus in [2] and show that if V( and the FODD of g are p-Hélder
continuous at a solution s*, then the method (3.1.1) converges superlinearly.

when g = 0, the variational inclusion (1.0.1) turns into the following form:
0 € ((5) +£(9). (3.1.2)

Several iterative methods have been studied for solving (3.1.2). Dontchev [27] established
a quadratically convergent N-type method under a pseudo-Lipschitz property for set-valued
mapping when V( is Lipschitz on a neighborhood of a solution s* of (3.1.2) and subsequently
he [29] proved the stability of this method. When V( is Holder on a neighborhood of s*,
Piétrus [89] obtained superlinear convergence by following Dontchev’s method and later
he [29] proved the stability of this method in this mild differentiability context. In the
case g = 0, Geoffroy et al. [41] considered a second degree Taylor polynomial expansion of
¢ under suitable first and second order differentiability assumptions and showed that the
existence of a sequence cubically converging to the solution of (1.0.1). But we cannot apply
the above methods, because of the lack of regularity of g, To carry out our objective, we
propose a combination of Newton’s method with the secant’s one. When the single-valued
functions involved in (1.0.1) is differentiable, N-type method can be considered to solve this
variational inclusion, such an approach has been used in many contributions to this subject;
see for example [2, 27, 28, 33, 43, 110]). To solve the problem (1.0.1), Geoffroy and Piétrus

[43] associate in the following:

0 € ¢(sk) +g(sk) + (VC(sk) + [sk-1, sk 9]) (k41 — 5k) + E(Sp41)- (3.1.3)
They studied this method by using the assumptions that V{ and the SODD of g are

Lipschitz continuous around a solution s*. They proved that the sequence generated by

(3.1.3) converges superlinearly.

The aim of this study is to extend the result given in [43] by using the concept of the
FODD of g and V( is continuous, Lipschitz continuous and Holder continuous and then
we prove the existence of a sequence generated by the method (3.1.3) and show the linear,

quadratical and superlinear convergence of the method for solving the variational inclusion

(1.0.1).
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3.2 Convergence Analysis of Newton-type Method

This section is devoted to study the existence and the convergence of any sequence generated
by the method (3.1.3) for the variational inclusion (1.0.1). Let ( : & — T be a single valued
function, ¢ : S — T admits FODD and ¢ : S = 27 be a set-valued mapping. Let s* be a
solution of (1.0.1). Let s € S and define a set valued mapping Ry : S = 27 by

Ry (1) == ¢(s7) + g(-) + V(") (- = 57) + £(). (3.2.1)
Consider the following assumptions:
(A0) £ has closed graph;
(A1) ( is Fréchet differentiable in a neighborhood of s*;
(A2) g is differentiable at s*;
(A3)

A3) The set valued map R;.' is M-pseudo-Lipschitz around (0, s*).

Define a single valued function G, : § — T, for kK € N and s, € S, by
Gi(5) (2)C(5%) 4 9(5)+ V< (57) (5= %) = C(58) — g5 — (V{58 + [551, 583 9]) (s—5), (32.2)
Also, define a set valued mapping ¥, : S = 2° by

U(s) = R Gr(s)). (3.2.3)

3.2.1 Linear Convergence

The subsection is devoted to study linear convergence result of the N-type method (3.1.3).
To do this we will take the following assumptions:
(A4) V( is continuous in a neighbourhood of s* with constant € > 0 i.e, for every ¢ > 0,

there exists 0 > 0 such that
IVC(s) = V)|l <€, when [|s —t]] <.
(A5) g admits FODD i.e, there exists k > 0 such that, for all s, ¢,¢', ' € T,

s, t; 9] = [, 1591 < mlls = "I + It =#]1)  with &' # s, " # .
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Let M, e and x be defined in (A3), (A4) and (A5) respectively satisfying the relation 14M (e+

4k) < 3.
TM (e + 4k)

Set C' = 3

(3.2.4)
. . . TR 1
This together with above inequality implies that C' < 3

Lemma 3.2.1. Let s* be a solution of (1.0.1). Suppose that assumptions (A0)-(A5) are
hold. Let C be defined by (3.2.4 ). Then for every such C, there exists 6 > 0 such that for

every distinct starting point so, s1 € Bs(s*), there exists a sequence {ss}, defined by
0 € ((s1) +g(s1) + (VC(s1) + [s0, 515 g]) (52 — 51) + £(52) (3.2.5)
and in Bs(s*) the map Yy has a fized point sy, which satisfies
|sa — s*|| < C||s1 — s*|| (3.2.6)

Proof. The assumption (A3) implies that the mapping R..' is M-pseudo-Lipschitz around

(0, s*). Hence there exists rg > 0 and r¢g > 0 such that
e(RuN(t1) NB, . (s), Ri'(t2)) < M|ty — || for any t1, t € B, (0). (3.2.7)
Let 6 > 0 be such that

(3.2.8)

To 4 —TMe 1}

5< {8*7 )
= WA 30 8r’ 280~

Fix sg, s1 € Bs(s*) such that sy # s1 # s* and define
rs, = Clls1 — s¥||.

1
Since C' < 5 from (3.2.4) and for sg, s1 € Bs(s*), we have

N S,

Ty = Clls1 — s <ed <

This shows that 75, < § < 7y
4
Lemma 2.0.4 will be applied to the map ¥, with ny := s*, r :=r,, and X := - to conclude
that there exists a fixed point s, € B, (s*) such that s, € Wy(sy), that is, G1(s2) € R (sy),

which implies that
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0 € ¢s1) +g(s1) + (VC(s1) + [s0, 515 g)(s2 — 81) + £(s2), (3.2.9)

i.e. (3.2.5) holds. Furthermore, s, € B, (s*) C Bs(s*) and so

Ts2
ls2 = 8% <75 = C ls1 = 5™,
i.e. (3.2.6) holds. Thus, to complete the proof, it is sufficient to show that Lemma 2.0.4 is
4
applicable for the map ¥, with ny := s*, r :=r,, and A := —. To do this, it remains to prove

that both assertions (a) and (b) of Lemma 2.0.4 hold. It is obvious that s* € R..'(0)NB,,, (s*).

We get that from the definition of the excess e,
dist (s, Uy (s")) < e<R;}(o> B, (s"), \111(3*)). (3.2.10)

In addition, for all sg, s; € B, (s*) such that sg, s; and s* are distinct, we have from (3.2.2)

that
IG1(s")] = 1I¢(s™) +g(s™) = C(s1) = g(s1) = (VS(51) + [50, 515 9]) (5" = s1)
< IC(s™) = C(s1) = VC(s1)(s™ = s1)ll + [[g(s™) — g(s1) — [s0, s15 g](s™ — s1)|
< I€(s™) = C(s1) = VC(s1)(s™ = si)l| + [[[s1, 875 gl(s™ = s1) — [s0, 515 g](s" — s1)]

[By using definition 2.0.12].
< I6(s™) = Cs1) = VE(s1)(s™ = su)ll + | (s, 875 9] = [s0, 515 9]) (s™ = s1)]|

Since ((s*) —((s1) — V{(s1)(s* —s1) = fol [V((s1+ f(s* —s1)) — V((s1)](s* — s1)df , we have
that
1
1GL (DI = /0 I[VC(s1+ f(s" = s1)) = V((s1)](s™ = s1) | df
+ |[[s1, 8% g] = [s0, s1; 91(s™ — s1)
1
= 6/0 I(s” = s)df [l + s (lls1 = soll + lls™ = sall) 5" — s
[By using assumption (A4) and (A5)]
1
= st sl [ (s = sl + s =)l sl @21
0
= ells" = sl +r(llst— 5"+ 5" = sol + s = sil]) Is” — sl
= €5+ K(26 + §) = €§ + 3KS*

< e +3kd=(e+3Kk)0 <ry (by3.28).
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This together with (3.2.7) and (3.2.10) (with ¢; = 0 and 2 = G;(s*)) implies that

dist (s*,

Ui(sY) < Mty —tof| < M[Gi(s")]|
< M(eHs* — 51l + £ (51 — soll + Is* = sol)[Is* — 31“) ( by using 3.2.11)
< M (e + 26ls1 = soll) s1 = 57
< M(e+4k6)|s1 — ¥
< M(e+4k)|s1 —s*||, Since d <1 (by using 3.2.8)
< -3y, = ra—n).

7

Hence assertion (a) of Lemma 2.0.4 is satisfied.

Now, we show that assertion (b) of Lemma 2.0.4 is also satisfied. Let s € Bs(s*). Then

IG1(s)]

IA

R VAN VAN | B VAN

1€(™) + g(s) = V(") (s" = 8) = ((s1) = g(s1) = (VC(s1) + [s0, 515 9]) (5™ = s1) |
16(s™) = C(s) + C(s) = Cs1) = VC(s7)(s" = 5) + g(s) — g(s1)
— (VC(s1)(s = s1) = [s0, 515 g])(s — 51
1€(s™) = ¢(s) = VC(s") (s = s)[| + [[C(s) = Cls1) = V(s1)(s — 1)
+1lg(s) = g(s1) = [s0, s15 g](s — s1)
ells = s*[| +ells = sl + |51, 85 g](s — s1) — [s0, 515 gl(s — s1)]
ells = s"[| +ells = sull + ||[s1, 55 9] = [s0, s15 gllll[s — s1ll
ells = 57| +ells = sall + K (lls1 = soll + [Is = sill) s = su
€d + 2ed + k(26 + 20)260
3ed + 8k0% < 3ed + 8kd, Since § <1

(Be+8k)d < 1o (by 3.2.8).

Hence we deduce that for all s € Bs(s*), G1(s) € B,,(0). Let ', s € Bs(s*). This together
with (3.2.7) (with t; = G1(¢), and to = G1(s”)) we get

e(ﬁll(s') NB,, ("), \Ill(s")> < e(\Ifl(s’> NBs(s*), \Ifl(s”))
= e(RA(GH()] N Ba(s7), B G ("))
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< M|G1(s") = Gi(s")]

< M|[(VE(s™) = V((s1)) (8" = 8") + Mlg(s") = g(s”") = [s0, 515 g)(s" = 8")]]
< Me|ls" = s"|| + M||[s" — &5 g](s" = s") = [s0, 515 g](s" = 5"

< Mel|s' = s"|| + M||([s" — '+ g] = [s0, 513 g]) (s = ")

< Me||s' = s"|| + M||k(||s" = sol| + [[s" = sul[) [ls" = "

< Me||s" — §"|| + Mk(25 +26)||s" — §"||

< M(e+4kd)||s" — " (3.2.12)
Due to the relation 28Mkd < 4 — 7TMe in (3.2.8), we obtain from (3.2.12) that
/ * 1 4 / " / 2
e(Wi(s) N By, (), Wi(s")) < =lls' = &l = Alls' = ]|
Thus assertion (b) of Lemma 2.0.4 is satisfied. This completes the proof of the Lemma. [J

Theorem 3.2.1. Let s* be a solution of (1.0.1). Suppose that assumptions (A0)-(A5) are
satisfied. Let C' be defined in (3.2.4). Then for every C, there exists 6 > 0 such that for
every starting point so, s1 € Bs(s*), there exists a sequence {sx} which is constructed by

(8.1.83) with initial point sg, s1 which converges to s* and satisfies the following inequality
l|sk+1 — || < C|sk, — s¥||  for each k=1, 2, ... (3.2.13)

Proof. By Lemma 3.2.1, for every C, there exists § > 0 such that for each sg, s1 € Bs(s*),
there is sy € Bs(s*) such that (3.2.5) and (3.2.6) hold. Let sq, s1 € Bs(s*). It follows from
Lemma 3.2.1 that there exists sy € Bs(s*) such that

0 € {(s1) + g(s1) + (VC(s1) + [0, 515 9]) (52 — 51) + &(52)

and

[s2 = 8[| < 75, < Clfs1 =57

and so (3.2.13) holds for £ = 1. We will proceed by induction method. Now assume that
S0, S1, ..., Sk are generated by (3.1.3) satisfying (3.2.13). Then by Lemma 3.2.1, we can

choose s41 € Bys(s*) such that

0 € ((sk) + g(sk) + (VC(sk) + [Sk—15 Sk 9])(Skt1 — Sk) + E(Skt1)
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and

k1 = 87| < 75y < Cllsp = 57,

and so (3.2.13) holds for all k£ > 1. This completes the proof of the Theorem.

3.2.2 Quadratic Convergence

The subsection is devoted to study quadratic convergence result of the N-type method (3.1.3).
To do this we will take the following assumptions:
(A6)V( is Lipschitz continuous in a neighbourhood of s* with constant L i.e, for every

s, t € T, we have that,
IVC(s) = V)l < Lils —t].
(A7) g admits FODD i.e, there exists x > 0 such that, for all s, ¢,s', ' € T,
s tsg] = [s", 159l < R(lls = S|P + It = ¢[1*)  with s" # s, t' £ .

Let M, L and  be defined in (A3), (A6) and (A7) such that 3M (L + 8x) < 1. Let

Set v = w (3.2.14)

1
Then we obtain that v < 5

Lemma 3.2.2. Let s* be a solution of the variational inclusion (1.0.1). Suppose that as-
sumptions (A0)-(A3), (A6) and (A7) are hold. Let ~ be defined by (3.2.14). Then for every
such v, there ezists & > 0 such that for every distinct starting point so,s; € Bs(s*), there

exists a sequence {sa}, defined by
0 € ¢(s1) + g(s1) + (VC(s1) + [0, 515 g]) (52 — 1) + £(s2) (3.2.15)
and the map Wy has a fized point sy in Bs(s*), which satisfies

ls2 = 8"l < lls1 = s™[lmax{|[sy — s"[|, [[s1 = sol|}- (3.2.16)
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Proof. The assumption (A3) implies that the mapping R, is M-pseudo-Lipschitz around

(0, s*). Hence there exists rg« > 0 and r¢ > 0 such that
e(RyN(t) NB, . (s), R (t2)) < M|ty — to|| for any 1, t € B, (0). (3.2.17)

Let 6 > 0 be such that

2T0 2
5 < { , , 1} 3.2.18
= M\ 5L 1+ 320 3M(5L + 8k) (3:2.18)
Fix sg, $1 € Bs(s*) such that sy # s1 # s* and define
rs, =7 [[s1 — s"[[max{]|sy — s*[|, [|so — s™[|}.
This implies that ry, < v0.0 <~ < and hence ry, <9 < 1.
2

Lemma 2.0.4  will be applied to the map ¥, with 7y := s* and r := rs, and \ = 3

to conclude that there exists a fixed point s, € B,  (s*) such that s, € Wi(sy), that is,
G1(s2) € R (sy), which implies that
0 € ¢(s1) + g(s1) + (VC(s1) + [s0, 513 g])(s2 — 51) + £(s2),

Furthermore, s, € B, (s*) C Bs(s*) and so

52 = 5[] < 7y < [ls1 — s"[Jmax{][[sy — 7], [|s1 — so[}-
Thus, to complete the proof, it is sufficient to show that Lemma 2.0.4 is applicable for the
map ¥; with 7y := s* and r 1= r,, and \ := g To do this, it remains to prove that both
assertions (a) and (b) of Lemma 2.0.4 hold. It is obvious that s* € R:'(0) N B, (s*). We
get that from the definition of the excess e is as follows:

dist(s*, Uy(s")) < 6(3;1(0) NB,,, (s, \Ill(s*)>. (3.2.19)

In addition, for all 5o, s; € B, (s*) such that sg, s; and s* are distinct, we have from (3.2.2)

that

IGL(s)I = 11¢(s™) +g(s™) = C(s1) — g(s1) — (VC(s1) + [0, 513 g]) (5" = s1) |
< [I6(s™) = Cs1) = VC(s1)(s™ = s1) [ + [lg(s™) — g(s1) =[50, 515 g](s™ = 51|
[By using definition 2.0.12].
< I6(s™) = Cls1) = VC(s1)(s™ = s0) [ + [|[s1, 875 gl(s™ = 51) = [50, 515 9](™ — 51|
< I6(s™) = Cls1) = VC(s1)(s™ = sl + [I([s1: 575 9] = [s0, 515 9]) (5" = )
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Since ((s*) = ((s1) = V¢(s1)(s" = s1) = [, [VC(s1 4 [ (5" = 51)) = V<(s1)](s5" = s1)df,

IGL (s = /O [VC(s1+ f(s™ = s1)) = VC(s1)](s™ — s1)df + [|[s1, 575 g] = [s0, 515 gllll[s" — 5]

1
= / Llisy+ f(s* = s1) = sulllls” = sulldf + m(lls1 = soll* + [|s* = s1l]*) " = s
0
[By using assumption (A6) and (A7)]

1
= /O LIf(s* = s)lldf|s* = sill + £ (lls1 = soll* + 15" = s1l|*) | 5" — su|

L
< Sls" = sl + 26llst = sol*lls” — s
L * 2 *
< gllsT = sl + 26.26] 51 = soll[s™ — |
L
< §||S*—81||2+4l{”81 — solllls* — s1||, since 6 <1 (3.2.20)
L
< 5524—8&.5.5
L 2
< (2 +8k)8* <rg  (by3.2.18).

2

This together with (3.2.17) and (3.2.19) (with ¢; = 0 and t2 = G1(s*)) we get

dist(s", W1(s")) < Ml — ]| < MJGi(s")]

IN

L .
M<§||S* — 51||* 4 4k||s1 — sol| [|s* — 31||> ( by using 3.2.20)

L N X
< ]\/[<§ + 45) l|s1 — s HmaX{Hsl — 5|, lls1 — soll}

(1 B §> 3M(L2+ 4K)

(1 - §>rs2 = r(1-=M\).

s = s*max{ o1 = 51 151 = 5ol }

IN

So assertion (a) of Lemma 2.0.4 is satisfied.
Now, we show that assertion (b) of Lemma 2.0.4 is also satisfied. Let s € B, (s*) C Bs(s").
Then
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IGL(s)I = N1C(s™) + g(s) = VC(s™)(5™ = 5) — (1) — g(s1) — (VC(s1) + [0, 513 g]) (5™ = s1)|
= [6(s) = ¢(s) + C(s) = C(s1) = V((s7)(s™ = 8) + g(s) — g(s1)

— (VC(s1)(s = 51) = [50, 515 g])(s — 1)

¢(s) = V¢(

< E(5") — €(5) = V)" = )+ 16(5) — C(s1) = Tlsn)(s — )]
+lgls) — glsr) — [so. 515 g)(s — )]

< Dlls— s+ glls = sall + lsu, 55 gl(s = 1) = [so, 513 6)(5 — )]

= Dl ="l Sl = 51l + s, : 6] o, 515 gllls = sl

< Dlis =51+ Zlls = 52l + w(llsn = 5ol + lls = 51l s — sl

< g(ﬁ -+ é(zfs)? + 1 ((20)* + (26)%)20

< géz +2L8% + 16Kk6°  Since § < 1

< §52 + 2L8° + 16K6°

= (% +16k)6° <ro (by 3.2.18).

So we deduce that for all s € B;(s*),G1(s) € B,,(0). Let s, s" € B, (s*). This together
with (3.2.17) (with ¢; = G1(s'), and ¢, = G4(s")) we get

e(Wi(s) NB,,, (7). Wi(s")) < e(Wi() NBy(s"), W(s") )
= ¢(RGI()] NBs(s"), BTG ("))
< M|Gy(s") = Ga(s")]
< M||(VE(s") = VE(s1))(s" = s") | + Mllg(s') — g(s") = [s0, 513 g](s" = s")]|
< ML||s" = sull|s" = "] + M|[s" = &5 g](s" = 5") = [s0, 515 g](s" = 5")|
< ML|[s" = si]llls" = "Il + M| ([s" = s'; g] = [0, 515 g]) (s = s")|
< ML||s" = sulllls" = s"|| + M (slls" = sol|* + [|s" = s1*) [Is" = 5|
< MLS||s' = s"|| + Mr((20)° + (20)%)[|s" — 5|
< MLS||s" — 8"|| + Mk86?||s" — §”|

< M(L+ 8r)d||s" — §"|| (3.2.21)
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Now using the relation 3M (L 4 8x)J < 2 from (3.2.18) in (3.2.21) we have

2
e(Wi(s) N By, (), Wils")) < Zlls' = &l = Alls' = "]

Thus assertion (b) of Lemma 2.0.4 is satisfied. This completes the proof of the Lemma. [

Theorem 3.2.2. Let s* be a solution of the variational inclusion (1.0.1). Suppose that
assumptions (A0)-(A3), (A6) and (A7) are satisfied. Let v be defined in (3.2.14). Then for
every vy, there exists § > 0 such that for every starting point so, s1 € Bs(s*), there exists a
sequence {sy} which is constructed by the method (3.1.3) with two initial point so, s1 which

converges to s* and satisfies that
[sp41 — s*|| < v llsi — s[lmax{||sy — s*||, [|sk — se-1]|} for each k=1, 2,... (3.2.22)

Proof. By Lemma 3.2.2, for every =, there exists ¢ > 0 such that for each sg, s; € Bs(s*),
there is so € Bg(s*) such that (3.2.15) and (3.2.16) hold. Let so, s1 € Bs(s*). It follows

from Lemma 3.2.2 that there exists sy € Bs(s*) such that

0 € ((s1) + g(s1) + (VC(s1) + [0, s1; g]) (52 — 51) + (52
and
s = 8*[| < 76y < [Is1 — s"[Jmax{|[sy — 5[], [ls1 — soll }

and so (3.2.22) holds for £ = 1. We will proceed by induction method. Now assume that
S0, S1, ..., Sk are generated by (3.1.3) satisfying (3.2.22). Then by Lemma 3.2.1, we can

choose sj41 € Bys(s*) such that

0 € C(sk) + g(sk) + (VC(sk) + [Sk—1, Sk; g]) (k1 — Sk) + E(Sk+1)

and

Isker = 571 < ropy < llsk = s"lImax{{ls, — 57|, [ls — se—l }-

and so (3.2.22) holds for all £ > 1. The Theorem is proved. O
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3.2.3 Swuperlinear Convergence

The subsection is devoted to study the superlinear convergence result of the N-type method
(3.1.3). To do this we will take the following assumptions:
(A8)V( is Holder continuous in a neighbourhood of s* with constant L i.e, for every
s, t € T, we have that,
IVC(s) = VC@)I < Llls — )"

(A9) g admits FODD i.e, there exists k > 0 such that, for all s, ¢,s', ' € T,

5 t:9] — [, gl < llls — $IP + [t — 7). with s’ s, £1.
Let M, L and k be defined in (A3),(A8) and (A9) such that M(3p+5){L+8(p+ 1)x} < 1.

M@Bp+5){L+4(p+ 1)k}

= (L4 2°"gk). 2.2
2T 1) and g = (L + K) (3.2.23)

Then we obtain that o <

This together with the above inequality implies that o <

2(p+1)

Lemma 3.2.3. Let s* be a solution of the variational inclusion (1.0.1). Suppose that assump-
tions (A0)-(A3), (A8) and (A9) are hold. Let o be defined by the method (3.2.23 ). Then
for every such o, there exists § > 0 such that for every distinct starting point sq, s1 € Bs(s*),

there exists a sequence {sq2}, defined by
0 € ((s1) +g(s1) + (VC(s1) + [s0, 515 g]) (52 — 51) + &£(52) (3.2.24)
and the map Uy has a fized point sy in Bs(s*), which satisfies
[s2 = s%|| < o |ls1 = s™[Jmax{][sy — s"[|”, [[s1 — sol|"}- (3.2.25)

Proof. The assumption (A3) implies that the mapping R..' is M-pseudo-Lipschitz around

(0, s*). Hence there exists rg > 0 and 79 > 0 such that
e(R:N(t) NB, . (s), R (t2)) < M|ty — to|| for any ty, ts € B, (0). (3.2.26)
Let 6 > 0, such that

5 < max{rs*, <L(2p+1 +7“10)(Z:—-Epli_ 1)2p+2m)p+1’ (qu(éip%)p’ 1}. (3.2.27)
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Fix sg, $1 € Bs(s*) such that sy # s1 # s* and define
rey =0 ||$1 — s*||max{|]51 —s*||P, ||s1 — SOH”}.

This implies that r,, < 06 .07 < gdP™ < § and hence r,, <& < 7.

3(p+1)
3p+95
to conclude that there exists a fixed point s, € B, (s*) such that s; € Wi(sy), that is,

Lemma 2.0.4 will be applied to the map ¥y with 7y := s* and r := r,, and \ :=
G1(s2) € R (s2), we get that

0 € ¢(s1) +g(s1) + (V{(s1) + [0, 515 g])(s2 — s1) + &(s2),

Furthermore, s; € B, (s*) € Bs(s*) and so

Is2 = 5" < 7y < 0 [ls1 = s"[Jmax{[}sy — s7[|", [ls1 — s0[I"}-

Thus, to complete the proof, it is sufficient to show that Lemma 2.0.4 is applicable for the
3(p+1)
3p+5
assertions (a) and (b) of Lemma 2.0.4 hold. It is obvious that s* € R:'(0) N B, (s*). We

. To do this, it remains to prove that both

map ¥y with ny :=s*, r:=r,, and X :=

get that from the definition of the excess e is as follows:
dist(s*, U1(s)) < 6(3;1(0) AB,,, (s, \111(3*)>. (3.2.28)

In addition, for all sg, s1 € B, (s*) such that sp,s; and s* are distinct, we have from (3.2.2)

that
IGL(sM)l = [IC(s™) + g(s") = C(s1) = g(s1) = (VC(s1) + [s0, 515 9]) (5" = 1)
< [6(s7) = Cs1) = VC(s1)(s™ — s1)[ + [lg(s™) — g(s1) — [s0, 515 g](s™ — s1)]
< [I6(s™) = ¢ls1) = VQ(s1)(s™ = sa) || + [[[s1, 875 gl(s™ = s1) = [s0, s1; g](s™ — s1)|
[By using definition (2.0.12)].
< [I¢(s*) = C(s1) = VE(s1)(s* = s)ll + [[([s1, 5% g] = [s0, 515 g]) (5" = 1)

Since ((s*) = ((s1) = VC(s1)(s" = 1) = [, [VC(s1 4 f (5" = 51)) = V<(s1))(5" = s1)df,
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HGll(S*)H
= /0 [VC(s1+ f(s" = 1)) = VC(s1)](s™ = s1)df + [|[s1, 57 g] = [s0, 515 gll [|s" — 5]

1
= / Ll[(s1+ f(s" = s1) = s1) [Pl = sulldf + & (([s1 = soll” + [[s" = solP) s — sl
0

[By using assumption (A8) and (A9)]

1
- / LIf(s" = so)lPdflls* = sill + w(lls1 = soll? + 1" = solIP)lIs* = su]
0

L
< s* — s |[PT + 2k]|s1 — sol|P||s* — s 3.2.29
< p+1H 1| [[s1 = soll”|] 1 ( )
L
< s* — s1|PT 4+ 2k(28)P.6
< s - s 26(20)
< i5P+1+2P+15P+1f~e
p+1
L
< (—— 2R < by 3.2.27).
< LAY < (by 3220

This together with (3.2.26) and (3.2.28) (with ¢; = 0 and ty = G1(s%))

dist(s*, W1(s")) < Mty —taf| < M[|Gi(s7)]
ML
< ls* — s1|[PT! + 2k||s1 — so||P||s* — 51| ( by using 3.2.29)
p+1
L
< M(—— +4k)||s1 — s™|lmax{||s1 — s*||?, ||s1 — sol|”
< (pJrl )Is1 = s*[lmax{[|s; — s”[I7, [Is1 = soI”}
M{L+4(p+1)r} . .- )
< P Is1 = s*[lmax{]|sy — s*|I", [ls1 — sol["}
27| *[Jmax{]| ] [} from(3.2.23)
s1 — §||lmax{|[s; — s s1— S rom(3.2.
= sl 1 s 1151 — S0
1
< =30ty
3p+5
< r(1—=M).

Hence assertion (a) of Lemma 2.0.4 is satisfied.

Now, we show that assertion (b) of Lemma 2.0.4 is also satisfied. Let s € B

Bs(s*). Then

(s7)

Tso =
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IGL()l = [1¢(s™) +g(s) = VC(s™)(5" = 5) = ((s1) = g(s1) — (VC<(51) + [50, 515 9]) (5" = 51|
= [[¢(s7) = C(s) + C(s) — C(s1) = VC(s)(s" = ) + g(s) — g(s1)

— (VC(s1)(s = 1) = [s0, s15 g])(s — 51)

) — V((

< [IC(s™) = €s) = VC(s™) (8™ = s)[| + [[¢(s) = Cs1) = V(s1)(s — 1)
+ [lg(s) = g(s1) — [s0, 515 g](s — s1)
L
< s — s ||PT 4+ ——||s — s1 [P+ [[[s1, 5 g](s — s1) = [0, s1; g](s — s
< s =S s = sl s s gl(s = 50) = o, s gl(s = )
L
= s — s*|[PH 4 s — sp||PT 4 ||[s1, s 50, 81; s—s
p+1H | p+1H I I[s1, 85 9] = [s0, 515 gllllls — s1l]
L
< erl||8—8*H”“+ +1H5—81H”“+/€(H81—SoH’”rHS—51I|”)HS—51||
L +1 L p+1 p
< ——0F ———(20)"" + k((26)” + (20)")20
p+1 p+1
< L —— P (2PTL 4 1) 4 goPTIPT?
-~ p+1
< P+l | 1) 4 opt2) gptl
< ey e
L(2rtt +1 1)2pr+2
< LT ADFPADITR G by 32.18).

p+1
so we deduce that for all s € Bs(s*),Gi(s) € B,,(0). Let &', s” € B, (s*). This together
with (3.2.26) (with t; = G1(5), and ty = G1(s")) we get

e(W1(5) NBy, (1), Wi(s")) < e(Wi() N By(s"), Wa(s")
= (RG] N By(s"), R G (5")])
< M|Gy(s") = Gu(s")]
< MI|(VE(s™) = VC(s)) (8" = ")l + Mllg(s) = g(") = [s0, s1; g)(s" = 5")]|
< ML|[s" = s1l[Plls" = 8" + M[|[s" = &'; g](s" = ") = [s0, s1; g](s" = s")|
< ML|[s" = si|"lls" = 8"l + M| ([s" = 8" g] = [0, 515 ]) (s = s")|
< ML|s™ = si|"lls" = 8" + M (sls" = soll” + [Is" = s1[”) s = "]
< MLE?|s' — s"|| +2Mr(26)"||s' — |
< MLP||s" — §"|| + 2P M kdP||s" — "

< M(L + 2P k)6P||s" — &7



36 Chapter 3 Local Convergence Analysis of a N-type Method for Solving V.I.

< Mgd?||s" —§"||  (from 3.2.27)

< 3(p+1)
~ 3p+5

Thus assertion (b) of Lemma 2.0.4 is satisfied. This completes the proof of the Lemma. [

Is" = 5"l < Alls" = s"]]

Theorem 3.2.3. Let s* be a solution of the variational inclusion (1.0.1). Suppose that
assumptions (A0)-(A3),(A8) and (A9) are satisfied. Let o be defined in (3.2.23). Then for
every o, there exists 6 > 0 such that for every starting point sq, s1 € Bs(s*), there exists a
sequence {sx} generated by the method (3.1.3) with initial point sy, sy which converges to s*

and satisfies that
llskt1 — ™| < o ||sg — s [[max{||sk — s*||”, ||sk — sk—1]|P}, for each k=1, 2,.... (3.2.30)

Proof. By Lemma 3.2.3, for every o, there exists § > 0 such that for each sy, s; €
Bs(s*), there is so € Bgs(s*) such that (3.2.24) and (3.2.25) hold. Let so, s1 € Bs(s*). It

follows from Lemma 3.2.3 that there exists sy € Bs(s*) such that

0 € ¢(s1) +g(s1) + (VC(s1) + [s0, 815 9]) (52 — 51) + &(82)

and
[s2 = 8[| <75, <o [s1 — s¥[|max{||s; — s7||", [|s1 — sol|"}

and so (3.2.30) holds for £ = 1. We will proceed by induction method. Now assume that
S0, S1, -.-, Sk are generated by (3.1.3) satisfying (3.2.30). Then by Lemma 3.2.1, we can

choose sy41 € Bys(s*) such that

0 € ¢(sk) +9(sk) + (VC(sk) + [sk-1, 55 91) (k41 — sk) + €(5h11)

and
[ski1 = ™| < 7sppy <0 sk — s™[max{||sp — s7[|7, [[sp — sp—1[|"}-

and so (3.2.30) holds for all £ > 1. The Theorem is proved. O

3.3 Concluding Remarks

We have established local convergence results of the Newton-type method for approximating
the solution of variational inclusion (1.0.1) under the assumptions that R.'(-) is pseudo-

Lipschitz and V( is continuous, Lipschitz continuous and Holder continuous respectively
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and g is admissible for FODD. More clearly, we have shown that the N-type method defined
by (3.1.3) converges linearly, quadratically and superlinearly to the solution of (1.0.1) if V(
is continuous and Lipschitz continuous and Holder continuous respectively, together with
a divided difference admissible function g. This study improves and extends the results

corresponding to [43].



Chapter 4

Semilocal and Local Convergence
Analysis of an Extended Newton-type
Method for Solving Variational

Inclusions

This Chapter is dedicated to study an extended Newton-type method for finding the solution
of the variational inclusions (1.0.1). Specially the linear and quadratic convergence by an
extended Newton-type method which is defined by the Algorithm 2 is presented in Section
4.2, while in Section 4.3, an extended Newton-type method with Holderian assumption which
is defined by the Algorithm 3 is presented for finding the solution of the variational inclusion

(1.0.1).

4.1 Introduction

EN-type Method can provide an effective tool to select nearly minimal norm solution from
the infinite ones in relatively short computation time. In this chapter we are concerned
with the problem of finding a solution of the variational inclusion (1.0.1) and we present the
semilocal and local convergence of the EN-type method.

Let S and 7 be two Banach spaces and T C S. suppose that ( : T — 7T is a function,
38
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which is Fréchet differentiable and the derivative of this function is denoted by V( , the linear
function g : T — T is differentiable at s*, which may not differentiable in a neighborhood
Y of 5 and the FODD of g on the points s and t is denoted by [s,#;g] and € : & = 27 is
a set-valued mapping which has closed graph acting between two Banach spaces. Here we
consider a variational inclusion problem (1.0.1) to finding a point 5 € T.

For solving (1.0.1), Hilout et al. [50] considered the following sequence

sp and s; are given two starting points
ty = asp + (1 — a)sg_1; when a € (0,1)
0 € ¢(sk) + [tw, sus CJ(swr1 — su) + E(skr1),

and when the function ( is only continuous and differentiable at s*, then the authors verified
the convergence is superlinear by using this method. In addition, for two-point Newton-type
methods in a Banach space setting under very general Lipschitz type conditions, it should
be mentioned that Argyros [8] has studied local as well as semilocal convergence analysis for
finding the solution (1.0.1) when & = {0}. When g = 0, this study has been extended by
Rashid [100, 103, 104].

Suppose that s € S and P(s) is the subset of S, which is defined as

P(s)={deS:0e((s)+g(s)+ (VC(s) + [s + d,s;9])d+ (s + d) }. (4.1.1)

Argyros and Hilout [13] associated the Newton-type (N-type) method mentioned in the

Algorithm 1 for finding the solution of the variational inclusion (1.0.1), which is as follows:

Algorithm 1 (The N-type Algorithm)
Iter. 1. Select sg € S, and place k := 0.

Iter. 2. In case 0 € P(sy), then stop; otherwise, go to the next Stair 3.

2
Iter. 3. In case 0 ¢ P(sy), choose dj, such that dy € P(sy).
Iter. 4. Set spi1 = s + di.
5

Iter. 5. k+ 1 is replace by k and repeat this cycle from Iter 2.

Using some compatible assumptions in the region of the solution s*, for the variational
inclusion (1.0.1), Argyros and Hilout [13, Theorem 4.1] presented a method which is men-
tioned by Algorithm 1. For any point in T, they showed that there exists a sequence and
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the sequence is quadratically convergent. This reflection we definitely understood that the
convergence result guarantees the existence of a convergent sequence, which is mention in
[13]. Consequently, for any initial point close to a solution, the sequences which is con-
structed by Algorithm 1 are not identically defined and not each constructed sequence is
convergent. Therefore, from a numerical computational point of view this type of method
is not convenient to apply in numerical practice. This difficulty inspired us to introduce a
kind of method ”so-called” extended Newton-type (EN-type) method which is employed in
Algorithm 2. In this way, we contemplate the following EN-type method:

Algorithm 2 (The EN-type Method))
Iter. 0. Pick n € [1,00), sp € S, and put k := 0.

Iter. 1. In case 0 € P(sy), then stop; otherwise, go to the next Stair 3.
Iter. 2. In case 0 ¢ P(sy), choose dj, such that dy € P(sy) and

|| < n dist (0, P(s)).

Iter. 3. Set spi1 := sp + dg.

Iter. 4. k + 1 is replaced by k and repeat this circle from Step 1.

The above two Algorithm differs in two features. The difference between two Algorithms
is that, Algorithm 2 generates at least one sequence and the generated each sequence is con-
vergent. Algorithm 1 generated sequence but each sequence does not converge. That’s why
the sequences which is constructed by Algorithm 1 are not uniquely defined. By comparison
with this two algorithms we can assume that algorithm 2 is more explicit than Algorithm 1
in numerical computation.

When we replace the set P(s) by the set
D(s):={deS:0€{(s)+g(s)+ (VC(s) + [2d + 5,5, 9])d + &(s + d) },

then the Algorithm 2 is reduced and the reduced algorithm is just like the algorithm which
was proposed by Rashid [110].
If ¢ = {0} and g = 0 , many mathematician have invented a number of useful results on

semilocal convergence analysis for the GN method. For the detail one can refer to Dedieu



4.2 Convergence Analysis of EN-type Method 41

and Kim [24]; Dedieu and Shub [25]; Xu and Li [130] or in the case when £ = C' and g = 0,
we can also refer to Li and Ng [72] for more details. In the case when g = 0, Rashid et al.
[110] introduced GN method to obtain the solution of the variational inclusion (1.0.1) and
established its semilocal convergence. Moreover, in the same case, Rashid [105, 106, 108§]
introduced different kinds of methods for obtaining the solution of (1.0.1) and attained the

semilocal and local convergence.

The purpose of this section is to evaluate the semilocal and local convergence of the
EN-type method which is constructed by Algorithm 2. In this section we deal with the
Lipschitz-like property of set-valued mappings as the main tool which was introduced by
Aubin [15], in the context of nonsmooth analysis and studied by many mathematicians (see

for example, [2, 13, 30, 50, 88, 90]) and the reference therein.

4.2 Convergence Analysis of Extended Newton-type
Method

This section is dedicated to show the existence of a sequence which is constructed by the
EN-type method, represented by the Algorithm 2.
Let s € §. Then for each s € §, we get

g(s) +s+d,s;gld = g(s) = [s+d,s:9](s = (s +d))

= g(s) = (g(s) —g(s + d)) = g(s + d). (4.2.1)
Let R be a set-valued mapping, which is defined by
Ry() == C(s) + 9() + VC(s)(- = 5) +£()-
It holds, for the formation of P(s) and (4.2.1), that
P(s)={deS:0eG,(s+d)}.
In addition, for any z € S and t € T, we get the following identity:

z € R;'(t) if and only if t € ((s) + g(2) + V{(s)(z — s) + £(2). (4.2.2)
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Particularly, let (5,¢) € gphRs. Then, the definition of closed graphness of Rj signifies that
5€ R(1). (4.2.3)

The following outcome constitutes the equivalence between R;' and (¢ + g + ¢)~'. This
result is the modification of [108].

Lemma 4.2.1. Let (5,t) € gph ((+g+&). Suppose that ¢ is a Fréchet differentiable function
in an open neighborhood Y at 5 and its derivative V( is continuous around §. Assume that g

admits FODD and g is Fréchet differentiable at s. Then the followings relation are equivalent:
(i) At the point (t,5) the nature of the mapping (¢ + g + &)1 is pseudo-Lipschitz,
(i) At the point (£,5) the nature of the mapping Ry' is pseudo-Lipschitz.
Proof. The function h: § — T is defined by
h(s) := =C(s) + ¢(5) + V((5)(s — 5)

The proof is similar to that of [108], because the proof does not depend on the property of
g- O

For our suitability, let 7 > 0, r; > 0 and B,.(5) € T Ndom¢&. Suppose that V( is

Lipschitz continuous on B,,(S), i.e, 3’s L > 0 such that
IVC¢(s) = VC(SHII < Llls—= &, ¢€(0,1], forany s,s €B,.(5), (4.2.4)

g admits a FODD satisfying Lipschitz condition, that is, there exists ¥ > 0 such that, V
s,t,v,w € B, (5) (v# w,s #t),

I[s,t; 9] = [v,wi gll| < v(lls — vl + ||t = w])), (4.2.5)

and R;' is Lipschitz-like on the ball B, (f) relative to B, (5) including constant M, that is,
e(R: (1) NB,.(5), R: (y2)) < M|ty — to]| for any ty, t, € B, (D). (4.2.6)

Further, for ¢, the closed graph property of R implies that { + g + £ is continuous at 5 i.e.

lim dist (£, ((s) + g(s) + &(s)) =0 (4.2.7)

5—8
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is hold.

Let € > 0 and we write

_ : rs(1 — Me)
- S92 7} 42,
T rnm{rt er n, (4.2.8)
Then
P 1
7> 0 if and only if € < min{;—;g, M} (4.2.9)

The following lemma is extracted from [110, Lemma 3.1] and the Lemma plays a very

important role for convergence analysis of the EN-type method.

Lemma 4.2.2. Assume that Ry" is Lipschitz-like on B, (t) relative to B,,(5) with constant
M, i.e,

i1
sup  ||[VC(s") = V{(s")]] < e < min {i, —} (4.2.10)
s’,s”EIB%:;—(g?) 27’5 M

Let s € Bg(g) and € be defined by (4.2.9). Suppose that V( is continuous on B%(E). Let 7

be defined by (4.2.8) such that (4.2.10) is true. Then R;' is Lipschitz-like on B;(t) relative

to Brs (5) with constant e,

e(R;Y(t) NB-

s (8), R;(ty)) < |ty — tof| for any ty, to € Bi(t).

1— Me
Proof. Let
ti, ty € Bi(f) and &' € R7'(t) NBrs (5). (4.2.11)

It is enough to prove that 3 s” € R;'(¢;) such that

Is" = "Il <

t1 — ta|.
< ——lt—ta

To finish this, we will justify that 3’s a sequence {s, } C B,.(5) such that
ta € ((8) + g(sn) + V((5)(sn-1 = 8) + V((5) (80 — sn-1) +&(5n), (4.2.12)

and

150 — Sp_1]| < M|ty — tof|(Me)™ 2 (4.2.13)

for each n = 2,3,4,.... the inequality (4.2.13) is hold. We proceed by mathematical induc-

tion on n. Letting

w; =1t — ((s) — V{(s)(s1 — $) + ((5) + V((5)(sy — §) foreachi=1,2.
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From (4.2.11) we get that
Is =Sl < lls =5l + 5 =&l < s
Since V( is continuous around § with the constant ¢, we have that
1€(s) = ¢(5) = V() (s = 8)| = | /01[V<(§+ f(s = 5)) = VC(8)](s — s)df |

< / IVCGE + f(s — 8) — VC@)Ills - slldf

< a||s—s||/ daf

= ¢lls = s[l(1 = 0) = ells — 5]l,

From (4.2.11) and the relation 7 < r; — 2er; by (4.2.8), it follows that

lui =t < lus = 2l + [[(VE(s) = VC(5)) (s = )| + [I<(s) = €(5) = VC(5)(s = 5|
< 7+e(lls =Sl + s —sl)
<

_ T's
T+ e(rs + 5) <ry.

The preceding inequality implies that u; € B, (t) for every i = 1,2. Now denote s; := s'.
Then s; € R; (1) by (4.2.11) and it follows from (4.2.2) that

t1 € ¢(s) + g(s1) + V((s)(s1 — 5) + £(s1)-
The alternative form of the above inclusion is as follows:
tr+¢(5) + V((5)(s1 = 5)) € ¢(5) + V(5)(s1 = 5) + g(s1) + C(s) + V((s)(s1 = ) + £(51).
According to the definition of u,, this yields that
ur € ((8) + g(s1) + V((5)(s1 — 8) + &(s1).-
So s1 € R;'(u1) by (4.2.2). Then by (4.2.11), we have that
s1 € RN up) N B, (5).

Since R;' is Lipschitz-like on B, (f) relative to B, (5), then for every uy, us € B, (f), we
have through (4.2.6) that 3's s € R;'(ug) such that

[s2 = 51| < MlJuy — usl| = M|ty —ta]|.
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In addition, by the construction of uy and s; = §’, we get that
s2 € Ry (uz) = Ry (2 — C(s) — V((s)(s1 — 5) + ((5) + V(5)(s1 — 5)).
This inequality with (4.2.2), gives us
ta € ((s) + g(s2) + V((5)(s2 = s1) + V((s)(s1 = ) + E(s2)-

This implies that (4.2.12) and (4.2.13) are true with the generated points s; and ss.
Let the points sy, Sg, ..., Sk be generated, that’s why (4.2.12) and (4.2.13) are true for
n=2,3,...,k. Now we have to generate the new point s;,; such that (4.2.12) and (4.2.13)

are also true for n = k + 1. For showing this, let, for each i =0, 1,
uf =ty — ((s) = VC(3)(sprict — ) + C(5) + VC(5) (Skti1 — 5)-
Then, form the above inductional assumption, we have that

lug —will = [(VC(5) = V() (s — si-1)
< ellsk — spot]| < |t — to|(Me)*L (4.2.14)

S

We have from (4.2.11) that ||s; — §|| < % and ||t; — to|| < 27. Thus, we have, from
(4.2.13), that

IA

s — 5]l

k
Z [[si = si—all + lls1 — 5]
=2

k
< oM7Y (Me)y 24

, 2
1=2

< 2]\4-77 +7"§

- 1-Me 2

Note by (4.2.8) that 4M7 < r;(1 — Me). Therefore, we have from the above inequality that
lsk — || < 7s. (4.2.15)
Moreover, we attain that

_ _ 3
sk — s < llsi = 511 + 15 = 5] < 57 (4.2.16)
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Furthermore, using (4.2.11) and (4.2.16), we get, for every i = 0, 1,

[l

<t =2+ [1(VC(s) = VE(E)) (s = sira-a) | + 16(s) = ¢(5) = VE(5)(s — 5)]]
_ _ _ 3rs  Ts

< rte(lls = sheiall + s = 5l) <7 +e(F+ )

T+ 2€T§.

By the relation 7 < r; — 2ers in (4.2.8), it follows that ||u¥ — || < r;. This shows that
uf € B, (f) for each i = 0,1. By our condition (4.2.12) is true for n = k. Thus, we get that

ta € C(s) + g(sk) + VC(s)(sk-1 — ) + V((5) (s — sp-1) + E(s8)-
We can write the above inequality as follows:

ta +((8) + V((3)(sp—1 —5) € ((s) + VC(s)(sk-1 —x) + ((5) + g(sk)
+VC(5)(sk — sp-1) + &(s) + V((8)(sp-1 — 5).

Then by the construction of uf, we have that uf € ¢(5) + g(sx) +V((5)(sx — 5) +&(s). This
together with (4.2.2) implies that s, € Ry (uf). It follows from (4.2.15) that

s € R7M(uf) NB,.(5).
By Lipschitz-like property of R:', 3's an element s;,; € R;'(u}) such that
Iss = sill < Mllug — il
Then by (4.2.14), it follows that
ka1 — skl < M|ty — to|(Me)*1. (4.2.17)
By the construction of u}, we have that
skr1 € R (uf) = Ry (ta — ((s) = VC(s)(s1 — 8) + ((5) + VC(5) (s — 3)).
This inequality with (4.2.2), implies that

ta € C(8) + g(sk41) + VC(s)(sk — ) + VC(5) (k41 — sk) + E(Sk+1)-
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The inequality (4.2.17) with the above inclusion completes the induction step and confirming

the existence of a sequence {sj} which satisfies (4.2.12) and (4.2.13).

Whereas Me < 1, than we get from (4.2.13) that {s;} is a Cauchy sequence and hence
it is convergent, to say s”, that is, s” := lim;_,, Sx. Note that £ has closed graph. Then,
taking limit in (4.2.12), we get t2 € ((s)+g(s”)+V{(s)(s" —s)+£(s"), that is, s € R (t2).

Therefore, we obtain
n
Is" = "I < lim sup > [|sg — spi]|

lim sup » (Me)* M ||t — b

<
n—0o0
k=2
< -t
S Tt I
That is,
R7Y(t) NBr:(5), Ry H(ty)) < t1 —to|.
(R, (t) NBiy (5), By (1) < -l — ]
The Lemma 4.2.2 is complectly proved. O

Before going to prove our main results, we would like to introduce some notations. For

our convenience, first we let a mapping I,: S — 7T, for each s € §, which is defined by
L(-) = ¢(5) + g() + V() (- = 5) = C(s) = g(s) = (VC(s) + [, s3.9]) (- = 5).
and the set-valued mapping ¥,: S = 25 is defined by
W) = BLO)) (4.2.18)
For any point ', s” € S, we get

1:(s') = L(s") | = llg(s") = g(s") = [s', 5;91(s" = 5) + 5", 5, 9)(s" — )
+(VE(5) = VE(s)(s" = ")
< lg(s") = g(s") = [s", s3.9)(s" = s")| + [I([s", 53 ]
—[s",s19]) (s" = 8) | + [VC(5) = VC(s)lllls" = 5"l
< (lls", 5" 9] = [s", s: gl + IVC(5) = VC(s)ID) 18" = "]
+[I[s", 5:91 = [s', 53 gllllls" — sl (4.2.19)
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4.2.1 Linear Convergence

The first main theorem of this study read as follows. This theorem gives some certain suitable
assumptions confirming the convergence of the method called EN-type method with starting

point sg.

Theorem 4.2.1. Assume that n > 1 and R;' is Lipschitz-like on B, (t) relative to B, (3)
with a constant M. let T be defined in (4.2.8) and let s € Brs(5). Suppose that € > 0 be such
that (4.2.10) is hold and V¢ is continuous on Brs (5) with constant e.

Let v >0 and § > 0 be such that

(a) 5<min{E i 3 — 5Me r }
- 47 T(e+3v) 7 30Mv ' 3(e+3v))’

(b) 6nM (e +3v) <1-— Me,
(c) |It|| < (e + 3v)0.

Suppose that (¢ + g + &) is continuous at § for t i.e. (4.2.7) is hold. Then 3’s some 5> 0
such that any sequence {s,} generated by Algorithm 2 with initial point in B(5,0) converges

to a solution s* of (1.0.1), that is, s* satisfies 0 € ((s*) + g(s*) + &(s*).

M 3
Proof. Setting that ¢ := 771(67]—(_4”) From the assumption (b) 6nM (e +3v) <1— Me, we
— Me
find
_ nM(e +3v) < 1
 1-Me 6
Pick up 0 < ) < ¢ such that
dist(0, ¢(s0) + g(s0) +&(s0)) < (e +3v)d,  for each 57 € By(5) (4.2.20)

(Mark that such ¢ exists by (4.2.7) and assumption (c)). Let s, € B;(5). To prove that
Algorithm 2 generates at least one sequence, we will proceed by mathematical induction.
Again show that any sequence {s,} constructed by Algorithm 2, which is satisfies both of

the following assertions:

s — 5| < 20 (4.2.21)

and

18ns1 — sull < ¢" 16 (4.2.22)
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the assertions hold for every n = 0,1, 2, .... For this objective, we will define
5 _
roi= o (M(s +3vs — 5))||s — 51| + M\|t||>, for each s € S. (4.2.23)

Then, we get 6nM (¢ +3v) < 1— Me < 1 from the assumption (b) and from assumption (c)
we get ||t]| < (e +3v)d . Whereas n > 1, (4.2.23) yields that

re < BM(e+46v8)d+ M(e+3v)d < 5M(e + 6v6) + M(e+ 3v)d

11
= 6Me5 +33MvS < 11Me8 + 33MvS = 1M (e + 31)5 < —9
n
< 2§ for each s € Bos(5). (4.2.24)

Note that for n = 0 the assertion (4.2.21) is trivial. At first we need to show that s; exists.
For that we have to show (4.2.22) are holds for n = 0. To complete this, we have to prove

that P(sg) # 0. For that we will apply Lemma 2.0.4 to the map ¥, with 7y = 5. Let us

verify that both assertions (2.0.4) and (2.0.5) of Lemma 2.0.4 hold with r := ry, and X := g

We will remark that 5 € R;'(f) NBys(5) by (4.2.3) and by the definition of the mapping W,,

and the excess e in (4.2.18), we get

IN

dist(s, ¥, (5)) (R (8) N By, (5), Usy (5)) < e(RyH(E) N Bas(5), Uy (5))

< (R (D) N B, (5), Ry 1, (5) (4.2.25)

(we remark that Bos(5) C B,.(5)). According to €, we get

— (VC(s0) + [s, 505 9]) (s — 50) — 2]
< [I€(5) = ¢s0) = VC(s0)(5 = s0)l| + V(5 = V((s0)) (s — 5)|

+llg(s) — g(s0) = [s, 505 9 (s — s0) | + ||

1o (s) =2l = [I<(5) + g(s) + VC(5)(s = 5) — ((s0) — g(s0)
(

< e(ll5 = soll + lls = 5l1) + ll[s0, 55 9] = [s, 505 gllll|s — soll
+ |2l
< e(ll5 = soll + lls = 5l1) + v(llso = sll + lls = s0l)l|s = soll

+ /]l (4.2.26)

Remark that ||so — 5| < 0 < 8, 7(¢ + 3v)d < r; by assumption (a) and ||| < (¢ + 3v)d by
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assumption (c), it follows from (4.2.26) that, for each s € Bos(5),

115(s) — ]| < 30+ 18v6° + (e + 3v)8 < 30 + 1803 + (¢ + 3v)§
< 6ed + 18v6 + (¢ + 3v)d = T(e + 3v)0
< 1 (4.2.27)

This implies that for all s € Bys(5), Iy, (s) € B, (t). Particularly, let s = 5 in (4.2.26). Then

we get that

s (5) =2l < ells = soll + v(2llso — 5l + lI5 = soll) |5 — soll + [

= (e43v||5—sol)lI5 — sol + ||| (4.2.28)
< (e+3v0)d+ ||t < (e 4 3v)d + ||t]]
< 2(e+3v)d <rg

and so I, (5) € B, (%).
Therefore, by (4.2.23), (4.2.25), (4.2.28) and assumed Lipschitz-like property, we have

dist(s, Uy, (5))

IN

M[t = Lo (5)]
< M (e + 3|5 = sol) |5 = soll + M]J¢|

= (1 — g)rso = (1 — /\)T;

therefore, the first assertion (2.0.4) of Lemma 2.0.4 is satisfied.

Now, we will show that the second assertion (2.0.5) of Lemma 2.0.4 holds. To finish
this, we assume s, s” € B, (5). Then, it follows that s',s” € B, (5) C Bas(5) C B,,(5) by
(4.2.24) and assumption (a) and I, (s"), I, (s") € B,,(t) by (4.2.27). This together with the

assumed Lipschitz-like property implies that

e(Ws(s") N Brso (8), Uso(s") < e(Wyy(s) NB,.(5), ¥yy(s"))
= e(R; Iy (s")] N By, (5), Ry [Lso(s")])
< ML (s') = L (8" (4.2.29)
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According to the choice of s in (4.2.19), we get

1aos) = Lo () < (IS o' 9] = 5", 503 9]l + [ 9(5) = Vo)1 = )
11", 503 9] = 15" 503 918" = sol
< (v(ls' = soll + 115" = soll) +2) s’ =
< (e+6vo)||s" — §"]. (4.2.30)

we get (4.2.29) and (4.2.30) together is as follows,

e(Uy, (s) NB,, (5), P, (s") < M(e+ 6vd)|s — 5"

Tsg

The above inequality follows the assumption (a) 30Mvd < 3 —5Me, then we get that
3
e(Wsy () N By, (5), Vs (s) < £lls” = " = Alls" = "]

This yields that the second assertion (2.0.5) of Lemma 2.0.4 is satisfied. Inasmuch as we
have seen that both first and second assertions of Lemma 2.0.4 are fulfilled, we can say that
the Lemma 2.0.4 is applicable and hence we can conclude that there exists 8, € B, (5) such
that §; € W, (51). This yields that 0 € ((so) + g(s0) + (V((s0) + [51, 505 9]) (51 — s0) + £(51)
and thus we conclude that P(sq) # 0. Since n > 1 and P(sg) # 0, we can select dy € P(so)
such that

[doll < n dist(0, P(s0))-
s1 := 8o + dp is defined for Algorithm 2. Moreover, according to the definition of P(sq) and
through (4.2.1), we get

P(so) = {do € S :0 € ((s0) + g(s0) + (VC(50) + [do + S0, 503 g])do + &(s0 + do)}
= {do €510 ¢ls0) + glso + do) + VC(s0)do + (50 + o) |
= {do €S:so+dy€ Rgol(o)},
and so
dist(0, P(so)) = dist(so, Ry, (0)). (4.2.31)
Now, we show that (4.2.22) holds also for n = 0. The continuity property of V{ implies
that

IV{(s) — V((3)|| < e, forall s € Brs(3)

vl
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and note that ¥ > 0 by assumption (a). Therefore, (4.2.10) satisfies (4.2.8). Since R;' is

Lipschitz-like, it follows from Lemma 4.2.2 that the mapping R, ! is Lipschitz-like on B(?)

relative to Brs (5) with constant . for each s € Brs(5). Particularly, according to

— Me
assumption (a) and the choice of 9, R is Lipschitz-like on B;(t) relative to B (5) with

M
e 28 %0 € B;(s) C Bs(S) C Brs(S). Moreover, by the relation 3(c +3v)d < T
£

constant

in assumption (a) and assumption(c) imply that

1]l < (e +3v)8 < (4.2.32)

wl 3

and therefore (4.2.20) implies that

dist(0, Ry, (s0)) = dist(0,¢(s0) + g(so) + &(s0)) < (e +3v)d (4.2.33)

<

w3

By (4.2.32), it is marked earlier that sy € Brs(5) and 0 € Bg(f). Thus, applying Lemma

rs
2

2.0.1 it can be shown that

dist (50, R;ol (O)) <

T e dist (0, Ry, (s0))-

The above relation together with (4.2.31) yields that

dist(O,P(sO)) = dist(sO,RS_Ol(O)) <

dist (0, Ry, (50)). (4.2.34)

1— Me

According to Algorithm 2 and using (4.2.33) and (4.2.34), we have

: M
|do|| < 7 dist(0,P(s9)) < ] i e dist (0, Ry, (50))

nM (e + 3v)o

S Y 4.2.35
= 11— Me (4.2.35)
= qo.

This implies that
Is1 = soll = lldol| < qd

and therefore, (4.2.22) is hold for n = 0.
Assume that sq, $9,..., s, are constructed. So that the inequality (4.2.21) and (4.2.22)

are hold for n = 0,1,2,...,k — 1. Again we will verify that there exists s;,; such that
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(4.2.21) and (4.2.22) are also hold for n = k. Since (4.2.21) and (4.2.22) are true for each

n < k — 1, we get the inequality as follows:

k-1 k—1
| 5
lse — 81l < S Nill + llso — 51 < 8> g™ +5 < 2L 15 < 2.

1=0 i=0 1 - q

This shows that (4.2.21) holds for n = k. Now we can also show that (4.2.22) hold for n = k,
by the same argument as we did for the case when n = 0.

The proof is complete. O

When ¢ = 0, that is, § is a solution of (1.0.1), Theorem 4.2.1 is reduced to the following

corollary, which gives the local convergent result for the extended Newton-type method.

Corollary 4.2.1. Suppose thatn > 1 and s is a solution of the variational inclusion (1.0.1).
Let R;' be pseudo-Lipschitz around (0,3). Let 7 > 0, v > 0 and suppose that V( is contin-

uous on B;(3) and that

lim dist (0, (s) + g(s) +&(s)) = 0.

58
Then there exists some o such that any sequence {s,} generated by Algorithm 2 with initial

point in B;(5) converges to a solution s* of the variational inclusion (1.0.1).

Proof. Let R;' is pseudo-Lipschitz around (0,5). Then there exist constants rg, s and M

satisfy the following condition:
e(R;'(t1) N By, (5), Ry '(t2)) < M|ty — taf|, for every ty,ty € B,,(0). (4.2.36)

Thus, according to the definition of Lipschitz-like property we can say that Q3 ' is Lipschitz-
like on B, (0) relative to B; (5) with constant M which satisfy (4.2.36). Then, for each

0 < 7 <15, one has that
e(R;'(t1) NB#(5), R; ' (ta)) < M|ty — taf|, for every ty,ty € B,,(0),

that is, R;' is Lipschitz-like on B,,(0) relative to B;(5) with constant M. Let € € (0,1) be
such that M ((6n + 1)e 4+ 3v) < 1. By the continuity of V{ we can choose 75 € (0,75) such

Ts
that 5‘3 <7, rg—2er; >0 and
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|V¢(s) — V((s)]| < e, for each s, s € Brs(5).

I's
2

Then

rs(1 — Mg)} -0,

r= min{ro — 2¢ers, i

and

. (T3 T o 3 — 5]\/[5}
s > 0. 4.2.37
i { 1" 3(+3v) T(e+3v) 30Mv ( )

By (4.2.37), we can choose 0 < § < 1 such that

5 < i {Tg r 1 70 3 — 5M5}
min ¢ — )
- 47 3(e+3v) T T(e+3v) 30Mv

Thus it is routine to check that inequalities (a) -(c) of Theorem 4.2.1 are satisfied. Therefore,

Theorem 4.2.1 is applicable to complete the proof. O

4.2.2 Quadratic Convergence

In this section we consider V( is Lipschitz continuous around s and we show that the sequence
generated by Algorithm 2 converges quadratically.
Let L > 0 and define

5 Ts(1 — MLrs) }

r* := min {r; — 2Lrs, i

(4.2.38)
Now, we state our second main theorem as follows:

Theorem 4.2.2. Suppose thatn > 1 and let R;" is Lipschitz-like on B, (t) relative to B, (3)
with constant M and that V( s Lipschitz continuous on IB%%(E) with Lipschitz constant L.
Let v >0, 0 >0 be such that

o s <min {12 %0 (o))

(b) (M +1)(L+4v)(nd+rs) <1,

(L + 4v)6*

(o) Il < ==
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Suppose that
lim dist(, {(s) + g(s) +&(s)) = 0. (4.2.39)

5—38

Then there exist some 6 > 0 such that any sequence {s,} generated by Algorithm 2 with

initial point in B;(5) converges quadratically to a solution s* of (1.0.1).

Proof. Setting
~ nM(L+4v)d

b:= 4.2.4
1-— MLTg ( 0>
Thanks to assumption (b). Since v > 0, it allows us to write the fact that
nM(L+4v)0 + MLrs < (M +1)(L+4v)nd + (M + 1)(L + 4v)r;
= M+1)(L+4v)(nd+rs) <1.
Thus, we have from (4.2.40) that
nM(L + 4v)o
bi=———"— <1, 4.2.41
1—MLry; — ( )
Pick 0 < & < ¢ be such that
L + 4v)6*
dist (0, ¢(s0) + g(s0) +£(s0)) < (L+4n)5” for each sy € By(5) (4.2.42)

2

Since (4.2.39) is hold and assumption (c) is true, we assume that such § exists, which satisfies
(4.2.42). Let 5o € B4(5). Now we use the same argument whichever we used in Theorem
4.2.1 for complete the proof of the Theorem 4.2.2 We show that Algorithm 2 generates at

least one sequence and such generated sequence {s,,} satisfies the following assertions:

[sn — 5] < 26; (4.2.43)
and
1,2
Id, || < b(§> 5. (4.2.44)
hold for each n =0,1,2,.... Let
5M o
ry = T((L 4 dv)||s — 52 + 2||t||>, for each s € X. (4.2.45)
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Owing to the fact 40 < r; in assumption (a) and n > 1 , by assumption (b) we can write as

follows
S5(M+1)(L+4v)d = (M +1)(L+4v)(d + 40)
< (M +1)(L+4v)(nd +rs)
< 1
This gives
M(L+4v)é < é and (L+4v)d < % (4.2.46)

Hence by 35 < 5r* in assumption (a) together with second inequality of (4.2.46), we get

(L +4v)6? 1 100 ¥
3 < . = —. 424
< S L1 (4.2.47

Thanks to assumption (c). Utilizing the first inequality from (4.2.46) together with assump-
tion (c), we obtain from (4.2.45) that

re < %¥QL+4mﬁ+(L+4mﬁ>

10M 10
il 0 ARRTAY I
g (L )o" < o

)
= 1< 26, for each s € Bos(5). (4.2.48)

Note that (4.2.43) is trivial for n = 0. In order to show that (4.2.44) is hold for n = 0, first we
need to prove P(sg) # 0. The nonemptyness of P(sp) will ensure us to deduce the existence
of the point s;. To complete this, we will apply Lemma 2.0.4 to the map ¥, with 7y = 5.
Let us check that both assertions (2.0.4) and (2.0.5) of Lemma 2.0.4 hold with r := ry, and
A= é Here we note by (4.2.3) that § € R;'(#) N Bys(5). Then, by the definition of the

excess e and the mapping U, defined by (4.2.18), we have that

dist(s, ¥y, (5)) e(R: (1) N By, (5), Usy () < e(R5 () NBas(5), Uy (5))

IN

e(R5' (1) N B, (5), By (15 (5)))- (4.2.49)

S

For each s € Bos(S) C Brs (5) and Lipschitz continuous property of V(, we have that

I's
2
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— (VC(s0) + [s, 50: 9]) (s — 50) — 1|
16(5) = C(50) = VC(50) (5 = so)ll + [[(VC<(s0) = VC(5)) (5 = s)|

+llg(s) = g(s0) = [s, 505 9] (s — s0) || + |||

IN

Heo(s) =2l = [I<(5) +g(s) + VC(5)(s = 5) = ((s0) — g(s0)
(

L =y —_ —

< S5 = soll*+ Lilso = slllls = sl + 0, : 9] = [, s0: lllls = sol
+7]
L s 2 —I Il =

< S5 = soll” + Lliso = slllls = sll + v (llso = sll + lls = soll)lls = ol
+[I2] (4.2.50)
L . 5L }

< G0+ A0) + 20(20) + 1] = T+ 80 + ]

5 i}
< §(L + 4v)6% + ||E]].

It follows, from the facts 3(L+4v)0? < ry and 2||t|| < (L + 4v)6? respectively in assumptions
(a) and (c), that

(L + 4v)6?
2
= 3(L+4v)0* <y (4.2.51)

. 5
ao(s) =2l < (L +4v)0° +

This shows that I, (s) € B, (t). Particularly, let s = 5 in (4.2.50). Then it is easily shown
that

oI (L +4v)

1u(3) € Byy(®) and |1, (5) = < == s — soll® + 1], (4.2.52)

Using the Lipschitz-like property of R;' and (4.2.52) in (4.2.49), we have

M(L+ 4v)

dist(s, Vs, (5)) < M|t = Ly (5)] < 5

15 = soll* + M][Z]
1
= (1- g)rso =(1—-X\)r;
that is, the first assertion (2.0.4) of Lemma 2.0.4 is satisfied.

Now, we will show that the second assertion (2.0.5) of Lemma 2.0.4 holds. To finish

this, we assume s',s” € B, (5). Then it follows that s, s” € B,, (5) C Bys(5) C B,.(5) by
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(4.2.48) and I, (s'), Is,(s") € B,.(t) by (4.2.51). This together with the assumed Lipschitz-
like property of R;' implies that

IN

e(Wsy(s") N B, (5), Uso (5)) e(Wsy (5") N B2s(5), Wsy(s”))

e(R5 Ly (s)] N By, (5), By Lo (5)])

S

< MH‘[SO (3,) - ISO(‘S”)H' (4253)

IN

According to the choice of sy in (4.2.19), we get

1(s) = Lo (5L < (1" 5591 = 5" s0s 6]l + 1VC(5) = V(o)) 5" = '
+ (15", 505 9] — [5', 503 9] 15 = sol
(v(llso = 'l + 15" = soll) + Llls = soll ) 5" = 5"

< (L+4)d)s — 8. (4.2.54)

IN

The above two inequalities (4.2.53) and (4.2.54) together in (4.2.46) is as follows

(Vs (s) N By, (5), Vs (s7))

IN

M(L + 4v)é||s" — §"||

1
< gl =" = Alls" = s

It seems that the second assertion (2.0.5) of Lemma 2.0.4 is also satisfied.

Thus, we have seen that both assertions (2.0.4) and (2.0.5) of Lemma 2.0.4 are fulfilled.
So, we can conclude that Lemma 2.0.4 is applicable to deduce the existence of a point
81 € B,, (5) such that 5, € W, (8). This implies that 0 € ((so) + g(s0) + (V((s0) +
51, 50 9]) (51 — s0) + £(51) and thus P(sg) # 0. Since n > 1 and P(sy) # 0, we can choose
do € P(sp) such that

o]l < n dist(0, P(s0)).

By Algorithm 2, s; := sg + dp is defined. Furthermore, by the construction of P(sy) and
(4.2.1), we have that

P(so) = {do €S8:0€ ((so)+ 9g(s0) + (V{(s0) + [do + 0, 80; 9])do + E(s0 + do)}
- {do €8 :0 € ((s0) +9g(s0+ do) + V((s0)do + &(s0 + do>}
= {doeS:SO—l—doGR;)l(O)}»
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and so

dist(0, P(s0)) = dist(so, R'(0)). (4.2.55)

Now, we are ready to show that (4.2.44) is hold for n = 0.
Note by assumption (a) that v* > 0. Then, from (4.2.38) we conclude that

L< {QTZ’MTS}

Since V( is Lipschitz continuous on B () with Lipschitz constant L, we have for all &', s" €
B (5), that
IVE(s) = V() < Lils" = "] < Los.

This shows that Lemma 4.2.2 is applicable with ¢ := Lr;.

According to our assumption R;' is Lipschitz-like on B, (%) relative to B,,(5). Then, it
follows from Lemma 4.2.2 that for each s € Brs(5), the mapping R;! is Lipschitz-like on
— ML . Specifically, R;! is Lipschitz-like on B, (%)

B, (t) relative to Brs(5) with constant "
2 0
as so € By(5) C Bas(5) C By (5) by assumption (a).

relative to B s (5) with constant TN ]{\f T

On the other hand, (4.2.42) implies that

dist(0, Ry, (s0)) = dist(0,C(so) + g(s0) + E(s0))

*

r
< —.
-3

We have shown by (4.2.47) that 0 € IBST* (t) and it is noted earlier that sy € Brs(s). Thus by

appying Lemma 2.0.1, we get the following inequality:

M dist(0, Ry, M dist (0,
diSt(So,RS_Ol(O)) < iSE(MLr550>) _ 1St< Cl(s_o)]\‘;gijo) +£(50)).

But, by (4.2.55), we have that

M dist(0,{(so) + g(so) + f(so))

dist (0, P(s0)) = dist(so, Rs_ol(o)) 1 — MLr-

(4.2.56)

According to Algorithm 2 and using (4.2.40), (4.2.42) and (4.2.56), we have

ldoll < dist(0, P(so0))

nM dist(0, ¢(s0) + g(s0) + &(s0))
(1 —MLrs)

nM(L+4v)6*

= 21— MLry) b(i)‘s'

<
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This means that

1
51 = soll = lldoll < 5(5)5,

and therefore, (4.2.44) is true for n = 0.

Assume that sy, S, ..., s are constructed. The inequalities (4.2.43) and (4.2.44) are true
forn =0,1,2,...,k — 1. Again we will show that there exists sy such that (4.2.43) and
(4.2.44) are also hold for n = k. Since (4.2.43) and (4.2.44) are true for each n < k — 1, we
get the inequality as follows:

k—1 k—1
_ _ 1,2
s — 5]l < Z Il + llso = sll < ba; (3)" +9<2.

This shows that (4.2.43) holds for n = k.

Finally, we will show that the assertion (4.2.44) holds for n = k. For doing this, we
will apply again the contraction mapping principle to ¥, with r 1= r,, and A := % Then
we can deduce the existence of a fixed point 3,41 € B, (5) satisfying 8141 € Vs, (Sk41),
which translates to I, (S4+1) € Rs(8k+1). This means that 0 € ((s) + g(sk) + (V{(sk) +
[Sk1, Sk; g])(§k+1 — 8g) + &(8ky1), that is, P(sg) # 0. Choose dj, € P(sy) such that

Then by Algorithm 2, set sgi1 := si + d. Moreover, applying Lemma 4.2.2 we can infer
that R is Lipschitz-like on B,-(f) relative to B (5) with constant —M__ " Therefore, we

].7ML7‘§
have that
[sk1 — skl = |ldill < n dist(0, P(sk))

< ndist(sk,R;j(O))

= Y (0, () + gls) + €(58)

= m 1S s Sk gl(Sk Sk

M
< 1—777]\4&“5”“8]“) + g(sx) — C(sk-1) — g(s-1)

— (VC(Skfﬁ + [k, Sk—1; g]) (s — sk—1)|
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M
< T (60se) = Clsen) = Felsoa) (s = 1)
+llg(sk) — 9(sk-1) — [sk, Sk-1; 9] (s — se-1)|)
nM 2
< —— (L — Sp_
< 5= iy e = sl
2/\[sk-15 585 9] = [s8, 5615 9| sk — se-1l)
nM 2
< —— (L — Sk_
< 5= MLy Lo sl +
2v(|[sk-1 — sill + llse — si-1lD sk — su-1l])
 nM(L +4v) 156 — sk
T 21— MLry) P
b 1, 2k-1 2 1,9k
< = — < b(= .
< 50" 9) <bE)"

This implies that (4.2.44) holds for n = k and therefore the proof is completed.

Consider the special case when 5 is a solution of (1.0.1) (that is, £ = 0) in Theorem 4.2.2.
We have the following corollary, which gives the local quadratic convergence result for the

EN-type method. The proof of this corollary is similar to that we did for Corollary 4.2.1.

Corollary 4.2.2. Suppose that 5 is solution of the variational inclusion (1.0.1) and that R;*
is pseudo-Lipschitz around (0,5). Letn > 1, v >0, 7 > 0 and suppose that V( is Lipschitz

continuous on B;(8) with Lipschitz constant L. Suppose that

lim dist (0, (s) + g(s) +&(s)) = 0.

5—38

Then there exist some 6 > 0 such that any sequence {s,} generated by Algorithm 2 with
initial point in Bs(5) converges quadratically to a solution s* of the variational inclusion

(1.0.1).
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4.2.3 Numerical Experiment

To verify the semi-local convergence results of the EN-type method, a numerical example is

presented in this section.

Example 4.2.1. Let S=T =R, s =0.01,n=2,v=0.3, M = 0.4, and € = 0.1. Define
a Fréchet differentiable function ¢ on R by ((s) = 2s%, linear and divided difference admissible

1 15 17
function g(s) = -7 and a set-valued mapping & on R by &(s) = {TS -1, —TS +1}. Then
14s

C+g+¢& is a set-valued mapping on R defined by ((s) + g(s) +&(s) = {2s* + a1 1, 252 —

18
TS + 1}. Then Algorithm 2 generates a sequence which converges to s* = 0.2500.

Solution: Consider ((s) + g(s) + £(s) = 2s* + % — 1. Tt is manifest that ({ + g + £) has

a closed graph at (—0.01,1.002). In this way (—0.01,1.002) € gph(¢ 4+ g + &). Then from
the statement, it is clear that (¢ + ¢g + &)~ is Lipschitz-like at (1.002,—0.01). Then from
(4.1.1), we have that

P(sr) = {dk € S5 :0€ ((sk) +9g(sk) + (VC(sk) + [k + di, s1; gldr + & (55 + dk)}
= {dk €5 :0€ ((sk) +V{(sp)dp + g(sp +di) +E(sp + dk)}

2 — 457
— {dkeR:dk:M}.

85k—5

Otherwise, if P(sy) # 0, we obtain that

0 € ((sk) + VC(sk) (k1 — Sk) + g(Sk41) + E(Sk11)

1+ 2s7
= Sk+1 = 8o — 5

Thus from (4.2.35), we obtain that

nM (e + 3v)]
dl| < ——— = ||d_1]|.
ol < 5 s
M 3
We see that 7]1(6—;_4;)] = .834 < 1 for the values of n, M, L and €. This shows that
— Me

the sequence generated by Algorithm 2 converges linearly. Then the following Table 4.1,
obtained by using Matlab code, indicates that the solution of the variational inclusion is 0

when k£ = 4.
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Table 4.1 Numerical results for Example 4.2.1

14
iteration no. Sk C+E+g=2s+ e

4
1 0.0100 -0.9648
2 0.2825 0.1486
3 0.2505 0.0021
4 0.2500 0.0000
> 0.2500 0.0000

The graph of the variational inclusion (+g+¢&

T T
2s2+14s/4-1

0.2

The value of (+g+¢
. S &
e N

o
»
1

-0.8 b

0 0.05 0.1 0.15 0.2 0.25 0.3
The value of S

Figure 4.1: Finding a solution of variational inclusion

4.2.4 Concluding Remarks

The semilocal and local convergence results for the EN-type method are established under
the conditions that n > 1, V( is continuous and Lipschitz continuous, g admits first order
divided difference as well as R; ! is Lipschitz-like. Finally to illustrates the theoretical result
we have presented a numerical experiment. Therefore, this work extends and improves the

result corresponding to [13, 105].
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4.3 Convergence Analysis of an EN-type Method with

Holderian Assumptions

This section is organized as follows: In subsection 4.3.2, we consider the EN-type method
defined by Algorithm 3 to approximate the solution of (1.0.1). Using the concept of Lipschitz-
like property for the set-valued mapping, in this section we also establish the existence and
superlinear convergence of the sequence generated by Algorithm 3 in both semilocal and
local cases. At the end, we give a summary of the main results and present a comparison of

this study with other known results.

In this section, we consider the variational inclusion 0 € ((5)+g(5)+£(5). Here we study
the variational inclusion (1.0.1) with the help of EN-type method, introduced in Khaton et al.
[62], under the weaker conditions than that are used in Khaton et al. [62]. Indeed, semilocal
and local convergence analysis are provided for this method under some conditions that the
Fréchet derivative of ( and the FODD of g are Holder continuous on Y. In particular, we show
this method converges superlinearly and these results extend and improve the corresponding

results in Argyros [13] and Khaton et al. [62]).

4.3.1 Introduction

Let T be a subset of S. Let [s,t;g] denotes the FODD at the points s and t and £ be a
set-valued mapping from S to 7 which has closed graph. To find a point 5 in T, we consider

the variational inclusion (1.0.1).
Suppose that s € S. P(s) is the subset of S, which defined by
P(s)={deS:0e((s)+g(s)+ (VC(s) + [s + d,s;9])d + &(s + d) }.

Under some suitable conditions, Khaton et al. [62] introduced and studied extended
Newton-type method, when V( is continuous and Lipschitz continuous as well as g admits
FODD satisfying Lipschitzian condition. Inspired by the work of in [13], Khaton et al. [62]

considered the following, “so called” EN-type method (see Algorithm 3):
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Algorithm 3 (The Extended Newton-type Method)
Iter. 0. Pick n € [1,00), sp € S, and put k := 0.

Iter. 1. In case 0 € P(sy), then stop; otherwise, go to the next Stair 2.
Iter. 2. In case 0 ¢ P(sy), choose dj € P(si) such that

Ildi|| < n dist (0,P(sg)).

Iter. 3. Set spi1 := s + di.

Iter. 4. Replace k by k£ + 1 and repeat this cycle from Iter. 1.

In contrast Algorithm 3 with the known results, we have the following conclusions:

When ¢ = {0} and g = 0, it is obvious that Algorithm 3 is turned into the known
GN method which is a famous iterative technique for solving nonlinear least squares (model
fitting) problems and has been studied widely; see for example [24, 25, 49, 74, 130, 131].
Within the case when g = 0, several kind of methods for solving (1.0.1) were established by
Rashid [105, 106, 108] and also obtained their semilocal and local convergence.

The objective of this subsection is to continue to study the semilocal and local convergence
for the EN-type method under the weaker conditions than [62], that is, V( is (L, q)-Holder
continuous and g admits the FODD satisfying ¢-Holderian condition. The Lipschitz-like
property of set-valued mappings which is the main tool of this study whose concepts can
be found in Aubin [15] in the context of non smooth analysis and it has been studied by a
huge number of mathematicians [2, 13, 30, 50, 90]. The main result of this study is semilocal
analysis for the extended Newton-type method, that is, based on the information around
the initial point, the main results are the convergence criteria, which provide few suitable
conditions ensuring the convergence to a solution of any sequence generated by Algorithm

3. Consequently, the results of the local convergence for the EN-type method are attained.

4.3.2 Convergence Analysis

This section is dedicated to prove the existence of a sequence generated by the EN-type
method, represented by the Algorithm 3 and show the superlinear convergence of the se-

quence generated by this method.
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For our suitability, let s > 0, 7z > 0 and B, (5) € T Ndom¢&. Suppose that V( is
(L, q)-Holder continuous on B, (), that is , there exists L > 0 such that

IVC(s) = VC() < Llls — 5l g € (0,1, for any 5,5’ € B,,(5), (4.3.1)

g admits a FODD satisfying ¢-Hélder condition, that is, there exists v > 0 such that, for all
s,t,v,w € B, (5) (s #t,v# w),

ITs, & g] = [o, wi gl < w(lls —ol|* + ||t — wl]|?), (4.3.2)

and the mapping R; ' is Lipschitz-like on B, (f) relative to B,,(5) with constant M, that is,
e(R;'(t1) NB,.(5), R;'(ta)) < M|ty — ta| for any ¢y, ty € B,(f). (4.3.3)

Further, for ¢, the closed graph property of R implies that { + g + £ is continuous at 5 i.e.
limdist (£, ((s) + g(s) + £(s)) =0 (4.3.4)

5—8

is hold.

Let g9 > 0 and write

. rs(1 — Me
ri= Hlln{?"{ — 2€0T§, %} (435)
Then
A |
7> 0 if and only if ¢y < min{;—;g, M} (4.3.6)

The following lemma is extracted from [110, Lemma 3.1] which plays a crucial role for

convergence analysis of the extended Newton-type (EN-type) method.

Lemma 4.3.1. Assume that Ry" is Lipschitz-like on B, (t) relative to B, (5) with constant
M and that

s',s"€Brg (5
2

/ /i . 7”{ 1
- < a N r . .
sup )HVC(S) V((s")|| _50<mm{2rs, M} (4.3.7)

Let s € ]]33%5(5) and g¢ be defined by (4.3.6). Suppose that V( is continuous on IB%L;(E). Let
T be defined by (4.3.5) such that (4.3.7) is true. Then R;' is Lipschitz-like on B;(t) relative

to Brs (5) with constant %, that is,

M
(R (t1) NBrs (5), R (t2) < ————lta — ta| for any t1, 15 € Bi(f).
2 1— Megg
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Then for any point s', s” € S, we have from (4.2.19)

1s(s") = Ls(s)1 = Nlg(s) = g(s") = [s', 5:91(s" = 5) + [s", 5;91(s" — 5)

+(VC(5) = V((s)(s" = ") (4.3.8)

Furthermore, let ¢ € (0, 1] and define

rs(1 — M Lrl) }
4AM '

. : 1
7 = min {r; — 2Lri*",

(4.3.9)

Then

A e 1
r>0&L< mln{F’M—rg}' (4.3.10)

4.3.3 Superlinear Convergence

In this section we will show that the sequence generated by Algorithm 2 converges super-
linearly if V( is (L, ¢)-Holderian and g admits FODD satisfying (v, ¢)-Holder condition. In
fact, the following theorem ensuring the convergence of the EN-type method with initial

point sg.

Theorem 4.3.1. Let n > 1 and q € (0,1]. Assume that R;"' is Lipschitz-like on B, (t)
relative to B, (5) with constant M and that V¢ is (L, q)- Holder continuous on Brs(S) and g
admits FODD that satisfies (4.3.2). Let 7 be defined by (4.3.9) so that (4.3.10) is satisfied.
Let v >0, 0 >0 be such that

3(q+ 1)rg )ﬁ}

(a) 0 < min {Zg, (q+5)7, 1, ([L(q +2) +2v(q +1)](6.2¢ + 1)

(b) (27M +1)[L(g +2) + 2v(g + 1)](n(g + 1)67 + 41 =) < (¢ + 1),

[L(g+2) +2v(q+1)]

gatl,
3(g+1)

() lIEll <

Suppose that
lim dist (¢, {(s) 4+ g(s) + £(s)) = 0. (4.3.11)

S—S
Then there exist some & > 0 such that any sequence {s,} generated by Algorithm 2 with

initial point s in Bg(5) converges superlinearly to a solution s* of (1.0.1).
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Proof. According to the assumption (a) 40 < r; and n > 1, by assumption (b) we can write

the inequality as follows

(29M + 1)(q + 5)[L(q + 2) + 2v(q + 1)]6

29M + 1)[L(g + 2) + 2v(qg + 1)] (g + 1)87 + 457

(
< (2°M 4+ 1)[L(g + 2) + 2v(q + 1)] (n(g + 1)67 + 467)
(
(

IN

29M +1)[L(q +2) + 2v(q + 1)] (n(q + 1)67 + 4 ~9rd)
<(g+1). (4.3.12)

Furthermore, using assumption (a) 46 < r; and assumption (b) we can reduce the inequality

as follows:

nM[L(q + 2) + 2v(q + 1)]6*

<n2"M[L(q +2) + 2v(q + 1)](q + 5)&*

< (2°M + 1)[L(g + 2) + 2v(q + 1)](n(g + 1)6? + 469) — 29 M L44*

< (29M + 1)[L(g + 2) + 2v(qg + 1)) (n(g + 1)69 + 4" 79r?) — 29 M L4 9

<(q+1)—29M LA,

Since ¢ € (0, 1] then, we get 29ML4*%r? > (q+ 1)M Lrl. Now using (4.3.12) in the above

equation and it becomes
nMI[L(q+2)+2v(g+1)]0? < (¢+1) — (¢ + 1) M Lri. (4.3.13)

Putting
nM[L(g + 2) + 2v(q + 1)]67

b= T DA = ML

Then, from (4.3.13) we have that
b<1. (4.3.14)

Pick 0 < 0 < 6 such that, for each s, € B;(s),

[L(g+2)+2v(qg+1)]
3(g+1)

dist(0, C(so0) + g(s0) + &(s0)) < 5L (4.3.15)

Note that since (4.3.11) holds and assumption (c) is true, we assume that such ¢ exists, which

satisfies (4.3.15). Let so € B;(5). By induction we will show that Algorithm 3 generates at
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least one sequence and such generated sequence {s,} satisfies the statements as follows:

l|lsn — 8|l < 20 (4.3.16)
and
1. (a1
ldull <b(3) 4, (4.3.17)
hold for every n =0,1,2, ....
Define
+5)M _
rs = %([L(q +2) +2v(g+ 1)]||s — 5| + (¢ + 1)||f]]) for each s € S. (4.3.18)
From (4.3.12) we get
1
2 M[L(q +2) + 2v(q + 1)]7 < Z% (4.3.19)

1
<Q+

d [Lig+2)+2 Ner < L2
and [L(q +2) +2v(q + 1)] S s

(4.3.20)

Hence by the combination of 6 < (¢ + 5)7 in assumption (a) and inequality (4.3.20), we get

[L(qg +2) + 2v(g + 1)]67™!

I < SCE%Y
(¢+1) (g+5)F 7
Wi iy 3 3 (4.3.21)

Utilizing (4.3.19) and assumption (c) together with (4.3.20), we get from (4.3.18) that

no< U (L +2) ¢ vl s - st HEERE 20T Dlgeny
< % (3[L(q +2) + 2v(q + 1)(26)""" + 29[L(q +2) + 2v(qg + 1)}6*"")
= %[L(q +2) + 2v(q + 1)]6971(3.2.27 4 29)
_ 51(26@ f 1+) 2OM 1 (g4 2) + 20(q + 1))6
_ 122: f;M L(q +2) + 2v(q + 1)+
172((qq151>) ' EZ :[ ;;5 < 1_72‘5 <20, foreach s € By (). (4.3.22)

Observe that (4.3.16) is trivial for n = 0.
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At first, we need to prove P(sg) # 0 to show that (4.3.17) holds for n = 0. The
nonemptyness of P(sq) will ensure us to deduce the existence of the point s;. We will apply
Lemma 2.0.4 to the map ¥y, with 1y = 5 for completing this. We have to show that Lemma
2.0.4 holds with r := r,, and X\ := +é satisfying both assertions (2.0.4) and (2.0.5). We

q-+
get from (4.2.3) that 5 € R;'(f) N Bys(5). By the definition of the excess e and (4.2.18),

defined as the mapping of U, , we have that

dist(s, ¥y, (5))

IN

e(R; (D) N By, (5), Woy(5))
e(R; () N Bas(5), Wy (5))
e(R; (D) NB,, (5), By 'L, (5)). (4.3.23)

S

IA

IN

Since V( is (L, ¢)-Holder continuous and g admits FODD satisfies Holderian condition, for
every s € Bys(5) C Brs (5), we have that

Hso(s) =t = [I<(5) + () + VC(5)(s = §) = ((s0) — g(s0)
— (VC(s0) + [s, 503 9]) (s — 50) — 1|
16(5) = €(50) = VC(50)(5 = so)ll + [[(V<(s0) = VC(5)) (5 = s)|
) -

<
+ llg(s) — g(so0) — [s, S0; 9](s — s0)|| + ||Z]]
L
< 5 — spl|l7 + Lllsg — 5|95 — s
< q+1H ol |50 — 5]|7]] |
+||[s0, 55 9] =[5, s0; g]Illls — sol| + |2l (4.3.24)
L
< 5 — sl + Ll|sg — 5|75 — s
< q+1|| ol |50 — 5|7l |
+v([[so — x|+ ||s — so[|?)|s — sol| + [|£]]
< ?(25?+1 + L(26)"- 26 + u((25)‘1 + (26)7) - 26 + ||¢]]
q
L(g+2)+2 1 _
< Ma+ )11”(‘“ gt grt1 4. (4.3.25)
q

[L(g+2)+2v(qg+1)](6-27+1)
3(g+1)

Now through the assumptions (a) § < r;  and (c),
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(4.3.24) gives that

[L(g+2)+2v(q+ 1)] [L(g+2) +2v(qg+1)]

[S —t < 2q+1(5q+1 5q+1
_ L@+ + (g + DIB22+ 1) oo
3(g+1)
L 2 2 1 22941
o la+2)+ 3”(;‘]:1))}(6 D gort < (4.3.26)

This means that Iy (s) € B, (f). Moreover, let s = 5 in (4.3.24). Then it is easily proved
that

I, (s) € B, (f)  and
L+ 2v(qg+1)]
g+1

11,,(3) — 7] < 15 = soll# + |IZ]. (4.3.27)

By using the Lipschitz-like property of R;' and (4.3.27) in (4.3.23), we obtain

dist(s, Wy, (S5))

IN

MJt = Ly, (5) |
MI[L(g +2) +2v(g +1)]
g+1
4 B qg+1
e = (- )
(L =M

IN

15 = soll """ + MIZ]

IN

i e, the statement (2.0.4) of Lemma 2.0.4 is hold. Now, it is evident to show that statement
(2.0.5) of Lemma 2.0.4 holds. Let s',s" € B, (5). Then we get that s',s" € B, (5) C
Bys(5) C B,,(5) by (4.3.22) and I, (s"), I,,(s") € B, (t) by (4.3.26). This together with the

assumed Lipschitz-like property of R;! is as follows:

IN

6<\1180 (S,) N Brso (§>’ quo(‘S”)) 6(\1150(3’) N B%(g)? \IISO(SN))

IN

e(Rs Lo ()] N B (5), Ry Lo (s7)])

IN

M5y (s") = Lso (")l (4.3.28)
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Now, using the definition of FODD of ¢ in (4.3.8) we obtain

115 (8") = Lo (s") = Nlg(s") = g(s") =[5/, 50; g](5" — s0) + [s”, 501 9](s” — s0)
+(V(8) = V((s0))(s" = 8"
< llg(s') = g(s") + 5", 03 gl(s0 — 8') — [s", 503 g)(s0 — 8"
+IVC(3) = V¢(so)lllls" = 8"
< lg(s") = g(s") + g(s0) = g(s") — g(s0) + g(s")
+IVE(5) = V¢(so)lllls" = s
< [IVE(s) = VC(so)lllls" = s"[| < Li[s = sol|lls" = 5"
< L2955 — & (4.3.29)
It follows from (4.3.28), that
e(Wso(s) N By, (5), Vo (s")) < ML.2%7||s" — 5"

Since v, M, L > 0 and g € (0, 1], then we can write 29M Lé? < 2IM[L(q + 2) + 2v(q + 1)]6”

and hence the above inequality becomes

e(Ve(s) N B, (5), s (s")) < 29M[L(q + 2) + 2v(q + 1)]oP||s" — s"|
q—"_l i 1
< —|ls — s
< T - o)
= M|s = 5.

Thus the statement (2.0.5) of Lemma 2.0.4 is also hold. Hence, both statements (2.0.4) and
(2.0.5) of Lemma 2.0.4 are accomplished. Finally, it shows that Lemma 2.0.4 is adequate
to presume the position of a point 5, € B, (5) such that 3; € W, (1) which implies that
0 € ¢(s0) + g(s0) + (V¢(s0) + [51, 503 g]) (81 — s0) 4+ &(81) and hence P(so) # 0.

Next, it is sufficient to prove that (4.3.17) holds for n = 0. As V( is (L, q)- Holder
continuous on Bz (5), we have for all ', s” € B (5), that

Lri> sup ||V((s) — V(") (4.3.30)

s’,s”E]B:; (3)

Observe the assumption (a) that 7 > 0. Therefore, from (4.3.9) and (4.3.30) imply that

Lemma 4.3.1 is satisfied with & := Lr?. According to our assumption R; ' is Lipschitz-like
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on B, (t) relative to B, (5). Then, it implies from Lemma 4.3.1 that, R is Lipschitz-like on
B:(t) relative to B (5) with constant W as 5o € Bs(5) € Bs(5) € Brs(S) by assumption

(a) and the choice of § . On the other hand, (4.3.15) follows as

dist(0, Ry, (so)) = dist(0,¢(so) + g(so) + £(s0))

VAN
Wl 3

Inequality (4.3.21) shows that 0 € B(Z, £) and observe before that sy € B (5). Hence using

Lemma 2.0.1, we get

dist(so, R,,'(0)) < T ML dist(0, R, (s0))
M
= 1_7]\“7‘2 diSt(O, C(So) + g(so) + 6(80))

This together with (4.2.1), gives

dist(0, P(so)) = dist(so, R, (0))

< % dist(0, ((s0) + g(s0) + &(s0)). (4.3.31)

According to Algorithm 2 and using (4.3.14), (4.2.42) and (4.3.31), we have

ldol] < n dist(0,P(sg))

M .
< T a0 C0) + 9(s0) + €(0)
nMI[L(q+ 2) + 2v(q + 1)]6¢™! B b(l)é

3(g+1)(1— MLr?) =3/

This means that
1
1 = soll = lldoll < ()8

and therefore, (4.3.17) is true for n = 0. Suppose sy, So, ..., S are formed. The inequalities

(4.3.16) and (4.3.17) are hold for n = 0,1,2,...,k — 1. We show that there exists sy such
that (4.3.16) and (4.3.17) are also hold for n = k. Since (4.3.16) and (4.3.17) are true for

each n < k — 1, we get the following inequality:

[EE Z il + [Iso — 5] < b(SZ ) 5 < 26
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This implies (4.3.16) holds for n = k. Now with all the same argument as we did for the

case when n = 0, we can prove that P(s;) # ), that is, the point s;4; exists and R, '

Lipschitz-like on B;(?) relative to Brs (5)

Isk+1 — sl

IN

IN

IN

IN

IN

IN

1-MLr

k]| < 7 dist (0, P(s))
n dist(sk, R,,'(0))

M
1—777]\“7“2 dist (0, {(sk) + g(sk) + &(sk))
1—777]\]\44&;1”@81@) +9(sk) = C(sk-1) = 9(sr-1)

—(VC(S;€ 1) + [k, Sk— 1;9])(8k—8k—1>||
1= ML" o (1(58) = sk 1) = V(s 1) (s — )

+llg(sk) = g(sk-1) =[5k Sk-1; 9] (& — s6-1)||)
nM

PESVCENTIZ

(g + Dll[sk—1, 5% 9] — [5% s6-1; lll Isx — Sk—1||)
nM g+1

TES T (Lllsk — sp—t]|*"" +

(g + Dv(llse—1 = sell? + [Ise = se-1) s — sx-1ll)

nM[L + 2v(q + 1)]

(¢+1)(1 = MLrf)

nM[L(q+ 2) + 2v(q + 1)]

1)(1 — MLrg)

Ll|sy — sp—1]| "' +

ldp—a [

ldi— [

(g +
nM[L(q+2) +2v(qg+1)] 1\ (gr1)F1 g+ 1\ (g+1)*
o B ) < (b s

01— ML)

with constant —q' Therefore, we have that

(4.3.32)

This implies that (4.3.17) holds for n = k and therefore the proof of the theorem is completed.

O

Consider the special case when 5 is a solution of (1.0.1)(that is, ¢ = 0) in Theorem 4.3.1.

We have the following corollary, which describes the local superlinear convergence result for

the EN-type method.

Corollary 4.3.1. Suppose that 5 is a solution of the variational inclusion (1.0.1). Let

q € (0,1] andn > 1 and let R;" be pseudo-Lipschitz around (0,5). Let 7 > o and suppose that

V(¢ is (L, q)-Hdlder continuous on B;(5) and g admits FODD satisfying Hélderian condition
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on B(S). Assume that
lim dist (0, Rs(s)) = 0. (4.3.33)

5—8
Then, with an initial point sg, there exists some 6 > 0 such that any sequence {s,} generated

by Algorithm 3 converges superlinearly to a solution s* of the variational inclusion (1.0.1).

Proof. Suppose that R;' is pseudo-Lipschitz around (0,5). Then by definition of pseudo-
Lipschitz continuty, there exist constants M, 7 and ry such that R;' is Lipschitz-like on

B (ro) relative to Bx(5) with constant M. Then, for each 0 < 75 < 7, we have that
e(R; ' (t1) NB(S,75), Ry ' (t2) < M|ty — tof| for any ty, t, € B, (0),

that is, R;' is Lipschitz-like on B,,(f) relative to B,,(5) with constant M. Let L € (0,1],
€ (0,1] and v > 0. By the (L, ¢)-Holder continuty of V({ we can select r; € (0,7) such
that % <7, org—2LrT™ >0, MLr! <1 and

Lri= sup [[V((s") = VC(s")].

s’,s”EIBQ; (3)

Then, define
(1 — MLt
w} S0

Foi= mi — 9Lyt
7 := min {TO rit, i

and
3(q+ D)ro
L{g+2) + 20v(q + 1)](6.29 + 1) } >0

Thus, we can choose 0 < § < 1 such that

I's .
inq— 5
mln{4, (¢ +5)7, i

3(q+ )ro }

5 < min{f, (g +5)7, [L(g +2) +2v(q + 1)](6.2¢ + 1)

and
(1M + 1)[L(g +2) + 2v(g + D] (n(g + 13" +41711) < (g +1).

Now it is routine to check that conditions (a)-(c) of Theorem 4.3.1 are satisfied. Thus we

can apply Theorem 4.3.1 to complete the proof. O
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4.3.4 Numerical Experiment

To verify the semi-local convergence results of the EN-type method, a numerical example is

presented in this section.

Example 4.3.1. Let S =T =R, s = —02,n=15,v =04 M =02,q =09, r =
5and L = 3. Define a Fréchet differentiable function ¢ on R by ((s) = 3s*> + 1, linear
and diwvided difference admissible function g(s) = —% and a set-valued mapping & on R
by £(s) = {—bs+ 2,25 —2}. Then ( + g + & is a set-valued mapping on R defined by
C(s) +g(s) +&(s) = {3s* — 1738 +3, 3s% + g — 1}. Then Algorithm 3 generates a sequence

which converges to s* = 0.666.

13
Solution: Consider ((s) + g(s) + &(s) = 3s* — 75 + 3. It is manifest that (¢ + g + &) has

a closed graph at (—0.2,4.42). In this way (—0.2,4.42) € gph(¢ + g + &£). Then from the
statement, it is clear that (( + g + &)~! is Lipschitz-like at (4.42, —0.2). Then from (4.1.1),

we have that

P(Sk) = dk €S:0¢ <(8k> + g(sk) + (VC(Sk) + [Sk + dk, sk;g]dk + S(Sk + dk)}

- {dk € 5:0 € ((sk) + VC(sk)de + g(sk + di) + E(si + d"“)}

6s2 — 13s), + 6}

= {d’“GR:d’“: 13— 125
- k

Otherwise, if P(sy) # 0, we obtain that

0 € ((sk) + VC(sk)(Skr1 — sk) + (k1) + E(Skt1)
g - 6 — 63%

T3 T 12s
Thus from (4.3.32), we obtain that

ML+ (q+2)+2v(qg+1)]
(¢ +1)(1 — MLrg)

ldi|| < 2 o1 [[F.

Hereafter, for the given values of M, L,n,q,r and v, we get that Algorithm 3 generates
a superlinearly convergent sequence with initial point sy = —0.2 in a neighborhood of § =
—0.19. Then the following Table 4.3, obtained by using Matlab code, indicates that the

solution of the variational inclusion is 0 when k = 5.
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Table 4.3 Numerical results for Example 4.3.1

13s

iteration no. Sk (+g+E&=3s2— - 3

1 -0.2000 4.4200
2 0.3740 0.9885
3 0.6063 0.1619
4 0.6628 0.0096
) 0.6666 0.0000
6 0.6667 0.0000
7 0.6667 0

a5 The graph of the variational inclusion (+g+¢

3s2-13s/2+43 |

The value of (+g+¢
= N w
[ [§)] N )] w 6]

o
3

o

05 1 1 1 1
-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

The value of S

Figure 4.2: Finding a solution of variational inclusion

4.3.5 Concluding Remarks

The semilocal and local convergence results are presented for the EN-type method under the
conditions that n > 1, R;' is Lipschitz-like, V( satisfies Holderian condition and ¢ admits
FODD satisfying the Holder condition defined by (4.3.2). In particular, we have presented

semilocally superlinear convergence analysis for EN-type method in Theorem 4.3.1 while the
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locally superlinear convergence analysis for EN-type method is presented in Corollary 4.3.1.
Here we have given a numerical experiment to illustrates the theoretical result. Therefore,
this result extends and improves the corresponding ones [13, 62].

Moreover, according to our main results, we have the following conclusions:

(i) If we set ¢ = 0 in Theorem 4.3.1, it gives the semilocal linear convergence result for the
EN-type method and this result coincides with the result presented in [62, Theorem
3.1]. On the other hand, if we put ¢ = 0 in Corollary 4.3.1, this result provides locally
linear convergence result which is similar with the result presented in [62, Corollary

3.1].

(ii) If we put ¢ =1 in Theorem 4.3.1, it yields the semilocal quadratic convergence result
for the EN-type method and this result is analogous to the outcome presented in [62,
Theorem 3.2]. Furthermore, if we give ¢ = 1 in Corollary 4.3.1, it gives the local
quadratic convergence result for this method which is resembling the work presented

in [62, Corollary 3.2].



Chapter 5

Semilocal and Local Convergence
Analysis of an ENM for Nonsmooth

Variational Inclusions

In this Chapter, we introduce an ENM for finding the solution of the nonsmooth variational
inclusion (1.0.3) 0 € {(5) + £(5) and analyze its semilocal and local convergence under the
conditions that (¢ +&)~! is Lipschitz-like and ¢ admits a (n, «)-PBA. Applications of (n, a)-
PBA are provided for smooth functions in the cases n = 1 and n = 2 as well as for normal
maps. In particular, when 0 < o < 1 and the derivative of (, denoted V(, is (¢, a)-Holder
continuous, we have shown that ¢ admits (1, «)-PBA for n = 1 while ¢ admits (2, a)-PBA
for n = 2, when 0 < o < 1 and the second derivative of ¢, denoted V¢, is (K, a)-Holder.
Finally, we have constructed a (n,«)-PBA for the normal maps (¢ + £ when ¢ has a (n, «)-

PBA.
5.1 ENM for Nonsmooth Variational Inclusions

5.1.1 Introduction

Let S and 7 be two Banach spaces, £: S = 27 be a set-valued mapping which has closed

graphand (: Y C S — 7 be a nonsmooth single-valued function that admits (n, «)-PBA on
79
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T with a constant L > 0. We are concerned with the problem of finding solution of the

nonsmooth variational inclusion (1.0.3), which is as follows:

0 € ¢(5)+&(5). (5.1.1)

The classical Newton method is very well known and extensively used to find solutions of
(1.0.3) when ¢ = {0}, where ¢ has Lipschitz continuous Fréchet derivatives. Semilocal and
local convergence results for Newton method can be found in the survey [12, 27, 43, 61] and
its references. We assume that the single-valued function ( is nonsmooth function, that is, ¢
doesn’t possess Fréchet derivative and its classical linearization is no longer available. Then
no one can give the clear result that how one can give a design of the Newton algorithm. So
that it needs to seek a replacement for such type of linearization. A lot of researchers have
worked on this question and the applicants have presented different methods for a few things
that are important in certain cases and have proved their justification. A lot of papers have
worked on the Newton-type methods for solving the nonsmooth equations and variational
inequalities; see for example [6, 10, 14, 34, 68, 69, 119, 123, 129] for inspiration and advanced

works on these areas.

In the framework of nonsmooth variational inclusion (1.0.3), when the single-valued
function is differentiable, several iterative methods have presented for solving this varia-
tional inclusion, such as N-type method, proximal point method, etc.; see for example [3—
5, 25, 102, 105, 107, 110, 111]. The proximal point algorithm (PPA) is one of the most useful
method for solving (1.0.3) in the case ( = 0 and 7 = S a Hilbert space. About the root of
PPA can be known in the works of Martinet [77] for variational inequalities. This PPA has
been further polished and extended in [102, 125, 127] to a more general setting, including
convex programs, convex-concave saddle point problems and variational inequality problems.
In addition, Alom and Rashid [4] have been presented the Gauss-type proximal point method
for solving (1.0.3) in the case of smooth function, that is, when ( is Fréchet differentiable.
A number of papers have appeared dealing with N-type methods for solving the nonsmooth
variational inclusion (1.0.3) and analyzed the local and semi-local convergence results, see

in [11, 42, 98].

To solve the nonsmooth variational inclusion (1.0.3), Geoffroy and Piétrus in [42] consid-
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ered the method as follows:
0 € A(Sk, Skr1) + &(sky1) foreach £k =0,1,2,..., (5.1.2)

where A : § x 8§ — 7T is an approximation of (. They presented a local convergence
result under some assumptions and the assumptions are ( and the set valued map, where
¢ admits an (n,a)-PBA and the set-valued map (A(s*,-) + £(+))~! is M-pseudo-Lipschitz
around (0, s*). For the first time, Dontchev [26] introduced the iterative procedure (5.1.2)
for solving (1.0.3). For this procedure (5.1.2) he presented the nonsmooth analogue of the
Kantorovich-type theorem by assuming the Aubin continuity of the map (A(sg,-) + &(+)) !
at (0, s1), where s is the first iterate of (5.1.2).
Let s € T C S. Suppose that M(s) is a subset of T which is defined by

M(s):={deT:0€ A(s,s+d)+&(s+d)}.

Usually, the method (5.1.2) guarantees the existence of a sequence and the sequence is a
convergent. Therefore, for a starting point near to a solution, we know that, the sequences
are not uniquely defined, which is constructed by the method (5.1.2). For example, Dontchev
presented a convergence result which is established in [42, Theorem 3.3] and the result con-
firms the existence of a convergent sequence. Thus, in view of numerical computation, this
kind of Newton-type methods are not convenient in practical application. This drawback al-
lows us to propose the iterative procedure “so-called” extended Newton-type method (ENM)

to solve the nonsmooth variational inclusion (1.0.3):

Algorithm 4 (The Extended Newton-type Method)(ENM)
Iter. 1. Pick n € [1,00), sp € T, and place i := 0.

Iter. 2. In case 0 € M(s;), then stop; otherwise, go to the next Stair 3.
Iter. 3. In case 0 ¢ M(s;), choose d; such that d; € M(s;)
and ||d;|| < n dist (0, M(s;)).
Iter. 4. Set s;41 1= s; + d;.
Iter. 5. 7+ 1 is replaced by ¢ and repeat this cycle Iter. 2.

Many effective works on semi-local analysis have been investigated for some special cases

such as N-type method for nonlinear least square problems (cf. [25]), the ENM for solving
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variational inclusions (cf. [102]) and the Newton method for nonsmooth equations (cf. [11]).
Rashid et al. [110] introduced the GN type method for approximating the solution of (1.0.3)
in the case of smooth function and obtained the semi-local and local convergence results.
Rashid introduced the GN method for nonsmooth generalized equations in his PhD thesis [98,
Theorem 3.2.1], and obtained the semi-local and local convergence results. Moreover, Rashid
[103] introduced an extended Newton-type method for solving the nonsmooth generalized
equation (1.0.3) and achieved the semi-local and local convergence results. In recent time,
Alom and Rashid [3] have been presented the general Gauss-type proximal point method
for solving (1.0.3) in the case of smooth function and evaluate the semi-local and local
convergence results. As our best knowledge, there is no other study on semi-local analysis for
solving the nonsmooth variational inclusion (1.0.3) by using extended Newton-type method

(ENM). Thus, the contribution, presented in this study, seems new.

In this chapter, we present semilocal and local convergence of Algorithm 4 under some
mild conditions for the function ¢ and the set-valued mapping (¢ + £)~!. In fact, the main
motivation of this research is to analyze the semilocal and local convergence of the sequence
generated by Algorithm 4 for solving the nonsmooth variational inclusion (1.0.3) using the
notion of (n,a)-PBA introduced by Geoffroy and Piétrus [42] and Lipschitz-like property.
Based on the information around the initial point, the main result is the convergence criteri-
on, developed in the section 3, which provides some sufficient conditions, for a starting point
near to the solution, ensuring the convergence to the solution of any sequence constructed

by Algorithm 4. As a result, local convergence result for the ENM is obtained.

This work is arranged as follows: In section 5.2, we will show the existence and prove the
convergence of the sequence generated by the Algorithm 4, which is introduced in section
5.1.1, by using (n,a)-PBA as well as the concept of Lipschitz-like property for set-valued
mappings. The summary of the fundamental results in the present work are presented in

section 5.4.
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5.2 Convergence Analysis of ENM

Let n e N*, a >0and (: T CS — T is a nonsmooth function that admits (n,«)-PBA on
T with a constant L > 0, where T is an open neighborhood of a point s € §. Let s € § and

we define the mapping R, as follows:

R,(-) == A(s, ) + £(). (5.2.1)

Then
M(s) = {d €S:0¢e Rs(s+d)} - {d €S:s+de R;l(())}. (5.2.2)

Furthermore, the following equivalence is clear:
zC€R'(t) <=t c A(s,2) +&(2) foranyz€ Sandt e T. (5.2.3)

In particular,

5€ R;'(t) for each (5,f) € gph (¢ +€).

Let (5,¢) € gph (¢ + &) and let 75 > 0, rz > 0. Furthermore, throughout in this section
we assume that B, (5) € T N domé&. Suppose that 7, , is defined in Definition 2.0.3.
Define

B . Lorgmte (3nte 4 2nta) p (2% — M Lre)
ri= mm{rt - T , 1550 . (5.2.4)

Then

_ na2n+o¢ 2a
L } (5.2.5)

r>0<= L < mi
g mm{ rente (3nta g gnta)’ M Lo

We know that the variational inclusion (1.0.3) is an abstract model for various problems.

From now on, we make the following conditions.

(i) ¢ admits a (n,a)-PBA with modulus L, on some open neighborhood Y of s, which is
denoted by A;

(ii) & has closed graph;

(iif) The set valued map (¢ +&)~! is Lipschitz-like on B, (¢) relative to B, (5) with constant
M.
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The following lemma plays an important role to the convergence analysis of the ENM
and the method defined by Algorithm 4. Dontchev proved that the following procedure is a

refinement of [26, Lemma 1].

Lemma 5.2.1. Suppose the assumptions (i)-(iii) hold and let ¥ be defined in (5.2.4), so that
(5.2.5) is satisfied. Let s € Brs(5). Then R;Y(+) is Lipschitz-like on B (t) relative to B (5)

(67

with constant ——————, that is,
20 — M Lr?

e(R\(8) N Brs (5), By () < =

2 =gt Tl et € BO

Proof. Since ¢ has a (n,a)-PBA on an open neighbourhood of 5 € (¢ + &)7!(#) with a
constant L and the map (¢ 4+ &)~! is Lipschitz-like around (£, 5) with a constant M, then by
Remark 2.0.4 we get that R;'() is Lipschitz-like around (¢, 5) with a constant M < L, i.e,

3 constants r5 > 0, r; > 0 and M such that

e(R;'(t1) NB,.(5), R;'(t2)) < M|ty — ta| for all ty, ¢y € B, (%). (5.2.6)
Note, by (5.2.4) and (5.2.5), that 7 > 0. Now let
tl, tz € ]Bf(i) and S/ € Rs_l(tl) N B% (g) (527)

It is sufficent to prove that there exist s” € R;'(t,) such that

2°M

Is" = s"|| < m”tl — o]

At the last stage, we shall verify, there exists a sequence {s;} C B,.(3) such that

ty € A(S, Sk:—l) - A(g, Sk—l) + A(g, Sk) + f(Sk), (528)
and
M Lyra k-2
st = se-all < Mty = tall (<) (5.2.9)

for every k = 2,3,4, ... the inequality hold. We proceed by mathematical induction.
Denote

zii=t;— A(s,s') + A(5,s") for each i=1,2.
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Note by (5.2.7) that

Is =51 < lls =5+ 1155

s Ts
< 242 <y 5.2.10
< S5 S ( )
LT§n+a (3n+a+2n+a)

It follows, from (5.2.7) and the relation 7 < r7 — by (5.2.4) that

7Tn,a 2n+a

Iz — 2

IN

It = 2] + | As, s') = A, )]
P C(s) = Als, )+ 116(s) — A5, )|

L
(Ils = 7+ Jls = /)17

n,x

P L <T§n+a+(%)n+a>

ey (2t 4 1)

Tn,a

IN

F+

IN

IN

= 7”—|—

S Tz.

This implies that z; € B,,(f) for each i = 1,2. Letting s; := ¢’. Then s; € R;'(t1) by
(5.2.7) and it follows from (5.2.3) that

t1 € A(s,s1) +&(s1),
we can be written the inequality as like as follows
i1 — A(Sa Sl) + A<‘§7 51) S A(§7 Sl) + 5(51)‘

According to the definition of z;, we get that z; € A(5,s;) + &(s;). Hence s; € R;'(21) by
(5.2.3). This together with (5.2.7) implies that

S1 € RETl(Zl) N BT§(§>.

According to the concept of Lipschitz-like property of R;'(+) and noting that 2y, 2, € B,.(f),
it follows from (5.2.6) that there exists s, € R5'(22) such that

[s2 = s1f| < Ml|z1 — 2o = M[t, — 22
Furthermore, from the definition of 2z, and noting s; = s’, we get that

Sy € Rgl(zg) = Rgl(tz — A(s,s1) + A(S, 1)),
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which together with (5.2.3) implies that

ty € A(s, s1) — A(S, s1) + A(S, s2) + &(s2).

This shows that (5.2.8) and (5.2.9) are true with created points s; and s,.

Suppose that the points sy, S, ..., S, have created so that (5.2.8) and (5.2.9) are true

for k = 2,3,...,m. We need to create s,,;1 such that (5.2.8) and (5.2.9) are also true for

k =m + 1. To do this, setting

2" =ty — A(S, Smuic1) + A(S, Sppyio1)  foreach i =0, 1.

Then, by the inductional assumption together with the concept of (n, a)-PBA of A, we get

that
o = 20 = NAG, sm1) = AG, sm1)] = [A(s, 5) = A5, 5]
o Ly
< Ll =51°lsm = smoall € s = s
M L2\ m-1
<t —tl(s)

We have ||s; — 5] < % and ||t; — to]| < 27 from (5.2.7) and using (5.2.9) we get

m
s =31 < D llsw = skl + llsa — 3]
k=2

" MLroNkE-2 .
My ()
TZ 2a + 2
k=2
22°Mr Ts
< —t+ —.
- 22— MLry 2

IN

By (5.2.4), we have 4.2°M7 < r5(2* — M Lr?) and then (5.2.12) becomes
|8 — 5| < 7s.
Consequently,

3
[8m = sll < llsm = 5l +[I5 = sl < 5rs.
2

(5.2.11)

(5.2.12)

(5.2.13)
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Furthermore, using (5.2.7), (5.2.12) and (5.2.13), we get that, for each i = 0,1,

2" =t < lta =t + [|A(S, Smti-1) — A(5, Smpi-1) ||
< T [[C(Smaie1) = A(S, Smim1) || + [ (8maiz1) — A(5, Smpiz1) ||
L
< Tt (s = s "+ 15 = s )
= L 3 nta n+ao

R
T, \\2
L(3n+a + 2n+o¢)7,§n+o¢

= T+ Tn.a onta

< 7

It follows that 2" € B, (¢) for each i = 0,1. Whereas the assumption (5.2.8) holds for k = m,
we get

to € A(S, Sm—1) — A(S, Sm—1) + A(5, 5m) + &(5m)-

we can write the inequality as follows
to — A(S, Sm—1) + A(S, Sm—1) € A(S, $m) + &(Sm);

Then by definition of 2, it follows that zJ* € A(S, s;) + &(Sm). This, together with (5.2.3)
and (5.2.12), yields that

Sm € Rg_l(zén) NB,.(3),

Using (5.2.6) again, inasmuch as 27", 2" € B, ({), there exists an element s,,11 € Ry (2]")

such that

MLr¢ ) m—1

Ismer = sl < Mg = 20 < Mty = tall (=

(5.2.14)
where the last inequality holds by (5.2.11). By the definition of z{", we have
Sma1 € RZNZM) = RoMto — A(8,5m) + A(3,5m)),

which together with (5.2.3) implies

to € A(S, Sm) — A(S, sm) + A(S, Sma1) + E(Sm1)- (5.2.15)
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This together with (5.2.14) completes the induction step and the existence of sequence {sy}
satisfying (5.2.8) and (5.2.9).

«

Whereas 2;5 < 1, we conclude from (5.2.9) that {s;} is a Cauchy sequence. Define
"

s" := limy_,o Sg. Note that £ has closed graph. Then, taking limit in (5.2.8), we get
ty € A(s,s") + £(s") and so s” € R (ty). Moreover,

m
I =" < limosup S flsp = sil

" (M Ly k-2
< 1 s —
< Jmawd o (S) M -t
k=2
< 2
= 2o MLt 2
The Lemma 5.2.1 is proved. 0]

Before going to prove the main theorem in this chapter, we define the map G, : S — T,
for each s € S, by
Gs(+) == A(S,-) — A(s, ). (5.2.16)

V() = RG] (5.2.17)
Then we have that
1Gs(s") = Gs(s")Il = [I[A(5,5") — A(s, s')] — [A(5, 5") — A(s, s")]l
< L||s—s||*||s" = §"|| for any &', s" € S. (5.2.18)

The main result of this chapter read as follows, which provides some sufficient conditions
ensuring the convergence of the ENM for nonsmooth variational inclusions (1.0.3) from

starting point sg.

Theorem 5.2.1. Suppose that n > 1. Let s € §, T be an open and convexr subset of S
containing § and let ( be a function which has (n,a)-PBA on Y with a constant L > 0.
Assume that the map & has closed graph and the map R;'(-) is Lipschitz-like on B, (1)
relative to B, (5) with constant M > 0. Let 7 be defined by (5.2.4) so that (5.2.5) holds. Let
0 > 0 be such that
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_ 1
. 7’5 70'7[_71 « rf ’/Tn «a n+a
5 < {_7 - 9 < 7 ) 9 ]- }7
(a) = min 4 gnto L (3n+oz + n+a + 1)

(b) (M + 1)L(2°"Ins> + re) < 29,

_ L
(¢) [t} < ——am*=.
e

Suppose that
lim dist (¢, A(s, s) + &(s)) = 0. (5.2.19)

S$—S
Then 3’s some & > 0 such that any sequence {s,} constructed by Algorithm 4 with a
starting point sy € Bs(5) converges to a solution s* of nonsmooth variational inclusions

(1.0.8), that is, s* satisfies 0 € ((s*) + &(s*).

Proof. By assumption (b), it can be easily written that

ML(2°'6® +72) < (M + 1)L(2°T'né* +r) < 2% (5.2.20)
Set
20 M Lo®
bi=————. 2.21
2% — M Lrg (5 )
It follows from (5.2.20) that
1
b< (5.2.22)
Since 7, o ||t]] < L™ by assumption (c) and (5.2.19) holds, there exists 0 < 6 < 4 be such
that
. L i _
dist(0, A(so, s0) + £(s0)) < ) for each so € By(3) (5.2.23)
T,

Let so € B(5). We will proceed by mathematical induction. For (1.0.3) we will show that
Algorithm 4 generates at least one sequence and any sequence {s,,} generated by Algorithm

4 for (1.0.3) satisfies the following assertions:
|sm — 5] < 20 (5.2.24)

and

1 (nta)™
[smir — sm| < b(7r ) 5, (5.2.25)
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For this
3 (ML

re = —
T

2

for every m =0,1,2, ....

n,x

motive we define

|s — s||""* + MHtH) , foreachseS. (5.2.26)

Owing to the fact 40 < r; in assumption (a) and 7 > 1, by assumption (b) we can write

as follows
(M +1)L2°.36% < (M +1)L.2%(20% 4 6°)
= (M 1)L(27M5° + (20)°)
< (M+ 1)L<2‘“+1n5“ “)
< (M + 1)L(2°T' o™ + rs®)
< 29
The above inequality gives either
2¢ 1 2¢ 1
ML < = L < = - 5.2.27
=033 UM =373 (5.2.27)

By the facts m,,[t]] < L™ from condition (c)and (5.2.27), the inequality (5.2.26)

reduces to, for each s € Bys(3)

Ts

IA

IN

Since 0" <, we get that,

IN

IN

IN

e Mufu)
M

L
+ _5n+a)
7Tn,a
M L

(5n+a)

— e

7Tn,a

5& (2n+a + 1) (5”

2 Tn,a

(5.2.28)

3SML
2 Tpa
3 1
2 3.0

(2" +1) .6

5 (2" +1) .6

(2" +1) .0

2T o

29, for each s € Bos(5). (5.2.29)
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It is trivial that (5.2.24) is true for m = 0. To show, (5.2.25) holds for m = 0, firstly
we need to verify that s; exists, that is, we need to show that M(sqg) # (. To do this, we
consider the mapping U, defined by (5.2.17) and apply Lemma 2.0.4 to the map ¥y, with
Ny = 5. Let us check that both assumptions (2.0.4) and (2.0.5) of Lemma 2.0.4, with r := rg,

1
and \ := 3 hold. Noting that 5 € R;'(f) N B,, (5) by (5.2) and by the definition of the

excess e and the map U, , we obtain

dist(s, Uy, (5))

IA

e(R7H(D) N By, (5), Usy (5))
e(R5 (1) NBas(5), Ry (G (5)])

IN

IN

e(Rs' (1) N B, (5), By (G (5)])

IN

M| — Gy, (3)]- (5.2.30)

by the notion of (n,a)-PBA of ¢ withconstant L, we get that

IGal) ~ = 14(5.5) = Also.s) ~ 1]
< [1AG ) — AGsu. )l + )
< 1(5) = A )+ 1(5) = Alsos )] + ]
< sl sy — sl 4
< (s = sl s =™t + (5:231)

Note that L §"+e(2nF 4+ 3"t 4+ 1) < 71, , 17 because of assumption (), m,.|/t|| < L&"t* by
assumption (c) and ||sy — 5| < < 8. It follows from (5.2.31), for each s € B, (5) C Bas(3),

that

L

,

1Gsols) =2l <

= n+a S I nta +1
(HS—SH et (lso — 5] + |15 — sl) )+HtH

3
3

(oo + 200 ) 4]l
L n+ao n+ao I
= L (o s o) + i)

L L
S _6n+a(2n+a + 3n+a) + _5n+a

Tn,a Tn,a

L
= — T2V 43" 1) <1 (5.2.32)
7Tn,a
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This implies that
Gy (s) € B, (t), foreach s € B, (5). (5.2.33)

Especially, let s = § in (5.2.31). Then we get that
L

1Gso(3) =#ll < —1lso = ™" + [l (5.2.34)
L L 2L

<M e < T <y (5.2.35)
7Tn7a 7rn,oz 7rn,a

and hence

Gy, (5) € B, (1).
Hence, by the assumed Lipschitz-like property of R;' and (5.2.34), we have from (5.2.30)
that

dist(5, U, (5)) < M|t — G (3)]
ML

< ——llso — 2" + M|Z]

n,o

_ (1 - %) ra = (1= A)rs

that is, the assumption (2.0.4) of Lemma 2.0.4 is satisfied.

Below, we will show that the assumption (2.0.5) of Lemma 2.0.4 holds. To do this, let
s',s" € By, (5). Then from assumption (a) and (5.2.29), we have that s',s" € B,  (5) C
Bys(5) C B,.(5) and Gy (s'), Gy, (s") € B,,(t) by (5.2.33). This, together with the assumed
Lipschitz-like property of Rz*', implies that

e(Ve(s) N BTSO (5), Vs (5")) < e(Wgo(s') NB,(5), Uy (7))
= e(B7[Gy(8)] N By (), Ry '[Gso ("))
< M||Gyo(s") — G, (8")]]- (5.2.36)
Applying (5.2.18), we get that
|G (s") = Gao ($")I| < LIS = sol|*[ls" = s"]|.

With the help of first relation in (5.2.27) and combining the above two inequalities we get,

(W (s) By, (3), Uy (") < ML|s — soll*lls’ — "]
< ML&|s — "]
<

sl ="l = Alls" ="
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Under this process we get that the assumption (2.0.5) of Lemma 2.0.4 is also satisfied.
Inasmuch both assumptions (2.0.4) and (2.0.5) of Lemma 2.0.4 are satisfied, we can say
that Lemma 2.0.4 is applicable and therefore, we conclude that 3's 8, € B,, () such that
§1 € Wy (81), that is, 0 € A(sg, $1) + £(51) and so §; — sg € M(sp). This fact reflects that
M(so) # 0.

Whereas > 1 and M(sq) # ), we can select dy € M(sp) such that

[ldoll < 7 dist(0, M(s0)).

For Algorithm 4, s; := so + dp is defined. Hence s; is generated for (1.0.3).

Moreover, according the definition of M(s), we can obtain

M(So) = {doETZOGA(So,So‘f‘do)‘f‘f(So"‘dg)}
_ {doerzso+doeR;01(0)},

SO

dist(0, M(sg)) = dist(so, R, (0)). (5.2.37)

Now we are ready to show that for m = 0 the inequality (5.2.25) is hold. Note that 7 > 0

by assumption (a). Then (5.2.5) is satisfied by (5.2.4). Lemma 5.2.1 states us that the
2°M
mapping R;!(-) is Lipschitz-like on B;(¢) relative to B (5) with constant SR Y7 for
a ;,ag

each s € Brs(s) when R;'(+) is Lipschitz-like on B, (f) relative to B,.(5). Particularly,

R_(-) is Lipschitz-like on B (%) relative to B rs () with constant as so € B;(5) C

20 — M Lr?
Bs(5) € B:s (5) by assumption (a) and the choice of 4.

Moreover, assumptions (a), (c¢) and the 2nd relation of the inequality (5.2.27) imply that

_ L L
It < —— o™t = —§*."
Tn,« Tn,a
L 1
< %0 < 0
T« T,
1 .o T
< — < = 0.2.38
= 3. Ante =3 (5.2.38)
Now (5.2.23) becomes
. . L n—+o r
dist(0, Rs,(s0)) = dist(0, A(so, so) + £(s0)) < o < 3 (5.2.39)
T,
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Noting that sg € B (5) as mentioned earlier and by (5.2.38)) we have that 0 € IB%g(t_) :

Applying Lemma 2.0.1 then we have

2°M
dist(sg, Rs, *(0)) <

< o arnre WO Bals0)) (5.2.40)

According to Algorithm 4 and using (5.2.37) and (5.2.40) we have

sy — soll = ldoll < dist(0, M(s0)) = 7 dist(so, Ry, (0))

2%nM .
S m dlSt(O, RS()(SO))
< 29nM L sno
Tna(2¢ — M Lr?)
29nM L
< il 5.5
Tna(29 — MLr?)
200 M Lo™
< 0, [Since d™ < 4. 5.2.41
< T s <4 (5.241)
From (5.2.22) and (5.2.41) we get,
[s1 = soll = [|dol < 0
T«
1
<L)
Tn,a

This shows that (5.2.25) is hold for m = 0.

Let the points sq,s9,..., s have obtained by Algorithm 4 satisfying (5.1.2) such that
(5.2.24) and (5.2.25) are hold for m = 0,1,2,...,k—1. We show that assertions (5.2.24) and
(5.2.25) are also hold for m = k. Because (5.2.24) and (5.2.25) are true for every m < k —1,

we get from the following inequality

s — 5] Z||d||+||so—s||<b<sz(7T )"m +5<25 (5.242)

and so sy € Bas(S). This shows that (5.2.24) holds for m = k.

The next step is that, we show that for m = k the assertion (5.2.25) is also hold . Let
s, € By, (5). If we apply Lemma 2.0.4 to the map Wy, with =3, r :=r, and A := %, then
by the correlated argument for the case k = 0 one can find that M(s;) # . Because of

sk € By, (5) C Bos(5) € Brs (), Lemma 5.2.1 permit us to say that R_'(-) is Lipschitz-like
2°M

B-(t) relative to Brs (5 th tant ———.
on By(t) relative to Brs (5) with constan 50— MLi®
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Moreover, inasmuch as —A(sg_1, k) € &(sk), using the idea of (n,a)-PBA of ¢, the

inequality 4"**§ < 7, , from assumption (a), we obtain that

dist (0, Ry, (sk)) = dist(0, A(sy, s) + &(s1))
< JJA(sk, sk) — A(sk—1, sk)||

L
= —I¢(sk) = Alsi—r, s)|"F < —|lsk — spa [T
_ _ n+ao L n+o
< (Ilsk — 81l + 115 — spal])" T < (26 + 26)
L L
— _4n+a5n+a S = 5a4n+a5
Tn,a Tn,a
1 . T
= nta B < 5.2.43
3 Tma gnra =3 (5.2.43)

It is noted earlier that s, € Bz (5). Moreover, (5.2.38) implies that 0 € B+ (). This, together
with (5.2.43), implies that Lemma 2.0.1 is applicable for the map R_'(-) and hence we have
that

dist (sx, R,.'(0)) M 5 dist (0, Ry, (1)) (5.2.44)

< 27
- 22— MLr

Because of M(sy,) # (), Algorithm 4 ensures the existence of a point s, ; which satisfies the

inequality as follows

st = sell = Idell < dist (0, M(sg)) = n dist (s, B, (0))
20nM
< g st(0. Ru(se)
2nM
22 M
< e Ak 5 — Al )]
2o M
= Gl — Al sl
2°nLM
= — s "t 5.2.45
T Tpa(20 — MLrg) st = skl ( )
< b (b(i)(n-&-a)kl 5) e
(50‘7Tn7a Tn.a
< b <b(i)(n+o¢)kl >n+a5n+o¢
0%

Tn,a
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< b (b( 1 )(n+a)k_l >n+a5n
T Tna N\ Tna
b 1 -1\ "nta
< (b( y(nta)* ) § [Since 8" < 4]
7T'rL,cy 7T'rL,cy
S b( 1 )(n—i—a)kd
7rn,oz

This shows that (5.2.25) holds for m = k. By this process, we can get from (5.2.25) that
{sm} is a Cauchy sequence and hence convergent to some s*. where as the graph of ¢ is
closed, we can pass to the limit in s € R;'(0) obtaining that s* is a solution of (1.0.3).

So, the proof is completed. 1

Especially, when § is a solution of (1.0.3), that is, ¢ = 0, Theorem 5.2.1 is reduced to the
following corollary, which gives the local convergent result of the ENM for solving nonsmooth

generalized equation (1.0.3).

Corollary 5.2.1. Suppose thatn > 1 and § be a solution of the variational inclusion (1.0.3).
Let Y be an open and convezr subset of S containing s and 7 > 0 be such that B:(5) is an
open and convex set. Assume that the function ¢ is continuous which has a (n,«)-PBA on
B:(3) with a constant L > 0, the map & has closed graph. Assume that the map R:'(-) is
Lipschitz-like around (0, §) with constant M. Suppose that

lim dist (0, A(s, s) +£(s)) = 0. (5.2.46)

58
Then there exists some & > 0 such that any sequence {s,,} generated by Algorithm 4 starting
from sy € B(5) converges to a solution s* of nonsmooth generalized equation (1.0.3), that

is, s* satisfies that 0 € ((s*) + &(s%).

Proof. By hypothesis Rz () is pseudo-Lipschitz around (0, 5). Then there exists constants
7o, 7s and M such that R;'() is Lipschitz-like on B, (f) relative to B;.(5) with constant M.

Then, for each 0 < r < 75, one has that
6<R§_1(t1) N ET(g), R§_1<t2)) S M“tl - t2|| for any tl,tz S Bro (0), (5247)

that is, the map R;'(-) is Lipschitz-like on B, (0) relative to B,(5) with constant M.
Let L € (0,1) and choose 75 € (0,75) such that

% S 7:7 2n+aﬂ_n7a o — L(3n+a + 2n+a)T§n+O¢ >0
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and A is a (n, @)-PBA of ¢ on Brs(5). Then, define

L §n+a n+a 2n+o¢ 5 204 _ ML «a
P (3 4 25 I

= min{ro —
o 20 ’ 4.2¢M

(5.2.48)

and

1

. { Ts 7:-7Tn,a ( o T, > nta }
min § —
4 ? Ynto ’ L (3n+a + Inta + 1)

Thus we can select 0 < § < 1 such that

_ 1
s T.Tpa

. 7o Th,« n+a
§<m {—, , < : ) } 5.2.49
= WL e (T (3nFa 4 onba 1 1) ( )

and

(M 4+ 1)L(2*T'nd® + rs®) < 2%,

Now it is our routine work to check all the conditions of Theorem 5.2.1 are hold. Thus,

Theorem 5.2.1 is applicable to complete the proof of the corollary 5.2.1. O

5.3 Application of (n, a)-point-based approximation (P-
BA)

This section is dedecated to present applications of (n,«)-PBA. In particular, when the
Fréchet derivative of ( is (¢, «)-Hoélder, the function A is a (1, «)- PBA for ( . Moreover,
when (¢ is twice Fréchet differentiable function such that V2( is (K, «)-Holder, then the
function A is (2, «)-PBA for ¢. In addition, application of (n, a)-PBA is provided for normal

maps.

5.3.1 Application of (n,«)-PBA for differentiable function
Let 0 < a <1 and T be a convex subset of S. Let p,q € T.

(1) Suppose that the Fréchet derivative of ¢ is (¢, a)-Holder continuous. We show that the

function

A (p,q) — ¢(p) +V<(p)(g—p)
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is a (1,a)-PBA for (. In this case, by using the Algorithm 4 we can infer that there

exists a sequence {s;} which converges superlinearly and this result recovers the con-

vergence result of Geoffroy and Piétrus in [42].

In this regards, define the function A(p, q) by

It follows that

Ap,q) = lI<(q) — Ap, 9)-

Alp,q) = 1I<(q) = ¢(p) — VC(p) (g — )l

= / (Ve + Fa =) = V) = )]

1
< lg-opl / IVC + £la — ) — VE)ldf
01
- Ulf (g —p))°d
< lg-opl / 1fa— p)lod
1
o 1+a€ a
< llg—nll Atff
g — plI*+.

(a4 1)

This yields that A satisfies the first property of (1,«)-PBA on Y. To proof the second

property of (1, «)-PBA, we assume that ¢,z € T. Then, we have that

N(p,g.t, z) =

IN

<

|A(p, ) — Alq,t) — Alp, 2) + Alg, 2) |,

1¢(p) + VC(p)(t —p) — Cla) — V(@) (t — q) — C(p) — VC(p)(2 — p)
+C(q) + V(g)(z — )

1(VE(p) = V() = 2)[ < IVC(p) — VE(@) It — =]

llp — qll*[lt — =]

This shows that the second property of (1, «)-PBA for ¢ also holds. Therefore, we say

that when the Fréchet derivative of ( is (¢, «)-Holder with exponent o € (0,1), the
function A : (p,q) — ((p) + V{(p)(q¢ — p) is a (1, a)-PBA.

(2) Let rs > 0 be such that Brs(5) C S. Suppose that ¢ is twice Fréchet differentiable

function on B (5) such that V(¢ is (K, a)-Holder on B (5) and with exponent a €



5.3 Application of (n,a)-PBA 99

(0,1). Choose ¢ > 0 and L > 0 be such that

Let p,q € Brs(5) and define the function

A(p,q) = C(p) + V{(p)(qg —p) + %V2C(p)(q - p). (5.3.1)

Then, Theorem 5.2.1 ensures the existence of a sequence {s;} which converges super-

quadratically and the result of Theorem 5.2.1 coincides with the result of [41, 105].

To show the first property of (2, a)-PBA, denote A(p, q) = ||¢(q) — A(p, q)||. Then we
have that

A(p,q) = [/¢(q) — ¢(p) — V{(p)(g —p) — %VQC(p)(q — )l (5.3.2)
Since, || f, ((1—f)V2C(p+f(q p))(a—p) )df\l 1¢(q) —<¢(p) — VC(p)(q —p)||, then

(5.3.2) reduces to

Alp,g)= || /0 ((1 — V¥ (p+ fla—p)(g— p)2>df — %Vzé“(p)(q —p)?||

= [ (0= DY+ fa =) - 0= DY) @ - ]

< |M—MF/4HP—)V%@+f@—mn—(baﬂv%@W#
< o=l [ 10 DV + Sa0) - V)

< Klg- MPA( Dllfla—p)leds

< .KM—qw”aéll—fV%ﬁ

< (a+1)( )||q—p||2+°“

< CR PR

(a+1)(a+2)

Therefore, A satisfies the first property of a (2, «)-PBA on Y.
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For the proof of second property, we assume that a, b be any elements of B s (3),

Then, we get that

N(p.q.a,b) = ||Alp,a) — Alq,a) — A(p,b) + Alq, )],
= 1) + VCw)a—p) + 5V e~ p) ~ Cla) ~ Vela)(a—0)
V@) a — ) — )~ VC) b~ p) — 5V) (b~ )

(o) + VCa)b— 0) + 590~ o)

= 1I9¢k) ~ V@~ b) + 5IV¢r)a —p)? ~ V(@) e~ )
=VA(p)(b = p)* + V¢ (q) (b — ¢)’]|

= IIV¢W) - V@@~ ) + 5[V o~ g+~ pa—p)
V()b —q+q—pb—p)+V(()b—qb-p+p—q)
~Vi(a)(a—q,a—p+p—aq)

= IV¢) ~ Ve@la —b) + 5 [VC)a g0~ p)
+V2C(p)(g = p,a—p) = VXC(p)(b—¢,b— p)
=V2((p)(g = p,b—p) + V()0 —q.b—p) + V*((q) (b~ q,p — q)
~Vi((g)(a—g¢,a—p) = V*((g)(a—q,p — )]

= IV¢) ~ Ve@la Bl + 51V b~ b~ p)
~V*(p)(b— ¢,b—p) + V*((p)(a —g.a — p)
~V2((g)(a —g,a —p) + V*((p)(q — p,a—p) = V((p)(g — p,b—p)
+VAC(a)(b—q.p—q) - (q)(a—q p—ql

= IVC) ~ Ve@)a —8) + 51V%C(a) — V@6~ 0.0~ p)
FAIV) ~ V@)~ g.a—p) + 5VCR)g—p.a—)
5@~ a,p )l

= 1IVek) ~ V@ —b) + 5[V¢(a) ~ V@0~ 0,5~ )
+5IV%C) ~ V@)@~ b+ b—g.a—p) + VX()a —pa—D)

+5V2C(a)(b— a,p )|
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This also can be written as

, 1
N(p,g.a,0) = [[[VC(p) = V(@)@ —b) + 5 [V*¢() = VIP)I(b — g, — )
1 1
+5[V*C(p) = V(@)@ = b,a —p) + 5V*C(p) (¢ = p.a = b)
1
+5 V)b —a.p =gl
Since there exist an open subset ]B%%(E) C S and a positive number K such that
V|| < K on Brs(s5). Let a,b € Brs(s). Then, [[a —b|| < rs. Then, by applying
the notion of (¢, «)-Hélder continuity property of V({ and (K, «)-Holder continuity
property of V2( , we get
, 1
N(pgia,0) < IIVE(R) = V(@@ =)l + 511V*¢(a) = V@)1 — gll[lb = al
1 1
+51V2¢) = V2C(@lla = blllla = pll + SIV*C@)llllg = pllla — ]

1
+5 1V C@lllb = allllp — al

« K (0%
< lp=dl®lla =0l + < llp = all*[lb = gllllb — af
K (6% K «
+<llp = gll*lIb = alllla = pll + < llg = pl|*lla = 0]
K (0%
+llp = gll*[1b = all
(6% K « (6%
< M —al*la=dl+ Frslp = all*la = bl + Kllp — ¢l|*[la - |
< (- KOs+ 1)l —glllla =0
<  Llp—ql|*lla =0l for alla,be B:(3).

This shows that the second property of (2, «)-PBA is satisfied. Thus, both of properties
for (n,a)-PBA hold on B (5) whenn = 2 and 0 < a < 1. Hence, A is (2,)-PBA for
C on Bre (3).

5.3.2 Application of (n,a)-PBA for Normal Maps

In this subsection we deal with a class of nonsmooth functions, i.e. normal maps. Huge
number of mathematician have studied by normal maps to obtain solutions of variational

inequalities and comprehensive accounts on this topic can be found in [38, 57-60, 118, 122].
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At first Robinson [122] discussed about the normal maps . Here we recall the notion of

normal maps which was introduced by Robinson [118, 122].

Definition 5.3.1. Suppose C be a nonempty closed convex subset of a Banach space S and
let 11 be the metric projector from S onto C. Assume that T be an open subset of S meeting
C and let ¢ be a function from Y to S. (¢ is the normal map which is defined from the set
I1(T) to S by
Cel(s) = C(TH(s)) + (s — II(s)). (5.3.1)
Furthermore, variational problem is as follows
find ty€C:{(C(ty),c—1ty) >0, forallceC

is completely equivalent to the normal-map equation (¢(sg) = 0 through the transformation
sop = to—((tp). For nonlinear optimization involving normal maps, Robinson has shown that
how the first-order necessary optimality conditions as well as linear and nonlinear comple-
mentarity problems and more general variational inequalities, can all be expressed compactly

and conveniently in the form of equations (¢(s) =0 .

Nevertheless, sometimes the use of normal maps enables one to gain insight into special
properties of problem classes that might have remained obscure in the formalism of varia-
tional inequalities. A particular illustration of this is the characterization of the local and
global homeomorphism properties of linear normal maps, this concept given in [122] and

improved in [95, 96].

In [103, Proposition 4.1], Rashid proved that for any function ¢ admitting a PBA on a
nonempty closed convex subset C of a Hilbert space H, the normal map associated with ¢
admits a PBA on H. In our study we will show that the same result holds when we replace
the normal maps (¢ + £ in lieu of the normal maps (¢. Rashid [99, 103] reformulate the
normal maps (¢ + & by simple conversion of the definition of normal maps given by Robinson
[122]. In [99, 103] Rashid assumed the concept of point-based approximation and p-PBA.
Here we extend that concept to (n, «)-PBA which is reformulated by Rashid [99, 103], then
we show that if ¢ have a (n, «)-PBA, then one can easily be designed a (n, «)-PBA for (¢ +¢&.

The normal maps (¢ + £ reformulated by Rashid [99] is as follows.
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Definition 5.3.2. Let C be a nonempty closed convex subset of a Banach space S and let
IT be the metric projector from S onto C. Let T be an open subset of S meeting C and let
C(: YT =8 and &: T = 8. The normal map (¢ + £ is defined from the set IT7H(T) to S by

(Ce +&)(s) = C(IL(s)) + £(TL(s)) + (s — T1(s)). (5.3.2)

We are now able to design a (n,a)-PBA for the normal map (¢ + £ provided that a
(n,a)-PBA exists for (. The following proposition are taken from [99, Proposition 4.3].

Proposition 5.3.1. Suppose S be a Banach space and C be a nonempty closed convex subset
of § and let 11 be the metric projector on C which is nonexpansive. Assume that A :C xC —
S, (:C— S be functions and let € : C = S be a set-valued map which has closed graph. If
A is a (n,a)-PBA for ¢ on C with a constant L, then the function H : S xS — S defined by
H(t,s) = (A(L(t),")e + &())(s) is a (n,a)-PBA for (¢ + & on S with the same constant L.

Proof. Let t,s € S. By the definition of normal map, ((¢+&)(s) and H(t, s) are respectively

defined as follows
(Ce +8)(s) = C(I(s)) + £(IL(s)) + (s — IL(s)),
and

H(t,s) = A(II(¢), 1I(s)) + &(TI(s)) + (s — I(s)).

Hypothetically we know that A has the two properties for { which is given in Definition
2.0.15 with a constant L. Now we need to show that H also has these same two properties
for (¢ + £ with the constant L. Whereas A is the (n,«)-PBA for ¢ on C, then using the
notion of the non-expansiveness of the metric projector and the first property of (n, a)-PBA

we get that

1(Ce +€)(s) = H(t, s)]|
= [IC(T(s)) + &(T1(s)) + (s = T(s)) = [A(T(y), TT(s)) + £(T1(s)) + (s = T(s))]]

— 10(1H(s) = A(I(5).TIs)) | < ~—[T(y) - T(s) "
; ,
< e

We notice that H satisfies the first property of (n, «)-PBA. After that for proving the second

property, we suppose that s, s’ € S. To this end, let £,z € S. We will prove that H(s,) —
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H(s',-) is Lipschitz continuous on & with lipschitz constant L|ls — s'||*. Again using the

concept of non expansiveness of metric projector and second property of (n,a)-PBA | we

obtain that

|[H(s.t) — H(s',0)] — [H(s,2) — H(s'.2)]
= A1), 1)) + E(TI(0) + (y — T1(1)) — A(T(s). TI(1)) — &(1L(1))
~(y = TI)] ~ [A(TI($),T1(2)) + E(T1(=) + (= = TI(2)) — A(TI(s'), TI(2))
~£(I1(2) — (= — I
= A1), 11(8)) = A(T1(s), T1(1))] = [A(I1(s), T1(2)) — A(I(s"), T1(2)) |
(

~

< LIT(s) — T(s)[[*[[TI(#) = T(2)]| < Lls = s||*[t = =]

This process shows that the second property of the (n,«)-PBA is satisfied. So the both
properties in Definition 2.0.15 are fulfilled for H, In this conclusion now we can say that H

is a (n,a)-PBA for (¢ + £ on S. The proof is completed. O

5.4 Numerical Experiment

In this section, to present the numerical experiment we recall some necessary notations and
notions . Let a Fréchet differentiable function at s € R™ be ¢ : R® — R™. Let the set of all
points s € R™ is denoted by P, at which the derivative ¢'(s) exists. The B-subdifferential
of 1 at s € R", denoted by dp1(s), is the set

Op(s) = { JeR™": J = kETooz//(sk) for some {s;} C P, such that{s;} — s}

Then, Clarke’s generalized Jacobian of ¢ at s € R" is the set dv(s)=conv dgi(s). If ¥ is
differentiable near s, and v’ is continuous at s, then obviously 0¥ (s) = dpt(s) = {¢'(s)}.
Otherwise, dpt(s) is not necessarily a singleton, even if ¢ is differentiable at s. In this
case, 1'(s) € dp(s) holds. Now, in order to illustrate the theoretical result of the extended

Newton-type method, we consider the following example in one dimension.
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Example 5.4.1. Let S =T = R,sg = —1.7,n =5, L = 0.5,r;; = 3,n = 1,a = 0.9 and
M=1. Let (:R—=R and £ : R = R be defined, respectively, by

; + 52, if s <0,
C(s) = and £(s) = {1_34 - ; s+ %}. (5.4.3)
1057 2, if 5 > 0
Then Algorithm 4 generates a sequence which converges superlinearly to s* = —0.5000 and
s* = —1.0000 , respectively, with initial points sy = —1.7 and sy = —1.5 in the case s < 0.

On the other hand, Algorithm 4 generates a superlinear convergent sequence which converges
to s* = 01.4204 and s* = 0.5000 , respectively, with initial points so = 1.5 and sg = 1.7 in

the case s > 0.

Solution: It is manifest that ¢ is not differentiable at s = 0 and hence ( is nonsmooth
function on R. But this function is differentiable on R — {0} and hence d5((s) = {{'(s)}.
So, we get

1 )
= +2s, ifs<O,
Ip((s) ={((s)} =

20
TS —9, ifs>0
We mark that
3s 1 8 1
24 - = 24—+ 2} ifs<0
{s+14 = s+7+7},1s :
['(s) == (C+&)(s)
10s>  27s 1 10s? 1
—_— = —} ifs>0
i vt A A LA
o : 5, 3s 1
Initially, we study the set-valued mapping I'(s) = s* + 7 for the case z < 0 and

note that I has a closed graph at (5,¢) with § = —1 and ¢ = 0.64. Thus, (—1,0.64) €
gph T and if (¢ + &)~! is Lipschitz-like then T' is Lipschitz-like at (0.64, —1). By taking
A(s,+) = ((s) + 0p¢(s)(- — s), it is easily shown that Rs(-) = ((5) + 0p((5)(- — 5) + &() is
Lipschitz-like at (¢, 3) for t = 0.64 and 5§ = —1. Therefore, the assumptions of Theorem 5.2.1
hold. From the definition of M(sy), we get

M(sr) = {dr € R:0 € ((sp) + Ip((sr)dr + (s + di)}
2 — 3sp — 14s3
3+ 28s;, }

= {dede:
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Alternatively, if M(s;) # 0 we take

0 € ((sk) + IC(sk)(Skr1 — sk) + E(Sk41)

N 2 + 145}
Spp] = ———=
ML 308,
Also, from (5.2.45) with 0 < o < 1 we consume
290 LM .
x|l < ldi—|]"*

Tna(2¢ — M Lr?)

Hereafter, for the given values of L, M,n,rs,n and «, w get that Algorithm 4 generates
a superlinearly convergent sequence with initial point s = —1.7 in a neighborhood of 5 =
—1.9. Then the following Tables 5.1 and 5.2, obtained by using Matlab code, indicates
that the solution of the variational inclusion I'(s) € 0 has the solutions s* = —1.0000 and
s* = —0.5000 in the case s < 0 and s* = 0.5000 and s* = 1.4202 in the case s > 0. The
graphs of I' are plotted in Figure 1.

Remark 5.4.1. If we set a« = 1 in Example 5.4.1, we get the quadratic convergence of

Algorithm 4.

Table 5.1 Numerical results for Example 5.4.1 for the case s < 0

iteration no. Sk =52+ % - % Sk I =s%+ 8—75 + %
1 -1.7000 2.3829 -1.5000 0.6786
2 -0.9520 0.5595 -1.1346 0.1335
3 -0.6209 0.1096 -1.0161 0.0140
4 -0.5142 0.0114 -1.0003 0.0002
5 -0.5002 0.0002 -1.0000 0.0000
6 -0.5000 0.0000 -1.0000 0.0000
7 -0.5000 0.0000 -1.0000 0.0000
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Table 5.2 Numerical results for Example 5.4.1 for the case s > 0

iteration no. Sk ﬂHFuLIﬁIW Sk HF%IM.TW
7 14 7 7 7
1 1.5000 0.1786 1.7000 2.5714
2 1.4242 0.0082 1.0333 0.6349
3 1.4204 0.0000 0.7081 0.1511
4 1.4204 0.0000 0.5605 0.0311
5 1.4204 0.0000 0.5087 0.0038
6 1.4204 -0.0000 0.5002 0.0001
7 1.4204 0.0000 0.5000 0.0000
8 1.4204 0.0000 0.5000 0.0000
. Thearaph of the nonsmooth variational inclusion  ¢+¢ ,_The graph of the nonsmooth variational inclusion_+¢
A petsirall
l ]
(= E o |
o8y | ol i

The value of S

The value of S

Figure 5.1: (Color online) Superlinear rate of convergence of Algorithm 4 at -1.0000 (-0.5000)

and 0.5000 (1.4204)

5.5 Concluding Remarks

We have established semilocal and local convergence of the ENM for solving the nonsmooth

variational inclusion (1.0.3) under the conditions n > 1, ({ + £)~! is Lipschitz-like and the

nonsmooth function ¢ has a (n, a)-PBA. Moreover, when 0 < o < 1 and V( is (¢, a)-Holder,

we have presented an application of (n,a)-PBA for smooth function with n = 1, that is, we

have shown A is a (1, «)-PBA. In this case Theorem 5.2.1 provides the superlinear convergent
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result and this result extends the convergence theorem of Geoffroy and Piétrus [42]. On the
other hand, for n = 2 and 0 < a < 1, if  is twice Fréchet differentiable function and V2
is (K, a)-Holder, we have given an application of (n, «)-PBA, that is, we have shown A is a
(2,«)-PBA. In this case Theorem 5.2.1 yields the superquadratic convergent result and we
have given a numerical experiment to illustrates the theoretical result. Therefore, this result
extends the convergence result of [41, 105]. Finally, we have given another application of
normal maps for (¢ + £ which extends the concept of PBA reformulated by Rashid [103].
That is, we have shown that if ¢ has a (n, a)-PBAs, it is easy to construct a (n, «)-PBA for
the (¢ + €.



Chapter 6

Conclusions

In this dissertation, we deal with two types of variational inclusions. We introduce and
study several types of iterative procedure for solving these variational inclusions. Newton-
type method (3.1.3) are applied for approximating the solution of the variational inclusion
problem (1.0.1) and we have established local convergence results of the Newton-type method
under the assumptions that R.!(-) is pseudo-Lipschitz and V¢ is continuous, Lipschitz con-
tinuous and Holder continuous respectively and ¢ is admissible for FODD. More clearly, we
have shown that the Newton-type method defined by the method (3.1.3) converges linear-
ly, quadratically and superlinearly to the solution of (1.0.1) if V( is continuous, Lipschitz
continuous and Holder continuous respectively, together with a divided difference admissible
function g. This study improves and extends the results corresponding to [43]; see more

details in [63].

For solving the variational inclusion (1.0.1) we introduce an iterative method ”so-called”
EN-type method defined by Algorithm 2. The semilocal and local convergence results for
the EN-type method are established under the conditions that n > 1, V( is continuous and
Lipschitz continuous, g admits first order divided difference as well as Rz ! is Lipschitz-like.
This work extends and improves the result corresponding to [13, 105]; see more details in
[62]. On the other hand, for solving the variational inclusion (1.0.1) we introduce another
iterative method defined by Algorithm 3 under the assumptions that V( is (L, ¢)-Holder
continuous and ¢g admits the first-order divided difference satisfying ¢g-Holderian condition.

We present the semilocal and local convergence analysis of the method. To validate our
109
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theoretical result we have given numerical experiments and this results extends and improves
the corresponding ones in [62, 103]. To know in detail, the reader could refer to our paper

[64].

Moreover, to approximate the solution of the nonsmooth variational inclusions (1.0.3) we
introduce the iterative procedure ”so-called” extended Newton-type method (ENM) defined
by the Algorithm 4 in Chapter 5. In this literature we have established semilocal and
local convergence of the extended Newton-type method method for solving the nonsmooth
variational inclusion (1.0.3) under the conditions n > 1, (¢ + &)~! is Lipschitz-like and the
nonsmooth function ¢ has a (n, a)-PBA. Moreover, when 0 < aw < 1 and V( is (¢, «)-Holder,
we have presented an application of (n,a)-PBA for smooth function with n = 1, that is, we
have shown A is a (1, a)-PBA. In this case Theorem 5.2.1 provides the superlinear convergent
result and this result extends the convergence theorem of Geoffroy and Piétrus [42]. On the
other hand, for n = 2 and 0 < o < 1, if  is twice Fréchet differentiable function and V3¢
is (K, «)-Holder, we have given an application of (n,«)-PBA, that is, we have shown A ia
s (2,a)-PBA. In this case Theorem 5.2.1 yields the superquadratic convergent result and
this result extends and improves the convergence result of [41, 105]. Finally, we have given
another application of (n,a)-PBA for normal maps (¢ + &, which extends the concept of
PBA reformulated by Rashid [103]. That is, we have shown that if ¢ has a (n,«)-PBAs,
it is easy to construct a (n,a)-PBA for the (¢ + £. At the end we have given a numerical

experiment to illustrates our theoretical result.

Our future research is to study EN-type method for solving variational inclusion using
set-valued approximations. More clearly, if the single-valued function involved in (5.1.1) is
an another set-valued mapping, introducing and studying an EN-type method, for solving

such type of variational inclusion problems, is an important task for our future research.
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