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A B S T R A C T

By employing modified simple equation (MSE) scheme, we estimate the presence of stable kink soliton and
kinky-periodic rogue wave solutions; unstable singular kink wave solutions of the biological dynamical models
as a Cahn�Allen model and a diffusive predator�prey model. This model frequently occurs in various nonlinear
science including quantum physics, plasmas and biophysics. We present some novel exact explicit solutions
of the exponential form of both Cahn�Allen and diffusive predator�prey models with some free parametric
values. We also derive particular solutions from the explicit solutions selecting some definite values of the free
parametric values. As a result, kink, singular kink and kinky-periodic lump wave surfaces are achieved of the
solutions. Lastly, the variety and graphic representations of the composition make the models dynamic. Stable
and unstable situations are explained in detail from the analysis of the profiles.

1. Introduction

The mathematical representing of happenings in nature can be
revealed by differential equations. It is well familiar that abundant
categories of the physical occurrences in the field of fluid dynamics,
quantum physics, chemical physics, electricity and plasmas are demon-
strated by nonlinear models and the existence of solitary waves in
nature is frequently. However, nonlinear behavior is a challenging due
to some minor changes in time-related parametric values; it is not com-
fortable to manage the non-linear representative of the organism very
quickly. Nonlinearity is responsible for the development of local waves
and has the ability to carry energy without wastage which is a very fas-
cinating matter.1,2 Otherwise, rapidly growing the spread of infection
may cause a disaster state in a community. To tackle the unavailable
state or to remain a suitable state, we have to learn the dissimilar
types of solutions of the dynamical system in a model of Cahn�Allen
or any type of predator�prey model. As in tragedy state waves or to
keep emerges location, the height and width of population size is very
essential. If we resolve the model of dynamical systems of such difficul-
ties by applying diverse approaches, we can find the best approach of
appreciative such potential disasters and then earnings necessary pre-
cautions. Thus, the concern becomes more challenging and hence deci-
sive solutions are needed. The solutions of the equation have a crucial
impression on mathematical physics and engineering. Recently, there
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has been a tremendous increased to find the exact solutions of nonlinear
models. Various effective schemes have been reputed and enriched,
such as the tan.’.�/_2/-expansion scheme,3 the generalized Kudryshov
scheme,4 the .G¤_G/-expansion scheme,5 the sine�Gordon expansion
scheme,6�8 the F-expansion scheme,9 the exp-function scheme,10,11 the
MSE scheme,12�15 first integral scheme,16 Simple equation scheme,17

Bilinear scheme,18�21 the Exp-.*�.�//-expansion scheme,22 the tanh
scheme23 and so on.24�35 All most all of the above schemes are con-
tingent on computational software except the MSE scheme. The MSE
scheme is a very effective and reliable procedure settled successfully
by Vitanov12 and the reference therein.12�15

The ambition of this manuscript is to seek novel exact solutions
together with topological soliton, periodic cusp soliton, periodic bell
solutions of the well-recognized Cahn�Allen model11,16,35 and diffusive
predator�prey model33,34 via MSE scheme.

2. Description of the MSE scheme

Consider a general form of a nonlinear model as

H.u; ut; ux; uxt; uxx; § §/ = 0; (2.1)

with real function u.�/ = u.x; t/ and H is a polynomial of u.x; t/. We
present the key steps of the scheme as follows:
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Step 1: Let us combine the real variables x and t by a combined variable
� as

u.r; t/ = u.�/; � = P : r , wt; (2.2)

where P = l�i + m �j + n�k and r = x�i + y �j + z�k with real constants l; m; n,
wave amount k and wave velocity w.

By the above relation the Eq. (2.1) converted to the ordinary
differential equation as follows

G.u; u¤; u¤¤ § § §/ = 0; (2.3)

where G is a polynomial in u.�/ and its derivatives.

Step 2: Consider the trial solution of Eq. (2.3) as

u.�/ =
nÉ

i=0
Ai

0
S¤.�/
S.�/

1i
; (2.4)

with real constants Ai.i = 0; 1; § ; n/ and unknown function S.�/.

Step 3: By balancing the derivative of highest order and nonlinear
terms in Eq. (2.3), we can find the value of n in Eq. (2.4).

Step 4: From Eqs. (2.4) and (2.3), we get a polynomial of .S¤.�/_S.�//
and its derivatives and .S.�//*i; .i = 0; 1; 2; § ; n/, and then equating
the coefficients of .S.�//*i; .i = 0; 1; 2; § ; n/ equal to zero. This pro-
duces gives an algebraic system which can be solved to obtain Ai.i =
0; 1; 2; § ; n/,S.�/. Then we can find the solution of the Eq. (2.1).

Remark. In comparison the MSE scheme with the simple equation
scheme,17 it is seen that simple equation scheme depend upon an
auxiliary equation (Riccati equation) but MSE scheme is independent
and can perform directly without help of any auxiliary equation. On
the other hand, Simple equation gives results which are special case of
Modified equation scheme.

3. Illustrative examples

Here, we include two examples to make clear the suitability of the
MSE scheme to solve nonlinear models declared above.

3.1. Example-1: Traveling wave solution of Cahn�Allen model

Let us consider nonlinear model given as

ut = uxx * um + u: (3.1)

For m = 3, Eq. (3.1) suits to Cahn�Allen model.11,16,35 This model
occurs in various scientific areas including biophysics, quantum physics
and plasmas. To solve this model, we use transformation � = kx +
wt, for wave amount k and wave velocity w. Taking help of this
transformation, Eq. (3.1) converts to an ordinary differential equation

wu¤ * k2u¤¤ + u3 * u = 0: (3.2)

Balancing u3 with u¤¤ we receive the unknown order of solution as n = 1.
Hence the trial solution Eq. (2.4) takes the form as

u.�/ = A0 + A1
S¤.�/
S.�/

: (3.3)

Now, we can compute the terms:

u¤.�/ = A1
S¤¤.�/
S.�/

* A1

0
S¤.�/
S.�/

12
; (3.4)

u¤¤.�/ = A1
S¤¤¤.�/
S.�/

* 3A1
S¤¤.�/S¤.�/

S2.�/
+ 2A1

0
S¤.�/
S.�/

13
: (3.5)

Putting Eqs. (3.3)�(3.5) in the Eq. (3.2) and equating coefficients of
same powers of S¤.�/

S.�/ , we gain:

Coefficient of .S.�//0 : A3
0 * A0 = 0; (3.6)

Coefficient of .S.�//*1 : * k2A1S¤¤¤.�/ + 3A2
0A1S¤.�/

+ wA1S¤¤.�/ * A1S¤.�/ = 0; (3.7)

Coefficient of .S.�//*2 : * wA1
�
S¤.�/

�2 + 3k3A1S¤.�/S¤¤.�/

+ 3A0A2
1

�
S¤.�/

�2 = 0; (3.8)

Coefficient of .S.�//*3 : A1.A2
1 * 2k2/

�
S¤.�/

�3 = 0: (3.9)

From Eq. (3.6), we achieve A0 = 0; 1; *1 and from Eq. (3.9) we can
receive the values A1 � 0 and thus A1 = ,

ø
2k and

S¤¤¤

S¤¤ =
3k2.3A2

0 * 1/ + w.w * 3A0A1/

k2.w * 3A0A1/
: (3.10)

Integrating we have

S¤¤ = c1 exp.
3k2.3A2

0 * 1/ + w.w * 3A0A1/

k2.w * 3A0A1/
�/: (3.11)

From Eq. (3.8), we also get,

From Eq. (3.8), we also get,

S¤ =
3c1k2

w * 3A0A1
exp.

3k2.3A2
0 * 1/ + w.w * 3A0A1/

k2.w * 3A0A1/
�/: (3.12)

Integrating Eq. (3.12) one time, we have

S =
3c1k4

3k2.3A2
0 * 1/ + w.w * 3A0A1/

� exp.
3k2.3A2

0 * 1/ + w.w * 3A0A1/

k2.w * 3A0A1/
�/ + c2: (3.13)

Using Eqs. (3.12) and (3.13), we attain to the solution

u = A0 +
3c1A1k2

w * 3A0A1
�

exp.
3k2.3A2

0*1/+w.w*3A0A1/

k2.w*3A0A1/
�/

3c1k4

3k2.3A2
0*1/+w.w*3A0A1/

exp.
3k2.3A2

0*1/+w.w*3A0A1/

k2.w*3A0A1/
�/ + c2

;

(3.14)

where � = k.x , 3ø
2
t/ with w = , 3ø

2
k. Here c1 and c2 are arbitrary

constants.

Case-I: For the set A0 = 0; A1 = ,
ø

2k, we get

u = ,
3
ø

2c1k3

w
�

exp. .w2*3k2/
.k2w/

�/

3c1k4

w2*3k2 exp. .w2*3k2/
.k2w/

�/ + c2

; (3.15)

where � = k.x , 3ø
2
t/ with w = , 3ø

2
k.

If we choose c2 = 3k4c1
w2*3k2 , then we arrive to the solution

u = , w2 * 3k2
ø

2wk

<
1 + tanh

0
w2 * 3k2

2wk2
�
1=

; (3.16)

where � = k.x , 3ø
2
t/ with w = , 3ø

2
k.

If we choose c2 = * 3k4c1
w2*3k2 , then we arrive to the solution

u = , w2 * 3k2
ø

2wk

<
1 + cot h

0
w2 * 3k2

2wk2
�
1=

; (3.17)

where � = k.x , 3ø
2
t/.

Since c1 and c2 are free parameters, for various selections of c1
and c2 it provides abundant novel exact solutions of the Cahn�Allen
model. The achieved solutions from Eqs. (3.16) and (3.17) are depicted
graphically in Figs. 1 and 2.

Case-II: For the set A0 = ,1; A1 = ,
ø

2k, we get

u = ,1 ,
3
ø

2c1k3

w * 3
ø

2k
�

exp. .6k2+w.w*3
ø

2k//
k2.w*3

ø
2k/

�/

3c1k4

6k2+w.w*3
ø

2k/
exp. .6k2+w.w*3

ø
2k//

k2.w*3
ø

2k/
�/ + c2

; (3.18)

for � = k.x , 3ø
2
t/ with w = , 3ø

2
k. Here c1 and c2 are arbitrary

parametric values.

2
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Fig. 1. Kink wave of the solution Eq. (3.16) with k = 1.

Fig. 2. Single-kink wave solution of the Eq. (3.17) with k = 1.

If we choose c2 = 3k4c1

6k2+w.w*3
ø

2k/
, then we attain to the solution as

u = ,1 ,

ø
2^6k2 + w.w * 3

ø
2k/‘

k.w * 3
ø

2k/

T

1 + tanh

H
6k2 + w.w * 3

ø
2k/

k2.w * 3
ø

2k/
�

IU

;

(3.19)

where � = k.x , 3ø
2
t/ with w = , 3ø

2
k.

If we choose c2 = * 3k4c1

6k2+w.w*3
ø

2k/
, then we attain to the solution as

u = ,1 ,

ø
2^6k2 + w.w * 3

ø
2k/‘

k.w * 3
ø

2k/

T

1 + tanh

H
6k2 + w.w * 3

ø
2k/

k2.w * 3
ø

2k/
�

IU

;

(3.20)

where � = k.x , 3ø
2
t/ with w = , 3ø

2
k.

Since c1 and c2 are free parameters, for different selections of c1
and c2 it provides abundant novel exact solutions of the Cahn�Allen
model. The achieved solutions from Eqs. (3.19) and (3.20) are similar in
diagrams Fig. 1 and Fig. 2 respectively. So, we exclude these equations
for convenience.

Again with commercial software, we can also get various solutions
of the Cahn�Allen model (solving from Eqs. (3.7) and (3.8)).

For the set of solution A0 = 0; A1 = ,
ø

2k, we get S.�/ = a +
b exp.,�_

ø
2k/.

Thus arrive to the solution

u.x; t/ = , b

a
<

cosh �ø
2k

- sin h �ø
2k

=
+ b

with � = k
�

x , 3t_
ø

2
�

:

(3.21)

If we consider a_b = exp.2c/, then Eq. (3.21) reduces to well known
solution

u.x; t/ = , 1
2

T

1 + tanh

H

, 1
ø

2
x + 3

2
t + c

IU

: (3.22)

For the set A0 = 1; A1 = ,
ø

2k, we get S.�/ = a + b exp.,�_
ø

2k/.
Hence arrive to the solution

u.x; t/ = 1 * b

a
<

cosh �ø
2k

, sin h �ø
2k

=
+ b

with � = k
�

x , 3t_
ø

2
�

:

(3.23)

If we consider a_b = exp.2c/, then Eq. (3.23) reduces to well known
solution

u.x; t/ = 1
2

T

1 + tanh

H

, 1
ø

2
x + 3

2
t + c

IU

: (3.24)

For the set A0 = *1; A1 = ,
ø

2k, we get S.�/ = a + b exp.-�_
ø

2k/.
Hence we attain to the solution

u.x; t/ = *1 * b

a
<

cosh �ø
2k

- sin h �ø
2k

=
+ b

with � = k
�

x - 3t_
ø

2
�

:

(3.25)

If we consider a_b = exp.2c/, then Eq. (3.22) gives to well known
solution

u.x; t/ = * 1
2

T

1 + tanh

H

, 1
ø

2
x + 3

2
t + c

IU

: (3.26)

Since a and b are free parameters, for different selections of a and b
it provides abundant novel exact solutions of the Cahn�Allen model.
Choosing a_b = exp.2c/ we get special type solution like Eqs. (3.24)
and (3.26), but for other choose a and b in different way we can get
dissimilar type of solutions. Thus Eqs. (3.24) and (3.26) are particular
type of our solutions.

Graphs of the solutions Eqs. (3.21), (3.23) and (3.25) represent
kink type wave propagation (like Fig. 1) for same positive/negative
values of the arbitrary constants c1 and c2. But to get single soliton like
wave propagation (like Fig. 2) from the same solution, we have to pick
opposite values of arbitrary constants c1 and c2.

3.2. Example 2: A diffusive predator�prey model

In the predator�prey model including any type of natural disaster,
the cycle can be reflected as a flow that may be periodic or remain
unchanged like soliton and may be considered as a nonlinear wave phe-
nomenon allied to a large amount of significance in modern biophysics.
Here, we deliberate a model of two combined nonlinear models relating
the spatio-temporal kinetics of a predator�prey model,33

<
ut = uxx * �u + .1 + �/u2 * u3 * uv
vt = vxx + kuv * mv * �v3 ; (3.27)

with positive constants k; �; m and �. Research has been done from
several angles to find a solution to the predator�prey model.33,34 For
further convenience, to visualize the kinetics of the dispersive predator�
prey model have expected the relations as m = � and k + 1_

ø
� =

� + 1.

3
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Hence the Eq. (3.27) converted to
T

ut = uxx * �u + .k + 1_
ø

�/u2 * u3 * uv
vt = vxx + kuv * �v * �v3 : (3.28)

Analogously, we bring in the variable � = x * wt, and make the
transformation u.x; t/ = u.�/, to convert Eq. (3.28) as the following form:

T
u¤¤ + cu¤ * �u + .k + 1_

ø
�/u2 * u3 * uv = 0

v¤¤ + cv¤ + kuv * �v * �v3 = 0
; (3.29)

for c � 0.
To solve the Eq. (3.29), consider the relation v = u_

ø
� to convert

the system to a single equation and we finally attain,

u¤¤ + cu¤ * �u + ku2 * u3 = 0: (3.30)

Balancing u3 and u¤¤ in Eq. (3.30), yields m + 2 = 3m � m = 1. So Eq.
(3.30) has the following solution

u.�/ = a0 + a1

¤.�/

.�/

and a1 � 0; (3.31)

where a0 and a1 are constants and need to be determined. Inserting
Eq. (3.31) in Eq. (3.30) and equating the coefficient of same powers of
.
.�//*i ; i = 0; 1; § ; 3 and setting each of them is identical to zero; we
have an algebraic system as below

ka2
0 * �a0 * a3

0 = 0

wa1
¤¤.�/ * .�a1 + 3a2
0a1 * 2ka0a1/
¤.�/ + a1
¤¤¤.�/ = 0

* 3a1
�

¤.�/

� �

¤¤.�/

�
* .wa1 * ka2

1 + 3a0a2
1/

�

¤.�/

�2 = 0;
�
2a1 * a3

1
� �


¤.�/
�3 = 0:

From first and last equation of the above algebraic system, we get three
types of solutions
a0 = 0; a1 = ,

ø
2 and a0 = 1

2 .k +
ø

k2 * 4�/, a1 = ,
ø

2 and a0 =
1
2 .k *

ø
k2 * 4�/, a1 = ,

ø
2.

Case1: When we consider a0 = 0 and a1 = ,
ø

2.

Set-1: For the solution a0 = 0 and a1 =
ø

2, we get other parametric
values w =

ø
2

4 .k , 3
ø

k2 * 4�/ and 
.�/ = c1 + c2e* 1
3 .w*

ø
2k/� .

Using these parametric values in Eq. (3.31), we can find the solution
of the Eq. (3.28) as follows

u = *

ø
2

3
c2.w *

ø
2k/

c2 + c1.cosh # + sin h#/
; (3.32)

where � = x *
ø

2
4 .k , 3

ø
k2 * 4�/t and # = 1

3 .w *
ø

2k/�.

Set-2: For the solution a0 = 0 and a1 = *
ø

2, we get remain-
ing parametric values w = *

ø
2

4 .k , 3
ø

k2 * 4�/ and 
.�/ = c1 +

c2e* 1
3 .w+

ø
2k/� .

Using these parametric values in Eq. (3.31), we can find the solution
of the Eq. (3.28) as follows

u =

ø
2

3
c2.w +

ø
2k/

c2 + c1.cosh # + sin h#/
; (3.33)

where � = x +
ø

2
4 .k , 3

ø
k2 * 4�/t and # = 1

3 .w +
ø

2k/�.

Case-2: When we consider a0 = 1
2 .k +

ø
k2 * 4�/ and a1 = ,

ø
2.

Set-1: For the solution a0 = 1
2 .k +

ø
k2 * 4�/ and a1 =

ø
2, we get

remaining parametric values

w = * 1ø
2
k;

ø
2

4 .k * 3
ø

k2 * 4�/ and 
.�/ = c1 + c2e*
ø

2
6 .

ø
2w+k+3

ø
k2*4�/� .

Using these parametric values in Eq. (3.31), we can find the solution
of the Eq. (3.28) as follows

u = 1
2

.k +
ø

k2 * 4�/ * 1
3

c2.
ø

2w + k + 3
ø

k2 * 4�/
c2 + c1.cosh # + sin h#/

; (3.34)

where � = x *
ø

2
4 .k * 3

ø
k2 * 4�/t or � = x + 1ø

2
kt and # =

ø
2

6 .
ø

2w +

k + 3
ø

k2 * 4�/�.

Set-2: For the solution a0 = 1
2 .k +

ø
k2 * 4�/ and a1 = *

ø
2, we get

remaining parametric values

w = 1ø
2
k; *

ø
2

4 .k * 3
ø

k2 * 4�/ and 
.�/ = c1 + c2e*
ø

2
6 .

ø
2w*k*3

ø
k2*4�/� .

Using these parametric values in Eq. (3.31), we can find the solution
of the Eq. (3.28) as follows

u = 1
2

.k +
ø

k2 * 4�/ + 1
3

c2.
ø

2w * k * 3
ø

k2 * 4�/
c2 + c1.cosh # + sin h#/

; (3.35)

where � = x +
ø

2
4 .k * 3

ø
k2 * 4�/t or � = x * 1ø

2
kt and # =

ø
2

6 .
ø

2w *

k * 3
ø

k2 * 4�/�.

Case-3: When we consider a0 = 1
2 .k *

ø
k2 * 4�/ and a1 = ,

ø
2.

Set-1: For the solution a0 = 1
2 .k *

ø
k2 * 4�/ and a1 =

ø
2, we get

remaining parametric values

w = * 1ø
2
k;

ø
2

4 .k + 3
ø

k2 * 4�/ and 
.�/ = c1 + c2e*
ø

2
6 .

ø
2w+k*3

ø
k2*4�/� .

Using these parametric values in Eq. (3.31), we can find the solution
of the Eq. (3.28) as follows

u = 1
2

.k *
ø

k2 * 4�/ * 1
3

c2.
ø

2w + k * 3
ø

k2 * 4�/
c2 + c1.cosh # + sin h#/

; (3.36)

where � = x *
ø

2
4 .k + 3

ø
k2 * 4�/t or � = x + 1ø

2
kt and # =

ø
2

6 .
ø

2w +

k * 3
ø

k2 * 4�/�.

Set-2: For the solution a0 = 1
2 .k *

ø
k2 * 4�/ and a1 = *

ø
2, we get

remaining parametric values

w = 1ø
2
k; *

ø
2

4 .k + 3
ø

k2 * 4�/ and 
.�/ = c1 + c2e*
ø

2
6 .

ø
2w*k+3

ø
k2*4�/� .

Using these parametric values in Eq. (3.31), we can find the solution
of the Eq. (3.28) as follows

u = 1
2

.k *
ø

k2 * 4�/ + 1
3

c2.
ø

2w * k + 3
ø

k2 * 4�/
c2 + c1.cosh # + sin h#/

; (3.37)

where � = x +
ø

2
4 .k + 3

ø
k2 * 4�/t or � = x * 1ø

2
kt and # =

ø
2

6 .
ø

2w *

k + 3
ø

k2 * 4�/�.
If we plot Eq. (3.32) with particular choose of the constants such

that k2 * 4� > 0, then we achieved progress of spaces as kink type that
is population density is stable and lies between two asymptotic state
u = 0 to u = 0:85 with c1 = c2 = w = � = 1; k = 2 (see Fig. 3a). But
if we set the constants such that k2 * 4� < 0, then most of the times
population are stable except some times and periodic (see Fig. 3b with
c1 = c2 = w = � = 1; k = 1). On the other hand when c1 or c2 negative,
then density of species unstable and increases unexpectedly (see Fig. 3c
with c1 = *1; c2 = w = � = 1; k = 2). Fig. 3d: perspective view of
Eq. (3.33) for c1 = c2 = w = � = 1; k = 1. The other solution gives the
same type of situation with similar conditions on the parametric values.
So we avoid the similar figures again.

4. Comparison

Here, we compare our solutions with the solutions of other re-
searchers obtained by some renowned schemes as exp-function scheme,
first integral scheme and Bernoulli sub-equation function scheme. The
details are included as follows:
(a) Comparison with Exp-function scheme Ref. 11: Ugurlu11 ob-
tained some solutions of the Cahn�Allen model via exp-function scheme
in which solutions u8; u9 are identical with our solution Eq. (3.21) when
b = 1; a = b0 and the other solutions are different with their solutions
(For more see the Ref. 14).
(b) Comparison with first integral scheme Ref. 16: Tascan and
Bekir16 obtained some solutions of the Cahn�Allen model via first

4
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Fig. 3a. Kink wave view of Eq. (3.32) for c1 = c2 = w = � = 1; k = 2.

Fig. 3b. Kinky-periodic lump wave view of Eq. (3.32) for c1 = c2 = w = � = 1; k = 1.

Fig. 3c. Singular-kink soliton view of Eq. (3.32) for c1 = *1; c2 = w = � = 1; k = 2.

integral scheme in which solutions Eq. (3.16) are identical with our
solutions Eq. (3.21) (when in our study a = b = 1; k = *1_

ø
2 and

in their study c0 = 0) and u8; u9 are identical with our solutions Eq.

Fig. 3d. Kinky-periodic lump wave view of Eq. (3.33) for c1 = c2 = w = � = 1; k = 1.

(3.21) when b = 1; a = b0 and the other solutions are different with
their solutions.
(c) Comparison with the Bernoulli sub-equation function scheme
Ref. 35: Bulut et al.35 derived six solutions of Cahn�Allen model and all
of these are special case of our solutions. When we put k = *

ø
2_3; c2 =

a2; 2c1k2 = E; k = *
ø

2_3; c2 = 2
ø

2d; 2c1k2 = E and k = *
ø

2_3; c2 =
3
ø

2d; 2c1k2 = E in our solution (Case-I i.e., Eq. (3.15)) reduces to
solutions u1, u4 and u5 of Ref. 35 respectively. Similarly, we see that
the solutions u2; u3; u6 are special case of our solution (Case-II i.e., Eq.
(3.18)). Our results have more free parameters which can be converted
to diverse types of dynamical behavior for diverse choices of free
parameters.

In contrast, by employing the MSE scheme in this manuscript we
have achieved four solutions with simple calculations.

5. Conclusions

In this paper, the MSE scheme has been effectively employed for
finding the exact solutions and dynamics of the Cahn�Allen model
and the dispersive predator�prey model. We presented abundant new
exact explicit solutions of the exponential form of both Cahn�Allen
and diffusive predator�prey models with some free parametric values.
We derived particular solutions from the general exponential function
such as stable kink soliton and kinky-periodic rogue wave solutions;
unstable singular kink wave solutions of both models. We also derive
particular solutions from the explicit solutions selecting some definite
values of the free parametric values. Lastly, the variety and graphic
representations of the composition make the models dynamic. Stable
and unstable situations are explained in detail from the analysis of
the profiles. By comparing the MSE scheme with different schemes,
we can claim that the MSE scheme is frank, simple, proficient, and
can be applied in numerous nonlinear models. In existing schemes, for
example, the .G¤_G/-expansion scheme, the Exp-function scheme and
the tanh-function scheme, it is essential to employ suggestive calcula-
tion software like Mathematica or Maple to solve the intricate algebraic
equation. No auxiliary equations are needed to solve non-linear models
by using the MSE scheme.
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Abstract: In the current article, the generalized Kudryshov method is applied to determine exact solitary wave solutions 
for the time fractional generalized HirotañSatsuma coupled KdV model. Here, fractional derivative is illustrated in the 
conformable derivative. Therefore, plentiful exact traveling wave solutions are achieved for this model, which encourage 
us to enlarge, a novel technique to gain unsteady solutions of autonomous nonlinear evolution models those occurs in 
physical and engineering branches. The obtained traveling wave solutions are expressed in terms of the exponential 
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applied the improved fractional sub-equation method to construct analytical solutions to the spaceñtime fractional 
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where the prime denotes the derivative of H with respect to 
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and  3 22 2 0.cH H c H
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where 
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Inserting Eq.(17) along with Eq.(5) into Eq.(10), we get a polynomial of ,...)2,1,0(,
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Eq.(18) gives constant solution that represent in xt plane.

   

              (a)                                                                                                          (b)                                               

Figure 1 (a) Represent bright bell solitary wave solution h (x,t) of Eq.(12) for the physical parametric values A=0.5,
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In this manuscript, the (2+1)-dimensional Bogoyavlenskii�s breaking soliton (BBS) model is considered. At-
�rst, we reduce the model into its bilinear form using the Hirota bilinear approach. We then analytically 
construct lump waves and collision of lump with periodic waves via the Hirota scheme. We also present 
collision between lump wave and single-, double-kink soliton solutions, and the collision among lump, 
periodic and single-, double-kink soliton solutions of the model. In addition, we explain the �ssion 
properties of the collisions. It is noticed that collision of lump-kink waves split into double kinky-lump 
waves and gradually increases the number of such waves as the increase of �, which was not found in 
the previous literature. Finally, we graphically present the nature of the collision solutions of the model 
in 3D and contour plots. The derived such wave solutions may have much more important for controlling 
unpredictable harmful waves arises in nature.

� 2021 Elsevier B.V. All rights reserved.

1. Introduction

The soliton theory, which is one of the three sections of non-
linear science, is broadly used in various areas of physical science 
such as �uid mechanics, nonlinear optics, mathematical biology, 
ecology, chemical kinetics, plasma waves and others [1�8]. Various 
reliable and effective approaches have been suggested to address 
the solitary waves such as the (G �/G)-expansion method [9], the 
generalized Kudryashov method [10], the Hirota bilinear method 
[11], the tan-cot method [12], the tanh-coth method [13], the di-
rect algebraic method [14], the Modi�ed simple equation method 
[15], F expansion method [16], the sine-Gordon expansion method 
[17,18], etc. Lump wave is one of the most important parts of 
solitary waves and have diverse properties [19�25]. In 1977, the 
simplest lump wave solution was primary reported by Manakov et 
al. [26]. The study of lump wave solutions has been used in op-
tical �ber [3], oceanic science [27], atmospheric science [28] and 

* Corresponding author.
E-mail addresses: sa�.ru1985@gmail.com (M.S. Ullah), 

harunorroshidmd@gmail.com (H.-O. Roshid).

so forth. Recently, the multi-type collisions between lump/rogue 
and periodic waves are investigated in [29], and collisions between 
higher-order rogue waves and diverse types of n-soliton solutions 
are investigated in [30] as well. Thus such studies are highly fo-
cused on the viewpoint of the combination of quadratic functions 
with the exponential or trigonometric or hyperbolic functions to 
explain the nature of the collision of kink, lump, rogue and pe-
riodic waves for produce kinky-lump, kinky-rogue, periodic-lump 
wave, periodic-rogue waves and kinky-periodic-rogue wave for the 
NLEEs [31�38]. Based on the motivation of the above study, we 
consider the BBS model [39�42]:

�xxxy + 4�y�xx + 4�x�xy + �xt = 0 (1)

where � is the function of spatial variables x, y and time vari-
able t; for the study of new dynamic phenomena and the physical 
behavior of different collisions among lump, periodic and soliton 
solutions.

Such interaction was not studied in the previous literature of 
the BBS model. Fission phenomena of kinky-lump wave were not 
derived in any nonlinear models and it is the �rst step of this 
model. These type studies of the model are still unexplored and 
have much scienti�c interest.

https://doi.org/10.1016/j.physleta.2021.127263
0375-9601/� 2021 Elsevier B.V. All rights reserved.
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We will here �rstly obtain the bilinear formation of the model 
Eq. (1) to construct lump and periodic wave solutions and their 
various collision solutions. Then the dynamics of those solutions 
will be clearly illustrated.

2. The bilinear formation of the BBS model

Consider the conversion relation as below

� =
3
2

(ln �)x, (2)

with real function �(x, y, t) to be determined.
Inserting the relation Eq. (2), in Eq. (1), then we can write

(ln �)xxxxy + 6(ln �)xy(ln �)xxx

+ 6(ln �)xx(ln �)xxy + (ln �)xxt = 0. (3)

Integrating the Eq. (3) with respect to x, then we have

(ln �)xt + (ln �)xxxy + 6(ln �)xy .(ln �)xx = 0. (4)

By considering the linear terms of Eq. (4), we have

(ln �)xt + (ln �)xxxy = 0. (5)

By using the bilinear operator D, the Eq. (5) can be written as

(Dx Dt + D y Dx
3) f . f = 0, (6)

when the D-operator [11] is de�ned by

(Dx
m D y

k Dt
n) f .g

=
�

�
�x1

�
�

�x2

�m�
�

� y1
�

�
� y2

�k�
�

�t1
�

�
�t2

�n

×
�

f (x1, y1, t1).g(x2, y2, t2)
�
.

Thus Eq. (5) reduces to

��xt � �t�x + 3�xx�xy � 3�x�xxy + ��xxxy � �xxx�y = 0. (7)

Clearly if � satis�es Eq. (1), then � = 3
2 (ln �)x directly generates 

the solutions of the governing model Eq. (1).

3. Lump wave solution of BBS model

To obtain the lump wave solutions of the BBS model, consider 
an ansatz of the following form

� = (p1x + p2 y + p3t)2 + (q1x + q2 y + q3t)2 + l, (8)

where p1, p2, p3, q1, q2, q3 and l are free parameters. Setting 
Eq. (8) in Eq. (7), we have an algebraic system in p1, p2, p3,
q1, q2, q3 and l. By solving this system via Maple 18, we have 
p3 = q3 = 0, p1 = p1 , p2 = � q1q2

p1
, q1 = q1 , q2 = q2 , l = l, then 

the Eq. (8) can be written as

� =
�

p1x �
q1q2

p1
y
�2

+ (q1x + q2 y)2 + l. (9)

By combining Eq. (9) and Eq. (7) and putting p1 = q1 = q2 = l = 1, 
we have the solution of Eq. (1) as depicted in Fig. 1. Due to guar-
antee � is localized in every direction, l have to be considered as 
a positive constant. In this case, the optimum amplitude of the 
solution � is occurred at the points (–

�
l

p12+q12 , 0) with the am-

plitudes 3
2

�
p12+q12

l and � 3
2

�
p12+q12

l .

Fig. 1. Pro�les of the lump solution � Eq. (1) for p1 = q1 = q2 = l = 1.

4. Collision among lumps, periodic waves, and soliton solutions

4.1. Collision between lumps and periodic waves

To study the collision scenarios between lump and periodic 
waves, consider a function constructed by double quadratic form 
and a sinusoidal function

� =(�1x + �2 y + �3t)2 + (�1x + �2 y + �3t)2

+ l + � cos(�1x + �2 y + �3t), (10)

where �1, �2, �3, �1, �2, �3, �1, �2, �3, l and � are free parame-
ters. Inserting Eq. (10) in Eq. (7), we have an algebraic system in 
�1, �2, �3, �1, �2, �3, �1, �2, �3, l and �. By solving this system via 
Maple 18, we get the following results:

Case 1: �2 = �3 = �2 = �3 = �2 = �3 = 0, � = �, �1 = �1, �1 =
�1, �1 = �1, l = l.

Case 2: �1 = �1, �2 = � �1�2
�1

, �3 = �3 = �1 = �3 = 0, � = �, �1 =
�1, �2 = �2, �2 = �2, l = l

For case 1, the Eq. (10) can be written as

� = (�1x)2 + (�1x)2 + l + � cos(�1x). (11)

For case 2, the Eq. (10) can be written as

� =
�

�1x �
�1�2

�1
y
�2

+ (�1x + �2 y)2 + l + � cos(�2 y). (12)

Using Eq. (11) and Eq. (7) and selecting �1 = �1 = �1 = l = 1, 
we have the solution of Eq. (1) (see Fig. 2). Fig. 2 exhibits as a 
single kinky-lump wave for � = 1 (see Fig. 2(a)) but it is going to 
split into double kinky-lump waves even large number of kinky-
lump waves due to �ssion of wave for the increase of � (see the 
Fig. 2(b-d)) gradually. Beside this, by choosing �1 = �1 = �2 = �2 =
l = 1 and setting Eq. (12) in Eq. (7), we have the solution of Eq. (1)
(see Fig. 3). The solution in case-2 exhibits as a single lump wave 
for � = 1 (see Fig. 3(a)) but it is going to split into double lump 
waves due to �ssion of lump wave for the increase of � (see the 
Fig. 3(b-d)) gradually. The energy distribution is symmetric over all 
the periodic lump waves while it travels (see Fig. 3).

4.2. Collision between a lump and a single-kink soliton

To construct the collision of lump wave and a single kink soli-
ton, we consider a function constructed by double quadratic form 
and an exponential function

2
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Fig. 2. Pro�les of the kinky-lump wave degenerate into periodic kinky-lump wave gradually via solution � of Eq. (1) for �1 = �1 = �1 = l = 1.

Fig. 3. Pro�les of collision solution � of Eq. (1) for �1 = �1 = �2 = �2 = l = 1.

� =(�1x + �2 y + �3t)2 + (�1x + �2 y + �3t)2

+ l + � exp(m1x + m2 y + m3t), (13)

where �1, �2, �3, �1, �2, �3, m1, m2, m3, l and � are real free con-
stants. Setting Eq. (13) into the Eq. (7), we have an algebraic sys-
tem in �1, �2, �3, �1, �2, �3, m1, m2, m3, l and �. By solving these 
equations via Maple 18, we get �1 = �1, �2 = � �1�2

�1
, �3 = �3 =

m1 = m3 = 0, �1 = �1 , �2 = �2 , m2 = m2 , l = l, � = �, then the 
Eq. (13) can be written as

� =
�

�1x �
�1�2

�1
y
�2

+ (�1x + �2 y)2 + l + � exp(m2x). (14)

Using Eq. (14) and Eq. (7) and selecting �1 = �1 = �2 = m2 = l = 1, 
� = 10, we have the solution of Eq. (1) (see Fig. 4). The Fig. 4
exhibits the dynamic processes of collision between lump waves 
with a single kink wave solution. We observe that the lump wave 
is downed and consumed by the kink compare with single lump 
wave Fig. 1 and �ow pattern being congested from one side.

4.3. Collision between a lump and a double kink soliton

To make the collision of lump wave and a two-kink soliton, we 
assume a function constructed by double quadratic form and a co-
sine hyperbolic function

� =(�1x + �2 y + �3t)2 + (�1x + �2 y + �3t)2

+ l + � cosh(	1x + 	2 y + 	3t), (15)

where �1, �2, �3, �1, �2, �3, 	1, 	2, 	3, l and � are free parameters. 
Setting Eq. (15) in Eq. (7), we have a system of algebraic equations 
in �1, �2, �3, �1, �2, �3, 	1, 	2, 	3, l and �. By solving these equa-
tions via Maple 18, we obtain �1 = �1 , �2 = � �1�2

�1
, �3 = �3 =

	1 = 	3 = 0, � = ��1 = �1 , �2 = �2 , 	2 = 	2 , l = l, then the Eq. (15)
can be written as

Fig. 4. Pro�les of collision lump solution � of Eq. (1) for �1 = �1 = �2 = m2 = l = 1, 
� = 10.

� =
�

�1x �
�1�2

�1
x
�2

+ (�1x + �2 y)2 + l + � cosh(	2 y). (16)

By combining Eq. (16) and Eq. (7) and setting �1 = �1 = �2 = 	2 =
l = 1, � = 10 and inserting, we have the solution of Eq. (1) (see 
Fig. 5). The Fig. 5 exhibits the dynamic processes of collision be-
tween lump waves with two kink waves. We observe that the lump 
wave is downed and consumed by the kink waves compare with 
lump wave (see Fig. 1 and Fig. 4) and �ow pattern being congested 
from two sides.

4.4. Collision among lump, periodic and a single kink wave

To achieve the collision among a lump wave, a periodic and a 
single kink solution of Eq. (1), we assume a function constructed 
by double quadratic form, a cosine and an exponential function

3
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Fig. 5. Pro�les of collision lump solution � of Eq. (1) for �1 = �1 = �2 = 	2 = l = 1, � = 10.

� =(�1x + �2 y + �3t)2 + (�1x + �2 y + �3t)2 + l

+ �1 cos(�1x + �2 y + �3t) + �2 exp(m1x + m2 y + m3),
(17)

where �1, �2, �3, �1, �2, �3, �1, �2, �3, m1, m2, m3, l, �1 and �2 are 
real free constants. Setting Eq. (17) in Eq. (7), we have a system of 
algebraic equations in �1, �2, �3, �1, �2, �3, �1, �2, �3, m1, m2, m3,
l, �1 and �2 . By solving these equations via Maple 18, we have 
�1 = �1 , �2 = � �1�2

�1
, �3 = �3 = �1 = �3 = m1 = m3 = 0, �1 = �1 , 

�2 = �2 , �2 = �2 , �1 = �1 , �2 = �2 , �2 = �2 , m2 = m2 , l = l, then 
the Eq. (17) can be written as

� =
�

�1x �
�1�2

�1
y
�2

+ (�1x + �2 y)2

+ l + �1 cos(�2 y) + �2 exp(m2 y). (18)

Using Eq. (18) and Eq. (7) and putting �1 = �1 = �2 = �2 = m2 =
l = 1, �2 = 2, we achieve the solution of Eq. (1) (see Fig. 6). The 
Fig. 6 exhibits the dynamic processes of collision among lump 
waves with single kink and periodic wave solution. We observe 
that the lump wave is downed and consumed by the kink wave 
compare with lump wave (see Fig. 1 and Fig. 4) and �ow pattern 
being congested from one sides. Besides this, effect of periodic 
function makes the �ssion phenomena. The solution (see Fig. 6) 
exhibits as a single lump wave for �1 = 1 (see Fig. 6(a)) but it 
is going to split into double lump waves with �1 = 15 (see the 
Fig. 6(b, c) and Fig. 6(e, f)). In fact, it is shown that one lump of 
them goes to diminish and another one still unchanged for �1 = 17
or more increasing values.

4.5. Collision among lump, periodic and a double kink soliton

To construct the collision among a lump wave, a periodic and 
a two-kink soliton, we assume a function constructed by double 
quadratic form, a cosine and cosine hyperbolic functions

� =(�1x + �2 y + �3t)2 + (�1x + �2 y + �3t)2 + l

+ �1 cos(�1x + �2 y + �3t) + �2 cosh(	1x + 	2 y + 	3t),
(19)

where �1, �2, �3, �1, �2, �3, �1, �2, �3, 	1, 	2, 	3, l, �1 and �2 are 
free parameters. Setting Eq. (19) into the Eq. (7), we have an alge-
braic system in �1, �2, �3, �1, �2, �3, �1, �2, �3, 	1, 	2, 	3, l, �1 and 

�2 . By solving this system via Maple 18, we have �1 = �1, �2 =
� �1�2

�1
, �3 = �3 = �1 = �3 = 	1 = 	3 = 0, �1 = �1, �2 = �2, �1 =

�1, �2 = �2, �2 = �2, 	2 = 	2, l = l, then the Eq. (19) can be writ-
ten as

� =
�

�1x �
�1�2

�1
y
�2

+ (�1x + �2 y)2

+ l + �1 cos(�2 y) + �2 cosh(	2 y). (20)

By using Eq. (20) and Eq. (7) and putting �1 = �1 = �2 = �2 = 	2 =
l = 1, �2 = 2, then we acquire the solution of Eq. (1) (see Fig. 7). 
The Fig. 7 exhibits the dynamic processes of collision among lump 
waves with double kink and a periodic wave solution. We observe 
that the lump wave is downed and consumed by the kink com-
pare with lump wave (see Fig. 1 and Fig. 4) and �ow pattern being 
congested from two sides. Besides this, effect of periodic function 
makes the �ssion phenomena. The solution Fig. 7 exhibits as a sin-
gle lump for �1 = 1 (see Fig. 7(a)), but it is going to split into 
double lump with the increase of �1 (see the Fig. 7(b-f)) gradually.

5. Conclusion

The main result in this paper is the procedure of obtaining the 
lump wave solutions and a class of interactions among lump, peri-
odic and the soliton solutions of the BBS model by using different 
ansatz functions. In particular, for the double quadratic polyno-
mials in the structure of the solution provide a lump wave so-
lution that pro�les are depicted in Fig. 1. We explicitly present 
interactions between lump and periodic waves, lump and single-, 
double-kink soliton solutions of the model. We also show how to 
interact lump with periodic waves, and single-, double- kink soli-
tons, and to produce dynamical various structures such as periodic 
kinky-lump waves, periodic lump waves, lump-single, -double kink 
solitons, periodic-single, -double kink solitons. All interaction soli-
tons are depicted in �gures Fig. 2 to Fig. 7. It is observed that the 
results are much interesting as they present the causes of �ssion 
properties of the lump waves, which are presented in the �gures 
Fig. 3, Fig. 6 and Fig. 7. It is included that the new dynamics may 
be enriched by the nonlinear behavior of the model and even can 
be found in other nonlinear models.
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Fig. 6. Pro�les of collision solution � of Eq. (1) for �1 = �1 = �2 = �2 = m2 = l = 1, �2 = 2.

Fig. 7. Pro�les of collision solution � of Eq. (1) for �1 = �1 = �2 = �2 = 	2 = l = 1, �2 = 2.
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Abstract We derive a multi-soliton solution for the Bogoyavlenskii’s breaking soliton equa-
tion by utilizing the simpli�ed Hirota’s approach. From this multi-soliton solution, we inves-
tigate various forms of single kinky–lump-type breather solitons, double kinky–lump-type
breather solitons, collision of a kink line soliton with a kinky-type breather soliton, and col-
lision of a pair of double kinky–lump breather solitons by the appropriate selection of the
involved parameters. These breathers hold unlike features in various planes even in various
times. Elastic and non-elastic collisions for double kinky-type lump breather are experienced
in various planes and in various times. The effect and control of the propagation direction,
energies, phase shifts and shape of waves by the parameters are also analyzed. Some �gures
are given to illustrate the dynamics of the achieved solutions. The acquired results can enrich
the dynamical properties of the higher-dimensional nonlinear scenarios in the engineering
�elds.

1 Introduction

Nonlinear partial differential models are extensively employed to interpret many complicated
areas of sciences and engineering issue, for instance, optical connections, oceanic scienti�c
problems, �uid dynamics, atmospheric, geochemistry, chemical physics and plasma physics
and others [1–5]. It has three sections speci�cally soliton, chaos and fractal. Concepts of
solitons are very signi�cant and effective research area in nonlinear science. The hot topics
of solitons are lump, kink, rogue and breather solitary waves. To explore the features of soli-
tary wave, numerous reputed scientists have been developed by various reliable and fruitful
approaches mainly Exp-function method [6,7], (G�/ G)-expansion method [8], homogeneous
balance method [9,10], homotopy perturbation method [11], F-expansion method [12], direct
algebraic method [13], Tan-Cot method [14], the inverse scattering transform [15], Darboux
transformation [16], and so forth. In 2004, a well-known approach called Hirota bilinear
method was �rstly discovered by Hirota [17]. This method becomes effective and reliable

ae-mail:sa�.ru1985@gmail.com
b e-mail:harunorroshidmd@gmail.com(corresponding author)

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjp/s13360-020-00289-9&domain=pdf
http://orcid.org/0000-0002-1687-623X
mailto:safi.ru1985@gmail.com
mailto:harunorroshidmd@gmail.com


  282 Page 2 of 10 Eur. Phys. J. Plus         (2020) 135:282 

within the short time and used to derive soliton, multi-soliton, lump waves, rogue waves,
breather waves and exciting localized formations of soliton solutions [17–20,24–28]. More
recently, Ma [29–31] determined lump wave solutions and their interactions with various
solitons for both linear and nonlinear PDEs. Ma [32] also derived long-time asymptotes for
a three-competent coupled mKdV model, and he used inverse scattering transforms [33] to
derive soliton solutions for nonlocal reverse-time nonlinear Schrödinger equations.

The prime aim of this work is to determine multi-soliton solutions and then construct
various new kinds of localized wave solutions to the following Bogoyavlenskii’s breaking
soliton (BBS) equation [21–23] via the Hirota bilinear technique.

� xxxy + 4� y� xx + 4� x � xy + � xt = 0 (1)

To reach our goal, this paper is arranged as follows: we employ the Hirota bilinear technique
to determine then-soliton solutions of the BBS equation in Sect.2. Section3offers the lump,
breather soliton and their collision solutions of the BBS equation. Finally, some conclusions
are drawn in Sect.4.

2 Multi-soliton of the BBS equation

Dispersion relation for the BBS Eq. (1) can be evaluated considering a trial solution in an
exponential form as:

�( x, y, t) = exp(� i ), � i = ai x + bi y Š � i t. (2)

Exerting Eq. (2) into the linear terms of Eq. (1), we get hold of the dispersion relation� i as

� i = a2
i bi , i = 1, 2, · · · · · · , n (3)

and the resultant variables take place as

� i = ai x + bi y Š a2
i bi t, i = 1, 2, · · · · · · , n. (4)

Let us consider the conversion relation

�( x, y, t) = R(ln � ( x, y, t))x. (5)

Now exerting Eq. (5) with � ( x, y, t) = 1 + exp(�) into Eq. (1) and then resolvingR, we
acquire

R =
3
2

. (6)

To evaluaten-soliton solution, we must consider the supplementary function� ( x, y, t) in the
following:

� ( x, y, t) = 1 +
n�

i = 1

exp(� i ) +
n�

i < j

Ai j exp(� i + � j )

+
n�

i < j < k

Ai j Aik A jk exp(� i + � j + � k)

+ · · · +

�

�
�

i < j

Ai j

�

� exp

�
n�

i = 1

� i

	

. (7)
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Fig. 1 Sketch of Eq. (5) with Eq. (7) and Eq. (10) for the valuesl1 = 1, m1 = Š 1, p1 = 1, q1 = 1. a 3D
shape of single-kink soliton(n = 1); b 3D shape of double-kink or two solitons(n = 2); c 3D shape of
triple-kink or three solitons(n = 3)

Here we consider trial solution for two solitons as

� ( x, y, t) = 1 + exp(� 1) + exp(� 2) + A12 exp(� 1 + � 2). (8)

Setting Eq. (8) with Eq. (5) and Eq. (6) into Eq. (1) and then solving for unknownA12, we
gain

A12 =
(a1 Š a2)(a2

1b2 + 2a1b1a2 Š 2a1a2b2 Š b1a2
2)

(a1 + a2)(a2
1b2 + 2a1b1a2 + 2a1a2b2 + b1a2

2)
. (9)

In the similar way, we can get three, four and more soliton solutions from Eq. (7), where the
unknowns are given by

Ai j =
(ai Š a j )(a2

i b j + 2ai bi a j Š 2ai a j b j Š bi a2
j )

(ai + a j )(a2
i b j + 2ai bi a j + 2ai a j b j + bi a2

j )
, i , j = 1, 2, · · · , n (10)

providing(ai + a j )(a2
i b j + 2ai bi a j + 2ai a j b j + bi a2

j ) �= 0.
Pro�le of the solution Eq. (7) with Eq. (5) and Eq. (10) exhibits multi-soliton solutions or

n-kink soliton solutions as depicted in Fig.1. Takingn = 1, 2 andn = 3, we get single-kink
wave (Fig.1a), double-kink solitons (Fig.1b) and triple-kink solitons (Fig.1c), respectively.
It is evidently observed from Fig.1b, c that before(t < 0) and after(t > 0) collision multi-
kink solitons remain their own properties (height, width and speed) which are same. That is,
the collisions are elastic.

3 Lump and breather soliton solution of the BBS equation

This section recalls the multi-soliton solutions to derive lump-type breather solution; collision
of a soliton and a lump-type breather soliton; and collision between two lump-type breather
solitons in the succeeding subsections.

3.1 Two-soliton and lump-type breather soliton solutions

Here, we would like to create lump-type breather wave propagation. To perform that, we have
to assume at least two soliton solutions by puttingn = 2 and then leta1 = l1 + im1, a2 =
l1 Š im1, b1 = p1 + iq1, b2 = p1 Š iq1, into Eq. (8) and Eq. (9) and then Eq. (5) gives

123



  282 Page 4 of 10 Eur. Phys. J. Plus         (2020) 135:282 

Fig. 2 Outlook of Eq. (11) with the parametric valuesl1 = 1, m1 = Š 1, p1 = 1, q1 = 1: 3D plot (upper)
and its contour plot (below)

�( x, y, t) =
3
2

{ln(1 + 2 exp(M1) cos(� 1) + A12 exp(2� 1)}x. (11)

whereM1 = l1x + p1y Š (l 2
1 p1 Š m2

1 p1 Š 2l1m1q1)t , � 1 = m1x + q1y Š (l 2
1q1 Š m2

1q1 +

2l1m1 p1)t andA12 = Š m1(2p1l1m1+ q1l 2
1+ 3q1m2

1)
l1(2q1l1m1+ p1m2

1+ 3p1l 2
1)

.

The solution Eq. (11) comes from two-soliton solution and gives lump-type breather
propagation. Features of the solution Eq. (11) (Fig. 2 3D (upper) and its contour (below))
for the valuesl1 = 1, m1 = Š 1, p1 = 1, q1 = 1. Figures show that the solution exhibits as
lump-type breather propagations along the paradox in thexy-plane att = 0 (Fig. 2b), for
different times (t �= 0) it propagates not along paradox in thexy-plane but parallel to the
paradox (Fig.2a, c) and in every case all lump gets into a kink wave. We also observe that
the kink waves as well as periodic lump lie in the negative quadrant fort < 0, move toward
the paradox with time increase and reach along paradox att = 0, and then move away from
the paradox into the positive quadrant for ast > 0 with an increase in time. Its swiftness,
breadth and direction remain unchanged on the whole dynamical system and periodic lump
occurs equidistance from each other in each system.

Alternatively, we experience different phenomena when pro�le observes in thext-plane.
In this case, the solution Eq. (11) exhibits as multi-lump waves periodically get into a single-
kink wave wheny �= 0 (Fig. 3a, c), but exhibits double kinky wave aty = 0 (Fig. 3b) and
periodic lump-type scratch is also viewed in both kink waves.

3.2 Interaction of a soliton and a lump-type breather soliton from three-soliton solutions

In this case, we would like to determine a collision solution between periodic lump-type
breather waves that comes from two solitons and a kink soliton. In this regard, consider
the three-soliton solutions by puttingn = 3 into Eq. (7) with Eq. (10), and then leta1 =
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Fig. 3 Outlook of Eq. (11) with the parametric valuesl1 = 1, m1 = Š 1, p1 = 1, q1 = 1: 3D plot (upper)
and its contour plot (below)

l1 + im1, a2 = l1 Š im1, a3 = c, b1 = p1 + iq1, b2 = p1 Š iq1, b3 = d into Eq. (7) together
with Eqs. (5, 6, 10) which gives the resultant solution as

�( x, y, t) =
3
2

ln{1 + 2 exp(M1) cos(� 1) + A12 exp(2� 1) + exp(cx + dy Š c2dt)

+ 2� 1 exp(M1 + cx + dy Š c2dt) cos(� 1 + � 1) + A12� 2
1 exp(2M1

+ cx + dy Š c2dt)}x, (12)

whereA12 = Š m1(2p1l1m1+ q1l 2
1+ 3q1m2

1)
l1(2q1l1m1+ p1m2

1+ 3p1l 2
1)

, M1 = l1x + p1y Š (l 2
1 p1 Š m2

1 p1 Š 2l1m1q1)t ,

� 1 = m1x + q1y Š (l 2
1q1 Š m2

1q1 + 2l1m1 p1)t and A23 = P1 + i Q1 = � 1 exp(i � 1)(say),

thenA13 = P1 Š i Q1 = � 1 exp(Ši � 1) in which � 1 =



P2
1 + Q2

1 and� 1 = tanŠ1( Q1
P1

).
In Eq. (12), solution comes in terms of the combination of exponential and periodic

sinusoidal function exhibiting collision of a kinky periodic lump-type breather soliton and a
kink-shaped line soliton, as viewed in Figs.4, 5 and6 for the valuesl1 = 1, m1 = Š 1, p1 =
1, q1 = 1, c = 1. There are two sub-cases existed depending on the interaction direction.

Case (i): Ford > 0, we observe (Fig.4 3D (upper) and its contour (below)) that the two
waves are always parallel to each other, even at the time of interaction (see the contour plots in
Fig. 4 (below)). We also observe that the two waves (display as a double-kink wave) contain
periodically lump waves to get into the lower kink (Fig.4a (upper)) before(t < 0) collision
and upper kink (Fig.4c (upper)) after(t > 0) collision in thexy-plane, respectively. They
are overlapped entirely att = 0 where highest amplitude comes into sight (Fig.4b (upper)).
Actually the whole collision processes are completely elastic which is evidently observed in
the contour plots in Fig.4 (below) in the same plane.
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Fig. 4 Collision between breather lump soliton and kink line soliton of Eq. (12) for l1 = 1, m1 = Š 1,
p1 = 1, q1 = 1, c = 1, d = 1: 3D plot (upper) and its contour plot (below)

Case (ii): Ford < 0, we observe (Fig.5 3D (upper) and its contour (below)) that the two
waves (a kinky periodic lump-type breather soliton and a kink-shaped line soliton) interact
at a certain angle. We see that a kink wave interacts with the breather wave and shifting of
the collision changes along negative of y-axis (Fig.5a) to positive of y-axis (Fig.5c), but at
the intermediate time they interact at the origin (Fig.5b). The overall propagation process
is elastic. Beside this, when we take the plot into thext-plane, similar elastic collisions are
also observed in the double-kink waves with the same parametric values (Fig.6 3D (upper)
and its contour (below)).

3.3 Four solitons and interaction of two lump-type breather solitons

To determine interaction of two lump-type breather solitons, we have to consider at four
soliton solutions. In this regard, consider the three-soliton solution by puttingn = 4 in Eq.
(7) with Eq. (10), and then leta1 = l1 + im1, a2 = l1 Š im1, a3 = l2 + im2, a4 = l2 Š im2,
b1 = p1 + iq1, b2 = p1 Š iq1, b3 = p2 + iq2, b4 = p2 Š iq2 into Eq. (7) together with Eqs.
(5, 6, 10) giving the resultant solution as

�( x, y, t) =
3
2

ln{1 + 2 exp(M1) cos(� 1) + + 2 exp(M2) cos(� 2) + A12 exp(2M1)

+ A34 exp(2M2) + 2� 1 cos(� 1 + � 1 + � 2) exp(M1 + M2)

+ 2� 2 cos(� 2 + � 1 Š � 2) exp(M1 + M2)

+ 2A12� 1� 2 exp(2� 1 + � 2) cos(M2 + � 1 Š � 2)

+ 2A34� 1� 2 exp(� 1 + 2� 2) cos(M1 + � 1 + � 2) + A12A34 exp(2� 1 + 2� 2)}x

(13)
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Fig. 5 Collision between breather lump soliton and kink line soliton of Eq. (12) for l1 = 1, m1 = Š 1, p1 =
1, q1 = 1, c = 1, d = Š 1: 3D plot (upper) and its contour plot (below)

Fig. 6 Collision between breather lump soliton and kink line soliton of Eq. (12) for l1 = 1, m1 = Š 1, p1 =
1, q1 = 1, c = 1, d = Š 1: 3D plot (upper) and its contour plot (below)

123
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Fig. 7 Collision of periodic lump and periodic line waves of Eq. (13) for l1 = 1, m1 = Š 1, p1 = 1, q1 = 1,
l2 = Š 1.001, m2 = 1, p2 = 1, q2 = 1: 3D plot (upper) and its contour plot (below)

whereM1 = l1x + p1y Š (l 2
1 p1 Š m2

1 p1 Š 2l1m1q1)t , � 1 = m1x + q1y Š (l 2
1q1 Š m2

1q1 +
2l1m1 p1)t ,

M2 = l2x + p2y Š (l 2
2 p2 Š m2

2 p2 Š 2l2m2q2)t,

� 2 = m2x + q2y Š (l 2
2q2 Š m2

2q2 + 2l2m2 p2)t,

A12 = Š
m1(2p1l1m1 + q1l 2

1 + 3q1m2
1)

l1(2q1l1m1 + p1m2
1 + 3p1l 2

1)
, A34 = Š

m2(2p2l2m2 + q2l 2
2 + 3q2m2

2)

l2(2q2l2m2 + p2m2
2 + 3p2l 2

2)

A24 = P1 + i Q1 = � 1 exp(i � 1) (say) andA14 = P2 + i Q1 = � 2 exp(i � 1) (say), then
A13 = P1 Š i Q1 = � 1 exp(Ši � 1) andA23 = P2 Š i Q2 = � 2 exp(Ši � 1).

To �nd the values of� 1, � 2, � 1 and� 2, we apply� =
�

P2 + Q2 and� = tanŠ1( Q
P ).

In the solution Eq. (13), comes in terms of exponential and periodic sinusoidal function
exhibits collision of a pair of periodic lump-type breather waves, as viewed in Fig.7 with the
valuesl1 = 1, m1 = Š 1, p1 = 1, q1 = 1, l2 = Š 1.001, m2 = 1, p2 = 1, q2 = 1 att = 0. It
is fascinating that collision of these breathers owns unlike dynamic natures in distinct planes.
Both elastic (Fig.7a 3D (upper) and its contour (below)) and non-elastic (Fig.7b, c 3D
(upper) and its contour (below)) collision own different times and different planes. Figure7a
exhibits double-kink-type X-shaped breather soliton for elastic collision as before and after
collision each lump-type breather wave remains their same solitonic natures and interacts
at the origin coming along opposite paradox in thexy-plane. It is observed that the some
lump waves are periodically got into each soliton, being at equal distance from each other.
On the other hand, when we take the same plot in the samexy-plane but in different times at
t = Š 4 it exhibits non-elastic fusion phenomena after collision as propagated from negative
to positive alongy direction (Fig.7b 3D (upper) and its contour (below)). Other behavior
also owns the collision when observed in thext-plane. It is seen that a breather lump wave
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interacts att = 0 and then causes �ssion as it is split into two breather-type lump waves
(Fig. 7c 3D (upper) and its contour (below)) time goes by.

4 Conclusions

In the summary, we have successfully used Hirota bilinear method to gain multi-soliton solu-
tions Eq. (7) of the BBS equation; see Fig.1. Various parametric values have been selected to
get distinguish dynamical characteristics of single kinky–lump-type breather solitons (Figs.2,
3a, c), double kinky–lump-type breather solitons (Figs.3b, 4, 5, 6, 7a), collision of a kink
line soliton with a kinky-type breather soliton (Figs.4, 5, 6), and collision of a pair of kinky–
lump breather solitons (Fig.7a) by the appropriate selection of involved parameters from the
multi-soliton solutions of the models. These breathers hold unlike features in various planes
even in various times. Elastic (Figs.1, 2, 3, 4, 5, 6, 7a) and non-elastic (Fig.7b, c) collisions
for double kinky–lump-type breather are experienced in various plane and in various times.
Some �gures are given to illustrate the dynamics of the achieved solutions. This will also
prompt us to explore new approach to obtain more extensive and accurate solution to the
models. The acquired results can enhance the dynamical properties of higher-dimensional
nonlinear scenarios in the engineering �elds.
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