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Abstract

In this work, we deal with the two types of variational inclusions. Firstly, we consider

the variational inclusion problem of the form

0 ∈ ζ(s̄) + g(s̄) + ξ(s̄), (A)

where S and T are Banach spaces, ζ : S → T is differentiable in a neighborhood Υ ⊆ S of

a solution s∗ of (A), g : S → T is differentiable at s∗ but may not differentiable in Υ and

ξ : S ⇒ 2T is a set-valued mapping with closed graph. This work consists three parts and

the main works we have done in this dissertation that are organized as follows.

In the first part, particularly in Chapter 3, we study the Newton-type method for solv-

ing the variational inclusion problem (A) which is introduced in [2]. Under some suitable

assumptions on the Fréchet derivative of the differentiable function and divided difference

admissible function, we establish the existence of any sequence generated by the Newton-

type method and prove that the sequence generated by the method (3.1.3) converges linearly,

quadratically and superlinearly to a solution of the variational inclusion (A). Specifically,

when the Fréchet derivative of the differentiable function is continuous, Lipschitz continu-

ous and Hölder continuous, divided difference admissible function admits first order divided

difference and the set-valued mapping is pseudo-Lipschitz continuous, we show the linear,

quadratic and superlinear convergence by the method (3.1.3).

In Chapter 4, we introduce and study the extended Newton-type method for solving the

variational inclusion (A). We establish the convergence criteria of the extended Newton-

type method, which guarantees the existence and the convergence of any sequence under

the conditions that η > 1, ∇ζ is continuous, Lipschitz continuous and Hölder continuous,

g admits first order divided difference as well as (ζ + g + ξ)−1 is Lipschitz-like. To validate

our theoretical result we have presented numerical experiments and these works extend and

improve the result corresponding to [13, 62, 103, 105]. More precisely, semilocal and local

convergence of the extended Newton-type method are analyzed.

Next, when g = 0 in (A), we are motivated to study the special type of nonsmooth

VI



ABSTRACT VII

variational inclusion of the following form:

0 ∈ ζ(s̄) + ξ(s̄), (B)

where ζ : Υ ⊆ S → T be a nonsmooth single-valued function that admits (n, α)-point-based

approximation A on Υ with a constant L > 0 and ξ : S ⇒ 2T be a set-valued mapping with

closed graph.

In the second part, especially in Chapter 5, we introduce and study an extended Newton-

type method for solving the nonsmooth variational inclusion (B) and analyze its semilocal

and local convergence under the conditions that (ζ + ξ)−1 is Lipschitz-like and ζ admits a

(n, α)-point-based approximation. For smooth functions in the cases n = 1 and n = 2 as

well as for normal maps, we provide applications of (n, α)-point-based approximation, that

is, (1, α)-point-based approximation and (2, α)-point-based approximation are provided for

the smooth functions and we construct a (n, α)-point-based approximation for the normal

maps ζC + ξ when ζ has a (n, α)-point-based approximation. At the end we have given a

numerical experiment to illustrates our theoretical result.

Keywords: Set-valued mappings, pseudo-Lipschitz continuity, Lipschitz-like mappings,

variational inclusions, extended Newton-type method, local convergence, semilocal conver-

gence, (n, α)-point-based approximation.

(2000) AMS (MOS) Subject Classification: 49J53, 47H04, 65K10, 90C30.
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Chapter 1

Introduction

Robinson [113, 114] introduced variational inclusion as an abstract model for various prob-

lems and it has been explored as a general tool for solving, analyzing and describing different

problems in a unified manner. These type of inclusion problems have been studied extensive-

ly; see for examples [31, 40–42, 49, 53, 55, 71, 76, 91]. It has been well recognized that this

model provide a convenient framework for the unified study of optimal solutions in many

optimization-related are as including variational inequalities, mathematical programming,

optimal control, systems of inequalities, linear and nonlinear complementarity problems,

systems of nonlinear equations, equilibrium problems, game theory, etc. also have a lot

of applications in engineering (traffic equilibrium problems, analysis of elastoplastic struc-

tures etc.) and economics (Nash equilibrium, Walrasian equilibrium etc.). For more details

on these applications and others we have not mention here, one can read one can refer to

[39, 75, 113–115].

Let S and T be two Banach spaces and Υ be an open subset of S. Suppose that ζ : Υ → T

is a function, which is Fréchet differentiable and the derivative of this function is denoted

by ∇ζ , the linear function g : Υ → T is differentiable at s∗ but may not differentiable in a

neighborhood Υ and its FODD on the points s and t is denoted by [s, t; g] and ξ : S ⇒ 2T

be a set-valued mapping with closed graph.

By smooth variational inclusion we mean a variational inclusion involving a smooth single-

valued function, while by nonsmooth variational inclusion we mean a variational inclusion

involving a nonsmooth single-valued function.

1



2 Chapter 1 Introduction

Here we consider a variational inclusion problem to approximate a point s̄ ∈ Υ satisfying

the following form:

0 ∈ ζ(s̄) + g(s̄) + ξ(s̄). (1.0.1)

When ξ = {0}, (1.0.1) is reduced to the classical problem of solving systems of nonlinear

equations: 0 ∈ ζ(s̄) + g(s̄). Cătinas [21] proposed the following method for solving 0 ∈

ζ(s̄) + g(s̄) by using the combination of Newton’s method with the secants method when

ζ is differentiable and g is a continuous function admitting first and second order divided

differences:

0 ∈ ζ(sk) + g(sk) + (∇ζ(sk) + [sk−1, sk; g])(sk+1 − sk), k = 1, 2, ...,

where the FODD of g is denoted by [s, t; g] and the Fréchet derivative of ζ at sk is denoted

by ∇ζ(sk).

For solving (1.0.1), Jean-Alexis and Piétrus [2] presented the method (3.1.1). They proved

that the sequence generated by the method (3.1.1) converges superlinearly by considering

that∇ζ and the FODD of g are p-Hölder continuous around a solution s∗ and that (ζ+g+ξ)−1

is pseudo-Lipschitz around (0, s∗) with ξ having closed graph. In recent time, Rashid et al.

[109] have been presented the improvement of the result corresponding one in Jean-Alexis

and Piétrus [2] by fixing a gap and show that if ∇ζ and the FODD of g are p-Hölder

continuous at a solution s∗, then the method (3.1.1) converges superlinearly. A vast number

of iterative procedures have been introduced and studied for solving (1.0.1); see for details

in [9, 101–104, 110].

For solving (1.0.1) various iterative methods have been studied. To solve the problem

(1.0.1), Geoffroy and Piétrus [43] associate the method (3.1.3). They studied this method by

using the conditions that ∇ζ and the SODD of g are Lipschitz continuous around a solution

s∗. They proved that the sequence generated by (3.1.3) converges superlinearly.

Moreover, for solving (1.0.1), Hilout et al. [50] associate the following sequence:
s0 and s1 are given two starting points

tk = αsk + (1− α)sk−1; when α is fixed in (0, 1)

0 ∈ ζ(sk) + [tk, sk; ζ](sk+1 − sk) + ξ(sk+1),

(1.0.2)



1.0 Introduction 3

where the FODD of the function ζ on the points tk and sk is [tk, sk; /zeta]. They have proven

that the sequence generated by the method (1.0.2) converges superlinearly. Further, in the

case when ξ = {0}, for solving (1.0.1), it should be noteded that Argyros [8] has studied

local as well as semilocal convergence analysis for two-point Newton-type (N-type) methods

in a Banach space setting under very general Lipschitz type conditions. An extensive study

on these issues has been investigated by Rashid [100, 103, 104] and other researchers when

g = 0. In the case when ξ is either zero mapping or nonzero mapping, a large number of

N-type iterative methods have been studied and we are not mention here all in detail.

In the case when g = 0, Rashid et al. [110] introduced GN method to obtain the solution

of the variational inclusion (1.0.1) and established its semilocal convergence. Moreover, in

the same case, Rashid [105, 106, 108] introduced different kinds of methods for obtaining

the solution of (1.0.1) and attained the local and semilocal convergence.

In the framework of the variational inclusion (1.0.1), we assume that the single-valued

function ζ is smooth function, that is, ζ is Fréchet differentiable and it can be expressed as

a classical linearization ζ(s) +∇ζ(s)(· − s) for given s.

When the single-valued functions involved in (1.0.1) are differentiable, N-type methods

can be considered to solve this variational inclusion, such an approach has been used in

many contributions to this subject; see for example [26, 27, 89, 90]. In particular, when ζ is

smooth function, the classical method to find an approximate solution is the N-type method,

which was introduced by Dontchev [27] and is defined by the method (3.1.3) (see subsection

3.1.1 in Chapter 3).

In other words, Dontchev in [27], applied the Newton method to the smooth part ζ of the

variational inclusion only (or leaving the nonsmooth part) by keeping the set-valued map

ξ unchanged and showed that the sequence constructed by the method (3.1.3) converges

quadratically to a solution s̄ of (1.0.1). Moreover, when ∇ζ is Lipschitz on a neighborhood

of s̄, Dontchev[29], showed that the stability of this method and certain Lipschitz condition

is satisfied.

It is pointed out that the method (3.1.3) viewed as a N-type method based on a partial
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linearization of ζ. When applying Newton’s method, ζ is replaced by its linearization ζ(s)+

∇ζ(s)(· − s) for given s. We still cover known methods for solving variational problems by

leaving the set-valued map ξ unchanged. If ξ = {0}, then the method (3.1.3) becomes the

classical Newton method which is widely used and well known for finding an approximate

solution of (1.0.1) where ζ has Lipschitz continuous Fréchet derivatives. Semilocal and local

convergence results for Newton method can be found in the survey [12, 45, 47, 61, 83, 94]

and its references.

For solving (1.0.1) various iterative methods have been studied. Piétrus [90] showed that

the sequence generated by the N-type method (3.1.3) converges superlinearly when ∇ζ is

Hölder continuous on a neighborhood of s̄ and certain Lipschitz condition is satisfied, while

in [89], he also showed the stability of this method under mild conditions. Furthermore, for

analysing (1.0.1), Hilout et al. [50] considered the sequence (1.0.2), when ζ is only continuous

and also differentiable at s̄. They proved the sequence converges superlinearly which is

generated by the method (3.1.3).

Usually, there are two types of convergence issues focus on about the EN-type method

( Algorithm 2 or Algorithm 3). One of them is local convergence and another one is semi-

local convergence analysis. Local convergence analysis is concerned with the convergence

ball based on the information in a neighborhood of a solution of (1.0.1) and semi-local

convergence analysis is concerned with the convergence criterion based on the information

around initial point.

If ξ = {0}, Algorithm 2 reduces the famous GN method which is well recognized iterative

procedure for solving nonlinear least squares (model fitting) problems. To see an extensive

study on this subject one can refer to [24, 74, 131]. On the other hand, if ξ = C, where

a closed convex cone is denoted by C, Algorithm 2 is turned to the EN-type method for

analysing convex inclusion problem, which was introduced and studied by Robinson [116].

For solving convex composite optimization problems the GN method are studied in [20, 73]

and its references.

In the case when ξ = {0} and g = 0, a number of useful results have been invented on

semilocal convergence analysis for the GN method. For the detail one can refer to Dedieu
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and Kim [24]; Dedieu and Shub [25]; He, Wang and Li [49]; Xu and Li [130] or in the case

when ξ = C and g = 0 we can also refer to Li and Ng [72] for more details. Nevertheless, to

our best knowledge, there is no study on semilocal convergence analysis discovered for the

general case, even for the N-type method (3.1.3) or for the Algorithm 2.

The first main study of this thesis we present in Chapter 3 and Chapter 4 are as follows:

In chapter 3 we analyze the local convergence for the N-type method, which is defined by

the method (3.1.3) for finding the solution of (1.0.1). The main tool is the FODD of g and∇ζ

is continuous, Lipschitz continuous and Hölder continuous for studying the method (3.1.3),

Or, the reader could refer to [63] in our paper to see the achievement on this topic. Relevant

research topic for smooth analysis, there have been studied by many mathematician; see for

example [13, 30, 50, 55, 90] and the references therein.

In this study, particularly in chapter 4, Argyros and Hilout [13, Theorem 4.1] showed

that, for any point in Υ, there exists a sequence which is constructed by Algorithm 1 is

quadratically convergent by using some suitable assumptions around the solution s∗ of the

variational inclusion (1.0.1). This reflection we definitely understood that the convergence

result guarantees the existence of a convergent sequence, which is mentioned in [13]. Con-

sequently, for any initial point close to a solution, the sequences which is constructed by

Algorithm 1, in the section 4.1 are not identically defined and not each constructed sequence

is convergent. Therefore, from a numerical computational point of view this type of method

is not convenient to apply in numerical practice. This difficulty inspired us to introduce a

kind of method “so-called” extended Newton-type (EN-type) method which is employed in

Algorithm 2. The reader could refer to Khaton et al. [62] to know on this issue for more

detail.

In section 4.3, we provide the EN-type method, (see Algorithm 3 in Chapter 4), for

solving the variational inclusion (1.0.1) by using the weaker conditions than that are used in

Khaton et al. [62]. We analyze this method under the conditions that, the Fréchet derivative

of ζ and the FODD of g are Hölder continuous on Υ. In fact, semilocal and local convergence

analysis are presented for EN-type method for solving (1.0.1). The reader could refer to [64]
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to see the contribution on this issue. To validate our theoretical result we have presented

numerical experiments.

For the second part of this work, established in Chapter 5, when g = 0, in (1.0.1) we

consider the special type of nonsmooth variational inclusion for the following form:

0 ∈ ζ(s̄) + ξ(s̄), (1.0.3)

where ζ : Υ ⊆ S → T be a nonsmooth single-valued function that admits (n, α)-point-based

approximation (in short PBA )A on Υ with a constant L > 0 and ξ : S ⇒ 2T be a set-valued

mapping which has closed graph.

Now in the framework of the variational inclusion (1.0.3), we assume that the single-

valued function ζ is nonsmooth function, that is, ζ doesn’t possess Fréchet derivative and

its classical linearization is no longer available. Then no one can give the clear result that

how one can give a design of the Newton algorithm. So that it needs to seek a replacement

for such type of linearization. A lot of researchers have worked on this question and a

number of methods have been introduced and justified in particular cases of its importance

in applications. A number of papers have worked on the N-type methods for nonsmooth

equations and variational inequalities; see for example [18, 66, 69, 77, 87, 118, 119, 123, 129]

for inspiration and advanced works on these areas.

In particular, Wilson [128] proposed an idea for solving nonlinear programming problems

by replacing the original problem with a sequence of quadratic programming problems whose

data depended on the progress of the solution. In [117], Robinson established a local con-

vergence theorem explaining the quadratic convergence observed in Wilson’s method. Eaves

[37] and Robinson [120] each suggested N-type linearization methods for solving nonlinear

variational inequalities in finite-dimensional spaces. This approach was developed by Jose-

phy [57] to extend Newton’s method for solving variational inequalities and complementarity

problems. He also extended his analysis to quasi-Newton methods [58], and applied it to a

particular problem in energy modeling [59, 60].

Numerous other authors have investigated N-type methods for solving various problems



1.0 Introduction 7

with some types of nonsmoothness: see for example [19, 22, 47, 54, 67, 84–86, 92, 93, 120].

Also, methods of damping and other modifications have been proposed for ensuring con-

vergence: see [46, 48, 97]. All the methods discussed above were developed for solving the

nonsmooth variational inclusions (1.0.1) in case of ξ = {0}.

Moreover, Robinson introduced (see [115] and also [118] based on his earlier preprint) the

concept of PBA and proposed a N-type method to solve nonsmooth generalized equations

(1.0.3) when ξ = {0}. Further, he considered PBA in [118, Theorem 3.2] to show the

Newton’s method converges under Newton-Kantorovich-type hypothesis. In a recent work,

Argyros [11] presented a semilocal convergence analysis of Newton’s method based on a

suitable PBA. More pricisely, in order to solve a more comprehensive problem than those

discussed in [118], he was taken weaker conditions in PBA by considering it as Hölderian

property rather than Lipschitzian property and therefore he showed the result of convergence

for Newton’s method.

In addition, for superlinear convergence Kummer [70] presented a necessary and adequate

conditions of the Newton method and the conditions of a nonsmooth function was originally

designed for derivative-type approximations around an isolated zero. Contextual results, for

finding the solution of the nonsmooth variational inclusion (1.0.3) are given in [38, 65, 103].

In case of nonsmoothness of ζ, for solving (1.0.3), Dontchev [26] introduced the N-type

method (5.1.2), (see subsection 5.1.1 in Chapter 5), which is a nonsmooth version of the

method (3.1.3) and presented the nonsmooth analogue of the Kantorovich-type theorem for

this procedure by assuming the Aubin continuity of the map (A(s0, ·) + ξ(·))−1 at (0, s1).

In [42], Geoffory and Piétrus presented a general iterative procedure (5.1.2) for solving

variational inclusions in the nonsmooth frame-work (1.0.3) by considering a class of functions

admitting a certain type of approximation and established a local convergence theorem. It

is obvious that if ξ = {0}, the procedure (5.1.2) reduces to the N-type method which is

proposed by Robinson [118].

Genearally, the method (5.1.2) guarantees the existence of a sequence and the sequence

is a convergent. Therefore, for a starting point near to a solution, we know that, the se-

quences are not uniquely defined, which is constructed by the method (5.1.2). For example,
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Dontchev presented a convergence result which is established in [42, Theorem 3.3] and the

result confirms the existence of a convergent sequence. Thus, in view of numerical compu-

tation, this kind of Newton-type methods are not convenient in practical application. This

drawback allows us to propose the iterative procedure “so-called” extended Newton-type

method (ENM) to solve the nonsmooth variational inclusion (1.0.3).

The second main purpose in this work, established in Chapter 5, is to study the semilocal

and local convergence for the extended Newton-type (ENM) method defined by Algorith-

m 4 for solving the nonsmooth variational inclusion (1.0.3) using the notion of (n, α)-PBA

introduced by Geoffroy and Piétrus [42] and Lipschitz-like property. The main results, estab-

lished in section 5.3, are the convergence criterion, which based on the information around

the initial point, provides convergence criteria for starting point to determine condition en-

suring the convergence to a solution of any sequence which is constructed by Algorithm 4.

As consequences, local convergence results for the ENM method are obtained.

Rashid et al. [110] presented a method which called the GN-type method. They replaced

A by the classical linearization of ζ and then the Algorithm 4 is turned into the GN-type

method. For obtaining the solution of (1.0.3) Rashid [103] presented and worked the same

algorithm. When the involved single-valued function does not possess Fréchet derivatives, he

studied this method under the condition that ζ has a PBA and ζ is Lipsctiz-like mapping and

he presented local and semilocal convergence results. Furthermore, the single-valued function

is smooth when it involved in (1.0.3). Many mathematician show their interset on semilocal

and local convergence analysis with this method (see, for example, [103–105, 109, 110] and

the references therein). Finally, we have given some applications of (n, α)-PBA for smooth

functions in the case when n = 1, n = 2 and 0 < α < 1 and for normal maps ζC + ξ which

is reformulated by Rashid [103]. We have given a numerical experiment to illustrates the

theoretical result.

The materials in this thesis are divided into six Chapters. The introduction is enclosed

in the first Chapter. Chapter 2 contains a review of some basic definitions, notations and

some preliminary results that are used in the subsequent Chapters. In Chapter 3, we study

a N-type method for solving the variational inclusion defined by the sums of a Fréchet dif-
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ferentiable function, divided difference admissible function and a set-valued mapping with

closed graph. Under some suitable assumptions on the Fréchet derivative of the differen-

tiable function and divided difference admissible function, we establish the existence of any

sequence constructed by the N-type method and prove that the sequence constructed by this

method converges linearly, quadratically and superlinearly to a solution of the variational in-

clusion. Specifically, when the Fréchet derivative of the differentiable function is continuous,

Lipschitz continuous and Hölder continuous, divided difference admissible function admits

first order divided difference and the set- valued mapping is pseudo-Lipschitz continuous, we

show the linear, quadratic and superlinear convergence respectively of the method.

In Chapter 4, specifically in section 4.1, the EN-type method, which is defined by Al-

gorithm 2, is introduced for obtaining the solution of the variational inclusion (1.0.1). In

the section 4.2, we show the existence of a sequence and establish the linear and quardatic

convergence results of the sequence constructed by Algorithm 2 by using the conditions that

∇ζ is continuous, Lipschitz continuous and g admits the FODD. The purpose of this section

4.2. is to analyze the semilocal convergence of the EN-type method which is defined by

Algorithm 2. A detailed discussion on this topic, we have mentioned in our paper Khaton

et al. [62]. The objective of the section 4.3. is to analyze the semilocal and local convergence

for the EN-type method under the weaker conditions than [62], that is, ∇ζ is (L, q)-Hölder

continuous and g admits the FODD satisfying q-Hölderian condition. The main result of the

section 4.3. is semilocal analysis for the EN-type method, that is, based on the information

around the initial point, the main results are the convergence criteria, which provide few

suitable conditions ensuring the convergence to a solution of any sequence constructed by

Algorithm 3. Consequently, the results of the local convergence for the EN-type method are

attained.

In Chapter 5, we introduce the EN-type method, which is defined by Algorithm 4, for

solving the nonsmooth variational inclusion (1.0.3) under the conditions η > 1, (ζ + ξ)−1 is

Lipschitz-like and the nonsmooth function ζ has a (n, α)-PBA and we prove the existence

and establish the (n+ α) order convergence results of the sequence which is constructed by

Algorithm 4. Moreover, we have given the applications of (n, α)-PBA for smooth functions
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in the cases n = 1 and n = 2 with 0 < α < 1. In addition, we have given another application

of (n, α)-PBA for normal maps ζC + ξ which extends the concept of PBA reformulated by

Rashid [103]. That is, we have shown that if ζ has a (n, α)-PBA, it is easy to construct a

(n, α)-PBA for the ζC + ξ.

Finally, a summary of the main finding of this study is presented in Chapter 6.



Chapter 2

Notations and Preliminaries

Throughout the whole thesis, we assume that S and T are two real or complex Banach

spaces and N is the set of all Natural numbers and N∗ = N− {0}. Suppose that ζ : Υ → T

is a function, which is Fréchet differentiable, ζ : S → T is a Fréchet differentiable function

and ξ : S ⇒ 2T is a set-valued map which has closed graph. Let s ∈ S and Br(s) = {u ∈ S :

∥u− s∥ ≤ r} be denoted for the closed ball centered at s with radius r > 0. All the norms

are denoted by ∥ · ∥, while L(S, T ) stands for the set of all bounded linear operators from S

to T .

The domain of ξ, denoted by dom ξ, is defined by

dom ξ := {s ∈ S : ξ(s) ̸= ∅}.

The inverse of ξ, denoted by ξ−1, is defined by

ξ−1(t) := {s ∈ S : t ∈ ξ(s)} for each t ∈ T .

Let D ⊆ S. The distance from a point s to a set D is defined by

dist(s,D) := inf{∥s− a∥ : a ∈ D} for each s ∈ S,

while the excess from the set D to the set C ⊆ S is defined by

e(C,D) = sup{dist(s,D) : s ∈ C}.

Definition 2.0.1. A sequence is a function whose domain is the set of natural numbers

N = {1, 2, 3, · · ·}. A sequence {sn} in S is said to be convergent if ∃’s a point s in S such

that for each ϵ > 0, ∃’s a positive integer (n0) such that n ≥ n0 ⇒ d(sn, s) < ϵ.

11
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Definition 2.0.2. A sequence {sn} in (S, d) is said to be Cauchy sequence if for every

ϵ > 0, ∃’s some n0 such that d(sn, sm) < ϵ, for all n,m ≥ n0. Again, a metric space (S, d)

is complete if every Cauchy sequence in it converges.

Definition 2.0.3. Consider the set-valued mapping ξ : S ⇒ 2T . Then the graph of ξ is

defined by

gph ξ := {(s, t) ∈ S × T : t ∈ ξ(s)}.

Definition 2.0.4. A set-valued function ξ : S ⇒ 2T is said to be a closed graph if

the set {(s, t) : t ∈ ξ(s)} is a closed subset of S × T in the product topology i.e. for all

sequences {sk}k∈ N and {tk}k∈N such that sk → s and tk → t and tk ∈ ξ(sk) for all n, we

have t ∈ ξ(s).

The following definitions of continuity, Lipschitz continuity and Hölder continuity are

taken from the book [21].

Definition 2.0.5. A map ζ : Υ ⊆ S → T is said to be continuous at s̄ ∈ Υ if for every

ϵ > 0, there exist a δ > 0 such that

∥ζ(s)− ζ(s̄)∥ ≤ ϵ, for all s ∈ Υ, for which ∥s− s̄∥ < δ.

Definition 2.0.6. A map ζ : Υ ⊆ S → T is said to be Lipschitz continuous if there

exist constant 0 < c < 1 and such that

∥ζ(s)− ζ(s̄)∥ ≤ c∥s− t∥, for all s ∈ Υ, for all s and t in the domain of ζ.

Definition 2.0.7. A map ζ : Υ ⊆ S → T is said to be Hölder continuous if there exist

a constant c > 0 and 0 < p ≤ 1 such that

∥ζ(s)− ζ(s̄)∥ ≤ c∥s− t∥p, for all s and t in the domain of ζ.

The following definitions of linear convergence, quadratic convergence and super linear

convergence are taken from the book [71].
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Definition 2.0.8. Let {sn} be a sequence which converges to the number s̄. Then the se-

quence {sn} is said to be converges linearly to s̄, if there exists a number 0 < c < 1 such

that

∥sn+1 − s̄∥ ≤ c∥sn − s̄∥.

Definition 2.0.9. Let {sn} be a sequence which converges to the number s̄. Then the se-

quence {sn} is said to be converges quadratically to s̄, if there exists a number 0 < c < 1

such that

∥sn+1 − s̄∥ ≤ c∥sn − s̄∥2.

Definition 2.0.10. Let {sn} be a sequence which converges to the number s̄. Then the

sequence {sn} is said to be converges super-linearly to s̄, if there exists a number c > 1

and 0 < p ≤ 1 such that

∥sn+1 − s̄∥ ≤ c∥sn − s̄∥p.

Aubin [15, 16] introduced the notions of pseudo-Lipschitz and Lipchitz-like set-valued

mappings and have been studied extensively. For more details one could refer to [1, 2, 8, 13,

27, 30, 35, 50, 55, 90, 127]. We recall the following notions from [110].

Definition 2.0.11. Let ξ : T ⇒ 2S be a set-valued mapping and let (t̄, s̄) ∈ gph ξ. Let rs̄, rt̄

and M are positive constants. Then ξ is said to be

(a) Lipchitz-like on Brt̄(t̄) relative to Brs̄(s̄) with constant M if the following inequality

holds:

e(ξ(t1) ∩ Brs̄(s̄), ξ(t2)) ≤M∥t1 − t2∥, for any t1, t2 ∈ Brt̄(t̄). (2.0.1)

(b) pseudo-Lipschitz around (t̄, s̄) if there exist constants r′t̄ > 0, r′s̄ > 0 and M ′ > 0

such that ξ is Lipchitz-like on Br′
t̄
(t̄) relative to Br′s̄(s̄) with constant M ′.

The following lemma is due to Lemma 2.1 of Rashid, Yu, Li & Wu. This lemma is useful

and it was proven by Rashid et al. in [110].

Lemma 2.0.1. Let (t̄, s̄) ∈ gph ξ and let ξ : T ⇒ 2S be a set-valued mapping. Suppose that

ξ is Lipschitz-like on Brt̄(t̄) relative to Brs̄(s̄) with constant M . Then

dist(s, ξ(t)) ≤Mdist(t, ξ−1(s))



14 Chapter 2 Notations and Preliminaries

holds for each s ∈ Brs̄(s̄) and t ∈ B rt̄
3
(t̄) satisfying dist(t, ξ−1(s)) ≤ rt̄

3
.

Remark 2.0.1. The concept of pseudo-Lipschitz property of a set-valued mapping ξ is e-

quivalent to the openness with linear rate of ξ−1 and to the metric regularity of ξ−1 (see

[7, 15–17, 23, 32, 33, 36, 44, 52, 78, 80, 81, 124, 126] for more details).

Remark 2.0.2. Equivalently for the property (a) we can say that ξ is Lipschitz-like at

(t0, s0) ∈ gphξ on Brt0 (t0) × Brs0 (s0) with constant M if for each s1, s2 ∈ Brs0 (s0) and

for every s1 ∈ ξ(t1) ∩ Brs0 (s0), ∃’s s2 ∈ ξ(t2) such that

∥s1 − s2∥ ≤M∥t1 − t2∥, for every t1, t2 ∈ Brt0 (t0).

The definition of the first and second order divided difference operators are collected from

[43, 109]:

Definition 2.0.12. Let g ∈ L(S, T ). Then g is said to have the FODD on the points

s, t ∈ S (s ̸= t) if the following properties hold:

(a) [s, t; g](t− s) = g(t)− g(s) for s ̸= t;

(b) If g is Fréchet differentiable at s ∈ S then [s, s; g] = ∇g(s).

Definition 2.0.13. Let g ∈ L(S, T ). Then g is said to have the SODD on the points

s, t, z ∈ S (s ̸= t ̸= z) if the following properties hold:

(a) [s, t, z; g](z − s) = [t, z; g]− [s, t; g], for the distinct points s, t and z;

(b) If g is twice differentiable at s ∈ S then [s, s, s; g] =
∇2g(s)

2
.

The notion of point based-approximation (PBA) is given in [118] and studied many

mathematicians; see for example [11, 12, 61] and the references therein. We employ the

following concept of PBA which is introduced by Robinson in [118].

Definition 2.0.14. Let ζ be a function from an open subset Υ of S to T . Consider a scalar

κ and a function A : Υ × Υ → T such that, for each p, q ∈ Υ, the following assertions are

hold:

(a) ∥ζ(q)− A(p, q)∥ ≤ 1

2
κ∥p− q∥2 and
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(b) The function A(p, ·) − A(q, ·) is Lipschitz continuous on Υ which have a Lipschitz

constant κ∥p− q∥.

Then A is said to be a PBA on Υ for ζ with modulus κ.

In that time we say that ζ has a PBA on Υ with modulus κ.

Remark 2.0.3. The definition of PBA actually captures some very familiar properties of

linearizations. The easiest way to observe that a PBA of a function ζ which is Fréchet

differentiable in Υ and the functions derivatives is Lipschitz continuous on Υ with modulus

κ, is the function

A : (p, q) 7−→ ζ(p) +∇ζ(p)(q − p) (2.0.2)

is a PBA for ζ with modulus κ on Υ.

Then we get from the part (a) of Definition (2.0.14) that

∥ζ(q)− ζ(p)−∇ζ(p)(q − p)∥ ≤ 1

2
κ∥p− q∥2.

Furthermore,

∥[A(p, s)− A(q, s)]− [A(p, t)− A(q, t)]∥ = ∥(∇ζ(p)−∇ζ(q))(s− t)∥

≤ ∥∇ζ(p)−∇ζ(q)∥∥s− t∥

≤ κ∥p− q∥∥s− t∥.

Here we prove that the part (b) of Definition (2.0.14) is equivalent to the Lipschitzian property

of ∇ζ with modulus κ.

The following concept of (n, α)-PBA is extracted from Geoffroy and Piétrus [42].

Definition 2.0.15. Let ζ : Υ ⊆ S → T be a function and n ∈ N∗, α > 0. Then a function

A : Υ × Υ → T is said to be a (n, α)-PBA on Υ for ζ with modulus κ if there exists a

scalar κ such that, for each p, q ∈ Υ, the following assertions are hold:

(a) ∥ζ(q)− A(p, q)∥ ≤ κ

π n,α
∥p− q∥n+α, where

πn,α = Πn
i=1(α + i); (2.0.3)
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(b) The function A(p, ·)− A(q, ·) is Lipschitz continuous on Υ with modulus κ∥p− q∥α .

It is clear that when n = 1 and α = 1, Definition 2.0.15 agrees with Robinson’s definition

of point-based approximation introduced in [118].

Recall the following definition of strict differentiability, which has been taken from [26].

Definition 2.0.16. A function ζ : S → T is said to be strictly differentiable at s∗ with

strict derivative ∇ζ(s∗) if for every ε > 0 ∃’s δ > 0 such that

∥ζ(s′)− ζ(s′′)−∇ζ(s∗)(s′ − s′′)∥ ≤ ε∥s′ − s′′∥, for every s′, s′′ ∈ Bδ(s∗).

The following result is a version of [26, Lemma 2]. The connection between the strict

differentiability of ζ and (n, α)-PBA of a function ζ is established by this result.

Lemma 2.0.2. Let s∗ ∈ Υ and let A be a (n, α)-PBA of a function ζ in Υ with a scalar

constant κ. Then the function A(s∗, ·)− ζ(·) is strictly differentiable at the point s∗ and its

strict derivative at s∗ is zero.

We recall the following lemma from [31, Corollary 2].

Lemma 2.0.3. Let ζ, g : S → T be two continuous functions and let ξ : S ⇒ 2T be a

set-valued mapping which has closed graph. Let (s∗, t∗) ∈ gphξ, ζ(s∗) = g(s∗) = 0 and the

difference ζ − g be strictly differentiable at the point s∗ ∈ S with ∇(ζ − g)(s∗) = 0. Let L be

a positive constant. Then both of the following are equivalent:

(i) At (t∗, s∗) the feature of the map (ζ + ξ)−1 is Lipschitz-like with modulus < L;

(ii) At (t∗, s∗) the feature of the map (g + ξ)−1 is Lipschitz-like with modulus < L.

Remark 2.0.4. Combining Lemma 2.0.2 and Lemma 2.0.3, we can infer that if A is a (n, α)-

PBA of a function ζ in an open neighborhood of some s∗ ∈ (ζ + ξ)−1(t∗), then (ζ + ξ)−1 is

Lipschitz-like at (t∗, s∗) if and only if the map (A(s∗, ·)+ξ(·))−1 possesses the same property.

The following theorem on the convergence of the Newton-type method is due to Dontchev;

see [27, Theorem.]:



2.0 Notations and Preliminaries 17

Theorem 2.0.1. Let s∗ be a solution of (1.0.3). Suppose that ζ is a Fréchet differentiable

function on an open neighborhood Υ of s∗ and the derivative of Fréchet differentiable function

∇ζ is Lipschitz in Υ with constant L. Suppose that ξ has closed graph and the mapping

(ζ(s∗) +∇ζ(s∗)(· − s∗) + ξ(·))−1 is Aubin continuous at (0, s∗) with modulus M . Then, for

every c >
ML

2
, one can find δ > 0 such that, for any starting point s0 ∈ Bδ(s∗), ∃’s a

sequence {sk} generated by (3.1.1), which satisfies

∥sk+1 − s∗∥ ≤ c∥sk − s∗∥2.

The following theorem on the convergence of the nonsmooth function using (n, α)-point-

based approximation is due to Geoffroy and Piétrus; see [42, Theorem 3.3]:

Theorem 2.0.2. Let the solution of (1.0.3) is s∗. Fix n ∈ N∗ and α > 0. Suppose that

ξ has closed graph, ζ admits a (n, α)-PBA with modulus k which is denoted by A, on some

open neighborhood Υ of s∗ and the set-valued map [A(s∗, ·) + ξ(·)]−1 is M-pseudo-Lipschitz

around (0, s∗). Then for every c >
Mk

πn,α
, one can find δ > 0 such that for every starting

point s0 ∈ Bδ(s∗), ∃’s a sequence {sk} generated by (5.1.2), which satisfies

∥sk+1 − s∗∥ ≤ c∥sk − s∗∥n+α.

Dontchev and Hager [31] proved Banach fixed point theorem, which has been employing

the standard iterative concept for contracting mapping. To prove the existence of the se-

quence generated by Algorithm 4, the following lemma will be played an important rule in

this study.

Lemma 2.0.4. Let Ψ : S ⇒ 2S be a set-valued mapping. Let s∗ ∈ S, 0 < λ < 1 and r > 0

be such that

(a) dist(s∗,Ψ(s∗)) < r(1− λ) (2.0.4)

and

(b) e(Ψ(s1) ∩ Br(s∗),Ψ(s2)) ≤ λ∥s1 − s2∥ for all s1, s2 ∈ Br(s∗). (2.0.5)

Then Ψ has a fixed point in Br(s∗), that is, there exists s ∈ Br(s∗) such that s ∈ Ψ(s).

Furthermore, if Ψ is single-valued, then there exists a fixed point s ∈ Br(s∗) such that s =

Ψ(s).
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The preceding lemma is a generalization of a fixed point theorem and it has been taken

from [51], where in the second assertion the excess e is updated by Hausdorff distance.



Chapter 3

Local Convergence Analysis of a

Newton-type Method for Solving

Variational Inclusions

This Chapter consists three sections. Section 3.1 is dedicated to study the Newton-type

method satisfying (3.1.3) for finding the approximate solution of the variational inclusions

(1.0.1), while in Section 3.2 is devoted to study the linear, quadratic and superlinear con-

vergence of the sequence generated by Newton-type method satisfying (3.1.3) for solving the

variational inclusions (1.0.1).

3.1 Newton-type Method

In numerical analysis, Newton’s method, also known as the Newton-Raphson method, named

after Isaac Newton and Joseph Raphson, is a root finding algorithm which produces suc-

cessively better approximation to the roots or zeroes of a real valued mapping. Newton’s

method is a classical numerical method to solve a system of linear equations. John Wallis

[56] published Newton’s method for the first time in 1685 in ”A Treatise of Algebra both His-

torical and Practical”. For solving general nonlinear equations Thomas Simpson described

Newton’s method as an iterative method using calculus in 1740 and also gives the general-

ization to systems of two equations and notes that by setting the gradient to zero Newton’s

19
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method can be used for solving optimization problems .

The classical Newton method is very widely used and well known for finding zeros of

functions having Lipschitz continuous Fréchet derivatives. For an excellent treatment of this

method and many references, see the book of Ortega and Rheinboldt [82, 112]. However,

when the functions being dealt with do not possess Fréchet derivatives, then no one can

give the clear result that, how one can give a design of the Newton algorithm. In recent

years A lot of researchers have worked on this question and a number of methods have been

presented and justified in particular cases of its importance in applications.

In 1970, Robinson [117] established a local convergence theorem explaining the quadrat-

ic convergence observed in Wilson’s method and Eaves [37] and Robinson [121] each sug-

gested N-type linearization methods for solving nonlinear variational inequalities in finite-

dimensional spaces.

3.1.1 Introduction

Let S and T be two Banach spaces and Υ ⊆ S. Suppose that ζ : Υ → T is a function,

which is Fréchet differentiable and the derivative of this function is denoted by ∇ζ , the

linear function g : Υ → T is differentiable at s∗, but in a neighborhood Υ of s∗ it may not

be differentiable and its FODD on the points s and t is denoted by [s, t; g] and ξ : S ⇒ 2T is

a set-valued mapping which has closed graph. We are concerned with the problem of finding

a solution s∗ ∈ Υ satisfying the variational inclusion (1.0.1) such as

0 ∈ ζ(s̄) + g(s̄) + ξ(s̄).

For obtaining the solution of (1.0.1), Jean-Alexis and Piétrus [2] introduced the method

as follows:

0 ∈ ζ(sk) + g(sk) + (∇ζ(sk) + [2sk+1 − sk, sk; g])(sk+1 − sk) + ξ(sk+1). (3.1.1)

They proved that the sequence generated by the method (3.1.1) converges superlinearly by

considering that ∇ζ and the FODD of g are p-Hȯlder continuous around a solution s∗ and

that (ζ + g + ξ)−1 is pseudo-Lipschitz around (0, s∗) with ξ having closed graph. In recent

time, Rashid et al. [109] have been presented the improvement of the result corresponding



3.2 Introduction 21

one Jean-Alexis and Piétrus in [2] and show that if ∇ζ and the FODD of g are p-Hölder

continuous at a solution s∗, then the method (3.1.1) converges superlinearly.

when g = 0, the variational inclusion (1.0.1) turns into the following form:

0 ∈ ζ(s̄) + ξ(s̄). (3.1.2)

Several iterative methods have been studied for solving (3.1.2). Dontchev [27] established

a quadratically convergent N-type method under a pseudo-Lipschitz property for set-valued

mapping when ∇ζ is Lipschitz on a neighborhood of a solution s∗ of (3.1.2) and subsequently

he [29] proved the stability of this method. When ∇ζ is Hȯlder on a neighborhood of s∗,

Piétrus [89] obtained superlinear convergence by following Dontchev’s method and later

he [29] proved the stability of this method in this mild differentiability context. In the

case g = 0, Geoffroy et al. [41] considered a second degree Taylor polynomial expansion of

ζ under suitable first and second order differentiability assumptions and showed that the

existence of a sequence cubically converging to the solution of (1.0.1). But we cannot apply

the above methods, because of the lack of regularity of g, To carry out our objective, we

propose a combination of Newton’s method with the secant’s one. When the single-valued

functions involved in (1.0.1) is differentiable, N-type method can be considered to solve this

variational inclusion, such an approach has been used in many contributions to this subject;

see for example [2, 27, 28, 33, 43, 110]). To solve the problem (1.0.1), Geoffroy and Piétrus

[43] associate in the following:

0 ∈ ζ(sk) + g(sk) + (∇ζ(sk) + [sk−1, sk; g])(sk+1 − sk) + ξ(sk+1). (3.1.3)

They studied this method by using the assumptions that ∇ζ and the SODD of g are

Lipschitz continuous around a solution s∗. They proved that the sequence generated by

(3.1.3) converges superlinearly.

The aim of this study is to extend the result given in [43] by using the concept of the

FODD of g and ∇ζ is continuous, Lipschitz continuous and Hölder continuous and then

we prove the existence of a sequence generated by the method (3.1.3) and show the linear,

quadratical and superlinear convergence of the method for solving the variational inclusion

(1.0.1).
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3.2 Convergence Analysis of Newton-type Method

This section is devoted to study the existence and the convergence of any sequence generated

by the method (3.1.3) for the variational inclusion (1.0.1). Let ζ : S → T be a single valued

function, g : S → T admits FODD and ξ : S ⇒ 2T be a set-valued mapping. Let s∗ be a

solution of (1.0.1). Let s ∈ S and define a set valued mapping Rs∗ : S ⇒ 2T by

Rs∗(·) := ζ(s∗) + g(·) +∇ζ(s∗)(· − s∗) + ξ(·). (3.2.1)

Consider the following assumptions:

(A0) ξ has closed graph;

(A1) ζ is Fréchet differentiable in a neighborhood of s∗;

(A2) g is differentiable at s∗;

(A3) The set valued map R−1
s∗ is M -pseudo-Lipschitz around (0, s∗).

Define a single valued function Gk : S → T , for k ∈ N and sk ∈ S, by

Gk(s)(=)ζ(s∗)+g(s)+∇ζ(s∗)(s−s∗)−ζ(sk)−g(sk)−(∇ζ(sk)+[sk−1, sk; g])(s−sk), (3.2.2)

Also, define a set valued mapping Ψk : S ⇒ 2S by

Ψk(s) = R−1
s∗ [Gk(s)]. (3.2.3)

3.2.1 Linear Convergence

The subsection is devoted to study linear convergence result of the N-type method (3.1.3).

To do this we will take the following assumptions:

(A4) ∇ζ is continuous in a neighbourhood of s∗ with constant ϵ > 0 i.e, for every ϵ > 0,

there exists δ > 0 such that

∥∇ζ(s)−∇ζ(t)∥ < ϵ, when ∥s− t∥ ≤ δ.

(A5) g admits FODD i.e, there exists κ > 0 such that, for all s, t, s′, t′ ∈ Υ,

∥[s, t; g]− [s′, t′; g] ≤ κ(∥s− s′∥+ ∥t− t′∥) with s′ ̸= s, t′ ̸= t.
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LetM, ϵ and κ be defined in (A3), (A4) and (A5) respectively satisfying the relation 14M(ϵ+

4κ) < 3.

Set C =
7M(ϵ+ 4κ)

3
. (3.2.4)

This together with above inequality implies that C <
1

2
.

Lemma 3.2.1. Let s∗ be a solution of (1.0.1). Suppose that assumptions (A0)-(A5) are

hold. Let C be defined by (3.2.4 ). Then for every such C, there exists δ > 0 such that for

every distinct starting point s0, s1 ∈ Bδ(s
∗), there exists a sequence {s2}, defined by

0 ∈ ζ(s1) + g(s1) + (∇ζ(s1) + [s0, s1; g])(s2 − s1) + ξ(s2) (3.2.5)

and in Bδ(s
∗) the map Ψ1 has a fixed point s2, which satisfies

∥s2 − s∗∥ ≤ C∥s1 − s∗∥. (3.2.6)

Proof. The assumption (A3) implies that the mapping R−1
s∗ is M -pseudo-Lipschitz around

(0, s∗). Hence there exists rs∗ > 0 and r0 > 0 such that

e
(
R−1
s∗ (t1) ∩ Brs∗ (s

∗), R−1
s∗ (t2)

)
≤M∥t1 − t2∥ for any t1, t2 ∈ Br0(0). (3.2.7)

Let δ > 0 be such that

δ ≤ max
{
rs∗ ,

r0
3ϵ+ 8κ

,
4− 7Mϵ

28Mκ
, 1

}
. (3.2.8)

Fix s0, s1 ∈ Bδ(s∗) such that s0 ̸= s1 ̸= s∗ and define

rs2 = C∥s1 − s∗∥.

Since C <
1

2
from (3.2.4) and for s0, s1 ∈ Bδ(s∗), we have

rs2 = C ∥s1 − s∗∥ ≤ c.δ ≤ δ

2
.

This shows that rs2 ≤ δ ≤ rs∗

Lemma 2.0.4 will be applied to the map Ψ1 with η0 := s∗, r := rs2 and λ :=
4

7
to conclude

that there exists a fixed point s2 ∈ Brs2 (s
∗) such that s2 ∈ Ψ1(s2), that is, G1(s2) ∈ R−1

s∗ (s2),

which implies that
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0 ∈ ζ(s1) + g(s1) + (∇ζ(s1) + [s0, s1; g])(s2 − s1) + ξ(s2), (3.2.9)

i.e. (3.2.5) holds. Furthermore, s2 ∈ Brs2 (s
∗) ⊆ Bδ(s∗) and so

∥s2 − s∗∥ ≤ rs2 = C ∥s1 − s∗∥,

i.e. (3.2.6) holds. Thus, to complete the proof, it is sufficient to show that Lemma 2.0.4 is

applicable for the map Ψ1 with η0 := s∗, r := rs2 and λ :=
4

7
. To do this, it remains to prove

that both assertions (a) and (b) of Lemma 2.0.4 hold. It is obvious that s∗ ∈ R−1
s∗ (0)∩Brs2 (s

∗).

We get that from the definition of the excess e,

dist
(
s∗,Ψ1(s

∗)
)
≤ e

(
R−1
s∗ (0) ∩ Brs2 (s

∗),Ψ1(s
∗)
)
. (3.2.10)

In addition, for all s0, s1 ∈ Brs2 (s
∗) such that s0, s1 and s

∗ are distinct, we have from (3.2.2)

that

∥G1(s
∗)∥ = ∥ζ(s∗) + g(s∗)− ζ(s1)− g(s1)−

(
∇ζ(s1) + [s0, s1; g]

)
(s∗ − s1)∥

≤ ∥ζ(s∗)− ζ(s1)−∇ζ(s1)(s∗ − s1)∥+ ∥g(s∗)− g(s1)− [s0, s1; g](s
∗ − s1)∥

≤ ∥ζ(s∗)− ζ(s1)−∇ζ(s1)(s∗ − s1)∥+ ∥[s1, s∗; g](s∗ − s1)− [s0, s1; g](s
∗ − s1)∥

[By using definition 2.0.12].

≤ ∥ζ(s∗)− ζ(s1)−∇ζ(s1)(s∗ − s1)∥+ ∥
(
[s1, s

∗; g]− [s0, s1; g]
)
(s∗ − s1)∥

Since ζ(s∗)− ζ(s1)−∇ζ(s1)(s∗− s1) =
´ 1

0
[∇ζ(s1+ f(s∗− s1))−∇ζ(s1)](s∗− s1)df , we have

that

∥G1(s
∗)∥ =

ˆ 1

0

∥[∇ζ(s1 + f(s∗ − s1))−∇ζ(s1)](s∗ − s1)∥df

+ ∥[s1, s∗; g]− [s0, s1; g](s
∗ − s1)∥

= ϵ

ˆ 1

0

∥(s∗ − s1)df∥+ κ
(
∥s1 − s0∥+ ∥s∗ − s1∥

)
∥s∗ − s1∥

[By using assumption (A4) and (A5)]

= ϵ∥s∗ − s1∥
ˆ 1

0

df + κ
(
∥s1 − s0∥+ ∥s∗ − s1∥

)
∥s∗ − s1∥ (3.2.11)

= ϵ∥s∗ − s1∥+ κ
(
∥s1 − s∗ + s∗ − s0∥+ ∥s∗ − s1∥

)
∥s∗ − s1∥

= ϵδ + κ(2δ + δ)δ = ϵδ + 3κδ2

≤ ϵδ + 3κδ = (ϵ+ 3κ)δ < r0 ( by 3.2.8).
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This together with (3.2.7) and (3.2.10) (with t1 = 0 and t2 = G1(s
∗)) implies that

dist
(
s∗,Ψ1(s

∗)
)

≤ M∥t1 − t2∥ ≤M∥G1(s
∗)∥

≤ M
(
ϵ∥s∗ − s1∥+ κ

(
∥s1 − s0∥+ ∥s∗ − s0∥

)
∥s∗ − s1∥

)
( by using 3.2.11)

≤ M
(
ϵ+ 2κ∥s1 − s0∥

)
∥s1 − s∗∥

≤ M
(
ϵ+ 4κδ

)
∥s1 − s∗∥

≤ M
(
ϵ+ 4κ

)
∥s1 − s∗∥, Since δ ≤ 1 (by using 3.2.8)

≤ (1− 4

7
)rs2 = r(1− λ).

Hence assertion (a) of Lemma 2.0.4 is satisfied.

Now, we show that assertion (b) of Lemma 2.0.4 is also satisfied. Let s ∈ Bδ(s∗). Then

∥G1(s)∥ = ∥ζ(s∗) + g(s)−∇ζ(s∗)(s∗ − s)− ζ(s1)− g(s1)−
(
∇ζ(s1) + [s0, s1; g]

)
(s∗ − s1)∥

= ∥ζ(s∗)− ζ(s) + ζ(s)− ζ(s1)−∇ζ(s∗)(s∗ − s) + g(s)− g(s1)

− (∇ζ(s1)(s− s1)− [s0, s1; g])(s− s1)∥

≤ ∥ζ(s∗)− ζ(s)−∇ζ(s∗)(s∗ − s)∥+ ∥ζ(s)− ζ(s1)−∇ζ(s1)(s− s1)∥

+ ∥g(s)− g(s1)− [s0, s1; g](s− s1)∥

≤ ϵ∥s− s∗∥+ ϵ∥s− s1∥+ ∥[s1, s; g](s− s1)− [s0, s1; g](s− s1)∥

= ϵ∥s− s∗∥+ ϵ∥s− s1∥+ ∥[s1, s; g]− [s0, s1; g]∥∥s− s1∥

≤ ϵ∥s− s∗∥+ ϵ∥s− s1∥+ κ
(
∥s1 − s0∥+ ∥s− s1∥

)
∥s− s1∥

≤ ϵδ + 2ϵδ + κ(2δ + 2δ)2δ

= 3ϵδ + 8κδ2 ≤ 3ϵδ + 8κδ, Since δ ≤ 1

= (3ϵ+ 8κ)δ < r0 (by 3.2.8).

Hence we deduce that for all s ∈ Bδ(s∗), G1(s) ∈ Br0(0). Let s′, s′′ ∈ Bδ(s∗). This together

with (3.2.7) (with t1 = G1(s
′), and t2 = G1(s

′′)) we get

e
(
Ψ1(s

′) ∩ Brs2 (s
∗),Ψ1(s

′′)
)
≤ e

(
Ψ1(s

′) ∩ Bδ(s∗), Ψ1(s
′′)
)

= e
(
R−1
s∗ [G1(s

′)] ∩ Bδ(s∗), R−1
s∗ [G1(s

′′)]
)
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≤M∥G1(s
′)−G1(s

′′)∥

≤M∥
(
∇ζ(s∗)−∇ζ(s1)

)
(s′ − s′′) +M∥g(s′)− g(s′′)− [s0, s1; g](s

′ − s′′)∥

≤Mϵ∥s′ − s′′∥+M∥[s′′ − s′; g](s′ − s′′)− [s0, s1; g](s
′ − s′′)∥

≤Mϵ∥s′ − s′′∥+M∥
(
[s′′ − s′; g]− [s0, s1; g]

)
(s′ − s′′)∥

≤Mϵ∥s′ − s′′∥+M∥κ
(
∥s′′ − s0∥+ ∥s′ − s1∥

)
∥∥s′ − s′′∥

≤Mϵ∥s′ − s′′∥+Mκ(2δ + 2δ)∥s′ − s′′∥

≤M(ϵ+ 4κδ)∥s′ − s′′∥ (3.2.12)

Due to the relation 28Mκδ ≤ 4− 7Mϵ in (3.2.8), we obtain from (3.2.12) that

e
(
Ψ1(s

′) ∩ Brs2 (s
∗), Ψ1(s

′′)
)
≤ 4

7
∥s′ − s′′∥ = λ∥s′ − s′′∥.

Thus assertion (b) of Lemma 2.0.4 is satisfied. This completes the proof of the Lemma.

Theorem 3.2.1. Let s∗ be a solution of (1.0.1). Suppose that assumptions (A0)-(A5) are

satisfied. Let C be defined in (3.2.4). Then for every C, there exists δ > 0 such that for

every starting point s0, s1 ∈ Bδ(s∗), there exists a sequence {sk} which is constructed by

(3.1.3) with initial point s0, s1 which converges to s∗ and satisfies the following inequality

∥sk+1 − s∗∥ ≤ C∥sk − s∗∥ for each k = 1, 2, ... (3.2.13)

Proof. By Lemma 3.2.1, for every C, there exists δ > 0 such that for each s0, s1 ∈ Bδ(s∗),

there is s2 ∈ Bδ(s∗) such that (3.2.5) and (3.2.6) hold. Let s0, s1 ∈ Bδ(s∗). It follows from

Lemma 3.2.1 that there exists s2 ∈ Bδ(s∗) such that

0 ∈ ζ(s1) + g(s1) + (∇ζ(s1) + [s0, s1; g])(s2 − s1) + ξ(s2)

and

∥s2 − s∗∥ ≤ rs2 ≤ C∥s1 − s∗∥

and so (3.2.13) holds for k = 1. We will proceed by induction method. Now assume that

s0, s1, ..., sk are generated by (3.1.3) satisfying (3.2.13). Then by Lemma 3.2.1, we can

choose sk+1 ∈ Bδ(s∗) such that

0 ∈ ζ(sk) + g(sk) + (∇ζ(sk) + [sk−1, sk; g])(sk+1 − sk) + ξ(sk+1)

□ 
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and

∥sk+1 − s∗∥ ≤ rs2 ≤ C∥sk − s∗∥,

and so (3.2.13) holds for all k ≥ 1. This completes the proof of the Theorem.

3.2.2 Quadratic Convergence

The subsection is devoted to study quadratic convergence result of the N-type method (3.1.3).

To do this we will take the following assumptions:

(A6)∇ζ is Lipschitz continuous in a neighbourhood of s∗ with constant L i.e, for every

s, t ∈ Υ, we have that,

∥∇ζ(s)−∇ζ(y)∥ < L∥s− t∥.

(A7) g admits FODD i.e, there exists κ > 0 such that, for all s, t, s′, t′ ∈ Υ,

∥[s, t; g]− [s′, t′; g]∥ ≤ κ(∥s− s′∥2 + ∥t− t′∥2) with s′ ̸= s, t′ ̸= t.

Let M, L and κ be defined in (A3), (A6) and (A7) such that 3M(L+ 8κ) < 1. Let

Set γ =
3M(L+ 8κ)

2
. (3.2.14)

Then we obtain that γ <
1

2
.

Lemma 3.2.2. Let s∗ be a solution of the variational inclusion (1.0.1). Suppose that as-

sumptions (A0)-(A3), (A6) and (A7) are hold. Let γ be defined by (3.2.14). Then for every

such γ, there exists δ > 0 such that for every distinct starting point s0, s1 ∈ Bδ(s
∗), there

exists a sequence {s2}, defined by

0 ∈ ζ(s1) + g(s1) + (∇ζ(s1) + [s0, s1; g])(s2 − s1) + ξ(s2) (3.2.15)

and the map Ψ1 has a fixed point s2 in Bδ(s
∗), which satisfies

∥s2 − s∗∥ ≤ γ ∥s1 − s∗∥max{∥s1 − s∗∥, ∥s1 − s0∥}. (3.2.16)

□ 
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Proof. The assumption (A3) implies that the mapping R−1
s∗ is M -pseudo-Lipschitz around

(0, s∗). Hence there exists rs∗ > 0 and r0 > 0 such that

e
(
R−1
s∗ (t1) ∩ Brs∗ (s

∗), R−1
s∗ (t2)

)
≤M∥t1 − t2∥ for any t1, t2 ∈ Br0(0). (3.2.17)

Let δ > 0 be such that

δ ≤ max
{
rs∗ ,

√
2r0

5L+ 32κ
,

2

3M(5L+ 8κ)
, 1

}
. (3.2.18)

Fix s0, s1 ∈ Bδ(s∗) such that s0 ̸= s1 ̸= s∗ and define

rs2 = γ ∥s1 − s∗∥max{∥s1 − s∗∥, ∥s0 − s∗∥}.

This implies that rs2 ≤ γδ.δ ≤ γδ ≤ δ and hence rs2 ≤ δ ≤ rs∗ .

Lemma 2.0.4 will be applied to the map Ψ1 with η0 := s∗ and r := rs2 and λ :=
2

3
to conclude that there exists a fixed point s2 ∈ Brs2 (s

∗) such that s2 ∈ Ψ1(s2), that is,

G1(s2) ∈ R−1
s∗ (s2), which implies that

0 ∈ ζ(s1) + g(s1) + (∇ζ(s1) + [s0, s1; g])(s2 − s1) + ξ(s2),

Furthermore, s2 ∈ Brs2 (s
∗) ⊆ Bδ(s∗) and so

∥s2 − s∗∥ ≤ rs2 ≤ γ ∥s1 − s∗∥max{∥s1 − s∗∥, ∥s1 − s0∥}.

Thus, to complete the proof, it is sufficient to show that Lemma 2.0.4 is applicable for the

map Ψ1 with η0 := s∗ and r := rs2 and λ :=
2

3
. To do this, it remains to prove that both

assertions (a) and (b) of Lemma 2.0.4 hold. It is obvious that s∗ ∈ R−1
s∗ (0) ∩ Brs2 (s

∗). We

get that from the definition of the excess e is as follows:

dist
(
s∗,Ψ1(s

∗)
)

≤ e
(
R−1
s∗ (0) ∩ Brs2 (s

∗),Ψ1(s
∗)
)
. (3.2.19)

In addition, for all s0, s1 ∈ Brs2 (s
∗) such that s0, s1 and s

∗ are distinct, we have from (3.2.2)

that

∥G1(s
∗)∥ = ∥ζ(s∗) + g(s∗)− ζ(s1)− g(s1)−

(
∇ζ(s1) + [s0, s1; g]

)
(s∗ − s1)∥

≤ ∥ζ(s∗)− ζ(s1)−∇ζ(s1)(s∗ − s1)∥+ ∥g(s∗)− g(s1)− [s0, s1; g](s
∗ − s1)∥

[By using definition 2.0.12].

≤ ∥ζ(s∗)− ζ(s1)−∇ζ(s1)(s∗ − s1)∥+ ∥[s1, s∗; g](s∗ − s1)− [s0, s1; g](s
∗ − s1)∥

≤ ∥ζ(s∗)− ζ(s1)−∇ζ(s1)(s∗ − s1)∥+ ∥
(
[s1, s

∗; g]− [s0, s1; g]
)
(s∗ − s1)∥
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Since ζ(s∗)− ζ(s1)−∇ζ(s1)(s∗ − s1) =
´ 1

0
[∇ζ(s1 + f(s∗ − s1))−∇ζ(s1)](s∗ − s1)df ,

∥G1(s
∗)∥ =

ˆ 1

0

[∇ζ(s1 + f(s∗ − s1))−∇ζ(s1)](s∗ − s1)df + ∥[s1, s∗; g]− [s0, s1; g]∥∥s∗ − s1∥

=

ˆ 1

0

L∥s1 + f(s∗ − s1)− s1∥∥s∗ − s1∥df + κ
(
∥s1 − s0∥2 + ∥s∗ − s1∥2

)
∥s∗ − s1∥

[By using assumption (A6) and (A7)]

=

ˆ 1

0

L∥f(s∗ − s1)∥df∥s∗ − s1∥+ κ
(
∥s1 − s0∥2 + ∥s∗ − s1∥2

)
∥s∗ − s1∥

≤ L

2
∥s∗ − s1∥2 + 2κ∥s1 − s0∥2∥s∗ − s1∥

≤ L

2
∥s∗ − s1∥2 + 2κ.2δ∥s1 − s0∥∥s∗ − s1∥

≤ L

2
∥s∗ − s1∥2 + 4κ∥s1 − s0∥∥s∗ − s1∥, since δ ≤ 1 (3.2.20)

≤ L

2
δ2 + 8κ.δ.δ

≤
(L
2
+ 8κ

)
δ2 < r0 ( by 3.2.18).

This together with (3.2.17) and (3.2.19) (with t1 = 0 and t2 = G1(s
∗)) we get

dist
(
s∗,Ψ1(s

∗)
)

≤ M∥t1 − t2∥ ≤M∥G1(s
∗)∥

≤ M
(L
2
∥s∗ − s1∥2 + 4κ∥s1 − s0∥ ∥s∗ − s1∥

)
( by using 3.2.20)

≤ M
(L
2
+ 4κ

)
∥s1 − s∗∥max

{
∥s1 − s∗∥, ∥s1 − s0∥

}
≤

(
1− 2

3

)3M(L+ 4κ)

2
∥s1 − s∗∥max

{
∥s1 − s∗∥, ∥s1 − s0∥

}
≤

(
1− 2

3

)
rs2 = r(1− λ).

So assertion (a) of Lemma 2.0.4 is satisfied.

Now, we show that assertion (b) of Lemma 2.0.4 is also satisfied. Let s ∈ Brs2 (s
∗) ⊆ Bδ(s∗).

Then
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∥G1(s)∥ = ∥ζ(s∗) + g(s)−∇ζ(s∗)(s∗ − s)− ζ(s1)− g(s1)−
(
∇ζ(s1) + [s0, s1; g]

)
(s∗ − s1)∥

= ∥ζ(s∗)− ζ(s) + ζ(s)− ζ(s1)−∇ζ(s∗)(s∗ − s) + g(s)− g(s1)

− (∇ζ(s1)(s− s1)− [s0, s1; g])(s− s1)∥

≤ ∥ζ(s∗)− ζ(s)−∇ζ(s∗)(s∗ − s)∥+ ∥ζ(s)− ζ(s1)−∇ζ(s1)(s− s1)∥

+ ∥g(s)− g(s1)− [s0, s1; g](s− s1)∥

≤ L

2
∥s− s∗∥2 + L

2
∥s− s1∥2 + ∥[s1, s; g](s− s1)− [s0, s1; g](s− s1)∥

=
L

2
∥s− s∗∥2 + L

2
∥s− s1∥2 + ∥[s1, s; g]− [s0, s1; g]∥∥s− s1∥

≤ L

2
∥s− s∗∥2 + L

2
∥s− s1∥2 + κ

(
∥s1 − s0∥2 + ∥s− s1∥

2)∥s− s1∥

≤ L

2
δ2 +

L

2
(2δ)2 + κ

(
(2δ)2 + (2δ)2

)
2δ

≤ L

2
δ2 + 2Lδ2 + 16κδ3 Since δ ≤ 1

≤ L

2
δ2 + 2Lδ2 + 16κδ2

=
(5L
2

+ 16κ
)
δ2 < r0 (by 3.2.18).

So we deduce that for all s ∈ Bδ(s∗), G1(s) ∈ Br0(0). Let s′, s′′ ∈ Brs2 (s
∗). This together

with (3.2.17)
(
with t1 = G1(s

′), and t2 = G1(s
′′)
)
we get

e
(
Ψ1(s

′) ∩ Brs2 (s
∗), Ψ1(s

′′)
)
≤ e

(
Ψ1(s

′) ∩ Bδ(s∗), Ψ1(s
′′))

= e
(
R−1
s∗ [G1(s

′)] ∩ Bδ(s∗), R−1
s∗ [G1(s

′′)]
)

≤M∥G1(s
′)−G1(s

′′)∥

≤M∥
(
∇ζ(s∗)−∇ζ(s1)

)
(s′ − s′′)∥+M∥g(s′)− g(s′′)− [s0, s1; g](s

′ − s′′)∥

≤ML∥s∗ − s1∥∥s′ − s′′∥+M∥[s′′ − s′; g](s′ − s′′)− [s0, s1; g](s
′ − s′′)∥

≤ML∥s∗ − s1∥∥s′ − s′′∥+M∥
(
[s′′ − s′; g]− [s0, s1; g]

)
(s′ − s′′)∥

≤ML∥s∗ − s1∥∥s′ − s′′∥+M
(
κ∥s′′ − s0∥2 + ∥s′ − s1∥2

)
∥s′ − s′′∥

≤MLδ∥s′ − s′′∥+Mκ
(
(2δ)2 + (2δ)2

)
∥s′ − s′′∥

≤MLδ∥s′ − s′′∥+Mκ8δ2∥s′ − s′′∥

≤M(L+ 8κ)δ∥s′ − s′′∥ (3.2.21)
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Now using the relation 3M(L+ 8κ)δ ≤ 2 from (3.2.18) in (3.2.21) we have

e
(
Ψ1(s

′) ∩ Brs2 (s
∗), Ψ1(s

′′)
)
≤ 2

3
∥s′ − s′′∥ = λ∥s′ − s′′∥.

Thus assertion (b) of Lemma 2.0.4 is satisfied. This completes the proof of the Lemma.

Theorem 3.2.2. Let s∗ be a solution of the variational inclusion (1.0.1). Suppose that

assumptions (A0)-(A3), (A6) and (A7) are satisfied. Let γ be defined in (3.2.14). Then for

every γ, there exists δ > 0 such that for every starting point s0, s1 ∈ Bδ(s∗), there exists a

sequence {sk} which is constructed by the method (3.1.3) with two initial point s0, s1 which

converges to s∗ and satisfies that

∥sk+1 − s∗∥ ≤ γ ∥sk − s∗∥max
{
∥sk − s∗∥, ∥sk − sk−1∥

}
for each k = 1, 2, ... (3.2.22)

Proof. By Lemma 3.2.2, for every γ, there exists δ > 0 such that for each s0, s1 ∈ Bδ(s∗),

there is s2 ∈ Bδ(s∗) such that (3.2.15) and (3.2.16) hold. Let s0, s1 ∈ Bδ(s∗). It follows

from Lemma 3.2.2 that there exists s2 ∈ Bδ(s∗) such that

0 ∈ ζ(s1) + g(s1) + (∇ζ(s1) + [s0, s1; g])(s2 − s1) + ξ(s2)

and

∥s2 − s∗∥ ≤ rs2 ≤ γ ∥s1 − s∗∥max
{
∥s1 − s∗∥, ∥s1 − s0∥

}
and so (3.2.22) holds for k = 1. We will proceed by induction method. Now assume that

s0, s1, ..., sk are generated by (3.1.3) satisfying (3.2.22). Then by Lemma 3.2.1, we can

choose sk+1 ∈ Bδ(s∗) such that

0 ∈ ζ(sk) + g(sk) + (∇ζ(sk) + [sk−1, sk; g])(sk+1 − sk) + ξ(sk+1)

and

∥sk+1 − s∗∥ ≤ rsk+1
≤ γ ∥sk − s∗∥max

{
∥sk − s∗∥, ∥sk − sk−1∥

}
.

and so (3.2.22) holds for all k ≥ 1. The Theorem is proved.

□ 

□ 
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3.2.3 Superlinear Convergence

The subsection is devoted to study the superlinear convergence result of the N-type method

(3.1.3). To do this we will take the following assumptions:

(A8)∇ζ is Hölder continuous in a neighbourhood of s∗ with constant L i.e, for every

s, t ∈ Υ, we have that,

∥∇ζ(s)−∇ζ(t)∥ < L∥s− t∥p.

(A9) g admits FODD i.e, there exists κ > 0 such that, for all s, t, s′, t′ ∈ Υ,

∥[s, t; g]− [s′, t′; g]∥ ≤ κ(∥s− s′∥p + ∥t− t′∥p), with s′ ̸= s, t′ ̸= t.

Let M, L and κ be defined in (A3),(A8) and (A9) such that M(3p+ 5){L+ 8(p+ 1)κ} < 1.

Then we obtain that σ <
M(3p+ 5){L+ 4(p+ 1)κ}

2(p+ 1)
and q = (L+ 2p+1κ). (3.2.23)

This together with the above inequality implies that σ <
1

2(p+ 1)
.

Lemma 3.2.3. Let s∗ be a solution of the variational inclusion (1.0.1). Suppose that assump-

tions (A0)-(A3), (A8) and (A9) are hold. Let σ be defined by the method (3.2.23 ). Then

for every such σ, there exists δ > 0 such that for every distinct starting point s0, s1 ∈ Bδ(s
∗),

there exists a sequence {s2}, defined by

0 ∈ ζ(s1) + g(s1) + (∇ζ(s1) + [s0, s1; g])(s2 − s1) + ξ(s2) (3.2.24)

and the map Ψ1 has a fixed point s2 in Bδ(s
∗), which satisfies

∥s2 − s∗∥ ≤ σ ∥s1 − s∗∥max{∥s1 − s∗∥p, ∥s1 − s0∥p}. (3.2.25)

Proof. The assumption (A3) implies that the mapping R−1
s∗ is M -pseudo-Lipschitz around

(0, s∗). Hence there exists rs∗ > 0 and r0 > 0 such that

e
(
R−1
s∗ (t1) ∩ Brs∗ (s

∗), R−1
s∗ (t2)

)
≤M∥t1 − t2∥ for any t1, t2 ∈ Br0(0). (3.2.26)

Let δ > 0, such that

δ ≤ max
{
rs∗ ,

( r0(p+ 1)

L(2p+1 + 1) + (p+ 1)2p+2κ

) 1
p+1

,
( 3(p+ 1)

Mq(3p+ 5)

) 1
p
, 1

}
. (3.2.27)
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Fix s0, s1 ∈ Bδ(s∗) such that s0 ̸= s1 ̸= s∗ and define

rs2 = σ ∥s1 − s∗∥max
{
∥s1 − s∗∥p, ∥s1 − s0∥p

}
.

This implies that rs2 ≤ σδ .δp ≤ σδp+1 ≤ δ and hence rs2 ≤ δ ≤ rs∗ .

Lemma 2.0.4 will be applied to the map Ψ1 with η0 := s∗ and r := rs2 and λ :=
3(p+ 1)

3p+ 5
to conclude that there exists a fixed point s2 ∈ Brs2 (s

∗) such that s2 ∈ Ψ1(s2), that is,

G1(s2) ∈ R−1
s∗ (s2), we get that

0 ∈ ζ(s1) + g(s1) + (∇ζ(s1) + [s0, s1; g])(s2 − s1) + ξ(s2),

Furthermore, s2 ∈ Brs2 (s
∗) ⊆ Bδ(s∗) and so

∥s2 − s∗∥ ≤ rs2 ≤ σ ∥s1 − s∗∥max
{
∥s1 − s∗∥p, ∥s1 − s0∥p

}
.

Thus, to complete the proof, it is sufficient to show that Lemma 2.0.4 is applicable for the

map Ψ1 with η0 := s∗, r := rs2 and λ :=
3(p+ 1)

3p+ 5
. To do this, it remains to prove that both

assertions (a) and (b) of Lemma 2.0.4 hold. It is obvious that s∗ ∈ R−1
s∗ (0) ∩ Brs2 (s

∗). We

get that from the definition of the excess e is as follows:

dist
(
s∗,Ψ1(s

∗)
)
≤ e

(
R−1
s∗ (0) ∩ Brs2 (s

∗),Ψ1(s
∗)
)
. (3.2.28)

In addition, for all s0, s1 ∈ Brs2 (s
∗) such that s0, s1 and s

∗ are distinct, we have from (3.2.2)

that

∥G1(s
∗)∥ = ∥ζ(s∗) + g(s∗)− ζ(s1)− g(s1)−

(
∇ζ(s1) + [s0, s1; g]

)
(s∗ − s1)∥

≤ ∥ζ(s∗)− ζ(s1)−∇ζ(s1)(s∗ − s1)∥+ ∥g(s∗)− g(s1)− [s0, s1; g](s
∗ − s1)∥

≤ ∥ζ(s∗)− ζ(s1)−∇ζ(s1)(s∗ − s1)∥+ ∥[s1, s∗; g](s∗ − s1)− [s0, s1; g](s
∗ − s1)∥

[By using definition (2.0.12)].

≤ ∥ζ(s∗)− ζ(s1)−∇ζ(s1)(s∗ − s1)∥+ ∥
(
[s1, s

∗; g]− [s0, s1; g]
)
(s∗ − s1)∥

Since ζ(s∗)− ζ(s1)−∇ζ(s1)(s∗ − s1) =
´ 1

0
[∇ζ(s1 + f(s∗ − s1))−∇ζ(s1)](s∗ − s1)df ,
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∥G1(s
∗)∥

=

ˆ 1

0

[∇ζ(s1 + f(s∗ − s1))−∇ζ(s1)](s∗ − s1)df + ∥[s1, s∗; g]− [s0, s1; g]∥ ∥s∗ − s1∥

=

ˆ 1

0

L∥
(
s1 + f(s∗ − s1)− s1

)
∥p∥s∗ − s1∥df + κ

(
∥s1 − s0∥p + ∥s∗ − s0∥p

)
∥s∗ − s1∥

[By using assumption (A8) and (A9)]

=

ˆ 1

0

L∥f(s∗ − s1)∥pdf∥s∗ − s1∥+ κ
(
∥s1 − s0∥p + ∥s∗ − s0∥p

)
∥s∗ − s1∥

≤ L

p+ 1
∥s∗ − s1∥p+1 + 2κ∥s1 − s0∥p∥s∗ − s1∥ (3.2.29)

≤ L

p+ 1
∥s∗ − s1∥p+1 + 2κ(2δ)p.δ

≤ L

p+ 1
δp+1 + 2p+1δp+1κ

≤
( L

p+ 1
+ 2p+1κ

)
δp+1 < r0 ( by 3.2.27).

This together with (3.2.26) and (3.2.28) (with t1 = 0 and t2 = G1(s
∗))

dist
(
s∗,Ψ1(s

∗)
)

≤ M∥t1 − t2∥ ≤M∥G1(s
∗)∥

≤ ML

p+ 1
∥s∗ − s1∥p+1 + 2κ∥s1 − s0∥p∥s∗ − s1∥ ( by using 3.2.29)

≤ M
( L

p+ 1
+ 4κ

)
∥s1 − s∗∥max{∥s1 − s∗∥p, ∥s1 − s0∥p}

≤
M

{
L+ 4(p+ 1)κ

}
p+ 1

∥s1 − s∗∥max{∥s1 − s∗∥p, ∥s1 − s0∥p}

≤ 2σ

3p+ 5
∥s1 − s∗∥max{∥s1 − s∗∥p, ∥s1 − s0∥p} from(3.2.23)

≤
(
1− 3(p+ 1)

3p+ 5

)
rs2

≤ r(1− λ).

Hence assertion (a) of Lemma 2.0.4 is satisfied.

Now, we show that assertion (b) of Lemma 2.0.4 is also satisfied. Let s ∈ Brs2 (s
∗) ⊆

Bδ(s∗). Then
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∥G1(s)∥ = ∥ζ(s∗) + g(s)−∇ζ(s∗)(s∗ − s)− ζ(s1)− g(s1)−
(
∇ζ(s1) + [s0, s1; g]

)
(s∗ − s1)∥

= ∥ζ(s∗)− ζ(s) + ζ(s)− ζ(s1)−∇ζ(s∗)(s∗ − s) + g(s)− g(s1)

− (∇ζ(s1)(s− s1)− [s0, s1; g])(s− s1)∥

≤ ∥ζ(s∗)− ζ(s)−∇ζ(s∗)(s∗ − s)∥+ ∥ζ(s)− ζ(s1)−∇ζ(s1)(s− s1)∥

+ ∥g(s)− g(s1)− [s0, s1; g](s− s1)∥

≤ L

p+ 1
∥s− s∗∥p+1 +

L

p+ 1
∥s− s1∥p+1 + ∥[s1, s; g](s− s1)− [s0, s1; g](s− s1)∥

=
L

p+ 1
∥s− s∗∥p+1 +

L

p+ 1
∥s− s1∥p+1 + ∥[s1, s; g]− [s0, s1; g]∥∥s− s1∥

≤ L

p+ 1
∥s− s∗∥p+1 +

L

p+ 1
∥s− s1∥p+1 + κ

(
∥s1 − s0∥p + ∥s− s1∥p

)
∥s− s1∥

≤ L

p+ 1
δp+1 +

L

p+ 1
(2δ)p+1 + κ((2δ)p + (2δ)p)2δ

≤ L

p+ 1
δp+1(2p+1 + 1) + κδp+12p+2

≤
( L

p+ 1
(2p+1 + 1) + κ2p+2

)
δp+1

≤ L(2p+1 + 1) + (p+ 1)2p+2κ

p+ 1
δp+1 < r0 (by 3.2.18).

so we deduce that for all s ∈ Bδ(s∗), G1(s) ∈ Br0(0). Let s′, s′′ ∈ Brs2 (s
∗). This together

with (3.2.26) (with t1 = G1(s
′), and t2 = G1(s

′′)) we get

e
(
Ψ1(s

′) ∩ Brs2 (s
∗), Ψ1(s

′′)
)
≤ e

(
Ψ1(s

′) ∩ Bδ(s∗), Ψ1(s
′′)

= e
(
R−1
s∗ [G1(s

′)] ∩ Bδ(s∗), R−1
s∗ [G1(s

′′)]
)

≤M∥G1(s
′)−G1(s

′′)∥

≤M∥
(
∇ζ(s∗)−∇ζ(s1)

)
(s′ − s′′)∥+M∥g(s′)− g(s′′)− [s0, s1; g](s

′ − s′′)∥

≤ML∥s∗ − s1∥p∥s′ − s′′∥+M∥[s′′ − s′; g](s′ − s′′)− [s0, s1; g](s
′ − s′′)∥

≤ML∥s∗ − s1∥p∥s′ − s′′∥+M∥
(
[s′′ − s′; g]− [s0, s1; g]

)
(s′ − s′′)∥

≤ML∥s∗ − s1∥p∥s′ − s′′∥+M
(
κ∥s′′ − s0∥p + ∥s′ − s1∥p

)
∥s′ − s′′∥

≤MLδp∥s′ − s′′∥+ 2Mκ(2δ)p∥s′ − s′′∥

≤MLδp∥s′ − s′′∥+ 2p+1Mκδp∥s′ − s′′∥

≤M(L+ 2p+1κ)δp∥s′ − s′′∥
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≤Mqδp∥s′ − s′′∥ (from 3.2.27)

≤ 3(p+ 1)

3p+ 5
∥s′ − s′′∥ ≤ λ∥s′ − s′′∥

Thus assertion (b) of Lemma 2.0.4 is satisfied. This completes the proof of the Lemma.

Theorem 3.2.3. Let s∗ be a solution of the variational inclusion (1.0.1). Suppose that

assumptions (A0)-(A3),(A8) and (A9) are satisfied. Let σ be defined in (3.2.23). Then for

every σ, there exists δ > 0 such that for every starting point s0, s1 ∈ Bδ(s∗), there exists a

sequence {sk} generated by the method (3.1.3) with initial point s0, s1 which converges to s∗

and satisfies that

∥sk+1 − s∗∥ ≤ σ ∥sk − s∗∥max{∥sk − s∗∥p, ∥sk − sk−1∥p}, for each k = 1, 2, .... (3.2.30)

Proof. By Lemma 3.2.3, for every σ, there exists δ > 0 such that for each s0, s1 ∈

Bδ(s∗), there is s2 ∈ Bδ(s∗) such that (3.2.24) and (3.2.25) hold. Let s0, s1 ∈ Bδ(s∗). It

follows from Lemma 3.2.3 that there exists s2 ∈ Bδ(s∗) such that

0 ∈ ζ(s1) + g(s1) + (∇ζ(s1) + [s0, s1; g])(s2 − s1) + ξ(s2)

and

∥s2 − s∗∥ ≤ rs2 ≤ σ ∥s1 − s∗∥max{∥s1 − s∗∥p, ∥s1 − s0∥p}

and so (3.2.30) holds for k = 1. We will proceed by induction method. Now assume that

s0, s1, ..., sk are generated by (3.1.3) satisfying (3.2.30). Then by Lemma 3.2.1, we can

choose sk+1 ∈ Bδ(s∗) such that

0 ∈ ζ(sk) + g(sk) + (∇ζ(sk) + [sk−1, sk; g])(sk+1 − sk) + ξ(sk+1)

and

∥sk+1 − s∗∥ ≤ rsk+1
≤ σ ∥sk − s∗∥max{∥sk − s∗∥p, ∥sk − sk−1∥p}.

and so (3.2.30) holds for all k ≥ 1. The Theorem is proved.

3.3 Concluding Remarks

We have established local convergence results of the Newton-type method for approximating

the solution of variational inclusion (1.0.1) under the assumptions that R−1
s∗ (·) is pseudo-

Lipschitz and ∇ζ is continuous, Lipschitz continuous and Hölder continuous respectively

□ 

□ 



3.3 Concluding Remarks 37

and g is admissible for FODD. More clearly, we have shown that the N-type method defined

by (3.1.3) converges linearly, quadratically and superlinearly to the solution of (1.0.1) if ∇ζ

is continuous and Lipschitz continuous and Hölder continuous respectively, together with

a divided difference admissible function g. This study improves and extends the results

corresponding to [43].



Chapter 4

Semilocal and Local Convergence

Analysis of an Extended Newton-type

Method for Solving Variational

Inclusions

This Chapter is dedicated to study an extended Newton-type method for finding the solution

of the variational inclusions (1.0.1). Specially the linear and quadratic convergence by an

extended Newton-type method which is defined by the Algorithm 2 is presented in Section

4.2, while in Section 4.3, an extended Newton-type method with Hölderian assumption which

is defined by the Algorithm 3 is presented for finding the solution of the variational inclusion

(1.0.1).

4.1 Introduction

EN-type Method can provide an effective tool to select nearly minimal norm solution from

the infinite ones in relatively short computation time. In this chapter we are concerned

with the problem of finding a solution of the variational inclusion (1.0.1) and we present the

semilocal and local convergence of the EN-type method.

Let S and T be two Banach spaces and Υ ⊆ S. suppose that ζ : Υ → T is a function,

38
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which is Fréchet differentiable and the derivative of this function is denoted by∇ζ , the linear

function g : Υ → T is differentiable at s∗, which may not differentiable in a neighborhood

Υ of s̄ and the FODD of g on the points s and t is denoted by [s, t; g] and ξ : S ⇒ 2T is

a set-valued mapping which has closed graph acting between two Banach spaces. Here we

consider a variational inclusion problem (1.0.1) to finding a point s̄ ∈ Υ.

For solving (1.0.1), Hilout et al. [50] considered the following sequence
s0 and s1 are given two starting points

tk = αsk + (1− α)sk−1; when α ∈ (0, 1)

0 ∈ ζ(sk) + [tk, sk; ζ](sk+1 − sk) + ξ(sk+1),

and when the function ζ is only continuous and differentiable at s∗, then the authors verified

the convergence is superlinear by using this method. In addition, for two-point Newton-type

methods in a Banach space setting under very general Lipschitz type conditions, it should

be mentioned that Argyros [8] has studied local as well as semilocal convergence analysis for

finding the solution (1.0.1) when ξ = {0}. When g = 0, this study has been extended by

Rashid [100, 103, 104].

Suppose that s ∈ S and P(s) is the subset of S, which is defined as

P(s) =
{
d ∈ S : 0 ∈ ζ(s) + g(s) + (∇ζ(s) + [s+ d, s; g])d+ ξ(s+ d)

}
. (4.1.1)

Argyros and Hilout [13] associated the Newton-type (N-type) method mentioned in the

Algorithm 1 for finding the solution of the variational inclusion (1.0.1), which is as follows:

Algorithm 1 (The N-type Algorithm)

Iter. 1. Select s0 ∈ S, and place k := 0.

Iter. 2. In case 0 ∈ P(sk), then stop; otherwise, go to the next Stair 3.

Iter. 3. In case 0 /∈ P(sk), choose dk such that dk ∈ P(sk).

Iter. 4. Set sk+1 := sk + dk.

Iter. 5. k + 1 is replace by k and repeat this cycle from Iter 2.

Using some compatible assumptions in the region of the solution s∗, for the variational

inclusion (1.0.1), Argyros and Hilout [13, Theorem 4.1] presented a method which is men-

tioned by Algorithm 1. For any point in Υ, they showed that there exists a sequence and
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the sequence is quadratically convergent. This reflection we definitely understood that the

convergence result guarantees the existence of a convergent sequence, which is mention in

[13]. Consequently, for any initial point close to a solution, the sequences which is con-

structed by Algorithm 1 are not identically defined and not each constructed sequence is

convergent. Therefore, from a numerical computational point of view this type of method

is not convenient to apply in numerical practice. This difficulty inspired us to introduce a

kind of method ”so-called” extended Newton-type (EN-type) method which is employed in

Algorithm 2. In this way, we contemplate the following EN-type method:

Algorithm 2 (The EN-type Method))

Iter. 0. Pick η ∈ [1,∞), s0 ∈ S, and put k := 0.

Iter. 1. In case 0 ∈ P(sk), then stop; otherwise, go to the next Stair 3.

Iter. 2. In case 0 /∈ P(sk), choose dk such that dk ∈ P(sk) and

∥dk∥ ≤ η dist (0,P(sk)).

Iter. 3. Set sk+1 := sk + dk.

Iter. 4. k + 1 is replaced by k and repeat this circle from Step 1.

The above two Algorithm differs in two features. The difference between two Algorithms

is that, Algorithm 2 generates at least one sequence and the generated each sequence is con-

vergent. Algorithm 1 generated sequence but each sequence does not converge. That’s why

the sequences which is constructed by Algorithm 1 are not uniquely defined. By comparison

with this two algorithms we can assume that algorithm 2 is more explicit than Algorithm 1

in numerical computation.

When we replace the set P(s) by the set

D(s) :=
{
d ∈ S : 0 ∈ ζ(s) + g(s) + (∇ζ(s) + [2d+ s, s; g])d+ ξ(s+ d)

}
,

then the Algorithm 2 is reduced and the reduced algorithm is just like the algorithm which

was proposed by Rashid [110].

If ξ = {0} and g = 0 , many mathematician have invented a number of useful results on

semilocal convergence analysis for the GN method. For the detail one can refer to Dedieu
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and Kim [24]; Dedieu and Shub [25]; Xu and Li [130] or in the case when ξ = C and g = 0,

we can also refer to Li and Ng [72] for more details. In the case when g = 0, Rashid et al.

[110] introduced GN method to obtain the solution of the variational inclusion (1.0.1) and

established its semilocal convergence. Moreover, in the same case, Rashid [105, 106, 108]

introduced different kinds of methods for obtaining the solution of (1.0.1) and attained the

semilocal and local convergence.

The purpose of this section is to evaluate the semilocal and local convergence of the

EN-type method which is constructed by Algorithm 2. In this section we deal with the

Lipschitz-like property of set-valued mappings as the main tool which was introduced by

Aubin [15], in the context of nonsmooth analysis and studied by many mathematicians (see

for example, [2, 13, 30, 50, 88, 90]) and the reference therein.

4.2 Convergence Analysis of Extended Newton-type

Method

This section is dedicated to show the existence of a sequence which is constructed by the

EN-type method, represented by the Algorithm 2.

Let s ∈ S. Then for each s ∈ S, we get

g(s) + [s+ d, s; g]d = g(s)− [s+ d, s; g](s− (s+ d))

= g(s)− (g(s)− g(s+ d)) = g(s+ d). (4.2.1)

Let Rs be a set-valued mapping, which is defined by

Rs(·) := ζ(s) + g(·) +∇ζ(s)(· − s) + ξ(·).

It holds, for the formation of P(s) and (4.2.1), that

P(s) =
{
d ∈ S : 0 ∈ Gx(s+ d)

}
.

In addition, for any z ∈ S and t ∈ T , we get the following identity:

z ∈ R−1
s (t) if and only if t ∈ ζ(s) + g(z) +∇ζ(s)(z − s) + ξ(z). (4.2.2)
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Particularly, let (s̄, t̄) ∈ gphRs̄. Then, the definition of closed graphness of Rs̄ signifies that

s̄ ∈ R−1
s̄ (t̄). (4.2.3)

The following outcome constitutes the equivalence between R−1
s̄ and (ζ + g + ξ)−1. This

result is the modification of [108].

Lemma 4.2.1. Let (s̄, t̄) ∈ gph (ζ+g+ξ). Suppose that ζ is a Fréchet differentiable function

in an open neighborhood Υ at s̄ and its derivative ∇ζ is continuous around s̄. Assume that g

admits FODD and g is Fréchet differentiable at s̄. Then the followings relation are equivalent:

(i) At the point (t̄, s̄) the nature of the mapping (ζ + g + ξ)−1 is pseudo-Lipschitz,

(ii) At the point (t̄, s̄) the nature of the mapping R−1
s̄ is pseudo-Lipschitz.

Proof. The function h : S → T is defined by

h(s) := −ζ(s) + ζ(s̄) +∇ζ(s̄)(s− s̄)

The proof is similar to that of [108], because the proof does not depend on the property of

g.

For our suitability, let rs̄ > 0, rt̄ > 0 and Brs̄(s̄) ⊆ Υ ∩ dom ξ. Suppose that ∇ζ is

Lipschitz continuous on Brs̄(s̄), i.e, ∃’s L > 0 such that

∥∇ζ(s)−∇ζ(s′)∥ ≤ L∥s− s′∥, q ∈ (0, 1], for any s, s′ ∈ Brs̄(s̄), (4.2.4)

g admits a FODD satisfying Lipschitz condition, that is, there exists ν > 0 such that, ∀

s, t, v, w ∈ Brs̄(s̄) (v ̸= w, s ̸= t),

∥[s, t; g]− [v, w; g]∥ ≤ ν(∥s− v∥+ ∥t− w∥), (4.2.5)

and R−1
s̄ is Lipschitz-like on the ball Brt̄(t̄) relative to Brs̄(s̄) including constant M , that is,

e(R−1
s̄ (y1) ∩ Brs̄(s̄), R−1

s̄ (y2)) ≤M∥t1 − t2∥ for any t1, t2 ∈ Brt̄(t̄). (4.2.6)

Further, for t̄, the closed graph property of Rs̄ implies that ζ + g + ξ is continuous at s̄ i.e.

lim
s→s̄

dist
(
t̄, ζ(s) + g(s) + ξ(s)

)
= 0 (4.2.7)

□ 
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is hold.

Let ε > 0 and we write

r̄ := min
{
rt̄ − 2εrs̄,

rs̄(1−Mε)

4M

}
. (4.2.8)

Then

r̄ > 0 if and only if ε < min
{ rt̄
2rs̄

,
1

M

}
. (4.2.9)

The following lemma is extracted from [110, Lemma 3.1] and the Lemma plays a very

important role for convergence analysis of the EN-type method.

Lemma 4.2.2. Assume that R−1
s̄ is Lipschitz-like on Brt̄(t̄) relative to Brs̄(s̄) with constant

M , i.e,

sup
s′,s′′∈B rs̄

2
(s̄)

∥∇ζ(s′)−∇ζ(s′′)∥ ≤ ε < min
{ rt̄
2rs̄

,
1

M

}
. (4.2.10)

Let s ∈ B rs̄
2
(s̄) and ε be defined by (4.2.9). Suppose that ∇ζ is continuous on B rs̄

2
(s̄). Let r̄

be defined by (4.2.8) such that (4.2.10) is true. Then R−1
s is Lipschitz-like on Br̄(t̄) relative

to B rs̄
2
(s̄) with constant M

1−Mε
, i.e,

e(R−1
s (t1) ∩ B rs̄

2
(s̄), R−1

s (t2)) ≤
M

1−Mε
∥t1 − t2∥ for any t1, t2 ∈ Br̄(t̄).

Proof. Let

t1, t2 ∈ Br̄(t̄) and s′ ∈ R−1
s (t1) ∩ B rs̄

2
(s̄). (4.2.11)

It is enough to prove that ∃ s′′ ∈ R−1
s (t2) such that

∥s′ − s′′∥ ≤ M

1−Mε
∥t1 − t2∥.

To finish this, we will justify that ∃’s a sequence {sn} ⊂ Brs̄(s̄) such that

t2 ∈ ζ(s) + g(sn) +∇ζ(s)(sn−1 − s) +∇ζ(s̄)(sn − sn−1) + ξ(sn), (4.2.12)

and

∥sn − sn−1∥ ≤M∥t1 − t2∥(Mε)n−2 (4.2.13)

for each n = 2, 3, 4, . . .. the inequality (4.2.13) is hold. We proceed by mathematical induc-

tion on n. Letting

ui := ti − ζ(s)−∇ζ(s)(s1 − s) + ζ(s̄) +∇ζ(s̄)(s1 − s̄) for each i = 1, 2.
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From (4.2.11) we get that

∥s− s′∥ ≤ ∥s− s̄∥+ ∥s̄− s′∥ ≤ rs̄.

Since ∇ζ is continuous around s̄ with the constant ε, we have that

∥ζ(s)− ζ(s̄)−∇ζ(s̄)(s− s̄)∥ = ∥
ˆ 1

0

[∇ζ(s̄+ f(s− s̄))−∇ζ(s̄)](s− s̄)df∥

≤
ˆ 1

0

∥∇ζ(s̄+ f(s− s̄))−∇ζ(s̄)∥∥s− s̄∥df

≤ ε∥s− s̄∥
ˆ 1

0

df

= ε∥s− s̄∥(1− 0) = ε∥s− s̄∥,

From (4.2.11) and the relation r̄ ≤ rt̄ − 2εrs̄ by (4.2.8), it follows that

∥ui − t̄∥ ≤ ∥ui − t̄∥+ ∥(∇ζ(s)−∇ζ(s̄))(s− s′)∥+ ∥ζ(s)− ζ(s̄)−∇ζ(s̄)(s− s̄)∥

≤ r̄ + ε(∥s− s′∥+ ∥s− s̄∥)

≤ r̄ + ε(rs̄ +
rs̄
2
) ≤ rt̄.

The preceding inequality implies that ui ∈ Brt̄(t̄) for every i = 1, 2. Now denote s1 := s′.

Then s1 ∈ R−1
s (t1) by (4.2.11) and it follows from (4.2.2) that

t1 ∈ ζ(s) + g(s1) +∇ζ(s)(s1 − s) + ξ(s1).

The alternative form of the above inclusion is as follows:

t1 + ζ(s̄) +∇ζ(s̄)(s1 − s̄)) ∈ ζ(s̄) +∇ζ(s̄)(s1 − s̄) + g(s1) + ζ(s) +∇ζ(s)(s1 − s) + ξ(s1).

According to the definition of u1, this yields that

u1 ∈ ζ(s̄) + g(s1) +∇ζ(s̄)(s1 − s̄) + ξ(s1).

So s1 ∈ R−1
s̄ (u1) by (4.2.2). Then by (4.2.11), we have that

s1 ∈ R−1
s̄ (u1) ∩ Brs̄(s̄).

Since R−1
s̄ is Lipschitz-like on Brt̄(t̄) relative to Brs̄(s̄), then for every u1, u2 ∈ Brt̄(t̄), we

have through (4.2.6) that ∃’s s2 ∈ R−1
s̄ (u2) such that

∥s2 − s1∥ ≤M∥u1 − u2∥ =M∥t1 − t2∥.
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In addition, by the construction of u2 and s1 = s′, we get that

s2 ∈ R−1
s̄ (u2) = R−1

s̄

(
t2 − ζ(s)−∇ζ(s)(s1 − s) + ζ(s̄) +∇ζ(s̄)(s1 − s̄)

)
.

This inequality with (4.2.2), gives us

t2 ∈ ζ(s) + g(s2) +∇ζ(s̄)(s2 − s1) +∇ζ(s)(s1 − s) + ξ(s2).

This implies that (4.2.12) and (4.2.13) are true with the generated points s1 and s2.

Let the points s1, s2, . . . , sk be generated, that’s why (4.2.12) and (4.2.13) are true for

n = 2, 3, . . . , k. Now we have to generate the new point sk+1 such that (4.2.12) and (4.2.13)

are also true for n = k + 1. For showing this, let, for each i = 0, 1,

uki := t2 − ζ(s)−∇ζ(s)(sk+i−1 − s) + ζ(s̄) +∇ζ(s̄)(sk+i−1 − s̄).

Then, form the above inductional assumption, we have that

∥uk0 − uk1∥ = ∥
(
∇ζ(s̄)−∇ζ(s)

)
(sk − sk−1)∥

≤ ε∥sk − sk−1∥ ≤ ∥t1 − t2∥(Mε)k−1. (4.2.14)

We have from (4.2.11) that ∥s1 − s̄∥ ≤ rs̄
2

and ∥t1 − t2∥ ≤ 2r̄. Thus, we have, from

(4.2.13), that

∥sk − s̄∥ ≤
k∑
i=2

∥si − si−1∥+ ∥s1 − s̄∥

≤ 2Mr̄
k∑
i=2

(Mε)i−2 +
rs̄
2

≤ 2Mr̄

1−Mε
+
rs̄
2
.

Note by (4.2.8) that 4Mr̄ ≤ rs̄(1−Mε). Therefore, we have from the above inequality that

∥sk − s̄∥ ≤ rs̄. (4.2.15)

Moreover, we attain that

∥sk − s∥ ≤ ∥sk − s̄∥+ ∥s̄− s∥ ≤ 3

2
rs̄. (4.2.16)
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Furthermore, using (4.2.11) and (4.2.16), we get, for every i = 0, 1,

∥uki − t̄∥

≤ ∥t2 − t̄∥+ ∥
(
∇ζ(s)−∇ζ(s̄)

)
(s− sk+i−1)∥+ ∥ζ(s)− ζ(s̄)−∇ζ(s̄)(s− s̄)∥

≤ r̄ + ε
(
∥s− sk+i−1∥+ ∥s− s̄∥

)
≤ r̄ + ε

(3rs̄
2

+
rs̄
2

)
= r̄ + 2εrs̄.

By the relation r̄ ≤ rt̄ − 2εrs̄ in (4.2.8), it follows that ∥uki − t̄∥ ≤ rt̄. This shows that

uki ∈ Brt̄(t̄) for each i = 0, 1. By our condition (4.2.12) is true for n = k. Thus, we get that

t2 ∈ ζ(s) + g(sk) +∇ζ(s)(sk−1 − s) +∇ζ(s̄)(sk − sk−1) + ξ(sk).

We can write the above inequality as follows:

t2 + ζ(s̄) +∇ζ(s̄)(sk−1 − s̄) ∈ ζ(s) +∇ζ(s)(sk−1 − x) + ζ(s̄) + g(sk)

+∇ζ(s̄)(sk − sk−1) + ξ(sk) +∇ζ(s̄)(sk−1 − s̄).

Then by the construction of uk0, we have that u
k
0 ∈ ζ(s̄)+ g(sk)+∇ζ(s̄)(sk− s̄)+ ξ(sk). This

together with (4.2.2) implies that sk ∈ R−1
s̄ (uk0). It follows from (4.2.15) that

sk ∈ R−1
s̄ (uk0) ∩ Brs̄(s̄).

By Lipschitz-like property of R−1
s̄ , ∃’s an element sk+1 ∈ R−1

s̄ (uk1) such that

∥sk+1 − sk∥ ≤M∥uk0 − uk1∥.

Then by (4.2.14), it follows that

∥sk+1 − sk∥ ≤M∥t1 − t2∥(Mε)k−1. (4.2.17)

By the construction of uk1, we have that

sk+1 ∈ R−1
s̄ (uk1) = R−1

s̄ (t2 − ζ(s)−∇ζ(s)(sk − s) + ζ(s̄) +∇ζ(s̄)(sk − s̄)).

This inequality with (4.2.2), implies that

t2 ∈ ζ(s) + g(sk+1) +∇ζ(s)(sk − s) +∇ζ(s̄)(sk+1 − sk) + ξ(sk+1).
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The inequality (4.2.17) with the above inclusion completes the induction step and confirming

the existence of a sequence {sk} which satisfies (4.2.12) and (4.2.13).

Whereas Mε < 1, than we get from (4.2.13) that {sk} is a Cauchy sequence and hence

it is convergent, to say s′′, that is, s′′ := limk→∞ sk. Note that ξ has closed graph. Then,

taking limit in (4.2.12), we get t2 ∈ ζ(s)+g(s′′)+∇ζ(s)(s′′−s)+ξ(s′′), that is, s′′ ∈ R−1
s (t2).

Therefore, we obtain

∥s′ − s′′∥ ≤ lim
n→∞

sup
n∑
k=2

∥sk − sk−1∥

≤ lim
n→∞

sup
n∑
k=2

(Mε)k−2M∥t1 − t2∥

≤ M

1−Mε
∥t1 − t2∥.

That is,

e(R−1
s (t1) ∩ B rs̄

2
(s̄), R−1

s (t2)) ≤
M

1−Mε
∥t1 − t2∥.

The Lemma 4.2.2 is complectly proved.

Before going to prove our main results, we would like to introduce some notations. For

our convenience, first we let a mapping Is : S → T , for each s ∈ S, which is defined by

Is(·) := ζ(s̄) + g(·) +∇ζ(s̄)(· − s̄)− ζ(s)− g(s)−
(
∇ζ(s) + [·, s; g]

)
(· − s).

and the set-valued mapping Ψs : S ⇒ 2S is defined by

Ψs(·) := R−1
s̄ [Is(·)]. (4.2.18)

For any point s′, s′′ ∈ S, we get

∥Is(s′)− Is(s
′′)∥ = ∥g(s′)− g(s′′)− [s′, s; g](s′ − s) + [s′′, s; g](s′′ − s)

+ (∇ζ(s̄)−∇ζ(s))(s′ − s′′)∥

≤ ∥g(s′)− g(s′′)− [s′′, s; g](s′ − s′′)∥+ ∥
(
[s′′, s; g]

− [s′, s; g]
)
(s′ − s)∥+ ∥∇ζ(s̄)−∇ζ(s)∥∥s′ − s′′∥

≤
(
∥[s′′, s′; g]− [s′′, s; g]∥+ ∥∇ζ(s̄)−∇ζ(s)∥

)
∥s′ − s′′∥

+ ∥[s′′, s; g]− [s′, s; g]∥∥s′ − s∥ (4.2.19)

□ 
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4.2.1 Linear Convergence

The first main theorem of this study read as follows. This theorem gives some certain suitable

assumptions confirming the convergence of the method called EN-type method with starting

point s0.

Theorem 4.2.1. Assume that η > 1 and R−1
s̄ is Lipschitz-like on Brt̄(t̄) relative to Brs̄(s̄)

with a constant M . let r̄ be defined in (4.2.8) and let s ∈ B rs̄
2
(s̄). Suppose that ε > 0 be such

that (4.2.10) is hold and ∇ζ is continuous on B rs̄
2
(s̄) with constant ε.

Let ν > 0 and δ > 0 be such that

(a) δ ≤ min
{rs̄
4
,

rt̄
7(ε+ 3ν)

, 1,
3− 5Mε

30Mν
,

r̄

3(ε+ 3ν)

}
,

(b) 6ηM(ε+ 3ν) ≤ 1−Mε,

(c) ∥t̄∥ < (ε+ 3ν)δ.

Suppose that (ζ + g + ξ) is continuous at s̄ for t̄ i.e. (4.2.7) is hold. Then ∃’s some δ̂ > 0

such that any sequence {sn} generated by Algorithm 2 with initial point in B(s̄, δ̂) converges

to a solution s∗ of (1.0.1), that is, s∗ satisfies 0 ∈ ζ(s∗) + g(s∗) + ξ(s∗).

Proof. Setting that q :=
ηM(ε+ 3ν)

1−Mε
. From the assumption (b) 6ηM(ε+3ν) ≤ 1−Mε, we

find

q :=
ηM(ε+ 3ν)

1−Mε
≤ 1

6
.

Pick up 0 < δ̂ ≤ δ such that

dist(0, ζ(s0) + g(s0) + ξ(s0)) ≤ (ε+ 3ν)δ, for each s0 ∈ Bδ̂(s̄) (4.2.20)

(Mark that such δ̂ exists by (4.2.7) and assumption (c)). Let s0 ∈ Bδ̂(s̄). To prove that

Algorithm 2 generates at least one sequence, we will proceed by mathematical induction.

Again show that any sequence {sn} constructed by Algorithm 2, which is satisfies both of

the following assertions:

∥sn − s̄∥ ≤ 2δ (4.2.21)

and

∥sn+1 − sn∥ ≤ qn+1δ (4.2.22)
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the assertions hold for every n = 0, 1, 2, .... For this objective, we will define

rs :=
5

2

(
M

(
ε+ 3ν∥s− s̄∥

)
∥s− s̄∥+M∥t̄∥

)
, for each s ∈ S. (4.2.23)

Then, we get 6ηM(ε+3ν) ≤ 1−Mε < 1 from the assumption (b) and from assumption (c)

we get ∥t̄∥ < (ε+ 3ν)δ . Whereas η > 1, (4.2.23) yields that

rs < 5M
(
ε+ 6νδ

)
δ +M(ε+ 3ν)δ < 5M(ε+ 6νδ) +M(ε+ 3ν)δ

= 6Mεδ + 33Mνδ < 11Mεδ + 33Mνδ = 11M(ε+ 3ν)δ ≤ 11

6η
δ

≤ 2δ for each s ∈ B2δ(s̄). (4.2.24)

Note that for n = 0 the assertion (4.2.21) is trivial. At first we need to show that s1 exists.

For that we have to show (4.2.22) are holds for n = 0. To complete this, we have to prove

that P(s0) ̸= ∅. For that we will apply Lemma 2.0.4 to the map Ψs0 with η0 = s̄. Let us

verify that both assertions (2.0.4) and (2.0.5) of Lemma 2.0.4 hold with r := rs0 and λ :=
3

5
.

We will remark that s̄ ∈ R−1
s̄ (t̄)∩B2δ(s̄) by (4.2.3) and by the definition of the mapping Ψs0

and the excess e in (4.2.18), we get

dist(s̄,Ψs0(s̄)) ≤ e(R−1
s̄ (t̄) ∩ Brs0 (s̄),Ψs0(s̄)) ≤ e(R−1

s̄ (t̄) ∩ B2δ(s̄),Ψs0(s̄))

≤ e(R−1
s̄ (t̄) ∩ Brs̄(s̄), R−1

s̄ [Is0(s̄)]) (4.2.25)

(we remark that B2δ(s̄) ⊆ Brs̄(s̄)). According to ε, we get

∥Is0(s)− t̄∥ = ∥ζ(s̄) + g(s) +∇ζ(s̄)(s− s̄)− ζ(s0)− g(s0)

− (∇ζ(s0) + [s, s0; g])(s− s0)− t̄∥

≤ ∥ζ(s̄)− ζ(s0)−∇ζ(s0)(s̄− s0)∥+ ∥∇ζ(s̄−∇ζ(s0))(s− s̄)∥

+ ∥g(s)− g(s0)− [s, s0; g](s− s0)∥+ ∥t̄∥

≤ ε(∥s̄− s0∥+ ∥s− s̄∥) + ∥[s0, s; g]− [s, s0; g]∥∥s− s0∥

+ ∥t̄∥

≤ ε(∥s̄− s0∥+ ∥s− s̄∥) + ν(∥s0 − s∥+ ∥s− s0∥)∥s− s0∥

+ ∥t̄∥. (4.2.26)

Remark that ∥s0 − s̄∥ ≤ δ̂ ≤ δ, 7(ε + 3ν)δ ≤ rt̄ by assumption (a) and ∥t̄∥ < (ε + 3ν)δ by
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assumption (c), it follows from (4.2.26) that, for each s ∈ B2δ(s̄),

∥Is0(s)− t̄∥ ≤ 3εδ + 18νδ2 + (ε+ 3ν)δ < 3εδ + 18νδ + (ε+ 3ν)δ

< 6εδ + 18νδ + (ε+ 3ν)δ = 7(ε+ 3ν)δ

≤ rt̄. (4.2.27)

This implies that for all s ∈ B2δ(s̄), Is0(s) ∈ Brt̄(t̄). Particularly, let s = s̄ in (4.2.26). Then

we get that

∥Is0(s̄)− t̄∥ ≤ ε∥s̄− s0∥+ ν
(
2∥s0 − s̄∥+ ∥s̄− s0∥

)
∥s̄− s0∥+ ∥t̄∥

=
(
ε+ 3ν∥s̄− s0∥

)
∥s̄− s0∥+ ∥t̄∥ (4.2.28)

≤ (ε+ 3νδ)δ + ∥t̄∥ < (ε+ 3ν)δ + ∥t̄∥

≤ 2(ε+ 3ν)δ ≤ rt̄;

and so Is0(s̄) ∈ Brt̄(t̄).

Therefore, by (4.2.23), (4.2.25), (4.2.28) and assumed Lipschitz-like property, we have

dist(s̄,Ψs0(s̄)) ≤ M∥t̄− Is0(s̄)∥

≤ M
(
ε+ 3ν∥s̄− s0∥

)
∥s̄− s0∥+M∥t̄∥

=
(
1− 3

5

)
rs0 =

(
1− λ

)
r;

therefore, the first assertion (2.0.4) of Lemma 2.0.4 is satisfied.

Now, we will show that the second assertion (2.0.5) of Lemma 2.0.4 holds. To finish

this, we assume s′, s′′ ∈ Brs0 (s̄). Then, it follows that s′, s′′ ∈ Brs0 (s̄) ⊆ B2δ(s̄) ⊆ Brs̄(s̄) by

(4.2.24) and assumption (a) and Is0(s
′), Is0(s

′′) ∈ Brt̄(t̄) by (4.2.27). This together with the

assumed Lipschitz-like property implies that

e(Ψs0(s
′) ∩ Brs0 (s̄),Ψs0(s

′′)) ≤ e(Ψs0(s
′) ∩ Brs̄(s̄),Ψs0(s

′′))

= e(R−1
s̄ [Is0(s

′)] ∩ Brs̄(s̄), R−1
s̄ [Is0(s

′′)])

≤ M∥Is0(s′)− Is0(s
′′)∥. (4.2.29)
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According to the choice of s0 in (4.2.19), we get

∥Is0(s′)− Is0(s
′′)∥ ≤

(
∥[s′′, s′; g]− [s′′, s0; g]∥+ ∥∇ζ(s̄)−∇ζ(s0)∥

)
∥s′ − s′′∥

+ ∥[s′′, s0; g]− [s′, s0; g]∥∥s′ − s0∥

≤
(
ν
(
∥s′ − s0∥+ ∥s′ − s0∥

)
+ ε

)
∥s′ − s′′∥

≤ (ε+ 6νδ)∥s′ − s′′∥. (4.2.30)

we get (4.2.29) and (4.2.30) together is as follows,

e(Ψs0(s
′) ∩ Brs0 (s̄),Ψs0(s

′′)) ≤M(ε+ 6νδ)∥s′ − s′′∥.

The above inequality follows the assumption (a) 30Mνδ ≤ 3− 5Mε, then we get that

e(Ψs0(s
′) ∩ Brs0 (s̄),Ψs0(s

′′)) ≤ 3

5
∥s′ − s′′∥ = λ∥s′ − s′′∥.

This yields that the second assertion (2.0.5) of Lemma 2.0.4 is satisfied. Inasmuch as we

have seen that both first and second assertions of Lemma 2.0.4 are fulfilled, we can say that

the Lemma 2.0.4 is applicable and hence we can conclude that there exists ŝ1 ∈ Brs0 (s̄) such

that ŝ1 ∈ Ψs0(ŝ1). This yields that 0 ∈ ζ(s0) + g(s0) + (∇ζ(s0) + [ŝ1, s0; g])(ŝ1 − s0) + ξ(ŝ1)

and thus we conclude that P(s0) ̸= ∅. Since η > 1 and P(s0) ̸= ∅, we can select d0 ∈ P(s0)

such that

∥d0∥ ≤ η dist(0,P(s0)).

s1 := s0 + d0 is defined for Algorithm 2. Moreover, according to the definition of P(s0) and

through (4.2.1), we get

P(s0) :=
{
d0 ∈ S : 0 ∈ ζ(s0) + g(s0) + (∇ζ(s0) + [d0 + s0, s0; g])d0 + ξ(s0 + d0)

}
=

{
d0 ∈ S : 0 ∈ ζ(s0) + g(s0 + d0) +∇ζ(s0)d0 + ξ(s0 + d0)

}
=

{
d0 ∈ S : s0 + d0 ∈ R−1

s0
(0)

}
,

and so

dist(0,P(s0)) = dist(s0, R
−1
s0
(0)). (4.2.31)

Now, we show that (4.2.22) holds also for n = 0. The continuity property of ∇ζ implies

that

∥∇ζ(s)−∇ζ(s̄)∥ ≤ ε, for all s ∈ B rs̄
2
(s̄)
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and note that r̄ > 0 by assumption (a). Therefore, (4.2.10) satisfies (4.2.8). Since R−1
s̄ is

Lipschitz-like, it follows from Lemma 4.2.2 that the mapping R−1
s is Lipschitz-like on Br̄(t̄)

relative to B rs̄
2
(s̄) with constant

M

1−Mε
for each s ∈ B rs̄

2
(s̄). Particularly, according to

assumption (a) and the choice of δ̂, R−1
s0

is Lipschitz-like on Br̄(t̄) relative to B rs̄
2
(s̄) with

constant
M

1−Mε
as s0 ∈ Bδ̂(s̄) ⊂ Bδ(s̄) ⊂ B rs̄

2
(s̄). Moreover, by the relation 3(ε+ 3ν)δ ≤ r̄

in assumption (a) and assumption(c) imply that

∥t̄∥ < (ε+ 3ν)δ ≤ r̄

3
(4.2.32)

and therefore (4.2.20) implies that

dist(0, Rs0(s0)) = dist
(
0, ζ(s0) + g(s0) + ξ(s0)

)
≤ (ε+ 3ν)δ (4.2.33)

≤ r̄

3
.

By (4.2.32), it is marked earlier that s0 ∈ B rs̄
2
(s̄) and 0 ∈ B r̄

3
(t̄). Thus, applying Lemma

2.0.1 it can be shown that

dist
(
s0, R

−1
s0
(0)

)
≤ M

1−Mε
dist

(
0, Rs0(s0)

)
.

The above relation together with (4.2.31) yields that

dist
(
0,P(s0)

)
= dist

(
s0, R

−1
s0
(0)

)
≤ M

1−Mε
dist

(
0, Rs0(s0)

)
. (4.2.34)

According to Algorithm 2 and using (4.2.33) and (4.2.34), we have

∥d0∥ ≤ η dist
(
0,P(s0)

)
≤ ηM

1−Mε
dist

(
0, Rs0(s0)

)
≤ ηM(ε+ 3ν)δ

1−Mε
(4.2.35)

= qδ.

This implies that

∥s1 − s0∥ = ∥d0∥ ≤ qδ

and therefore, (4.2.22) is hold for n = 0.

Assume that s1, s2, . . . , sk are constructed. So that the inequality (4.2.21) and (4.2.22)

are hold for n = 0, 1, 2, . . . , k − 1. Again we will verify that there exists sk+1 such that
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(4.2.21) and (4.2.22) are also hold for n = k. Since (4.2.21) and (4.2.22) are true for each

n ≤ k − 1, we get the inequality as follows:

∥sk − s̄∥ ≤
k−1∑
i=0

∥di∥+ ∥s0 − s̄∥ ≤ δ

k−1∑
i=0

qi+1 + δ ≤ δq

1− q
+ δ ≤ 2δ.

This shows that (4.2.21) holds for n = k. Now we can also show that (4.2.22) hold for n = k,

by the same argument as we did for the case when n = 0.

The proof is complete.

When t̄ = 0, that is, s̄ is a solution of (1.0.1), Theorem 4.2.1 is reduced to the following

corollary, which gives the local convergent result for the extended Newton-type method.

Corollary 4.2.1. Suppose that η > 1 and s̄ is a solution of the variational inclusion (1.0.1).

Let R−1
s̄ be pseudo-Lipschitz around (0, s̄). Let r̃ > 0, ν > 0 and suppose that ∇ζ is contin-

uous on Br̃(s̄) and that

lim
s→s̄

dist(0, ζ(s) + g(s) + ξ(s)) = 0.

Then there exists some δ̂ such that any sequence {sn} generated by Algorithm 2 with initial

point in Bδ̂(s̄) converges to a solution s∗ of the variational inclusion (1.0.1).

Proof. Let R−1
s̄ is pseudo-Lipschitz around (0, s̄). Then there exist constants r0, r̂s̄ and M

satisfy the following condition:

e(R−1
s̄ (t1) ∩ Br̂s̄(s̄), R−1

s̄ (t2)) ≤M∥t1 − t2∥, for every t1, t2 ∈ Br0(0). (4.2.36)

Thus, according to the definition of Lipschitz-like property we can say that Q−1
s̄ is Lipschitz-

like on Br0(0) relative to Br̂s̄(s̄) with constant M which satisfy (4.2.36). Then, for each

0 < r̃ ≤ r̂s̄, one has that

e(R−1
s̄ (t1) ∩ Br̃(s̄), R−1

s̄ (t2)) ≤M∥t1 − t2∥, for every t1, t2 ∈ Br0(0),

that is, R−1
s̄ is Lipschitz-like on Br0(0) relative to Br̃(s̄) with constant M . Let ε ∈ (0, 1) be

such that M((6η + 1)ε + 3ν) ≤ 1. By the continuity of ∇ζ we can choose rs̄ ∈ (0, r̂s̄) such

that
rs̄
2

≤ r̃, r0 − 2εrs̄ > 0 and

□ 
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∥∇ζ(s)−∇ζ(s′)∥ ≤ ε, for each s, s′ ∈ B rs̄
2
(s̄).

Then

r̄ = min
{
r0 − 2εrs̄,

rs̄(1−Mε)

4M

}
> 0,

and

min
{rs̄
4
,

r̄

3(ε+ 3ν)
,

r0
7(ε+ 3ν)

,
3− 5Mε

30Mν

}
> 0. (4.2.37)

By (4.2.37), we can choose 0 < δ ≤ 1 such that

δ ≤ min
{rs̄
4
,

r̄

3(ε+ 3ν)
, 1,

r0
7(ε+ 3ν)

,
3− 5Mε

30Mν

}
.

Thus it is routine to check that inequalities (a) -(c) of Theorem 4.2.1 are satisfied. Therefore,

Theorem 4.2.1 is applicable to complete the proof.

4.2.2 Quadratic Convergence

In this section we consider∇ζ is Lipschitz continuous around s̄ and we show that the sequence

generated by Algorithm 2 converges quadratically.

Let L > 0 and define

r∗ := min
{
rt̄ − 2Lr2s̄ ,

rs̄(1−MLrs̄)

4M

}
. (4.2.38)

Now, we state our second main theorem as follows:

Theorem 4.2.2. Suppose that η > 1 and let R−1
s̄ is Lipschitz-like on Br∗(t̄) relative to Brs̄(s̄)

with constant M and that ∇ζ is Lipschitz continuous on B rs̄
2
(s̄) with Lipschitz constant L.

Let ν > 0, δ > 0 be such that

(a) δ ≤ min
{rs̄
4
,
10r∗

3
, 1,

( rt̄
3(L+ 4ν)

) 1
2
}
,

(b) (M + 1)(L+ 4ν)(ηδ + rs̄) ≤ 1,

(c) ∥t̄∥ < (L+ 4ν)δ2

2
.

□ 
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Suppose that

lim
s→s̄

dist(t̄, ζ(s) + g(s) + ξ(s)) = 0. (4.2.39)

Then there exist some δ̂ > 0 such that any sequence {sn} generated by Algorithm 2 with

initial point in Bδ̂(s̄) converges quadratically to a solution s∗ of (1.0.1).

Proof. Setting

b :=
ηM(L+ 4ν)δ

1−MLrs̄
. (4.2.40)

Thanks to assumption (b). Since ν > 0, it allows us to write the fact that

ηM(L+ 4ν)δ +MLrs̄ < (M + 1)(L+ 4ν)ηδ + (M + 1)(L+ 4ν)rs̄

= (M + 1)(L+ 4ν)(ηδ + rs̄) ≤ 1.

Thus, we have from (4.2.40) that

b :=
ηM(L+ 4ν)δ

1−MLrs̄
≤ 1. (4.2.41)

Pick 0 < δ̂ ≤ δ be such that

dist(0, ζ(s0) + g(s0) + ξ(s0)) ≤
(L+ 4ν)δ2

2
for each s0 ∈ Bδ̂(s̄) (4.2.42)

Since (4.2.39) is hold and assumption (c) is true, we assume that such δ̂ exists, which satisfies

(4.2.42). Let s0 ∈ Bδ̂(s̄). Now we use the same argument whichever we used in Theorem

4.2.1 for complete the proof of the Theorem 4.2.2 We show that Algorithm 2 generates at

least one sequence and such generated sequence {sn} satisfies the following assertions:

∥sn − s̄∥ ≤ 2δ; (4.2.43)

and

∥dn∥ ≤ b
(1
2

)2n

δ. (4.2.44)

hold for each n = 0, 1, 2, .... Let

rs :=
5M

8

(
(L+ 4ν)∥s− s̄∥2 + 2∥t̄∥

)
, for each s ∈ X. (4.2.45)
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Owing to the fact 4δ ≤ rs̄ in assumption (a) and η > 1 , by assumption (b) we can write as

follows

5(M + 1)(L+ 4ν)δ = (M + 1)(L+ 4ν)(δ + 4δ)

≤ (M + 1)(L+ 4ν)(ηδ + rs̄)

≤ 1.

This gives

M(L+ 4ν)δ ≤ 1

5
and (L+ 4ν)δ ≤ 1

5
. (4.2.46)

Hence by 3δ ≤ 5r∗ in assumption (a) together with second inequality of (4.2.46), we get

∥t̄∥ < (L+ 4ν)δ2

2
≤ 1

5 · 2
· 10r

∗

3
=
r∗

3
. (4.2.47)

Thanks to assumption (c). Utilizing the first inequality from (4.2.46) together with assump-

tion (c), we obtain from (4.2.45) that

rs <
5M

8

(
(L+ 4ν)δ2 + (L+ 4ν)δ2

)
=

10M

8
(L+ 4ν)δ2 ≤ 10

8 · 5
δ

=
δ

4
< 2δ, for each s ∈ B2δ(s̄). (4.2.48)

Note that (4.2.43) is trivial for n = 0. In order to show that (4.2.44) is hold for n = 0, first we

need to prove P(s0) ̸= ∅. The nonemptyness of P(s0) will ensure us to deduce the existence

of the point s1. To complete this, we will apply Lemma 2.0.4 to the map Ψs0 with η0 = s̄.

Let us check that both assertions (2.0.4) and (2.0.5) of Lemma 2.0.4 hold with r := rs0 and

λ :=
1

5
. Here we note by (4.2.3) that s̄ ∈ R−1

s̄ (t̄) ∩ B2δ(s̄). Then, by the definition of the

excess e and the mapping Ψs0 defined by (4.2.18), we have that

dist(s̄,Ψs0(s̄)) ≤ e(R−1
s̄ (t̄) ∩ Brs0 (s̄),Ψs0(s̄)) ≤ e(R−1

s̄ (t̄) ∩ B2δ(s̄),Ψs0(s̄))

≤ e(R−1
s̄ (t̄) ∩ Brs̄(s̄), R−1

s̄ [Is0(s̄)]). (4.2.49)

For each s ∈ B2δ(s̄) ⊆ B rs̄
2
(s̄) and Lipschitz continuous property of ∇ζ, we have that
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∥Is0(s)− t̄∥ = ∥ζ(s̄) + g(s) +∇ζ(s̄)(s− s̄)− ζ(s0)− g(s0)

− (∇ζ(s0) + [s, s0; g])(s− s0)− t̄∥

≤ ∥ζ(s̄)− ζ(s0)−∇ζ(s0)(s̄− s0)∥+ ∥
(
∇ζ(s0)−∇ζ(s̄)

)
(s̄− s)∥

+ ∥g(s)− g(s0)− [s, s0; g](s− s0)∥+ ∥t̄∥

≤ L

2
∥s̄− s0∥2 + L∥s0 − s̄∥∥s̄− s∥+ ∥[s0, s; g]− [s, s0; g]∥∥s− s0∥

+∥t̄∥

≤ L

2
∥s̄− s0∥2 + L∥s0 − s̄∥∥s̄− s∥+ ν

(
∥s0 − s∥+ ∥s− s0∥

)
∥s− s0∥

+∥t̄∥ (4.2.50)

≤ L

2
(δ2 + 4δ2) + 2ν(2δ)2 + ∥t̄∥ =

5Lδ2

2
+ 8νδ2 + ∥t̄∥

<
5

2
(L+ 4ν)δ2 + ∥t̄∥.

It follows, from the facts 3(L+4ν)δ2 ≤ rt̄ and 2∥t̄∥ < (L+4ν)δ2 respectively in assumptions

(a) and (c), that

∥Is0(s)− t̄∥ ≤ 5

2
(L+ 4ν)δ2 +

(L+ 4ν)δ2

2

= 3(L+ 4ν)δ2 ≤ rt̄. (4.2.51)

This shows that Is0(s) ∈ Brt̄(t̄). Particularly, let s = s̄ in (4.2.50). Then it is easily shown

that

Is0(s̄) ∈ Brt̄(t̄) and ∥Is0(s̄)− t̄∥ ≤ (L+ 4ν)

2
∥s̄− s0∥2 + ∥t̄∥. (4.2.52)

Using the Lipschitz-like property of R−1
s̄ and (4.2.52) in (4.2.49), we have

dist(s̄,Ψs0(s̄)) ≤ M∥t̄− Is0(s̄)∥ ≤ M(L+ 4ν)

2
∥s̄− s0∥2 +M∥t̄∥

= (1− 1

5
)rs0 = (1− λ)r;

that is, the first assertion (2.0.4) of Lemma 2.0.4 is satisfied.

Now, we will show that the second assertion (2.0.5) of Lemma 2.0.4 holds. To finish

this, we assume s′, s′′ ∈ Brs0 (s̄). Then it follows that s′, s′′ ∈ Brs0 (s̄) ⊆ B2δ(s̄) ⊆ Brs̄(s̄) by
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(4.2.48) and Is0(s
′), Is0(s

′′) ∈ Brt̄(t̄) by (4.2.51). This together with the assumed Lipschitz-

like property of R−1
s̄ implies that

e(Ψs0(s
′) ∩ Brs0 (s̄),Ψs0(s

′′)) ≤ e(Ψs0(s
′) ∩ B2δ(s̄),Ψs0(s

′′))

≤ e(R−1
s̄ [Is0(s

′)] ∩ Brs̄(s̄), R−1
s̄ [Is0(s

′′)])

≤ M∥Is0(s′)− Is0(s
′′)∥. (4.2.53)

According to the choice of s0 in (4.2.19), we get

∥Is0(s′)− Is0(s
′′)∥ ≤

(
∥[s′′, s′; g]− [s′′, s0; g]∥+ ∥∇ζ(s̄)−∇ζ(s0)∥

)
∥s′ − s′′∥

+ ∥[s′′, s0; g]− [s′, s0; g]∥∥s′ − s0∥

≤
(
ν
(
∥s0 − s′∥+ ∥s′ − s0∥

)
+ L∥s̄− s0∥

)
∥s′ − s′′∥

≤ (L+ 4ν)δ∥s′ − s′′∥. (4.2.54)

The above two inequalities (4.2.53) and (4.2.54) together in (4.2.46) is as follows

e(Ψs0(s
′) ∩ Brs0 (s̄),Ψs0(s

′′)) ≤ M(L+ 4ν)δ∥s′ − s′′∥

≤ 1

5
∥s′ − s′′∥ = λ∥s′ − s′′∥.

It seems that the second assertion (2.0.5) of Lemma 2.0.4 is also satisfied.

Thus, we have seen that both assertions (2.0.4) and (2.0.5) of Lemma 2.0.4 are fulfilled.

So, we can conclude that Lemma 2.0.4 is applicable to deduce the existence of a point

ŝ1 ∈ Brs0 (s̄) such that ŝ1 ∈ Ψs0(ŝ1). This implies that 0 ∈ ζ(s0) + g(s0) + (∇ζ(s0) +

[ŝ1, s0; g])(ŝ1 − s0) + ξ(ŝ1) and thus P(s0) ̸= ∅. Since η > 1 and P(s0) ̸= ∅, we can choose

d0 ∈ P(s0) such that

∥d0∥ ≤ η dist(0,P(s0)).

By Algorithm 2, s1 := s0 + d0 is defined. Furthermore, by the construction of P(s0) and

(4.2.1), we have that

P(s0) :=
{
d0 ∈ S : 0 ∈ ζ(s0) + g(s0) + (∇ζ(s0) + [d0 + s0, s0; g])d0 + ξ(s0 + d0)

}
=

{
d0 ∈ S : 0 ∈ ζ(s0) + g(s0 + d0) +∇ζ(s0)d0 + ξ(s0 + d0)

}
=

{
d0 ∈ S : s0 + d0 ∈ R−1

s0
(0)

}
,
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and so

dist(0,P(s0)) = dist(s0, R
−1
s0
(0)). (4.2.55)

Now, we are ready to show that (4.2.44) is hold for n = 0.

Note by assumption (a) that r∗ > 0. Then, from (4.2.38) we conclude that

L <
{ rt̄
2r2s̄

,
1

Mrs̄

}
.

Since ∇ζ is Lipschitz continuous on B rs̄
2
(s̄) with Lipschitz constant L, we have for all s′, s′′ ∈

B rs̄
2
(s̄), that

∥∇ζ(s′)−∇ζ(s′′)∥ ≤ L∥s′ − s′′∥ ≤ Lrs̄.

This shows that Lemma 4.2.2 is applicable with ε := Lrs̄.

According to our assumption R−1
s̄ is Lipschitz-like on Br∗(t̄) relative to Brs̄(s̄). Then, it

follows from Lemma 4.2.2 that for each s ∈ B rs̄
2
(s̄), the mapping R−1

s is Lipschitz-like on

Br∗(t̄) relative to B rs̄
2
(s̄) with constant M

1−MLrs̄
. Specifically, R−1

s0
is Lipschitz-like on Br∗(t̄)

relative to B rs̄
2
(s̄) with constant M

1−MLrs̄
as s0 ∈ Bδ̂(s̄) ⊆ B2δ(s̄) ⊆ B rs̄

2
(s̄) by assumption (a).

On the other hand, (4.2.42) implies that

dist(0, Rs0(s0)) = dist(0, ζ(s0) + g(s0) + ξ(s0))

≤ r∗

3
.

We have shown by (4.2.47) that 0 ∈ B r∗
3
(t̄) and it is noted earlier that s0 ∈ B rs̄

2
(s̄). Thus by

appying Lemma 2.0.1, we get the following inequality:

dist(s0, R
−1
s0
(0)) ≤ M dist(0, Rs0(s0))

1−MLrs̄
=
M dist(0, ζ(s0) + g(s0) + ξ(s0))

1−MLrs̄
.

But, by (4.2.55), we have that

dist(0,P(s0)) = dist(s0, R
−1
s0
(0)) ≤ M dist(0, ζ(s0) + g(s0) + ξ(s0))

1−MLrs̄
. (4.2.56)

According to Algorithm 2 and using (4.2.40), (4.2.42) and (4.2.56), we have

∥d0∥ ≤ η dist(0,P(s0))

≤ ηM dist(0, ζ(s0) + g(s0) + ξ(s0))

(1−MLrs̄)

≤ ηM(L+ 4ν)δ2

2(1−MLrs̄)
= b

(1
2

)
δ.
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This means that

∥s1 − s0∥ = ∥d0∥ ≤ b
(1
2

)
δ,

and therefore, (4.2.44) is true for n = 0.

Assume that s1, s2, . . . , sk are constructed. The inequalities (4.2.43) and (4.2.44) are true

for n = 0, 1, 2, . . . , k − 1. Again we will show that there exists sk+1 such that (4.2.43) and

(4.2.44) are also hold for n = k. Since (4.2.43) and (4.2.44) are true for each n ≤ k − 1, we

get the inequality as follows:

∥sk − s̄∥ ≤
k−1∑
i=0

∥di∥+ ∥s0 − s̄∥ ≤ bδ

k−1∑
i=0

(1
2

)2i
+ δ ≤ 2δ.

This shows that (4.2.43) holds for n = k.

Finally, we will show that the assertion (4.2.44) holds for n = k. For doing this, we

will apply again the contraction mapping principle to Ψsk with r := rsk and λ :=
1

5
. Then

we can deduce the existence of a fixed point ŝk+1 ∈ Brsk (s̄) satisfying ŝk+1 ∈ Ψsk(ŝk+1),

which translates to Isk(ŝk+1) ∈ Rs̄(ŝk+1). This means that 0 ∈ ζ(sk) + g(sk) +
(
∇ζ(sk) +

[ŝk+1, sk; g]
)
(ŝk+1 − sk) + ξ(ŝk+1), that is, P(sk) ̸= ∅. Choose dk ∈ P(sk) such that

∥dk∥ ≤ η dist(0,P(sk)).

Then by Algorithm 2, set sk+1 := sk + dk. Moreover, applying Lemma 4.2.2 we can infer

that R−1
sk

is Lipschitz-like on Br∗(t̄) relative to B rs̄
2
(s̄) with constant M

1−MLrs̄
. Therefore, we

have that

∥sk+1 − sk∥ = ∥dk∥ ≤ η dist(0,P(sk))

≤ η dist(sk, R
−1
sk
(0))

=
ηM

1−MLrs̄
dist(0, ζ(sk) + g(sk) + ξ(sk))

≤ ηM

1−MLrs̄
∥ζ(sk) + g(sk)− ζ(sk−1)− g(sk−1)

−
(
∇ζ(sk−1) + [sk, sk−1; g]

)
(sk − sk−1)∥
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≤ ηM

1−MLrs̄

(
∥ζ(sk)− ζ(sk−1)−∇ζ(sk−1)(sk − sk−1)∥

+∥g(sk)− g(sk−1)− [sk, sk−1; g](sk − sk−1)∥
)

≤ ηM

2(1−MLrs̄)

(
L∥sk − sk−1∥2 +

2∥[sk−1, sk; g]− [sk, sk−1; g]∥∥sk − sk−1∥
)

≤ ηM

2(1−MLrs̄)

(
L∥sk − sk−1∥2 +

2ν(∥sk−1 − sk∥+ ∥sk − sk−1∥)∥sk − sk−1∥
)

=
ηM(L+ 4ν)

2(1−MLrs̄)
∥sk − sk−1∥2

≤ b

2

(
b
(1
2

)2k−1

δ
)2

≤ b
(1
2

)2k
δ.

This implies that (4.2.44) holds for n = k and therefore the proof is completed.

Consider the special case when s̄ is a solution of (1.0.1) (that is, t̄ = 0) in Theorem 4.2.2.

We have the following corollary, which gives the local quadratic convergence result for the

EN-type method. The proof of this corollary is similar to that we did for Corollary 4.2.1.

Corollary 4.2.2. Suppose that s̄ is solution of the variational inclusion (1.0.1) and that R−1
s̄

is pseudo-Lipschitz around (0, s̄). Let η > 1, ν > 0, r̃ > 0 and suppose that ∇ζ is Lipschitz

continuous on Br̃(s̄) with Lipschitz constant L. Suppose that

lim
s→s̄

dist(0, ζ(s) + g(s) + ξ(s)) = 0.

Then there exist some δ̂ > 0 such that any sequence {sn} generated by Algorithm 2 with

initial point in Bδ̂(s̄) converges quadratically to a solution s∗ of the variational inclusion

(1.0.1).

□ 
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4.2.3 Numerical Experiment

To verify the semi-local convergence results of the EN-type method, a numerical example is

presented in this section.

Example 4.2.1. Let S = T = R, s0 = 0.01, η = 2, ν = 0.3, M = 0.4, and ε = 0.1. Define

a Fréchet differentiable function ζ on R by ζ(s) = 2s2, linear and divided difference admissible

function g(s) = −1

4
s and a set-valued mapping ξ on R by ξ(s) = {15s

4
−1, −17s

4
+1}. Then

ζ + g+ ξ is a set-valued mapping on R defined by ζ(s) + g(s) + ξ(s) = {2s2 + 14s

4
− 1, 2s2 −

18s

4
+ 1}. Then Algorithm 2 generates a sequence which converges to s∗ = 0.2500.

Solution: Consider ζ(s) + g(s) + ξ(s) = 2s2 +
14s

4
− 1. It is manifest that (ζ + g + ξ) has

a closed graph at (−0.01, 1.002). In this way (−0.01, 1.002) ∈ gph(ζ + g + ξ). Then from

the statement, it is clear that (ζ + g + ξ)−1 is Lipschitz-like at (1.002,−0.01). Then from

(4.1.1), we have that

P (sk) =
{
dk ∈ S : 0 ∈ ζ(sk) + g(sk) + (∇ζ(sk) + [sk + dk, sk; g]dk + ξ(sk + dk)

}
=

{
dk ∈ S : 0 ∈ ζ(sk) +∇ζ(sk)dk + g(sk + dk) + ξ(sk + dk)

}
=

{
dk ∈ R : dk =

2 + 5sk − 4s2k
8sk − 5

}
.

Otherwise, if P (sk) ̸= ∅, we obtain that

0 ∈ ζ(sk) +∇ζ(sk)(sk+1 − sk) + g(sk+1) + ξ(sk+1)

⇒ sk+1 =
1 + 2s2k
8sk − 5

.

Thus from (4.2.35), we obtain that

∥dk∥ ≤ ηM(ε+ 3ν)]

1−Mε)
∥dk−1∥.

We see that
ηM(ε+ 3ν)]

1−Mε)
= .834 < 1 for the values of η,M,L and ε. This shows that

the sequence generated by Algorithm 2 converges linearly. Then the following Table 4.1,

obtained by using Matlab code, indicates that the solution of the variational inclusion is 0

when k = 4.
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Table 4.1 Numerical results for Example 4.2.1

iteration no. sk ζ + ξ + g = 2s2 +
14s

4
− 1

1 0.0100 -0.9648

2 0.2825 0.1486

3 0.2505 0.0021

4 0.2500 0.0000

5 0.2500 0.0000

0 0.05 0.1 0.15 0.2 0.25 0.3

The value of S

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

T
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ue
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ζ
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g+
ξ

The graph of the variational inclusion ζ+g+ξ  

2s2+14s/4-1

Figure 4.1: Finding a solution of variational inclusion

4.2.4 Concluding Remarks

The semilocal and local convergence results for the EN-type method are established under

the conditions that η > 1, ∇ζ is continuous and Lipschitz continuous, g admits first order

divided difference as well as R−1
s̄ is Lipschitz-like. Finally to illustrates the theoretical result

we have presented a numerical experiment. Therefore, this work extends and improves the

result corresponding to [13, 105].
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4.3 Convergence Analysis of an EN-type Method with

Hölderian Assumptions

This section is organized as follows: In subsection 4.3.2, we consider the EN-type method

defined by Algorithm 3 to approximate the solution of (1.0.1). Using the concept of Lipschitz-

like property for the set-valued mapping, in this section we also establish the existence and

superlinear convergence of the sequence generated by Algorithm 3 in both semilocal and

local cases. At the end, we give a summary of the main results and present a comparison of

this study with other known results.

In this section, we consider the variational inclusion 0 ∈ ζ(s̄)+g(s̄)+ξ(s̄). Here we study

the variational inclusion (1.0.1) with the help of EN-type method, introduced in Khaton et al.

[62], under the weaker conditions than that are used in Khaton et al. [62]. Indeed, semilocal

and local convergence analysis are provided for this method under some conditions that the

Fréchet derivative of ζ and the FODD of g are Hölder continuous on Υ. In particular, we show

this method converges superlinearly and these results extend and improve the corresponding

results in Argyros [13] and Khaton et al. [62]).

4.3.1 Introduction

Let Υ be a subset of S. Let [s, t; g] denotes the FODD at the points s and t and ξ be a

set-valued mapping from S to T which has closed graph. To find a point s̄ in Υ, we consider

the variational inclusion (1.0.1).

Suppose that s ∈ S. P(s) is the subset of S, which defined by

P(s) =
{
d ∈ S : 0 ∈ ζ(s) + g(s) + (∇ζ(s) + [s+ d, s; g])d+ ξ(s+ d)

}
.

Under some suitable conditions, Khaton et al. [62] introduced and studied extended

Newton-type method, when ∇ζ is continuous and Lipschitz continuous as well as g admits

FODD satisfying Lipschitzian condition. Inspired by the work of in [13], Khaton et al. [62]

considered the following, “so called” EN-type method (see Algorithm 3):
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Algorithm 3 (The Extended Newton-type Method)

Iter. 0. Pick η ∈ [1,∞), s0 ∈ S, and put k := 0.

Iter. 1. In case 0 ∈ P(sk), then stop; otherwise, go to the next Stair 2.

Iter. 2. In case 0 /∈ P(sk), choose dk ∈ P(sk) such that

∥dk∥ ≤ η dist (0,P(sk)).

Iter. 3. Set sk+1 := sk + dk.

Iter. 4. Replace k by k + 1 and repeat this cycle from Iter. 1.

In contrast Algorithm 3 with the known results, we have the following conclusions:

When ξ = {0} and g = 0, it is obvious that Algorithm 3 is turned into the known

GN method which is a famous iterative technique for solving nonlinear least squares (model

fitting) problems and has been studied widely; see for example [24, 25, 49, 74, 130, 131].

Within the case when g = 0, several kind of methods for solving (1.0.1) were established by

Rashid [105, 106, 108] and also obtained their semilocal and local convergence.

The objective of this subsection is to continue to study the semilocal and local convergence

for the EN-type method under the weaker conditions than [62], that is, ∇ζ is (L, q)-Hölder

continuous and g admits the FODD satisfying q-Hölderian condition. The Lipschitz-like

property of set-valued mappings which is the main tool of this study whose concepts can

be found in Aubin [15] in the context of non smooth analysis and it has been studied by a

huge number of mathematicians [2, 13, 30, 50, 90]. The main result of this study is semilocal

analysis for the extended Newton-type method, that is, based on the information around

the initial point, the main results are the convergence criteria, which provide few suitable

conditions ensuring the convergence to a solution of any sequence generated by Algorithm

3. Consequently, the results of the local convergence for the EN-type method are attained.

4.3.2 Convergence Analysis

This section is dedicated to prove the existence of a sequence generated by the EN-type

method, represented by the Algorithm 3 and show the superlinear convergence of the se-

quence generated by this method.
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For our suitability, let rs̄ > 0, rt̄ > 0 and Brs̄(s̄) ⊆ Υ ∩ dom ξ. Suppose that ∇ζ is

(L, q)-Hölder continuous on Brs̄(s̄), that is , there exists L > 0 such that

∥∇ζ(s)−∇ζ(s′)∥ ≤ L∥s− s′∥q, q ∈ (0, 1], for any s, s′ ∈ Brs̄(s̄), (4.3.1)

g admits a FODD satisfying q-Hölder condition, that is, there exists ν > 0 such that, for all

s, t, v, w ∈ Brs̄(s̄) (s ̸= t, v ̸= w),

∥[s, t; g]− [v, w; g]∥ ≤ ν(∥s− v∥q + ∥t− w∥q), (4.3.2)

and the mapping R−1
s̄ is Lipschitz-like on Brt̄(t̄) relative to Brs̄(s̄) with constant M , that is,

e(R−1
s̄ (t1) ∩ Brs̄(s̄), R−1

s̄ (t2)) ≤M∥t1 − t2∥ for any t1, t2 ∈ Brt̄(t̄). (4.3.3)

Further, for t̄, the closed graph property of Rs̄ implies that ζ + g + ξ is continuous at s̄ i.e.

lim
s→s̄

dist
(
t̄, ζ(s) + g(s) + ξ(s)

)
= 0 (4.3.4)

is hold.

Let ε0 > 0 and write

r̄ := min
{
rt̄ − 2ε0rs̄,

rs̄(1−Mε0)

4M

}
. (4.3.5)

Then

r̄ > 0 if and only if ε0 < min
{ rt̄
2rs̄

,
1

M

}
. (4.3.6)

The following lemma is extracted from [110, Lemma 3.1] which plays a crucial role for

convergence analysis of the extended Newton-type (EN-type) method.

Lemma 4.3.1. Assume that R−1
s̄ is Lipschitz-like on Brt̄(t̄) relative to Brs̄(s̄) with constant

M and that

sup
s′,s′′∈B rs̄

2
(s̄)

∥∇ζ(s′)−∇ζ(s′′)∥ ≤ ε0 < min
{ rt̄
2rs̄

,
1

M

}
. (4.3.7)

Let s ∈ B rs̄
2
(s̄) and ε0 be defined by (4.3.6). Suppose that ∇ζ is continuous on B rs̄

2
(s̄). Let

r̄ be defined by (4.3.5) such that (4.3.7) is true. Then R−1
s is Lipschitz-like on Br̄(t̄) relative

to B rs̄
2
(s̄) with constant M

1−Mε0
, that is,

e(R−1
s (t1) ∩ B rs̄

2
(s̄), R−1

s (t2)) ≤
M

1−Mε0
∥t1 − t2∥ for any t1, t2 ∈ Br̄(t̄).
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Then for any point s′, s′′ ∈ S, we have from (4.2.19)

∥Is(s′)− Is(s
′′)∥ = ∥g(s′)− g(s′′)− [s′, s; g](s′ − s) + [s′′, s; g](s′′ − s)

+ (∇ζ(s̄)−∇ζ(s))(s′ − s′′)∥. (4.3.8)

Furthermore, let q ∈ (0, 1] and define

r̂ := min
{
rt̄ − 2Lrq+1

s̄ ,
rs̄(1−MLrqs̄)

4M

}
. (4.3.9)

Then

r̂ > 0 ⇔ L < min
{ rt̄

2rq+1
s̄

,
1

Mrqs̄

}
. (4.3.10)

4.3.3 Superlinear Convergence

In this section we will show that the sequence generated by Algorithm 2 converges super-

linearly if ∇ζ is (L, q)-Hölderian and g admits FODD satisfying (ν, q)-Hölder condition. In

fact, the following theorem ensuring the convergence of the EN-type method with initial

point s0.

Theorem 4.3.1. Let η > 1 and q ∈ (0, 1]. Assume that R−1
s̄ is Lipschitz-like on Brt̄(t̄)

relative to Brs̄(s̄) with constant M and that ∇ζ is (L, q)- Hölder continuous on B rs̄
2
(s̄) and g

admits FODD that satisfies (4.3.2). Let r̂ be defined by (4.3.9) so that (4.3.10) is satisfied.

Let ν > 0, δ > 0 be such that

(a) δ ≤ min
{rs̄
4
, (q + 5)r̂, 1,

( 3(q + 1)rt̄
[L(q + 2) + 2ν(q + 1)](6.2q + 1)

) 1
(q+1)

}
,

(b) (2qM + 1)[L(q + 2) + 2ν(q + 1)]
(
η(q + 1)δq + 41−qrqs̄

)
≤ (q + 1),

(c) ∥t̄∥ < [L(q + 2) + 2ν(q + 1)]

3(q + 1)
δq+1.

Suppose that

lim
s→s̄

dist(t̄, ζ(s) + g(s) + ξ(s)) = 0. (4.3.11)

Then there exist some δ̂ > 0 such that any sequence {sn} generated by Algorithm 2 with

initial point s0 in Bδ̂(s̄) converges superlinearly to a solution s∗ of (1.0.1).
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Proof. According to the assumption (a) 4δ ≤ rs̄ and η > 1, by assumption (b) we can write

the inequality as follows

(2qM + 1)(q + 5)[L(q + 2) + 2ν(q + 1)]δq

= (2qM + 1)[L(q + 2) + 2ν(q + 1)]
(
(q + 1)δq + 4δq

)
≤ (2qM + 1)[L(q + 2) + 2ν(q + 1)]

(
η(q + 1)δq + 4δq

)
≤ (2qM + 1)[L(q + 2) + 2ν(q + 1)]

(
η(q + 1)δq + 41−qrqs̄

)
≤ (q + 1). (4.3.12)

Furthermore, using assumption (a) 4δ ≤ rs̄ and assumption (b) we can reduce the inequality

as follows:

ηM [L(q + 2) + 2ν(q + 1)]δq

< η2qM [L(q + 2) + 2ν(q + 1)](q + 5)δq

≤ (2qM + 1)[L(q + 2) + 2ν(q + 1)](η(q + 1)δq + 4δq)− 2qML4δq

≤ (2qM + 1)[L(q + 2) + 2ν(q + 1)](η(q + 1)δq + 41−qrqs̄)− 2qML41−qrqs̄

≤ (q + 1)− 2qML41−qrqs̄.

Since q ∈ (0, 1] then, we get 2qML41−qrqs̄ ≥ (q + 1)MLrqs̄. Now using (4.3.12) in the above

equation and it becomes

ηM [L(q + 2) + 2ν(q + 1)]δq ≤ (q + 1)− (q + 1)MLrqs̄. (4.3.13)

Putting

b :=
ηM [L(q + 2) + 2ν(q + 1)]δq

(q + 1)(1−MLrqs̄)
.

Then, from (4.3.13) we have that

b ≤ 1. (4.3.14)

Pick 0 < δ̂ ≤ δ such that, for each s0 ∈ Bδ̂(s̄),

dist(0, ζ(s0) + g(s0) + ξ(s0)) ≤
[L(q + 2) + 2ν(q + 1)]

3(q + 1)
δq+1. (4.3.15)

Note that since (4.3.11) holds and assumption (c) is true, we assume that such δ̂ exists, which

satisfies (4.3.15). Let s0 ∈ Bδ̂(s̄). By induction we will show that Algorithm 3 generates at
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least one sequence and such generated sequence {sn} satisfies the statements as follows:

∥sn − s̄∥ ≤ 2δ (4.3.16)

and

∥dn∥ ≤ b
(1
3

)(q+1)n

δ, (4.3.17)

hold for every n = 0, 1, 2, ....

Define

rs :=
(q + 5)M

4(q + 1)

(
[L(q + 2) + 2ν(q + 1)]∥s− s̄∥(q+1) + (q + 1)∥t̄∥

)
for each s ∈ S. (4.3.18)

From (4.3.12) we get

2qM [L(q + 2) + 2ν(q + 1)]δq ≤ q + 1

q + 5
. (4.3.19)

and [L(q + 2) + 2ν(q + 1)]δq ≤ q + 1

q + 5
. (4.3.20)

Hence by the combination of δ ≤ (q + 5)r̂ in assumption (a) and inequality (4.3.20), we get

∥t̄∥ <
[L(q + 2) + 2ν(q + 1)]δq+1

3(q + 1)

≤ (q + 1)

(q + 1) · (q + 5)
· (q + 5)r̂

3
=
r̂

3
. (4.3.21)

Utilizing (4.3.19) and assumption (c) together with (4.3.20), we get from (4.3.18) that

rs ≤ (q + 5)M

4(q + 1)

(
[L(q + 2) + 2ν(q + 1)]∥s̄− s0∥q+1 +

[L(q + 2) + 2ν(q + 1)]

3
δq+1

)
<

(q + 5)M

12(q + 1)

(
3[L(q + 2) + 2ν(q + 1)](2δ)q+1 + 2q[L(q + 2) + 2ν(q + 1)]δq+1

)
=

(q + 5)M

12(q + 1)
[L(q + 2) + 2ν(q + 1)]δq+1(3.2.2q + 2q)

=
(q + 5)(6 · 2q + 2q)M

12(q + 1)
[L(q + 2) + 2ν(q + 1)]δq+1

=
(q + 5)7 · 2qM

12(q + 1)
[L(q + 2) + 2ν(q + 1)]δp+1

=
7(q + 5)

12(q + 1)
· (q + 1)

(q + 5)
δ <

7

12
δ < 2δ, for each s ∈ B2δ(s̄). (4.3.22)

Observe that (4.3.16) is trivial for n = 0.
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At first, we need to prove P(s0) ̸= ∅ to show that (4.3.17) holds for n = 0. The

nonemptyness of P(s0) will ensure us to deduce the existence of the point s1. We will apply

Lemma 2.0.4 to the map Ψs0 with η0 = s̄ for completing this. We have to show that Lemma

2.0.4 holds with r := rs0 and λ :=
q + 1

q + 5
satisfying both assertions (2.0.4) and (2.0.5). We

get from (4.2.3) that s̄ ∈ R−1
s̄ (t̄) ∩ B2δ(s̄). By the definition of the excess e and (4.2.18),

defined as the mapping of Ψs0 , we have that

dist(s̄,Ψs0(s̄)) ≤ e(R−1
s̄ (t̄) ∩ Brs0 (s̄),Ψs0(s̄))

≤ e(R−1
s̄ (t̄) ∩ B2δ(s̄),Ψs0(s̄))

≤ e(R−1
s̄ (t̄) ∩ Brs̄(s̄), R−1

s̄ [Is0(s̄)]). (4.3.23)

Since ∇ζ is (L, q)-Hölder continuous and g admits FODD satisfies Hölderian condition, for

every s ∈ B2δ(s̄) ⊆ B rs̄
2
(s̄), we have that

∥Is0(s)− t̄∥ = ∥ζ(s̄) + g(s) +∇ζ(s̄)(s− s̄)− ζ(s0)− g(s0)

− (∇ζ(s0) + [s, s0; g])(s− s0)− t̄∥

≤ ∥ζ(s̄)− ζ(s0)−∇ζ(s0)(s̄− s0)∥+ ∥
(
∇ζ(s0)−∇ζ(s̄)

)
(s̄− s)∥

+ ∥g(s)− g(s0)− [s, s0; g](s− s0)∥+ ∥t̄∥

≤ L

q + 1
∥s̄− s0∥q+1 + L∥s0 − s̄∥q∥s̄− s∥

+∥[s0, s; g]− [s, s0; g]∥∥s− s0∥+ ∥t̄∥ (4.3.24)

≤ L

q + 1
∥s̄− s0∥q+1 + L∥s0 − s̄∥q∥s̄− s∥

+ν
(
∥s0 − x∥q + ∥s− s0∥q

)
∥s− s0∥+ ∥t̄∥

≤ L

q + 1
(2δ)q+1 + L(2δ)q · 2δ + ν

(
(2δ)q + (2δ)q

)
· 2δ + ∥t̄∥

≤ L(q + 2) + 2ν(q + 1)

q + 1
δq+1 · 2q+1 + ∥t̄∥. (4.3.25)

Now through the assumptions (a)
[L(q + 2) + 2ν(q + 1)](6 · 2q + 1)

3(q + 1)
δq+1 ≤ rt̄ and (c),
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(4.3.24) gives that

∥Is0(s)− t̄∥ ≤ [L(q + 2) + 2ν(q + 1)]

q + 1
2q+1δq+1 +

[L(q + 2) + 2ν(q + 1)]

3(q + 1)
δq+1

=
[L(q + 2) + 2ν(q + 1)](3.2.2q + 1)

3(q + 1)
δq+1

<
[L(q + 2) + 2ν(q + 1)](6 · 2q + 1)

3(q + 1)
δq+1 ≤ rt̄. (4.3.26)

This means that Is0(s) ∈ Brt̄(t̄). Moreover, let s = s̄ in (4.3.24). Then it is easily proved

that

Is0(s̄) ∈ Brt̄(t̄) and

∥Is0(s̄)− t̄∥ ≤ [L+ 2ν(q + 1)]

q + 1
∥s̄− s0∥q+1 + ∥t̄∥. (4.3.27)

By using the Lipschitz-like property of R−1
s̄ and (4.3.27) in (4.3.23), we obtain

dist(s̄,Ψs0(s̄)) ≤ M∥t̄− Is0(s̄)∥

≤ M [L(q + 2) + 2ν(q + 1)]

q + 1
∥s̄− s0∥q+1 +M∥t̄∥

≤ 4

q + 5
rs0 =

(
1− q + 1

q + 5

)
rs0

= (1− λ)r;

i e, the statement (2.0.4) of Lemma 2.0.4 is hold. Now, it is evident to show that statement

(2.0.5) of Lemma 2.0.4 holds. Let s′, s′′ ∈ Brs0 (s̄). Then we get that s′, s′′ ∈ Brs0 (s̄) ⊆

B2δ(s̄) ⊆ Brs̄(s̄) by (4.3.22) and Is0(s
′), Is0(s

′′) ∈ Brt̄(t̄) by (4.3.26). This together with the

assumed Lipschitz-like property of R−1
s̄ is as follows:

e(Ψs0(s
′) ∩ Brs0 (s̄),Ψs0(s

′′)) ≤ e(Ψs0(s
′) ∩ B2δ(s̄),Ψs0(s

′′))

≤ e(R−1
s̄ [Is0(s

′)] ∩ Brs̄(s̄), R−1
s̄ [Is0(s

′′)])

≤ M∥Is0(s′)− Is0(s
′′)∥. (4.3.28)



72Chapter 4 Semilocal and Local Convergence Analysis of a EN-type Method with Hölderian A.

Now, using the definition of FODD of g in (4.3.8) we obtain

∥Is0(s′)− Is0(s
′′)∥ = ∥g(s′)− g(s′′)− [s′, s0; g](s

′ − s0) + [s′′, s0; g](s
′′ − s0)

+ (∇ζ(s̄)−∇ζ(s0))(s′ − s′′)∥

≤ ∥g(s′)− g(s′′) + [s′, s0; g](s0 − s′)− [s′′, s0; g](s0 − s′′)∥

+ ∥∇ζ(s̄)−∇ζ(s0)∥∥s′ − s′′∥

≤ ∥g(s′)− g(s′′) + g(s0)− g(s′)− g(s0) + g(s′′)

+ ∥∇ζ(s̄)−∇ζ(s0)∥∥s′ − s′′∥

≤ ∥∇ζ(s̄)−∇ζ(s0)∥∥s′ − s′′∥ ≤ L∥s̄− s0∥q∥s′ − s′′∥

≤ L.2qδq∥s′ − s′′∥. (4.3.29)

It follows from (4.3.28), that

e(Ψs0(s
′) ∩ Brs0 (s̄),Ψs0(s

′′)) ≤ ML.2qδq∥s′ − s′′∥.

Since ν,M,L > 0 and q ∈ (0, 1], then we can write 2qMLδq < 2qM [L(q + 2) + 2ν(q + 1)]δp

and hence the above inequality becomes

e(Ψs0(s
′) ∩ Brs0 (s̄),Ψs0(s

′′)) ≤ 2qM [L(q + 2) + 2ν(q + 1)]δp∥s′ − s′′∥

≤ q + 1

q + 5
∥s′ − s′′∥

= λ∥s′ − s′′∥.

Thus the statement (2.0.5) of Lemma 2.0.4 is also hold. Hence, both statements (2.0.4) and

(2.0.5) of Lemma 2.0.4 are accomplished. Finally, it shows that Lemma 2.0.4 is adequate

to presume the position of a point ŝ1 ∈ Brs0 (s̄) such that ŝ1 ∈ Ψs0(ŝ1) which implies that

0 ∈ ζ(s0) + g(s0) + (∇ζ(s0) + [ŝ1, s0; g])(ŝ1 − s0) + ξ(ŝ1) and hence P(s0) ̸= ∅.

Next, it is sufficient to prove that (4.3.17) holds for n = 0. As ∇ζ is (L, q)- Hölder

continuous on B rs̄
2
(s̄), we have for all s′, s′′ ∈ B rs̄

2
(s̄), that

Lrqs̄ ≥ sup
s′,s′′∈B rs̄

2
(s̄)

∥∇ζ(s′)−∇ζ(s′′)∥. (4.3.30)

Observe the assumption (a) that r̂ > 0. Therefore, from (4.3.9) and (4.3.30) imply that

Lemma 4.3.1 is satisfied with ε0 := Lrps̄ . According to our assumption R−1
s̄ is Lipschitz-like
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on Brȳ(t̄) relative to Brs̄(s̄). Then, it implies from Lemma 4.3.1 that, R−1
s0

is Lipschitz-like on

Br̂(t̄) relative to B rs̄
2
(s̄) with constant M

1−MLrqs̄
as s0 ∈ Bδ̂(s̄) ⊆ Bδ(s̄) ⊆ B rs̄

2
(s̄) by assumption

(a) and the choice of δ̂ . On the other hand, (4.3.15) follows as

dist(0, Rs0(s0)) = dist(0, ζ(s0) + g(s0) + ξ(s0))

≤ r̂

3
.

Inequality (4.3.21) shows that 0 ∈ B(t̄, r̂
3
) and observe before that s0 ∈ B rs̄

2
(s̄). Hence using

Lemma 2.0.1, we get

dist(s0, R
−1
s0
(0)) ≤ M

1−MLrqs̄
dist(0, Rs0(s0))

=
M

1−MLrqs̄
dist(0, ζ(s0) + g(s0) + ξ(s0)).

This together with (4.2.1), gives

dist(0,P(s0)) = dist(s0, R
−1
s0
(0))

≤ M

1−MLrqs̄
dist(0, ζ(s0) + g(s0) + ξ(s0)). (4.3.31)

According to Algorithm 2 and using (4.3.14), (4.2.42) and (4.3.31), we have

∥d0∥ ≤ η dist(0,P(s0))

≤ ηM

(1−MLrqs̄)
dist(0, ζ(s0) + g(s0) + ξ(s0))

≤ ηM [L(q + 2) + 2ν(q + 1)]δq+1

3(q + 1)(1−MLrqs̄)
= b

(1
3

)
δ.

This means that

∥s1 − s0∥ = ∥d0∥ ≤ b
(1
3

)
δ,

and therefore, (4.3.17) is true for n = 0. Suppose s1, s2, . . . , sk are formed. The inequalities

(4.3.16) and (4.3.17) are hold for n = 0, 1, 2, . . . , k − 1. We show that there exists sk+1 such

that (4.3.16) and (4.3.17) are also hold for n = k. Since (4.3.16) and (4.3.17) are true for

each n ≤ k − 1, we get the following inequality:

∥sk − s̄∥ ≤
k−1∑
i=0

∥di∥+ ∥s0 − s̄∥ ≤ bδ

k−1∑
i=0

(1
3

)(q+1)i
+ δ ≤ 2δ.
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This implies (4.3.16) holds for n = k. Now with all the same argument as we did for the

case when n = 0, we can prove that P(sk) ̸= ∅, that is, the point sk+1 exists and R−1
sk

is

Lipschitz-like on Br̂(t̄) relative to B rs̄
2
(s̄) with constant M

1−MLrqs̄
. Therefore, we have that

∥sk+1 − sk∥ = ∥dk∥ ≤ η dist(0,P(sk))

≤ η dist(sk, R
−1
sk
(0))

=
ηM

1−MLrqs̄
dist(0, ζ(sk) + g(sk) + ξ(sk))

≤ ηM

1−MLrqs̄
∥ζ(sk) + g(sk)− ζ(sk−1)− g(sk−1)

−
(
∇ζ(sk−1) + [sk, sk−1; g]

)
(sk − sk−1)∥

≤ ηM

1−MLrqs̄

(
∥ζ(sk)− ζ(sk−1)−∇ζ(sk−1)(sk − sk−1)∥

+∥g(sk)− g(sk−1)− [sk, sk−1; g](sk − sk−1)∥
)

≤ ηM

(q + 1)(1−MLrqs̄)

(
L∥sk − sk−1∥q+1 +

(q + 1)∥[sk−1, sk; g]− [sk, sk−1; g]∥∥sk − sk−1∥
)

≤ ηM

(q + 1)(1−MLrqs̄)

(
L∥sk − sk−1∥q+1 +

(q + 1)ν(∥sk−1 − sk∥q + ∥sk − sk−1∥q)∥sk − sk−1∥
)

≤ ηM [L+ 2ν(q + 1)]

(q + 1)(1−MLrqs̄)
∥dk−1∥q+1

≤ ηM [L(q + 2) + 2ν(q + 1)]

(q + 1)(1−MLrqs̄)
∥dk−1∥q+1 (4.3.32)

≤ ηM [L(q + 2) + 2ν(q + 1)]

(q + 1)(1−MLrqs̄)

(
b
(1
3

)(q+1)k−1

δ
)q+1 ≤ b

(1
3

)(q+1)k
δ.

This implies that (4.3.17) holds for n = k and therefore the proof of the theorem is completed.

Consider the special case when s̄ is a solution of (1.0.1)(that is, t̄ = 0) in Theorem 4.3.1.

We have the following corollary, which describes the local superlinear convergence result for

the EN-type method.

Corollary 4.3.1. Suppose that s̄ is a solution of the variational inclusion (1.0.1). Let

q ∈ (0, 1] and η > 1 and let R−1
s̄ be pseudo-Lipschitz around (0, s̄). Let r̃ > o and suppose that

∇ζ is (L, q)-Hölder continuous on Br̃(s̄) and g admits FODD satisfying Hölderian condition

□ 



4.3 Convergence Analysis 75

on Br̃(s̄). Assume that

lim
s→s̄

dist(0, Rs(s)) = 0. (4.3.33)

Then, with an initial point s0, there exists some δ̂ > 0 such that any sequence {sn} generated

by Algorithm 3 converges superlinearly to a solution s∗ of the variational inclusion (1.0.1).

Proof. Suppose that R−1
s̄ is pseudo-Lipschitz around (0, s̄). Then by definition of pseudo-

Lipschitz continuty, there exist constants M, r̃ and r0 such that R−1
s̄ is Lipschitz-like on

B(t̄)(r0) relative to Br̃(s̄) with constant M. Then, for each 0 < rs̄ ≤ r̃, we have that

e(R−1
s̄ (t1) ∩ B(s̄, rs̄), R−1

s̄ (t2) ≤M∥t1 − t2∥ for any t1, t2 ∈ Br0(0),

that is, R−1
s̄ is Lipschitz-like on Br0(t̄) relative to Brs̄(s̄) with constant M. Let L ∈ (0, 1],

q ∈ (0, 1] and ν > 0. By the (L, q)-Hölder continuty of ∇ζ we can select rs̄ ∈ (0, r̃) such

that
rs̄
2

≤ r̃, r0 − 2Lrq+1
s̄ > 0, MLrqs̄ < 1 and

Lrqs̄ ≥ sup
s′,s′′∈B rs̄

2
(s̄)

∥∇ζ(s′)−∇ζ(s′′)∥.

Then, define

r̂ := min
{
r0 − 2Lrq+1

s̄ ,
rs̄(1−MLrqs̄)

4M

}
> 0.

and

min
{rs̄
4
, (q + 5)r̂,

3(q + 1)r0
[L(q + 2) + 2ν(q + 1)](6.2q + 1)

}
> 0

Thus, we can choose 0 < δ ≤ 1 such that

δ ≤ min
{rs̄
4
, (q + 5)r̂,

3(q + 1)r0
[L(q + 2) + 2ν(q + 1)](6.2q + 1)

}
and

(2qM + 1)[L(q + 2) + 2ν(q + 1)]
(
η(q + 1)δq + 41−qrqs̄

)
≤ (q + 1).

Now it is routine to check that conditions (a)-(c) of Theorem 4.3.1 are satisfied. Thus we

can apply Theorem 4.3.1 to complete the proof. □ 
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4.3.4 Numerical Experiment

To verify the semi-local convergence results of the EN-type method, a numerical example is

presented in this section.

Example 4.3.1. Let S = T = R, s0 = −0.2, η = 1.5, ν = 0.4, M = 0.2, q = 0.9, r =

5 and L = 3. Define a Fréchet differentiable function ζ on R by ζ(s) = 3s2 + 1, linear

and divided difference admissible function g(s) = −3s

2
and a set-valued mapping ξ on R

by ξ(s) = {−5s + 2, 2s − 2}. Then ζ + g + ξ is a set-valued mapping on R defined by

ζ(s) + g(s) + ξ(s) = {3s2 − 13s

2
+ 3, 3s2 +

s

2
− 1}. Then Algorithm 3 generates a sequence

which converges to s∗ = 0.666.

Solution: Consider ζ(s) + g(s) + ξ(s) = 3s2 − 13s

2
+ 3. It is manifest that (ζ + g + ξ) has

a closed graph at (−0.2, 4.42). In this way (−0.2, 4.42) ∈ gph(ζ + g + ξ). Then from the

statement, it is clear that (ζ + g + ξ)−1 is Lipschitz-like at (4.42,−0.2). Then from (4.1.1),

we have that

P (sk) =
{
dk ∈ S : 0 ∈ ζ(sk) + g(sk) + (∇ζ(sk) + [sk + dk, sk; g]dk + ξ(sk + dk)

}
=

{
dk ∈ S : 0 ∈ ζ(sk) +∇ζ(sk)dk + g(sk + dk) + ξ(sk + dk)

}
=

{
dk ∈ R : dk =

6s2k − 13sk + 6

13− 12sk

}
.

Otherwise, if P (sk) ̸= ∅, we obtain that

0 ∈ ζ(sk) +∇ζ(sk)(sk+1 − sk) + g(sk+1) + ξ(sk+1)

⇒ sk+1 =
6− 6s2k
13− 12sk

.

Thus from (4.3.32), we obtain that

∥dk∥ ≤ ηM [L+ (q + 2) + 2ν(q + 1)]

(q + 1)(1−MLrqs̄)
∥dk−1∥1+q.

Hereafter, for the given values of M,L, η, q, r and ν, we get that Algorithm 3 generates

a superlinearly convergent sequence with initial point s0 = −0.2 in a neighborhood of s̄ =

−0.19. Then the following Table 4.3, obtained by using Matlab code, indicates that the

solution of the variational inclusion is 0 when k = 5.
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Table 4.3 Numerical results for Example 4.3.1

iteration no. sk ζ + g+ ξ = 3s2 − 13s

2
+ 3

1 -0.2000 4.4200

2 0.3740 0.9885

3 0.6063 0.1619

4 0.6628 0.0096

5 0.6666 0.0000

6 0.6667 0.0000

7 0.6667 0
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Figure 4.2: Finding a solution of variational inclusion

4.3.5 Concluding Remarks

The semilocal and local convergence results are presented for the EN-type method under the

conditions that η > 1, R−1
s̄ is Lipschitz-like, ∇ζ satisfies Hölderian condition and g admits

FODD satisfying the Hölder condition defined by (4.3.2). In particular, we have presented

semilocally superlinear convergence analysis for EN-type method in Theorem 4.3.1 while the

1---B----
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locally superlinear convergence analysis for EN-type method is presented in Corollary 4.3.1.

Here we have given a numerical experiment to illustrates the theoretical result. Therefore,

this result extends and improves the corresponding ones [13, 62].

Moreover, according to our main results, we have the following conclusions:

(i) If we set q = 0 in Theorem 4.3.1, it gives the semilocal linear convergence result for the

EN-type method and this result coincides with the result presented in [62, Theorem

3.1]. On the other hand, if we put q = 0 in Corollary 4.3.1, this result provides locally

linear convergence result which is similar with the result presented in [62, Corollary

3.1].

(ii) If we put q = 1 in Theorem 4.3.1, it yields the semilocal quadratic convergence result

for the EN-type method and this result is analogous to the outcome presented in [62,

Theorem 3.2]. Furthermore, if we give q = 1 in Corollary 4.3.1, it gives the local

quadratic convergence result for this method which is resembling the work presented

in [62, Corollary 3.2].



Chapter 5

Semilocal and Local Convergence

Analysis of an ENM for Nonsmooth

Variational Inclusions

In this Chapter, we introduce an ENM for finding the solution of the nonsmooth variational

inclusion (1.0.3) 0 ∈ ζ(s̄) + ξ(s̄) and analyze its semilocal and local convergence under the

conditions that (ζ+ ξ)−1 is Lipschitz-like and ζ admits a (n, α)-PBA. Applications of (n, α)-

PBA are provided for smooth functions in the cases n = 1 and n = 2 as well as for normal

maps. In particular, when 0 < α < 1 and the derivative of ζ, denoted ∇ζ, is (ℓ, α)-Hölder

continuous, we have shown that ζ admits (1, α)-PBA for n = 1 while ζ admits (2, α)-PBA

for n = 2, when 0 < α < 1 and the second derivative of ζ, denoted ∇2ζ, is (K,α)-Hölder.

Finally, we have constructed a (n, α)-PBA for the normal maps ζC + ξ when ζ has a (n, α)-

PBA.

5.1 ENM for Nonsmooth Variational Inclusions

5.1.1 Introduction

Let S and T be two Banach spaces, ξ : S ⇒ 2T be a set-valued mapping which has closed

graph and ζ : Υ ⊆ S → T be a nonsmooth single-valued function that admits (n, α)-PBA on

79
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Υ with a constant L > 0. We are concerned with the problem of finding solution of the

nonsmooth variational inclusion (1.0.3), which is as follows:

0 ∈ ζ(s̄) + ξ(s̄). (5.1.1)

The classical Newton method is very well known and extensively used to find solutions of

(1.0.3) when ξ = {0}, where ζ has Lipschitz continuous Fréchet derivatives. Semilocal and

local convergence results for Newton method can be found in the survey [12, 27, 43, 61] and

its references. We assume that the single-valued function ζ is nonsmooth function, that is, ζ

doesn’t possess Fréchet derivative and its classical linearization is no longer available. Then

no one can give the clear result that how one can give a design of the Newton algorithm. So

that it needs to seek a replacement for such type of linearization. A lot of researchers have

worked on this question and the applicants have presented different methods for a few things

that are important in certain cases and have proved their justification. A lot of papers have

worked on the Newton-type methods for solving the nonsmooth equations and variational

inequalities; see for example [6, 10, 14, 34, 68, 69, 119, 123, 129] for inspiration and advanced

works on these areas.

In the framework of nonsmooth variational inclusion (1.0.3), when the single-valued

function is differentiable, several iterative methods have presented for solving this varia-

tional inclusion, such as N-type method, proximal point method, etc.; see for example [3–

5, 25, 102, 105, 107, 110, 111]. The proximal point algorithm (PPA) is one of the most useful

method for solving (1.0.3) in the case ζ = 0 and T = S a Hilbert space. About the root of

PPA can be known in the works of Martinet [77] for variational inequalities. This PPA has

been further polished and extended in [102, 125, 127] to a more general setting, including

convex programs, convex-concave saddle point problems and variational inequality problems.

In addition, Alom and Rashid [4] have been presented the Gauss-type proximal point method

for solving (1.0.3) in the case of smooth function, that is, when ζ is Fréchet differentiable.

A number of papers have appeared dealing with N-type methods for solving the nonsmooth

variational inclusion (1.0.3) and analyzed the local and semi-local convergence results, see

in [11, 42, 98].

To solve the nonsmooth variational inclusion (1.0.3), Geoffroy and Piétrus in [42] consid-
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ered the method as follows:

0 ∈ A(sk, sk+1) + ξ(sk+1) for each k = 0, 1, 2, . . . , (5.1.2)

where A : S × S → T is an approximation of ζ. They presented a local convergence

result under some assumptions and the assumptions are ζ and the set valued map, where

ζ admits an (n, α)-PBA and the set-valued map (A(s∗, ·) + ξ(·))−1 is M -pseudo-Lipschitz

around (0, s∗). For the first time, Dontchev [26] introduced the iterative procedure (5.1.2)

for solving (1.0.3). For this procedure (5.1.2) he presented the nonsmooth analogue of the

Kantorovich-type theorem by assuming the Aubin continuity of the map (A(s0, ·) + ξ(·))−1

at (0, s1), where s1 is the first iterate of (5.1.2).

Let s ∈ Υ ⊆ S. Suppose that M(s) is a subset of Υ which is defined by

M(s) := {d ∈ Υ : 0 ∈ A(s, s+ d) + ξ(s+ d)}.

Usually, the method (5.1.2) guarantees the existence of a sequence and the sequence is a

convergent. Therefore, for a starting point near to a solution, we know that, the sequences

are not uniquely defined, which is constructed by the method (5.1.2). For example, Dontchev

presented a convergence result which is established in [42, Theorem 3.3] and the result con-

firms the existence of a convergent sequence. Thus, in view of numerical computation, this

kind of Newton-type methods are not convenient in practical application. This drawback al-

lows us to propose the iterative procedure “so-called” extended Newton-type method (ENM)

to solve the nonsmooth variational inclusion (1.0.3):

Algorithm 4 (The Extended Newton-type Method)(ENM)

Iter. 1. Pick η ∈ [1,∞), s0 ∈ Υ, and place i := 0.

Iter. 2. In case 0 ∈ M(si), then stop; otherwise, go to the next Stair 3.

Iter. 3. In case 0 /∈ M(si), choose di such that di ∈ M(si)

and ∥di∥ ≤ η dist (0,M(si)).

Iter. 4. Set si+1 := si + di.

Iter. 5. i+ 1 is replaced by i and repeat this cycle Iter. 2.

Many effective works on semi-local analysis have been investigated for some special cases

such as N-type method for nonlinear least square problems (cf. [25]), the ENM for solving
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variational inclusions (cf. [102]) and the Newton method for nonsmooth equations (cf. [11]).

Rashid et al . [110] introduced the GN type method for approximating the solution of (1.0.3)

in the case of smooth function and obtained the semi-local and local convergence results.

Rashid introduced the GN method for nonsmooth generalized equations in his PhD thesis [98,

Theorem 3.2.1], and obtained the semi-local and local convergence results. Moreover, Rashid

[103] introduced an extended Newton-type method for solving the nonsmooth generalized

equation (1.0.3) and achieved the semi-local and local convergence results. In recent time,

Alom and Rashid [3] have been presented the general Gauss-type proximal point method

for solving (1.0.3) in the case of smooth function and evaluate the semi-local and local

convergence results. As our best knowledge, there is no other study on semi-local analysis for

solving the nonsmooth variational inclusion (1.0.3) by using extended Newton-type method

(ENM). Thus, the contribution, presented in this study, seems new.

In this chapter, we present semilocal and local convergence of Algorithm 4 under some

mild conditions for the function ζ and the set-valued mapping (ζ + ξ)−1. In fact, the main

motivation of this research is to analyze the semilocal and local convergence of the sequence

generated by Algorithm 4 for solving the nonsmooth variational inclusion (1.0.3) using the

notion of (n, α)-PBA introduced by Geoffroy and Piétrus [42] and Lipschitz-like property.

Based on the information around the initial point, the main result is the convergence criteri-

on, developed in the section 3, which provides some sufficient conditions, for a starting point

near to the solution, ensuring the convergence to the solution of any sequence constructed

by Algorithm 4. As a result, local convergence result for the ENM is obtained.

This work is arranged as follows: In section 5.2, we will show the existence and prove the

convergence of the sequence generated by the Algorithm 4, which is introduced in section

5.1.1, by using (n, α)-PBA as well as the concept of Lipschitz-like property for set-valued

mappings. The summary of the fundamental results in the present work are presented in

section 5.4.



5.2 Convergence Analysis 83

5.2 Convergence Analysis of ENM

Let n ∈ N∗, α > 0 and ζ : Υ ⊆ S → T is a nonsmooth function that admits (n, α)-PBA on

Υ with a constant L > 0, where Υ is an open neighborhood of a point s̄ ∈ S. Let s ∈ S and

we define the mapping Rs as follows:

Rs(·) := A(s, ·) + ξ(·). (5.2.1)

Then

M(s) =
{
d ∈ S : 0 ∈ Rs(s+ d)

}
=

{
d ∈ S : s+ d ∈ R−1

s (0)
}
. (5.2.2)

Furthermore, the following equivalence is clear:

z ∈ R−1
s (t) ⇐⇒ t ∈ A(s, z) + ξ(z) for any z ∈ S and t ∈ T . (5.2.3)

In particular,

s̄ ∈ R−1
s̄ (t̄) for each (s̄, t̄) ∈ gph (ζ + ξ).

Let (s̄, t̄) ∈ gph (ζ + ξ) and let rs̄ > 0, rt̄ > 0. Furthermore, throughout in this section

we assume that Brs̄(s̄) ⊆ Υ ∩ dom ξ. Suppose that πn,α is defined in Definition 2.0.3.

Define

r̄ := min

{
rt̄ −

L rs̄
n+α (3n+α + 2n+α)

πn,α 2n+α
,
rs̄(2

α −MLrαs̄ )

4.2αM

}
. (5.2.4)

Then

r̄ > 0 ⇐⇒ L < min

{
rt̄ πn,α 2

n+α

rs̄n+α (3n+α + 2n+α)
,

2α

MLrαs̄

}
. (5.2.5)

We know that the variational inclusion (1.0.3) is an abstract model for various problems.

From now on, we make the following conditions.

(i) ζ admits a (n, α)-PBA with modulus L, on some open neighborhood Υ of s̄, which is

denoted by A;

(ii) ξ has closed graph;

(iii) The set valued map (ζ+ξ)−1 is Lipschitz-like on Brt̄(t̄) relative to Brs̄(s̄) with constant

M .
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The following lemma plays an important role to the convergence analysis of the ENM

and the method defined by Algorithm 4. Dontchev proved that the following procedure is a

refinement of [26, Lemma 1].

Lemma 5.2.1. Suppose the assumptions (i)-(iii) hold and let r̄ be defined in (5.2.4), so that

(5.2.5) is satisfied. Let s ∈ B rs̄
2
(s̄). Then R−1

s (·) is Lipschitz-like on Br̄(t̄) relative to B rs̄
2
(s̄)

with constant
2αM

2α −MLrαs̄
, that is,

e(R−1
s (t1) ∩ B rs̄

2
(s̄), R−1

s (y2)) ≤
2αM

2α −MLrαs̄
∥t1 − t2∥ for any t1, t2 ∈ Br̄(t̄).

Proof. Since ζ has a (n, α)-PBA on an open neighbourhood of s̄ ∈ (ζ + ξ)−1(t̄) with a

constant L and the map (ζ + ξ)−1 is Lipschitz-like around (t̄, s̄) with a constant M , then by

Remark 2.0.4 we get that R−1
s (·) is Lipschitz-like around (t̄, s̄) with a constant M < L, i.e,

∃ constants rs̄ > 0, rt̄ > 0 and M such that

e(R−1
s̄ (t1) ∩ Brs̄(s̄), R−1

s̄ (t2)) ≤M∥t1 − t2∥ for all t1, t2 ∈ Brt̄(t̄). (5.2.6)

Note, by (5.2.4) and (5.2.5), that r̄ > 0. Now let

t1, t2 ∈ Br̄(t̄) and s′ ∈ R−1
s (t1) ∩ B rs̄

2
(s̄). (5.2.7)

It is sufficent to prove that there exist s′′ ∈ R−1
s (t2) such that

∥s′ − s′′∥ ≤ 2αM

2α −MLrαs̄
∥t1 − t2∥.

At the last stage, we shall verify, there exists a sequence {sk} ⊂ Brs̄(s̄) such that

t2 ∈ A(s, sk−1)− A(s̄, sk−1) + A(s̄, sk) + ξ(sk), (5.2.8)

and

∥sk − sk−1∥ ≤M∥t1 − t2∥
(MLrαs̄

2α

)k−2

(5.2.9)

for every k = 2, 3, 4, . . . the inequality hold. We proceed by mathematical induction.

Denote

zi := ti − A(s, s′) + A(s̄, s′) for each i = 1, 2.
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Note by (5.2.7) that

∥s− s′∥ ≤ ∥s− s̄∥+ ∥s̄− s′∥

≤ rs̄
2
+
rs̄
2

≤ rs̄. (5.2.10)

It follows, from (5.2.7) and the relation r̄ ≤ rt̄ −
Lrs̄

n+α (3n+α + 2n+α)

πn,α 2n+α
by (5.2.4) that

∥zi − t̄∥ ≤ ∥ti − t̄∥+ ∥A(s, s′)− A(s̄, s′)∥

≤ r̄ + ∥ζ(s′)− A(s, s′)∥+ ∥ζ(s′)− A(s̄, s′)∥

≤ r̄ +
L

πn,α

(
∥s− s′∥n+α + ∥s̄− s′∥n+α

)
≤ r̄ +

L

πn,α

(
rs̄
n+α +

(rs̄
2

)n+α)
= r̄ +

Lrs̄
n+α

(
2n+α + 1

)
πn,α

≤ rt̄.

This implies that zi ∈ Brt̄(t̄) for each i = 1, 2. Letting s1 := s′. Then s1 ∈ R−1
s (t1) by

(5.2.7) and it follows from (5.2.3) that

t1 ∈ A(s, s1) + ξ(s1),

we can be written the inequality as like as follows

t1 − A(s, s1) + A(s̄, s1) ∈ A(s̄, s1) + ξ(s1).

According to the definition of z1, we get that z1 ∈ A(s̄, s1) + ξ(s1). Hence s1 ∈ R−1
s̄ (z1) by

(5.2.3). This together with (5.2.7) implies that

s1 ∈ R−1
s̄ (z1) ∩ Brs̄(s̄).

According to the concept of Lipschitz-like property of R−1
s̄ (·) and noting that z1, z2 ∈ Brt̄(t̄),

it follows from (5.2.6) that there exists s2 ∈ R−1
s̄ (z2) such that

∥s2 − s1∥ ≤M∥z1 − z2∥ =M∥t1 − t2∥.

Furthermore, from the definition of z2 and noting s1 = s′, we get that

s2 ∈ R−1
s̄ (z2) = R−1

s̄ (t2 − A(s, s1) + A(s̄, s1)),
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which together with (5.2.3) implies that

t2 ∈ A(s, s1)− A(s̄, s1) + A(s̄, s2) + ξ(s2).

This shows that (5.2.8) and (5.2.9) are true with created points s1 and s2.

Suppose that the points s1, s2, ..., sm have created so that (5.2.8) and (5.2.9) are true

for k = 2, 3, . . . ,m. We need to create sm+1 such that (5.2.8) and (5.2.9) are also true for

k = m+ 1. To do this, setting

zmi := t2 − A(s, sm+i−1) + A(s̄, sm+i−1) for each i = 0, 1.

Then, by the inductional assumption together with the concept of (n, α)-PBA of A, we get

that

∥zm0 − zm1 ∥ = ∥[A(s, sm−1)− A(s̄, sm−1)]− [A(s, sm)− A(s̄, sm)]∥

≤ L∥s− s̄∥α∥sm − sm−1∥ ≤ Lrαs̄
2α

∥sm − sm−1∥

≤ ∥t1 − t2∥
(MLrαs̄

2α

)m−1

. (5.2.11)

We have ∥s1 − s̄∥ ≤ rs̄
2

and ∥t1 − t2∥ ≤ 2r̄ from (5.2.7) and using (5.2.9) we get

∥sm − s̄∥ ≤
m∑
k=2

∥sk − sk−1∥+ ∥s1 − s̄∥

≤ 2Mr̄
m∑
k=2

(MLrαs̄
2α

)k−2

+
rs̄
2

≤ 2.2αMr̄

2α −MLrαs̄
+
rs̄
2
.

By (5.2.4), we have 4.2αMr̄ ≤ rs̄(2
α −MLrαs̄ ) and then (5.2.12) becomes

∥sm − s̄∥ ≤ rs̄. (5.2.12)

Consequently,

∥sm − s∥ ≤ ∥sm − s̄∥+ ∥s̄− s∥ ≤ 3

2
rs̄. (5.2.13)



5.2 Convergence Analysis 87

Furthermore, using (5.2.7), (5.2.12) and (5.2.13), we get that, for each i = 0, 1,

∥zmi − t̄∥ ≤ ∥t2 − t̄∥+ ∥A(s, sm+i−1)− A(s̄, sm+i−1)∥

≤ r̄ + ∥ζ(sm+i−1)− A(s, sm+i−1)∥+ ∥ζ(sm+i−1)− A(s̄, sm+i−1)∥

≤ r̄ +
L

πn,α

(
∥s− sm+i−1∥n+α + ∥s̄− sm+i−1∥n+α

)
≤ r̄ +

L

πn,α

((3
2
rs̄

)n+α
+ rs̄

n+α
)

= r̄ +
L
(
3n+α + 2n+α

)
rs̄
n+α

πn,α 2n+α

≤ rt̄.

It follows that zmi ∈ Brt̄(t̄) for each i = 0, 1. Whereas the assumption (5.2.8) holds for k = m,

we get

t2 ∈ A(s, sm−1)− A(s̄, sm−1) + A(s̄, sm) + ξ(sm).

we can write the inequality as follows

t2 − A(s, sm−1) + A(s̄, sm−1) ∈ A(s̄, sm) + ξ(sm);

Then by definition of zm0 , it follows that zm0 ∈ A(s̄, sm) + ξ(sm). This, together with (5.2.3)

and (5.2.12), yields that

sm ∈ R−1
s̄ (zm0 ) ∩ Brs̄(s̄),

Using (5.2.6) again, inasmuch as zm0 , z
m
1 ∈ Brt̄(t̄), there exists an element sm+1 ∈ R−1

s̄ (zm1 )

such that

∥sm+1 − sm∥ ≤M∥zm0 − zm1 ∥ ≤M∥t1 − t2∥
(MLrαs̄

2α

)m−1

, (5.2.14)

where the last inequality holds by (5.2.11). By the definition of zm1 , we have

sm+1 ∈ R−1
s̄ (zm1 ) = R−1

s̄ (t2 − A(s, sm) + A(s̄, sm)),

which together with (5.2.3) implies

t2 ∈ A(s, sm)− A(s̄, sm) + A(s̄, sm+1) + ξ(sm+1). (5.2.15)
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This together with (5.2.14) completes the induction step and the existence of sequence {sk}

satisfying (5.2.8) and (5.2.9).

Whereas
MLrαs̄
2α

< 1, we conclude from (5.2.9) that {sk} is a Cauchy sequence. Define

s′′ := limk→∞ sk. Note that ξ has closed graph. Then, taking limit in (5.2.8), we get

t2 ∈ A(s, s′′) + ξ(s′′) and so s′′ ∈ R−1
s (t2). Moreover,

∥s′ − s′′∥ ≤ lim
m→∞

sup
m∑
k=2

∥sk − sk−1∥

≤ lim
m→∞

sup
m∑
k=2

(MLrαs̄
2α

)k−2

M∥t1 − t2∥

≤ 2αM

2α −MLrαs̄
∥t1 − t2∥.

The Lemma 5.2.1 is proved.

Before going to prove the main theorem in this chapter, we define the map Gs : S → T ,

for each s ∈ S, by

Gs(·) := A(s̄, ·)− A(s, ·). (5.2.16)

and the set-valued map Ψs : S ⇒ 2S by

Ψs(·) = R−1
s̄ [Gs(·)]. (5.2.17)

Then we have that

∥Gs(s
′)−Gs(s

′′)∥ = ∥[A(s̄, s′)− A(s, s′)]− [A(s̄, s′′)− A(s, s′′)]∥

≤ L∥s̄− s∥α∥s′ − s′′∥ for any s′, s′′ ∈ S. (5.2.18)

The main result of this chapter read as follows, which provides some sufficient conditions

ensuring the convergence of the ENM for nonsmooth variational inclusions (1.0.3) from

starting point s0.

Theorem 5.2.1. Suppose that η > 1. Let s̄ ∈ S, Υ be an open and convex subset of S

containing s̄ and let ζ be a function which has (n, α)-PBA on Υ with a constant L > 0.

Assume that the map ξ has closed graph and the map R−1
s̄ (·) is Lipschitz-like on Brt̄(t̄)

relative to Brs̄(s̄) with constant M > 0. Let r̄ be defined by (5.2.4) so that (5.2.5) holds. Let

δ > 0 be such that

□ 
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(a) δ ≤ min
{rs̄
4
,
r̄.πn,α
4n+α

,
( rt̄ πn,α
L (3n+α + 2n+α + 1)

) 1
n+α

, 1
}
,

(b) (M + 1)L(2α+1ηδα + rαs̄ ) ≤ 2α,

(c) ∥t̄∥ < L

πn, α
δn+α.

Suppose that

lim
s→s̄

dist(t̄, A(s, s) + ξ(s)) = 0. (5.2.19)

Then ∃’s some δ̂ > 0 such that any sequence {sm} constructed by Algorithm 4 with a

starting point s0 ∈ Bδ̂(s̄) converges to a solution s∗ of nonsmooth variational inclusions

(1.0.3), that is, s∗ satisfies 0 ∈ ζ(s∗) + ξ(s∗).

Proof. By assumption (b), it can be easily written that

ML(2α+1ηδα + rαs̄ ) ≤ (M + 1)L(2α+1ηδα + rαs̄ ) ≤ 2α. (5.2.20)

Set

b :=
2αηMLδα

2α −MLrαs̄
. (5.2.21)

It follows from (5.2.20) that

b ≤ 1

2
(5.2.22)

Since πn,α∥t̄∥ < Lδn+α by assumption (c) and (5.2.19) holds, there exists 0 < δ̂ ≤ δ be such

that

dist(0, A(s0, s0) + ξ(s0)) ≤
L

πn,α
δn+α for each s0 ∈ Bδ̂(s̄) (5.2.23)

Let s0 ∈ Bδ̂(s̄). We will proceed by mathematical induction. For (1.0.3) we will show that

Algorithm 4 generates at least one sequence and any sequence {sm} generated by Algorithm

4 for (1.0.3) satisfies the following assertions:

∥sm − s̄∥ ≤ 2δ (5.2.24)

and

∥sm+1 − sm∥ ≤ b

(
1

πn,α

)(n+α)m

δ, (5.2.25)



90 Chapter 5 Semilocal and Local Convergence Analysis of an ENM for Nonsmooth V.I.

for every m = 0, 1, 2, .... For this motive we define

rs :=
3

2

(
ML

πn,α
∥s− s̄∥n+α +M∥t̄∥

)
, for each s ∈ S. (5.2.26)

Owing to the fact 4δ ≤ rs̄ in assumption (a) and η > 1, by assumption (b) we can write

as follows

(M + 1)L 2α.3 δα ≤ (M + 1)L.2α
(
2δα + δα

)
= (M + 1)L

(
2α+1δα + (2δ)α

)
≤ (M + 1)L

(
2α+1ηδα + (4δ)α

)
≤ (M + 1)L

(
2α+1ηδα + rs̄

α
)

≤ 2α.

The above inequality gives either

MLδα ≤ 2α

2α.3
=

1

3
or Lδα ≤ 2α

2α.3
=

1

3
(5.2.27)

By the facts πn,α∥t̄∥ < Lδn+α from condition (c)and (5.2.27), the inequality (5.2.26)

reduces to, for each s ∈ B2δ(s̄)

rs =
3

2

(
ML

πn,α
∥s− s̄∥n+α +M∥t̄∥

)
≤ 3

2

(
ML

πn,α
∥s− s̄∥n+α + ML

πn,α
δn+α

)
≤ 3

2

(
ML

πn,α
(2δ)n+α +

ML

πn,α
δn+α

)
=

3

2

ML

πn,α
δα

(
2n+α + 1

)
.δn

(5.2.28)

Since δn ≤ δ, we get that,

≤ 3

2

ML

πn,α
δα

(
2n+α + 1

)
.δ

≤ 3

2
.

1

3πn,α

(
2n+α + 1

)
.δ

≤ 1

2πn,α

(
2n+α + 1

)
.δ

≤ 2δ, for each s ∈ B2δ(s̄). (5.2.29)
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It is trivial that (5.2.24) is true for m = 0. To show, (5.2.25) holds for m = 0, firstly

we need to verify that s1 exists, that is, we need to show that M(s0) ̸= ∅. To do this, we

consider the mapping Ψs0 defined by (5.2.17) and apply Lemma 2.0.4 to the map Ψs0 with

η0 = s̄. Let us check that both assumptions (2.0.4) and (2.0.5) of Lemma 2.0.4, with r := rs0

and λ :=
1

3
hold. Noting that s̄ ∈ R−1

s̄ (t̄) ∩ Brs0 (s̄) by (5.2) and by the definition of the

excess e and the map Ψs0 , we obtain

dist(s̄,Ψs0(s̄)) ≤ e(R−1
s̄ (t̄) ∩ Brs0 (s̄),Ψs0(s̄))

≤ e(R−1
s̄ (t̄) ∩ B2δ(s̄), R

−1
s̄ [Gs0(s̄)])

≤ e(R−1
s̄ (t̄) ∩ Brs̄(s̄), R−1

s̄ [Gs0(s̄)])

≤ M∥t̄−Gs0(s̄)∥. (5.2.30)

by the notion of (n, α)-PBA of ζ withconstant L, we get that

∥Gs0(s)− t̄∥ = ∥A(s̄, s)− A(s0, s)− t̄∥

≤ ∥A(s̄, s)− A(s0, s)∥+ ∥t̄∥

≤ ∥ζ(s)− A(s̄, s)∥+ ∥ζ(s)− A(s0, s)∥+ ∥t̄∥

≤ L

πn,α
∥s̄− s∥n+α + L

πn,α
∥s0 − s∥n+α + ∥t̄∥

≤ L

πn,α

(
∥s̄− s∥n+α + ∥s0 − s∥n+α

)
+ ∥t̄∥. (5.2.31)

Note that L δn+α(2n+α + 3n+α + 1) ≤ πn,α rt̄ because of assumption (a), πn,α∥t̄∥ < Lδn+α by

assumption (c) and ∥s0 − s̄∥ ≤ δ̂ ≤ δ. It follows from (5.2.31), for each s ∈ Brs0 (s̄) ⊆ B2δ(s̄),

that

∥Gs0(s)− t̄∥ ≤ L

πn,α

(
∥s̄− s∥n+α +

(
∥s0 − s̄∥+ ∥s̄− s∥

)n+α)
+ ∥t̄∥

≤ L

πn,α

(
(2δ)n+α + (δ + 2δ)n+α

)
+ ∥t̄∥

=
L

πn,α

(
(2δ)n+α + (3δ)n+α

)
+ ∥t̄∥

≤ L

πn,α
δn+α(2n+α + 3n+α) +

L

πn,α
δn+α

=
L

πn,α
δn+α(2n+α + 3n+α + 1) ≤ rt̄. (5.2.32)
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This implies that

Gs0(s) ∈ Brt̄(t̄), foreach s ∈ Brs0 (s̄). (5.2.33)

Especially, let s = s̄ in (5.2.31). Then we get that

∥Gs0(s̄)− t̄∥ ≤ L

πn,α
∥s0 − s∥n+α + ∥t̄∥ (5.2.34)

≤ L

πn,α
δn+α +

L

πn,α
δn+α ≤ 2L

πn,α
δn+α ≤ rt̄. (5.2.35)

and hence

Gs0(s̄) ∈ Brt̄(t̄).

Hence, by the assumed Lipschitz-like property of R−1
s̄ and (5.2.34), we have from (5.2.30)

that

dist(s̄,Ψs0(s̄)) ≤M∥t̄−Gs0(s̄)∥

≤ ML

πn,α
∥s0 − x∥n+α +M∥t̄∥

=

(
1− 1

3

)
rs0 = (1− λ)r;

that is, the assumption (2.0.4) of Lemma 2.0.4 is satisfied.

Below, we will show that the assumption (2.0.5) of Lemma 2.0.4 holds. To do this, let

s′, s′′ ∈ Brs0 (s̄). Then from assumption (a) and (5.2.29), we have that s′, s′′ ∈ Brs0 (s̄) ⊆

B2δ(s̄) ⊆ Brs̄(s̄) and Gs0(s
′), Gs0(s

′′) ∈ Brt̄(t̄) by (5.2.33). This, together with the assumed

Lipschitz-like property of R−1
s̄ , implies that

e(Ψs0(s
′) ∩ Brs0 (s̄),Ψs0(s

′′)) ≤ e(Ψs0(s
′) ∩ Brs̄(s̄),Ψs0(s

′′))

= e(R−1
s̄ [Gs0(s

′)] ∩ Brs̄(s̄), R−1
s̄ [Gs0(s

′′)])

≤ M∥Gs0(s
′)−Gs0(s

′′)∥. (5.2.36)

Applying (5.2.18), we get that

∥Gs0(s
′)−Gs0(s

′′)∥ ≤ L∥s̄− s0∥α∥s′ − s′′∥.

With the help of first relation in (5.2.27) and combining the above two inequalities we get,

e(Ψs0(s
′) ∩ Brs0 (s̄),Ψs0(s

′′)) ≤ ML∥s̄− s0∥α∥s′ − s′′∥

≤ MLδα∥s′ − s′′∥

≤ 1

3
∥s′ − s′′∥ = λ∥s′ − s′′∥.
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Under this process we get that the assumption (2.0.5) of Lemma 2.0.4 is also satisfied.

Inasmuch both assumptions (2.0.4) and (2.0.5) of Lemma 2.0.4 are satisfied, we can say

that Lemma 2.0.4 is applicable and therefore, we conclude that ∃’s ŝ1 ∈ Brs0 (s̄) such that

ŝ1 ∈ Ψs0(ŝ1), that is, 0 ∈ A(s0, ŝ1) + ξ(ŝ1) and so ŝ1 − s0 ∈ M(s0). This fact reflects that

M(s0) ̸= ∅.

Whereas η > 1 and M(s0) ̸= ∅, we can select d0 ∈ M(s0) such that

∥d0∥ ≤ η dist(0,M(s0)).

For Algorithm 4, s1 := s0 + d0 is defined. Hence s1 is generated for (1.0.3).

Moreover, according the definition of M(s0), we can obtain

M(s0) :=
{
d0 ∈ Υ : 0 ∈ A(s0, s0 + d0) + ξ(s0 + d0)

}
=

{
d0 ∈ Υ : s0 + d0 ∈ R−1

s0
(0)

}
,

so

dist(0,M(s0)) = dist(s0, R
−1
s0
(0)). (5.2.37)

Now we are ready to show that for m = 0 the inequality (5.2.25) is hold. Note that r̄ > 0

by assumption (a). Then (5.2.5) is satisfied by (5.2.4). Lemma 5.2.1 states us that the

mapping R−1
s (·) is Lipschitz-like on Br̄(t̄) relative to B rs̄

2
(s̄) with constant

2αM

2α −MLrαs̄
for

each s ∈ B rs̄
2
(s̄) when R−1

s̄ (·) is Lipschitz-like on Brt̄(t̄) relative to Brs̄(s̄). Particularly,

R−1
s0
(·) is Lipschitz-like on Br̄(t̄) relative to B rs̄

2
(s̄) with constant

2αM

2α −MLrαs̄
as s0 ∈ Bδ̂(s̄) ⊆

Bδ(s̄) ⊆ B rs̄
2
(s̄) by assumption (a) and the choice of δ̂.

Moreover, assumptions (a), (c) and the 2nd relation of the inequality (5.2.27) imply that

∥t̄∥ ≤ L

πn,α
δn+α =

L

πn,α
δα.δn

≤ L

πn,α
δα.δ ≤ 1

3 πn,α
.δ

≤ 1

3πn,α
.
r̄πn,α
4n+α

≤ r̄

3
(5.2.38)

Now (5.2.23) becomes

dist(0, Rs0(s0)) = dist(0, A(s0, s0) + ξ(s0)) ≤
L

πn,α
δn+α ≤ r̄

3
. (5.2.39)
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Noting that s0 ∈ B rs̄
2
(s̄) as mentioned earlier and by (5.2.38)) we have that 0 ∈ B r̄

3
(t̄) .

Applying Lemma 2.0.1 then we have

dist(s0, Rs0
−1(0)) ≤ 2αM

2α −MLrαs̄
dist(0, Rs0(s0)) (5.2.40)

According to Algorithm 4 and using (5.2.37) and (5.2.40) we have

∥s1 − s0∥ = ∥d0∥ ≤ η dist(0,M(s0)) = η dist(s0, R
−1
s0
(0))

≤ 2αηM

2α −MLrαs̄
dist(0, Rs0(s0))

≤ 2αηML

πn,α(2α −MLrαs̄ )
δn+α

≤ 2αηML

πn,α(2α −MLrαs̄ )
δn.δα

≤ 2αηM Lδα

πn,α(2α −MLrαs̄ )
δ, [Since δn ≤ δ]. (5.2.41)

From (5.2.22) and (5.2.41) we get,

∥s1 − s0∥ = ∥d0∥ ≤ b

πn,α
δ

≤ b
( 1

πn,α

)
δ.

This shows that (5.2.25) is hold for m = 0.

Let the points s1, s2, . . . , sk have obtained by Algorithm 4 satisfying (5.1.2) such that

(5.2.24) and (5.2.25) are hold for m = 0, 1, 2, . . . , k−1. We show that assertions (5.2.24) and

(5.2.25) are also hold for m = k. Because (5.2.24) and (5.2.25) are true for every m ≤ k− 1,

we get from the following inequality

∥sk − s̄∥ ≤
k−1∑
i=0

∥di∥+ ∥s0 − s̄∥ ≤ bδ

k−1∑
i=0

( 1

πn,α

)(n+α)i

+ δ ≤ 2δ, (5.2.42)

and so sk ∈ B2δ(s̄). This shows that (5.2.24) holds for m = k.

The next step is that, we show that for m = k the assertion (5.2.25) is also hold . Let

sk ∈ Brsk (s̄). If we apply Lemma 2.0.4 to the map Ψsk with η = s̄, r := rsk and λ :=
1

3
, then

by the correlated argument for the case k = 0 one can find that M(sk) ̸= ∅. Because of

sk ∈ Brsk (s̄) ⊆ B2δ(s̄) ⊆ B rs̄
2
(s̄), Lemma 5.2.1 permit us to say that R−1

sk
(·) is Lipschitz-like

on Br̄(t̄) relative to B rs̄
2
(s̄) with constant

2αM

2α −MLrαs̄
.
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Moreover, inasmuch as −A(sk−1, sk) ∈ ξ(sk), using the idea of (n, α)-PBA of ζ, the

inequality 4n+αδ ≤ r̄πn,α from assumption (a), we obtain that

dist
(
0, Rsk(sk)

)
= dist

(
0, A(sk, sk) + ξ(sk)

)
≤ ∥A(sk, sk)− A(sk−1, sk)∥

=
L

πn,α
∥ζ(sk)− A(sk−1, sk)∥n+α ≤ L

πn,α
∥sk − sk−1∥n+α

≤ L

πn,α

(
∥sk − s̄∥+ ∥s̄− sk−1∥

)n+α ≤ L

πn,α

(
2δ + 2δ

)n+α
=

L

πn,α
4n+αδn+α ≤ L

πn,α
δα4n+αδ

=
1

3πn,α
4n+α

r̄.πn,α
4n+α

≤ r̄

3
. (5.2.43)

It is noted earlier that sk ∈ B rs̄
2
(s̄). Moreover, (5.2.38) implies that 0 ∈ B r̄

3
(t̄). This, together

with (5.2.43), implies that Lemma 2.0.1 is applicable for the map R−1
sk
(·) and hence we have

that

dist
(
sk, R

−1
sk
(0)

)
≤ 2αM

2α −MLrαs̄
dist

(
0, Rsk(sk)

)
. (5.2.44)

Because of M(sk) ̸= ∅, Algorithm 4 ensures the existence of a point sk+1 which satisfies the

inequality as follows

∥sk+1 − sk∥ = ∥dk∥ ≤ η dist
(
0,M(sk)

)
= η dist

(
sk, R

−1
sk
(0)

)
≤ 2αηM

2α −MLrαs̄
dist

(
0, Rsk(sk)

)
=

2αηM

2α −MLrαs̄
dist

(
0, A(sk, sk) + ξ(sk)

)
≤ 2αηM

2α −MLrs̄
∥A(sk, sk)− A(sk−1, sk)∥

=
2αηM

2α −MLrαs̄
∥ζ(sk)− A(sk−1, sk)∥

≤ 2αηLM

πn,α(2α −MLrαs̄ )
∥sk − sk−1∥n+α (5.2.45)

≤ b

δαπn,α

(
b(

1

πn,α
)(n+α)

k−1

δ
)n+α

≤ b

δαπn,α

(
b(

1

πn,α
)(n+α)

k−1
)n+α

δn+α
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≤ b

πn,α

(
b(

1

πn,α
)(n+α)

k−1
)n+α

δn

≤ b

πn,α

(
b(

1

πn,α
)(n+α)

k−1
)n+α

δ [Since δn ≤ δ]

≤ b(
1

πn,α
)(n+α)

k

δ.

This shows that (5.2.25) holds for m = k. By this process, we can get from (5.2.25) that

{sm} is a Cauchy sequence and hence convergent to some s∗. where as the graph of ξ is

closed, we can pass to the limit in sk+1 ∈ R−1
sk
(0) obtaining that s∗ is a solution of (1.0.3).

So, the proof is completed.

Especially, when s̄ is a solution of (1.0.3), that is, t̄ = 0, Theorem 5.2.1 is reduced to the

following corollary, which gives the local convergent result of the ENM for solving nonsmooth

generalized equation (1.0.3).

Corollary 5.2.1. Suppose that η > 1 and s̄ be a solution of the variational inclusion (1.0.3).

Let Υ be an open and convex subset of S containing s̄ and r̃ > 0 be such that Br̃(s̄) is an

open and convex set. Assume that the function ζ is continuous which has a (n, α)-PBA on

Br̃(s̄) with a constant L > 0, the map ξ has closed graph. Assume that the map R−1
s̄ (·) is

Lipschitz-like around (0, s̄) with constant M . Suppose that

lim
s→s̄

dist(0, A(s, s) + ξ(s)) = 0. (5.2.46)

Then there exists some δ̂ > 0 such that any sequence {sm} generated by Algorithm 4 starting

from s0 ∈ Bδ̂(s̄) converges to a solution s∗ of nonsmooth generalized equation (1.0.3), that

is, s∗ satisfies that 0 ∈ ζ(s∗) + ξ(s∗).

Proof. By hypothesis R−1
s̄ (·) is pseudo-Lipschitz around (0, s̄). Then there exists constants

r0, r̂s̄ and M such that R−1
s̄ (·) is Lipschitz-like on Br0(t̄) relative to Br̂s̄(s̄) with constant M .

Then, for each 0 < r ≤ r̂s̄, one has that

e(R−1
s̄ (t1) ∩ Br(s̄), R−1

s̄ (t2)) ≤M∥t1 − t2∥ for any t1, t2 ∈ Br0(0), (5.2.47)

that is, the map R−1
s̄ (·) is Lipschitz-like on Br0(0) relative to Br(s̄) with constant M .

Let L ∈ (0, 1) and choose rs̄ ∈ (0, r̂s̄) such that

rs̄
2

≤ r̃, 2n+απn,α r0 − L(3n+α + 2n+α)rs̄
n+α > 0

□ 



5.3 Application of (n, α)-PBA 97

and A is a (n, α)-PBA of ζ on B rs̄
2
(s̄). Then, define

r̄ = min
{
r0 −

Lrs̄
n+α (3n+α + 2n+α)

πn,α 2n+α
,
rs̄(2

α −MLrαs̄ )

4.2αM

}
> 0. (5.2.48)

and

min
{rs̄
4
,
r̄.πn,α
4n+α

,
( r0 πn,α
L (3n+α + 2n+α + 1)

) 1
n+α

}

Thus we can select 0 < δ ≤ 1 such that

δ ≤ min
{rs̄
4
,
r̄.πn,α
4n+α

,
( r0 πn,α
L (3n+α + 2n+α + 1)

) 1
n+α

}
. (5.2.49)

and

(M + 1)L(2α+1ηδα + rs̄
α) ≤ 2α.

Now it is our routine work to check all the conditions of Theorem 5.2.1 are hold. Thus,

Theorem 5.2.1 is applicable to complete the proof of the corollary 5.2.1.

5.3 Application of (n, α)-point-based approximation (P-

BA)

This section is dedecated to present applications of (n, α)-PBA. In particular, when the

Fréchet derivative of ζ is (ℓ, α)-Hölder, the function A is a (1, α)- PBA for ζ . Moreover,

when ζ is twice Fréchet differentiable function such that ∇2ζ is (K,α)-Hölder, then the

function A is (2, α)-PBA for ζ. In addition, application of (n, α)-PBA is provided for normal

maps.

5.3.1 Application of (n, α)-PBA for differentiable function

Let 0 < α < 1 and Υ be a convex subset of S. Let p, q ∈ Υ.

(1) Suppose that the Fréchet derivative of ζ is (ℓ, α)-Hölder continuous. We show that the

function

A : (p, q) 7−→ ζ(p) +∇ζ(p)(q − p)

□ 



98 Chapter 5 Semilocal and Local Convergence Analysis of an ENM for Nonsmooth V.I.

is a (1, α)-PBA for ζ. In this case, by using the Algorithm 4 we can infer that there

exists a sequence {sk} which converges superlinearly and this result recovers the con-

vergence result of Geoffroy and Piétrus in [42].

In this regards, define the function Λ(p, q) by

Λ(p, q) = ∥ζ(q)− A(p, q)∥.

It follows that

Λ(p, q) = ∥ζ(q)− ζ(p)−∇ζ(p)(q − p)∥

= ∥
ˆ 1

0

(
∇ζ(p+ f(q − p))−∇ζ(p)

)
(q − p)df∥

≤ ∥q − p∥
ˆ 1

0

∥∇ζ(p+ f(q − p))−∇ζ(p)∥df

≤ ∥q − p∥
ˆ 1

0

ℓ∥f(q − p)∥αdf

≤ ∥q − p∥1+αℓ
ˆ 1

0

fαdf

≤ ℓ

(α + 1)
∥q − p∥1+α.

This yields that A satisfies the first property of (1, α)-PBA on Υ. To proof the second

property of (1, α)-PBA, we assume that t, z ∈ Υ. Then, we have that

Λ′(p, q, t, z) = ∥A(p, t)− A(q, t)− A(p, z) + A(q, z)∥,

= ∥ζ(p) +∇ζ(p)(t− p)− ζ(q)−∇ζ(q)(t− q)− ζ(p)−∇ζ(p)(z − p)

+ζ(q) +∇ζ(q)(z − q)∥

≤ ∥(∇ζ(p)−∇ζ(q))(t− z)∥ ≤ ∥∇ζ(p)−∇ζ(q)∥∥t− z∥

≤ ℓ∥p− q∥α∥t− z∥

This shows that the second property of (1, α)-PBA for ζ also holds. Therefore, we say

that when the Fréchet derivative of ζ is (ℓ, α)-Hölder with exponent α ∈ (0, 1), the

function A : (p, q) 7−→ ζ(p) +∇ζ(p)(q − p) is a (1, α)-PBA.

(2) Let rs̄ > 0 be such that B rs̄
2
(s̄) ⊆ S. Suppose that ζ is twice Fréchet differentiable

function on B rs̄
2
(s̄) such that ∇2ζ is (K,α)-Hölder on B rs̄

2
(s̄) and with exponent α ∈
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(0, 1). Choose ℓ > 0 and L > 0 be such that

L > ℓ+K(rs̄ + 1).

Let p, q ∈ B rs̄
2
(s̄) and define the function

A(p, q) = ζ(p) +∇ζ(p)(q − p) +
1

2
∇2ζ(p)(q − p)2. (5.3.1)

Then, Theorem 5.2.1 ensures the existence of a sequence {sk} which converges super-

quadratically and the result of Theorem 5.2.1 coincides with the result of [41, 105].

To show the first property of (2, α)-PBA, denote △(p, q) = ∥ζ(q)−A(p, q)∥. Then we

have that

△(p, q) = ∥ζ(q)− ζ(p)−∇ζ(p)(q − p)− 1

2
∇2ζ(p)(q − p)2∥. (5.3.2)

Since, ∥
´ 1

0

(
(1− f)∇2ζ(p+ f(q− p))(q− p)2

)
df∥ = ∥ζ(q)− ζ(p)−∇ζ(p)(q− p)∥, then

(5.3.2) reduces to

△(p, q) = ∥
ˆ 1

0

(
(1− f)∇2ζ(p+ f(q − p))(q − p)2

)
df − 1

2
∇2ζ(p)(q − p)2∥

= ∥
ˆ 1

0

(
(1− f)∇2ζ(p+ f(q − p))− (1− f)∇2ζ(p)

)
(q − p)2df∥

≤ ∥q − p∥2
ˆ 1

0

∥(1− f)∇2ζ(p+ f(q − p))− (1− f)∇2ζ(p)∥df

≤ ∥q − p∥2
ˆ 1

0

∥(1− f)∇2ζ(p+ f(q − p))−∇2ζ(p)
)
df

≤ K∥q − p∥2
ˆ 1

0

(1− f)∥f(q − p)∥αdf

≤ K∥q − p∥2+α
ˆ 1

0

(1− f)fαdf

≤ K

(α + 1)(α + 2)
∥q − p∥2+α

≤ L

(α + 1)(α + 2)
∥q − p∥2+α.

Therefore, A satisfies the first property of a (2, α)-PBA on Υ.
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For the proof of second property, we assume that a, b be any elements of B rs̄
2
(s̄),

Then, we get that

△′(p, q, a, b) = ∥A(p, a)− A(q, a)− A(p, b) + A(q, b)∥,

= ∥ζ(p) +∇ζ(p)(a− p) +
1

2
∇2ζ(p)(a− p)2 − ζ(q)−∇ζ(q)(a− q)

−1

2
∇2ζ(q)(a− q)2 − ζ(p)−∇ζ(p)(b− p)− 1

2
∇2ζ(p)(b− p)2

+ζ(q) +∇ζ(q)(b− q) +
1

2
∇2ζ(q)(b− q)2∥

= ∥[∇ζ(p)−∇ζ(q)](a− b) +
1

2
[∇2ζ(p)(a− p)2 −∇2ζ(q)(a− q)2

−∇2ζ(p)(b− p)2 +∇2ζ(q)(b− q)2]∥

= ∥[∇ζ(p)−∇ζ(q)](a− b) +
1

2
[∇2ζ(p)(a− q + q − p, a− p)

−∇2ζ(p)(b− q + q − p, b− p) +∇2ζ(q)(b− q, b− p+ p− q)

−∇2ζ(q)(a− q, a− p+ p− q)]∥

= ∥[∇ζ(p)−∇ζ(q)](a− b) +
1

2
[∇2ζ(p)(a− q, a− p)

+∇2ζ(p)(q − p, a− p)−∇2ζ(p)(b− q, b− p)

−∇2ζ(p)(q − p, b− p) +∇2ζ(q)(b− q, b− p) +∇2ζ(q)(b− q, p− q)

−∇2ζ(q)(a− q, a− p)−∇2ζ(q)(a− q, p− q)]∥

= ∥[∇ζ(p)−∇ζ(q)](a− b)∥+ 1

2
[∇2ζ(q)(b− q, b− p)

−∇2ζ(p)(b− q, b− p) +∇2ζ(p)(a− q, a− p)

−∇2ζ(q)(a− q, a− p) +∇2ζ(p)(q − p, a− p)−∇2ζ(p)(q − p, b− p)

+∇2ζ(q)(b− q, p− q)−∇2ζ(q)(a− q, p− q)]∥

= ∥[∇ζ(p)−∇ζ(q)](a− b) +
1

2
[∇2ζ(q)−∇2ζ(p)](b− q, b− p)

+
1

2
[∇2ζ(p)−∇2ζ(q)](a− q, a− p) +

1

2
∇2ζ(p)(q − p, a− b)

+
1

2
∇2ζ(q)(b− a, p− q)]∥

= ∥[∇ζ(p)−∇ζ(q)](a− b) +
1

2
[∇2ζ(q)−∇2ζ(p)](b− q, b− p)

+
1

2
[∇2ζ(p)−∇2ζ(q)](a− b+ b− q, a− p) +

1

2
∇2ζ(p)(q − p, a− b)

+
1

2
∇2ζ(q)(b− a, p− q)]∥
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This also can be written as

△′(p, q, a, b) = ∥[∇ζ(p)−∇ζ(q)](a− b) +
1

2
[∇2ζ(q)−∇2ζ(p)](b− q, b− a)

+
1

2
[∇2ζ(p)−∇2ζ(q)](a− b, a− p) +

1

2
∇2ζ(p)(q − p, a− b)

+
1

2
∇2ζ(q)(b− a, p− q)]∥

Since there exist an open subset B rs̄
2
(s̄) ⊆ S and a positive number K such that

∥∇2ζ∥ ≤ K on B rs̄
2
(s̄). Let a, b ∈ B rs̄

2
(s̄). Then, ∥a − b∥ ≤ rs̄. Then, by applying

the notion of (ℓ, α)-Hölder continuity property of ∇ζ and (K,α)-Hölder continuity

property of ∇2ζ , we get

△′(p, q, a, b) ≤ ∥[∇ζ(p)−∇ζ(q)](a− b)∥+ 1

2
∥∇2ζ(q)−∇2ζ(p)∥∥b− q∥∥b− a∥

+
1

2
∥∇2ζ(p)−∇2ζ(q)∥∥a− b∥∥a− p∥+ 1

2
∥∇2ζ(p)∥∥q − p∥∥a− b∥

+
1

2
∥∇2ζ(q)∥∥b− a∥∥p− q∥

≤ ℓ∥p− q∥α∥a− b∥+ K

2
∥p− q∥α∥b− q∥∥b− a∥

+
K

2
∥p− q∥α∥b− a∥∥a− p∥+ K

2
∥q − p∥α∥a− b∥

+
K

2
∥p− q∥α∥b− a∥

≤ ℓ∥p− q∥α∥a− b∥+ K

2
rs̄∥p− q∥α∥a− b∥+K∥p− q∥α∥a− b∥

≤
(
ℓ+K(rs̄ + 1)

)
∥p− q∥α∥a− b∥

≤ L∥p− q∥α∥a− b∥, for all a, b ∈ B rs̄
2
(s̄).

This shows that the second property of (2, α)-PBA is satisfied. Thus, both of properties

for (n, α)-PBA hold on B rs̄
2
(s̄) whenn = 2 and 0 < α < 1. Hence, A is (2, α)-PBA for

ζ on B rs̄
2
(s̄).

5.3.2 Application of (n, α)-PBA for Normal Maps

In this subsection we deal with a class of nonsmooth functions, i.e. normal maps. Huge

number of mathematician have studied by normal maps to obtain solutions of variational

inequalities and comprehensive accounts on this topic can be found in [38, 57–60, 118, 122].
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At first Robinson [122] discussed about the normal maps . Here we recall the notion of

normal maps which was introduced by Robinson [118, 122].

Definition 5.3.1. Suppose C be a nonempty closed convex subset of a Banach space S and

let Π be the metric projector from S onto C. Assume that Υ be an open subset of S meeting

C and let ζ be a function from Υ to S. ζC is the normal map which is defined from the set

Π−1(Υ) to S by

ζC(s) = ζ(Π(s)) + (s− Π(s)). (5.3.1)

Furthermore, variational problem is as follows

find t0 ∈ C : ⟨ζ(t0), c− t0⟩ ≥ 0, for all c ∈ C

is completely equivalent to the normal-map equation ζC(s0) = 0 through the transformation

s0 = t0−ζ(t0). For nonlinear optimization involving normal maps, Robinson has shown that

how the first-order necessary optimality conditions as well as linear and nonlinear comple-

mentarity problems and more general variational inequalities, can all be expressed compactly

and conveniently in the form of equations ζC(s) = 0 .

Nevertheless, sometimes the use of normal maps enables one to gain insight into special

properties of problem classes that might have remained obscure in the formalism of varia-

tional inequalities. A particular illustration of this is the characterization of the local and

global homeomorphism properties of linear normal maps, this concept given in [122] and

improved in [95, 96].

In [103, Proposition 4.1], Rashid proved that for any function ζ admitting a PBA on a

nonempty closed convex subset C of a Hilbert space H, the normal map associated with ζ

admits a PBA on H. In our study we will show that the same result holds when we replace

the normal maps ζC + ξ in lieu of the normal maps ζC. Rashid [99, 103] reformulate the

normal maps ζC+ξ by simple conversion of the definition of normal maps given by Robinson

[122]. In [99, 103] Rashid assumed the concept of point-based approximation and p-PBA.

Here we extend that concept to (n, α)-PBA which is reformulated by Rashid [99, 103], then

we show that if ζ have a (n, α)-PBA, then one can easily be designed a (n, α)-PBA for ζC+ξ.

The normal maps ζC + ξ reformulated by Rashid [99] is as follows.
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Definition 5.3.2. Let C be a nonempty closed convex subset of a Banach space S and let

Π be the metric projector from S onto C. Let Υ be an open subset of S meeting C and let

ζ : Υ → S and ξ : Υ ⇒ S. The normal map ζC + ξ is defined from the set Π−1(Υ) to S by

(ζC + ξ)(s) = ζ(Π(s)) + ξ(Π(s)) + (s− Π(s)). (5.3.2)

We are now able to design a (n, α)-PBA for the normal map ζC + ξ provided that a

(n, α)-PBA exists for ζ. The following proposition are taken from [99, Proposition 4.3].

Proposition 5.3.1. Suppose S be a Banach space and C be a nonempty closed convex subset

of S and let Π be the metric projector on C which is nonexpansive. Assume that A : C×C →

S, ζ : C → S be functions and let ξ : C ⇒ S be a set-valued map which has closed graph. If

A is a (n, α)-PBA for ζ on C with a constant L, then the function H : S ×S → S defined by

H(t, s) =
(
A(Π(t), ·)C + ξ(·)

)
(s) is a (n, α)-PBA for ζC + ξ on S with the same constant L.

Proof. Let t, s ∈ S. By the definition of normal map, (ζC + ξ)(s) and H(t, s) are respectively

defined as follows

(ζC + ξ)(s) = ζ(Π(s)) + ξ(Π(s)) + (s− Π(s)),

and

H(t, s) = A
(
Π(t),Π(s)

)
+ ξ(Π(s)) + (s− Π(s)).

Hypothetically we know that A has the two properties for ζ which is given in Definition

2.0.15 with a constant L. Now we need to show that H also has these same two properties

for ζC + ξ with the constant L. Whereas A is the (n, α)-PBA for ζ on C, then using the

notion of the non-expansiveness of the metric projector and the first property of (n, α)-PBA

we get that

∥(ζC + ξ)(s)−H(t, s)∥

= ∥ζ(Π(s)) + ξ(Π(s)) + (s− Π(s))− [A
(
Π(y),Π(s)

)
+ ξ(Π(s)) + (s− Π(s))]∥

= ∥ζ(Π(s))− A
(
Π(y),Π(s)

)
∥ ≤ L

πn,α
∥Π(y)− Π(s)∥n+α

≤ L

πn,α
∥t− s∥n+α.

We notice that H satisfies the first property of (n, α)-PBA. After that for proving the second

property, we suppose that s, s′ ∈ S. To this end, let t, z ∈ S. We will prove that H(s, ·) −
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H(s′, ·) is Lipschitz continuous on S with lipschitz constant L∥s − s′∥α. Again using the

concept of non expansiveness of metric projector and second property of (n, α)-PBA , we

obtain that

∥[H(s, t)−H(s′, t)]− [H(s, z)−H(s′, z)]

= ∥[A
(
Π(s),Π(t)

)
+ ξ(Π(t)) + (y − Π(t))− A

(
Π(s′),Π(t)

)
− ξ(Π(t))

−(y − Π(t))]− [A
(
Π(s),Π(z)

)
+ ξ(Π(z)) + (z − Π(z))− A

(
Π(s′),Π(z)

)
−ξ(Π(z))− (z − Π(z))]∥

= ∥[A
(
Π(s),Π(t)

)
− A

(
Π(s′),Π(t)

)
]− [A

(
Π(s),Π(z)

)
− A

(
Π(s′),Π(z)

)
∥

≤ L∥Π(s)− Π(s′)∥α∥Π(t)− Π(z)∥ ≤ L∥s− s′∥α∥t− z∥.

This process shows that the second property of the (n, α)-PBA is satisfied. So the both

properties in Definition 2.0.15 are fulfilled for H, In this conclusion now we can say that H

is a (n, α)-PBA for ζC + ξ on S. The proof is completed.

5.4 Numerical Experiment

In this section, to present the numerical experiment we recall some necessary notations and

notions . Let a Fréchet differentiable function at s ∈ Rn be ψ : Rn → Rm. Let the set of all

points s ∈ Rn is denoted by Pψ at which the derivative ψ′(s) exists. The B-subdifferential

of ψ at s ∈ Rn, denoted by ∂Bψ(s), is the set

∂Bψ(s) =

{
J ∈ Rm×n : J = lim

k→+∞
ψ′(sk) for some {sk} ⊂ Pψ such that{sk} → s

}
Then, Clarke’s generalized Jacobian of ψ at s ∈ Rn is the set ∂ψ(s)=conv ∂Bψ(s). If ψ is

differentiable near s, and ψ′ is continuous at s, then obviously ∂ψ(s) = ∂Bψ(s) = {ψ′(s)}.

Otherwise, ∂Bψ(s) is not necessarily a singleton, even if ψ is differentiable at s. In this

case, ψ′(s) ∈ ∂Bψ(s) holds. Now, in order to illustrate the theoretical result of the extended

Newton-type method, we consider the following example in one dimension.

□ 
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Example 5.4.1. Let S = T = R, s0 = −1.7, η = 5, L = 0.5, rs̄ = 3, n = 1, α = 0.9 and

M = 1. Let ζ : R → R and ξ : R ⇒ R be defined, respectively, by

ζ(s) =


s

7
+ s2, if s < 0,

10s2

7
− 2s, if s ≥ 0

and ξ(s) = { s
14

− 1

7
, s+

1

7
}. (5.4.3)

Then Algorithm 4 generates a sequence which converges superlinearly to s∗ = −0.5000 and

s∗ = −1.0000 , respectively, with initial points s0 = −1.7 and s0 = −1.5 in the case s < 0.

On the other hand, Algorithm 4 generates a superlinear convergent sequence which converges

to s∗ = 01.4204 and s∗ = 0.5000 , respectively, with initial points s0 = 1.5 and s0 = 1.7 in

the case s ≥ 0.

Solution: It is manifest that ζ is not differentiable at s = 0 and hence ζ is nonsmooth

function on R. But this function is differentiable on R − {0} and hence ∂Bζ(s) = {ζ ′(s)}.

So, we get

∂Bζ(s) = {ζ ′(s)} =


1

7
+ 2s, if s < 0,

20s

7
− 2, if s ≥ 0

We mark that

Γ(s) := (ζ + ξ)(s)


{s2 + 3s

14
− 1

7
, s2 +

8s

7
+

1

7
}, if s < 0,

{10s
2

7
− 27s

14
− 1

7
,
10s2

7
− s+

1

7
}, if s ≥ 0

Initially, we study the set-valued mapping Γ(s) = s2 +
3s

14
− 1

7
for the case x < 0 and

note that Γ has a closed graph at (s̄, t̄) with s̄ = −1 and t̄ = 0.64. Thus, (−1, 0.64) ∈

gph Γ and if (ζ + ξ)−1 is Lipschitz-like then Γ is Lipschitz-like at (0.64,−1). By taking

A(s, ·) = ζ(s) + ∂Bζ(s)(· − s), it is easily shown that Rs̄(·) = ζ(s̄) + ∂Bζ(s̄)(· − s̄) + ξ(·) is

Lipschitz-like at (t̄, s̄) for t̄ = 0.64 and s̄ = −1. Therefore, the assumptions of Theorem 5.2.1

hold. From the definition of M(sk), we get

M(sk) = {dk ∈ R : 0 ∈ ζ(sk) + ∂Bζ(sk)dk + ξ(sk + dk)}

= {dk ∈ R : dk =
2− 3sk − 14s2k

3 + 28sk
}
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Alternatively, if M(sk) ̸= ∅ we take

0 ∈ ζ(sk) + ∂Bζ(sk)(sk+1 − sk) + ξ(sk+1)

⇒ sk+1 =
2 + 14s2k
3 + 28sk

Also, from (5.2.45) with 0 ≤ α ≤ 1 we consume

∥dk∥ ≤ 2αηLM

πn,α(2α −MLrαs̄ )
∥dk−1∥n+α

Hereafter, for the given values of L,M, η, rs̄, n and α, w get that Algorithm 4 generates

a superlinearly convergent sequence with initial point s0 = −1.7 in a neighborhood of s̄ =

−1.9. Then the following Tables 5.1 and 5.2, obtained by using Matlab code, indicates

that the solution of the variational inclusion Γ(s) ∈ 0 has the solutions s∗ = −1.0000 and

s∗ = −0.5000 in the case s < 0 and s∗ = 0.5000 and s∗ = 1.4202 in the case s ≥ 0. The

graphs of Γ are plotted in Figure 1.

Remark 5.4.1. If we set α = 1 in Example 5.4.1, we get the quadratic convergence of

Algorithm 4.

Table 5.1 Numerical results for Example 5.4.1 for the case s < 0

iteration no. sk Γ = s2 +
3s

14
− 1

7
sk Γ = s2 +

8s

7
+

1

7

1 -1.7000 2.3829 -1.5000 0.6786

2 -0.9520 0.5595 -1.1346 0.1335

3 -0.6209 0.1096 -1.0161 0.0140

4 -0.5142 0.0114 -1.0003 0.0002

5 -0.5002 0.0002 -1.0000 0.0000

6 -0.5000 0.0000 -1.0000 0.0000

7 -0.5000 0.0000 -1.0000 0.0000
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result and this result extends the convergence theorem of Geoffroy and Piétrus [42]. On the

other hand, for n = 2 and 0 < α < 1, if ζ is twice Fréchet differentiable function and ∇2ζ

is (K,α)-Hölder, we have given an application of (n, α)-PBA, that is, we have shown A is a

(2, α)-PBA. In this case Theorem 5.2.1 yields the superquadratic convergent result and we

have given a numerical experiment to illustrates the theoretical result. Therefore, this result

extends the convergence result of [41, 105]. Finally, we have given another application of

normal maps for ζC + ξ which extends the concept of PBA reformulated by Rashid [103].

That is, we have shown that if ζ has a (n, α)-PBAs, it is easy to construct a (n, α)-PBA for

the ζC + ξ.



Chapter 6

Conclusions

In this dissertation, we deal with two types of variational inclusions. We introduce and

study several types of iterative procedure for solving these variational inclusions. Newton-

type method (3.1.3) are applied for approximating the solution of the variational inclusion

problem (1.0.1) and we have established local convergence results of the Newton-type method

under the assumptions that R−1
s∗ (·) is pseudo-Lipschitz and ∇ζ is continuous, Lipschitz con-

tinuous and Hölder continuous respectively and g is admissible for FODD. More clearly, we

have shown that the Newton-type method defined by the method (3.1.3) converges linear-

ly, quadratically and superlinearly to the solution of (1.0.1) if ∇ζ is continuous, Lipschitz

continuous and Hölder continuous respectively, together with a divided difference admissible

function g. This study improves and extends the results corresponding to [43]; see more

details in [63].

For solving the variational inclusion (1.0.1) we introduce an iterative method ”so-called”

EN-type method defined by Algorithm 2. The semilocal and local convergence results for

the EN-type method are established under the conditions that η > 1, ∇ζ is continuous and

Lipschitz continuous, g admits first order divided difference as well as R−1
s̄ is Lipschitz-like.

This work extends and improves the result corresponding to [13, 105]; see more details in

[62]. On the other hand, for solving the variational inclusion (1.0.1) we introduce another

iterative method defined by Algorithm 3 under the assumptions that ∇ζ is (L, q)-Hölder

continuous and g admits the first-order divided difference satisfying q-Hölderian condition.

We present the semilocal and local convergence analysis of the method. To validate our

109
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theoretical result we have given numerical experiments and this results extends and improves

the corresponding ones in [62, 103]. To know in detail, the reader could refer to our paper

[64].

Moreover, to approximate the solution of the nonsmooth variational inclusions (1.0.3) we

introduce the iterative procedure ”so-called” extended Newton-type method (ENM) defined

by the Algorithm 4 in Chapter 5. In this literature we have established semilocal and

local convergence of the extended Newton-type method method for solving the nonsmooth

variational inclusion (1.0.3) under the conditions η > 1, (ζ + ξ)−1 is Lipschitz-like and the

nonsmooth function ζ has a (n, α)-PBA. Moreover, when 0 < α < 1 and ∇ζ is (ℓ, α)-Hölder,

we have presented an application of (n, α)-PBA for smooth function with n = 1, that is, we

have shown A is a (1, α)-PBA. In this case Theorem 5.2.1 provides the superlinear convergent

result and this result extends the convergence theorem of Geoffroy and Piétrus [42]. On the

other hand, for n = 2 and 0 < α < 1, if ζ is twice Fréchet differentiable function and ∇2ζ

is (K,α)-Hölder, we have given an application of (n, α)-PBA, that is, we have shown A ia

s (2, α)-PBA. In this case Theorem 5.2.1 yields the superquadratic convergent result and

this result extends and improves the convergence result of [41, 105]. Finally, we have given

another application of (n, α)-PBA for normal maps ζC + ξ, which extends the concept of

PBA reformulated by Rashid [103]. That is, we have shown that if ζ has a (n, α)-PBAs,

it is easy to construct a (n, α)-PBA for the ζC + ξ. At the end we have given a numerical

experiment to illustrates our theoretical result.

Our future research is to study EN-type method for solving variational inclusion using

set-valued approximations. More clearly, if the single-valued function involved in (5.1.1) is

an another set-valued mapping, introducing and studying an EN-type method, for solving

such type of variational inclusion problems, is an important task for our future research.
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