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Abstract 

 

Nonlinear evolution equations (NLEEs) play a noteworthy role in various scientific and 

engineering fields such as applied mathematics, plasma physics, fluid dynamics, optical fibers, 

biology, solid state physics, chemical physics, mechanics and geochemistry. Various effective 

procedure have been developed to solve NLEEs. In this work, we have discussed applications of 

two types methods: first type is modified double sub-equation (MDSE) method which is apply in 

the (1+1)-dimensional Burger equation, the (1+1)-dimensional Gardner equation and the (1+1)-

dimensional Hirota-Ramani equation and secondly, Hirota’s Bilinear method which is apply in 

(2+1)-dimensional Breaking Soliton, the (2+1)-dimensional asymmetric Nizhnik-Novikov-

Veselov equations, and (3+1)-D generalized B-type Kadomtsev-Petviashvili equation. 

Using Modified double sub-equation method, we have presented some complexiton solutions in 

terms of trigonometric, hyperbolic functions. Finally, the interaction phenomena of the achieved 

complexiton solutions between solitary waves and/or periodic waves are presented with in depth 

derivation.  

Based on the bilinear formalism and with the aid of symbolic computation, we determine multi-

solitons, breather solutions, rogue wave, lump soliton, lump-kink waves and multi lumps using 

various ansatze’s function. We notice that multi-lumps in the form of breathers visualize as a 

straight line. Besides this, the breather wave degenerate into a single lump wave is determined by 

using parametric limit scheme. Also, we reflect a new interaction solution among lump, kink and 

periodic waves via ‘rational-cosh-cos’ type test function. To realize dynamics, we commit diverse 

graphical analysis on the presented solutions. Obtained solutions are reliable in the mathematical 

physics and engineering.
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Chapter One 

Introduction 

Nonlinear phenomena have an extensive application in different branches of mathematical physics 

and engineering. Basically all the fundamental equations of physics are nonlinear and, generally, 

such types of nonlinear evolution equations (NLEEs) are often very tough to solve clearly. The 

explicit solutions of NLEEs play a prominent role in the study of nonlinear science. In recent years, 

both mathematicians and physicists have devoted considerable effort to study of soliton solutions 

of nonlinear partial differential equations (PDEs) and a number of powerful methods were 

presented. For instance the inverse scattering theory [1], Darboux transformation [2], the Hirota's 

bilinear method [3,4], the sech-function method [5], the homogeneous balance method [6], 

Bäcklund transformation method [7], the hyperbolic tangent function series method [8,9], the sine-

cosine method [10], the )/( GG -expansion method [11,12], the multiple exp-function method 

[13], the Jacobi elliptic function expansion method [14,15]. These algebraic methods have the 

power to give a clear picture of the relation between different terms of nonlinear wave equations 

and are to simplify the routine calculation of the method. One of the most effectively 

straightforward methods to constructing exact solutions of PDEs is the sub-equation method [16-

19]. The complexiton solution, firstly introduced by Ma et al. [20], can be constructed by the 

multiple Riccati equations rational expansion method [21], which make use of two Riccati 

equations with the same variable. Chen [22] has presented the double sub-equation method using 

two ordinary differential equations (ODEs) with different independent variables. Complexiton 

solutions are obtained by combining elementary functions and the Jacobi elliptic functions using 

double sub-equation method [22]. 
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Another effectively direct method is Hirota’s bilinear method [23-25] which is one of the most 

direct and convenient method to obtain the exact soliton solution of NLEEs. If a NLEE can attain 

its bilinear form, Lax pairs, lump solutions, multiple soliton solutions of this equation can be 

obtained [26-32]. Lately, we have seen two types of phenomena, two or more solitons may fuse to 

a single soliton and at a specific time, a single soliton may fission to two or more solitons. These 

types of scenarios were called as soliton fission and soliton fusion respectively [33]. Indeed, people 

have observed these types of phenomena in many nonlinear science and engineering field such as 

the gas dynamics, laser, plasma physics, electromagnetic, and passive random walker dynamics 

[34-36].Therefore, it very necessary to discuss about the elastic interactions into the solitary waves 

in certain integrable or non-integrable system with a strong physical backgrounds.  

Recently, researchers are highly impressed to rogue wave solutions [37-38]  for it’s engrossing 

class of lump-type solutions, which can be found in plasma, shallow-water waves, nonlinear optics 

and Bose-Einstein condensates [39]. In 2002, Lou et al. studied the lump solution with the variable 

separation method [40]. Very recently, Ma et al. proposed the positive quadratic function to get 

the lump solution. Special examples of lump type solutions have been found, such as the KPI 

equation [41], Boussinesq equation [42], BKP equation [43] and so on.  Lump solution [44-45] is 

a kind of rational function solution which is localized in all directions in the space whereas lump-

type [46-47] solutions are localized in almost all directions in the space. Rogue waves [47-50] are 

localized in both space and time, arise from nowhere and disappear without a trace [51], have taken 

the responsibility for unexpected disaster in the world. 

In this work, we implement the Modified double sub-equation (MDSE) method and a direct 

method called Hirota’s bilinear method to find new and more general traveling wave solutions  to 

some NLEEs namely the Burger equation, the Gardner equation, the Hirota-Ramani (HR) 



Chapter One                                  Introduction      

 

Page | 3  

 

equation, the Breaking Soliton (BS) equation, the asymmetric Nizhnik-Novikov-Veselov (ANNV) 

equation and the generalized B-type Kadomtsev-Petviashvili (gBKP) equation.  

Outline of this work, In Chapter one, we introduce the application of NLEEs in different branches 

of mathematical physics and engineering.  

In Chapter two, we included the historical background /of Burger equation, the Gardner equation, 

the HR equation, BS equation, ANNV equation and gBKP equation with the help different 

methods. 

In Chapter three, we explain the MDSE method and a direct method step by step and also explain 

the working procedure of this method to solve different type’s nonlinear evolution equation. 

In chapter four, we implement the Burger equation, the Gardner equation, the HR equation, BS 

equation, ANNV equation and gBKP equation. We obtain some traveling wave solution such as 

exponential, hyperbolic function solutions and trigonometric function solutions etc. 

In Chapter five, we have discussed about the nature of the obtained traveling wave solution of 

various equations which are mentioned above. With the aid of direct symbolic computation, we 

explain these natures with 2-D, 3-D, Density and Contour graph. 

Finally, we give some concluding remarks in the Chapter six.
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Chapter Two 

Literature Review of Some PDEs 

In this chapter, we will discuss the literature review of some nonlinear evolution equations 

(NLEEs) such as (1+1)-D Burger, Gardner and Hirota-Ramani equations, (2+1)-D Breaking 

Soliton and asymmetric Nizhnik-Novikov-Veselov equations, and (3+1)-D generalized B-type 

Kadomtsev-Petviashvili equation. 

2.1 The (1+1)-dimensional Burger Equation 

Nonlinear evolution equations (NLEEs) play a noteworthy role in various scientific and 

engineering fields such as applied mathematics, plasma physics, fluid dynamics, optical fibers, 

biology, solid state physics, chemical physics, mechanics and geochemistry. Burger equation is 

one kind of Diffusion reaction model.  

Let us consider the (1+1)-dimensional Burger equation [52-54], in the following form, 

,02  xxxt uuuu        (2.1) 

Burgers equation (2.1) is a model for nonlinear wave propagation, especially in fluid mechanics. 

The equation arises in various characteristic areas of applied mathematics, such as modeling of 

gas dynamics and traffic flow. 

Burger equation [52-54] are solved by many researcher for finding complexiton solutions. On the 

other hand, Burgers equation with space-and time-fractional order and and time-fractional 

Boussinesq–Burger’s equations [55-57] are solved for soliton solutions which arise in propagation 

of shallow water waves.  
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In this section, the modified double sub-equation method is proposed for constructing complexiton 

solutions of nonlinear partial differential equations (PDEs). We apply this method to the Burger’s 

equation [52-54]. 

2.2 The (1+1)-dimensional Gardner equation (or combined KdV-mKdV) 

In this section, the modified double sub-equation method is proposed for constructing complexiton 

solutions of nonlinear partial differential equations (PDEs). We apply this method to the Gardner 

equation.  

Let us consider the (1+1)-dimensional Gardner equation (or combined KdV-mKdV) [58-60], in 

the form 

,03

2

21  xxxxxt ubuubuubu      (2.2) 

where ),( txuu  and 321 ,, bbb are arbitrary constants. The Gardner equation has two nonlinear 

terms in the quadratic and cubic forms and the dissipative term is of third order. This is an 

significant model to realize the propagation of negative ion acoustic plasma waves [60] and can 

be derived from the structure of plasma motion equations in one dimension with arbitrarily charged 

cold ions and inertia neglected isothermal electrons. This equation can also be a good explanation 

of internal waves with large amplitudes [61]. 

2.3 The (1+1)-dimensional Hirota-Ramani equation 

Nonlinear evolution equations (NLEEs) play a notable role in scientific and engineering fields 

such as mathematics, biology, mechanics, physics and geochemistry. Now a day’s many 

mathematicians and physicists are engaged in the study of soliton solutions of nonlinear partial 

differential equations (PDEs). 

We study the (1+1)-dimensional Hirota-Ramani equation [62-66], in the form 

  ,01  txxxtt uuuu        (2.3) 
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where   is a nonzero real constant. There are many researchers discussed about Hirota-Ramani 

equation in diverse technique such as, Ji discussed above equation by Exp-function method [63], 

Konprasert et al discussed the various types exact solution of Hirota-Ramani equation using F-

expansion process [64], Reza et al discussed some phenomena of above equation by (G′/G)-

Expansion Technique [65]. Recently, Roshid et al studied above equation by direct rational 

exponential method to describe it’s multi soliton phenomena [66].  

2.4 The (2+1)-dimensional Breaking Soliton equation 

In this section, we study the (2+1)-dimensional Breaking Soliton (BS) equation [67-69] reads as 











.

,044

xy

xxxxyt

vu

vuuvuu 
                  (2.4) 

where  is arbitrary constant. There are many researchers have been studied in Breaking soliton 

equation (BSE) in many ways such as: Zhang formed nontraveling wave solutions to BSE by a 

generalized auxiliary equation method [68], Mei investigated general solution of BSE using the 

projective Riccati equation expansion method [69], Peng solved BSE by the singular manifold 

method [70], and Dai derived BSE chaotic behaviors by the mapping method [71]. The structures 

of (2 + 1)-dimensional BSE are rich and there are still more structures to be discovered. 

In this paper, we will focus on the (2+1)-dimensional Breaking Soliton (BS) equation to show the 

diversity of such interaction solutions aid of symbolic computation with Maple. The (2+1)-

dimensional BS equation has a Hirota bilinear form, and so, we will do a search for positive 

quadratic function solutions to the corresponding (2+1)-dimensional bilinear BS equation. The 

obtained quadratic function solutions contain a set of free parameters, and taking special choices 

of parameters involved. 
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2.5 The (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equation 

In this part, we will consider the (2+1)-dimensional ANNV equation [72,73], 

  ;03  xxxxt uvuu          
yx vu  .        (2.5) 

where u  and v  are the components of the (dimensionless) velocity [74]. Eq. (2.5) is the only 

known isotropic Lax extension of the Korteweg-de Vries equation [75]. The ANNV equation has 

important applications in incompressible fluids, such as shallow-water waves, long internal waves 

and acoustic waves. There are many researchers have been studied in ANNV equation in many 

ways such as: Boiti et al. solved via the inverse scattering transformation [76]. Guo et al. discussed 

the N-soliton solution and Pfaffian expression by using a nonlinearized method of Lax pair [72], 

Osman et al. solved this system of equations via the unified and generalized unified method [77-

80]. Also, ANNV equations can also be obtained from the inner parameter-dependent symmetry 

constraint of the KP equation [81]. 

The main purpose of this paper is to employ some proficient ansatzes to determine lump solution, 

lump-kink wave and multi-lump wave solutions and their dynamics for the above (2+1)-

dimensional ANNV equation. 

2.6 The (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation 

Recently, finding accurate collision solutions of nonlinear partial differential equations (NLPDEs) 

is an essential issue in soliton theory. In recent years, scientists have been investing their research 

effort to study of soliton solution of NLEEs. 

 In this section, we study (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili (gBKP) 

equation is introduced to describe the dynamics of solitons and nonlinear waves in the field of 

fluid dynamics, plasma physics etc. Let us consider the (3+1) dimensional generalized B-type 

Kadomtsev-Petviashvili equation [84] in the following form: 
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.0333  xxxyyxxxyxxzyt uuuuuuu        (2.6) 

Several researchers studied on the gBKP equation (2.6) in many ways such as: Ma and Zhu [85] 

explored multiple wave solutions of Eq. (2.6) via the multiple exp-function scheme. Liu et. al. [86] 

presented new exact non-traveling wave solutions by exploitation of the generalized  GG / -

expansion method. Ma [87] construct N-soliton solutions of Eq. (2.6) via the Hirota method. 

Recently, Cao [84] presented only lump wave solutions of the model.
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Chapter Three 

ALGORITHMS 

In this Chapter, we will give a short overview of the Modified Double Sub-Equation Method and 

Hirota’s bilinear method.  

3.1 Description of the Modified Double Sub-Equation Method 

In the following, we described the main steps of modified double sub-equation method. 

Step 1: Consider a nonlinear partial differential equation (NLPDE), say in two independent 

variables x  and t , is given by  

0.),.........,,,,,(  xxtxttxt uuuuuu        (3.1) 

where ),( txuu  is an unknown function,   is a polynomial of ),( txuu  and its partial 

derivatives in which the highest order derivatives and nonlinear terms are involved. 

Step 2: For the suggested method, we assume that the solutions of Eq. (3.1) are as follows: 

 

)()(

)()(
),(

10

21
0










aa
atxu        (3.2) 

where    ,2,1,0iai and  are all functions of x  and 0,t  and 1  are arbitrary nonzero constants 

to be determined later. The new functions )(  and )( satisfy 

)(
)(

)( 2

11

' 



 pq

d

d
        (3.3) 

and )(
)(

)( 2

22

' 



 pq

d

d
 ,        (3.4) 

where twxk 11   and twxk 22   respectively, which are known as wave transformation of 

Eq. (1). 

Step 3: The general solutions of the Riccati Eq. (3.3,3.4) [21] are as follows: 

)(
)( 2

11





pq

d

d
  

i. When ,1,1 11  pq  

),coth()(),tanh()(       (3.5) 

ii. When ,
2

1
11  pq  
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),cot()csc()(),tan()sec()(     (3.6) 

iii. When ,111  pq  

),tan()(         (3.7) 

iv. When ,111  pq  

)cot()(          (3.8) 

v. When ,
2

1
,

2

1
11  pq  

),(csc)coth()(),(sec)tanh()(  hhi   (3.9) 

vi. When ,1,0 11  pq  

,
1

)(
1 wp 




                    (3.10) 

Step 4: By setting Eq. (3.2) into Eq. (3.1) along with Eq. (3.3) and Eq. (3.4) yields a system of 

equations with respect to ,...)2,1,0,...,2,1,0(,  nmnm then set all coefficients of nm  in the 

obtained system of equations to be zero, we obtain a set of over-determined PDEs with respect to 

02211210 ,,,,,,, wkwkaaa and .1  

By solving the over-determined PDEs with the aid of symbolic computation system Maple, we 

obtain the subsequent solution in terms of .,,,,,,,, 102211210 wkwkaaa  Using the results obtained 

in the above steps and the various solutions of Eq. (3.3, 3.4), we can derive many solutions for Eq. 

(3.1). 

3.2 Description of the Hirota’s Bilinear Method 

In this subsection, we briefly described the main features of Hirota’s bilinear method that will be 

used in this work. Firstly, we substitute 

  wtnymxetyx  ,,          (3.11) 

into the linear terms of any differential equation under discussion to determine the dispersion 

relation among nm,  and .w  Secondly, substitute the Cole–Hopf transformation 

     .,,ln,,
xx

tyxPtyx          (3.12) 

into the equation under discussion, where the auxiliary function  tyx ,,  is given by 

    ieBtyxBtyx
 111 1,,1,,        (3.13) 

Where ,twynxm iiii     Ni ,........,3,2,1  
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and solving the resulting equation with the aid of symbolic computation system Maple, to 

determine the numerical value for P . Notice that the N-soliton solutions can be gained by using 

the following forms for  tyx ,, into (3.12): 

The steps of the Hirota’s bilinear method [4] are as follows: 

(i) For dispersion relation, we use 

  ,,, ietyx


  .twynxm iiii         (3.14) 

(ii) For single soliton, we use 

  ietyx
 1,,           (3.15) 

(iii) For two-soliton solutions, we use 

  221

121,,
 

 ieBeetyx         (3.16) 

(iv) For three-soliton solutions, we use 

  323322321

1231323121,,
 

 iii eBeBeBeBeeetyx   (3.17) 

Notice that we use Eq. (3.14) to determine the dispersion relation, Eq. (3.16) to determine the 

phase shift 12B  to be generalized for the other factors 
ijB , and finally we use Eq. (3.17) to 

determine 123B , which is given by 132312123 BBBB   for completely integrable equations. The 

determination of three-soliton solutions confirms the fact that N-soliton solutions exist for any 

order.
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Chapter Four 

Applications of the Modified Double Sub-Equation and Direct method 

In this chapter, we will discuss the applications of the Modified Double Sub-Equation (MDSE) 

method in (1+1)-D Burger, Gardner and Hirota-Ramani equations and Direct method named 

Hirota’s Bilinear method in (2+1)-D Breaking Soliton and asymmetric Nizhnik-Novikov-Veselov 

equations, and (3+1)-D generalized B-type Kadomtsev-Petviashvili equation. 

4.1 The (1+1)-dimensional Burger equation 

In this sub-section, we will generate many new types of complexiton solutions combining 

elementary functions and the Jacobi elliptic functions using MDSE method. It makes the modified 

double sub-equation method more thoroughly. 

To establish validity and effectiveness of our method, we handle this method in the (1+1)-

dimensional Burger equation. Let us consider the Burger equation [52-54], in the following form: 

,02  xxxt uuuu             (4.1) 

According to the method, we assume that the solutions of Eq. (4.1) are as follows: 

,
)()(

)()(
),(

43

21
0





bb

bb
btxu




            (4.2) 

where ,ib   ,4,3,2,1,0i  twxk 11   and twxk 22   are arbitrary nonzero constants. 

Substituting Eq. (4.2) into Eq. (4.1) along with Eq. (3.3) and Eq. (3.4) yields a system of equations 

with respect to ,...),2,1,0,...,2,1,0(,  nmnm  then set all coefficients of nm  in the obtained 

system of equations to be zero, we obtain a set of over-determined PDEs with respect to ,ib

 ,4,3,2,1,0i .,,, 2211 wkwk  

Solving the over-determined PDEs by use of Maple, we can obtain the following results. 

Case 1. 









.,2

,,0,,0,

22101

4431142100

wwkbw

bbbqkbbbbb
            (4.3) 

Case 2. 
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







.2,

,,0,0,,

20211

4432224100

kbwww

bbbbqkbbbb
              (4.4) 

Case 3. 

           








.2,

,0,,,0,

20211

4332232100

kbwww

bbbpkbbbbb
              (4.5) 

 

Case 4. 

           













.,2

,0,,0,,

22101

4

11

1
321100

wwkbw

b
pk

q
bbbbbb

              (4.6) 

Case 5. 

           

 

 
 























.2,2,
2

,
2

,,,

202101

2211

2

222

2

1111

112221
4

2211

2

222

2

111

11222
3222100

kbwkbw
qkpkkqpkqpq

qkqkbp
b

pkqkkqpkqp

qkqkb
bbbbbbb










          (4.7) 

 Case 6. 

         

 

 
 






























.
22

,,
2

,
2

,,,

2

11022011
2

11

2211

2

222

2

1111

221121
4

2211

2

222

2

111

22112
3222100














p

pkbpkbpw
w

ww
qkpkkqpkqpq

qkqkbp
b

pkqkkqpkqp

qkqkb
bbbbbbb

            (4.8) 

where
12

21

qp

qp
 .  

Note that: Since the solutions obtained here are so many with complexitons and without 

complexitons, we just write some new and complexiton solutions for the Burgers equation to 

demonstrate the effectiveness of our method. 

Using (4.7), one can get various types of complexiton solutions of Eq. (4.1) as follows: 

Family-1: When 1,1., 1120  pqconstbb , then we can get some complexiton solutions: 

i. When ,
2

1
22  pq then 
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where twxk 11  and ,22 twxk  .2,2 202101 kbwkbw   

Family-2: When 
2

1
., 1120  pqconstbb , then we can get some complexiton solutions: 

i. When ,122  pq then 

 
 
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








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where twxk 11  and ,22 twxk  .2,2 202101 kbwkbw   

Family-3: When 1., 1120  pqconstbb , then we can get some complexiton solutions: 

i. When ,122  pq then 
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
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where twxk 11  and ,22 twxk  .2,2 202101 kbwkbw   

Again, using (4.8), one can get various types of complexiton solutions of Eq. (4.1) as follows: 

Family-1: When 1,1., 11120  pqconstwbb , then we can get some complexiton 

solutions: 

i. When ,
2

1
22  pq then 
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Where twxk 11  and ,22 twxk  .
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Family-2: When 
2

1
., 11120  pqconstwbb , then we can get some complexiton 

solutions: 

i. when ,122  pq then 
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Family-3: When 1., 11120  pqconstwbb , then we can get some complexiton solutions: 

i. when ,122  pq then 
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Family-4: When 1., 11120  pqconstwbb , and 
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complexiton solution: 
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Similarly, we can write down the other complexiton solution of Eq. (4.1) which are omitted for 

convenience. 

 

4.2 The (1+1)-dimensional Gardner equation (or combined KdV-mKdV)  

In this sub-section, we will generate many new types of complexiton solutions combining 

elementary functions and the Jacobi elliptic functions using MDSE method.  

To establish validity and effectiveness of our method, we handle this method in the (1+1)-

dimensional 



Chapter Four                     Applications  

      

Page | 22  

 

Gardner equation (or combined KdV-mKdV) equation. Let us consider the Gardner equation [58-

60], in the following form: 

,03

2

21  xxxxxt ubuubuubu      (4.9) 

where ),( txuu  and 321 ,, bbb are arbitrary nonzero constants. 

According to the method, we assume that the solutions of Eq. (4.9) are as follows: 
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where ,ia   ,4,3,2,1,0i  twxk 11   and twxk 22   are arbitrary nonzero constants. 

Substituting Eq. (4.10) into Eq. (4.9) along with Eq. (3.3) and Eq. (3.4) yields a system of equations 

with respect to ,...),2,1,0,...,2,1,0(,  nmnm  then set all coefficients of nm  in the obtained 

system of equations to be zero, we obtain a set of over-determined PDEs with respect to ,ia  

 ,4,3,2,1,0i .,,, 2211 wkwk  

Solving the over-determined PDEs by use of Maple, we can obtain the following results. 
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Case 4. 
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Note that: Since the solutions obtained here are so many with complexitons and without 

complexitons, we just write complexiton solutions for the (1+1)-dimensional Gardner equation (or 

combined KdV-mKdV) equation. 

Using (4.15), one can get various types of complexiton solutions of Eq. (4.9) as follows:  
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Similarly, we can write down the other complexiton solution of Eq. (4.9) which are omitted for 

convenience. 

4.3 The (1+1)-dimensional Hirota-Ramani equation 

Complexiton solution gives various types of wave speed which are produced by mix-up of 

trigonometric and hyperbolic functions. Modifed double sub-equation (MDSE) technique is a 

advantageous and practical tool to attain system of complexiton solutions of nonlinear evolution 

equations.  

In this part, we have studied MDSE method to create a complexiton system solution of (1+1) 

Dimensional Hirota-Ramani equation [62-66], in the form 

  ,01  txxxtt uuuu         (4.16) 

where  txu , is the amplitude of the relevant wave mode and a 0 is a real constant. Hirota-

Ramani equation is broadly used in several branches of physics, and such as plasma physics, fluid 

physics, and quantum field theory. It also pronounces a variation of wave phenomena in plasma 

and solid state [62]. 

According to the method, we assume that the solutions of Eq. (4.16) are as follows: 

                                             
   

   



43

21
0,

aa

aa
atxu




                                                       (4.17) 

where ,ia  ,4,3,2,1,0i  twxk 11   and twxk 22   are arbitrary nonzero constants. 

Substituting Eq. (4.17) into Eq. (4.16) along with Eq. (3.3) and (3.4) yields a system of equations 

with respect to  ....,2,1,0....,,2,1,0,  nmnm , then set all coefficients of nm  in the 

obtained system of equations to be zero, we obtain a set of over-determined PDEs with respect to 

,ia  ,4,3,2,1,0i .,,, 2211 wkwk  

Solving the over-determined PDEs by use of Maple, we can obtain the following results. 

Case 1.  
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Using (4.20), one can get various types of complexiton solutions of Eq. (4.16) as follows: 

Family-1: When ,1,1., 111410  pqconstwaaa  then we can get some complexiton 

solutions: 

i.   When
2

1
22  pq , then 

      
       ItxkxktIxkt

txkxktIxktI
au






12121

12121
01

tanh2tan2sec

tanh2tan2sec




 

      
       ItxkxktIxkt

txkxktIxktI
au






12222

12222
02

tanh2tan2sec

tanh2tan2sec




 

where 

 
2

1

2

221

2

2

2

121

2

2

2

121

1
414

2

3
64461

kkkIk

kkkkkkkkI





 and  

 
2

1

2

221

2

2

2

121

2

2

2

121

2
414

2

3
64461

kkkIk

kkkkkkkkI





  

ii. When 122  pq , then 
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 
 

 
  Itxkxk

kkkIk

kkkkIkIkkIkIt

txkxk
kkkIk

kkkkIkIkkIkIt
I

au

2tanh
4148

12121688242

2

1
tan2

tanh2
4148

12121688242

2

1
tan2

122

1

2

221

2

2

2

121

2

2

2

121

122

1

2

221

2

2

2

121

2

2

2

121

03


































  

 
 

 
  Itxkxk

kkkIk

kkkkIkIkkIkIt

txkxk
kkkIk

kkkkIkIkkIkIt
I

au

2tanh
4148

12121688242

2

1
tan2

tanh2
4148

12121688242

2

1
tan2

122

1

2

221

2

2

2

121

2

2

2

121

122

1

2

221

2

2

2

121

2

2

2

121

04





































 

iii.   When 122  pq , then 

 
 

 
  Itxkxk

kkkIk

kkkkIkIkkIkIt

txkxk
kkkIk

kkkkIkIkkIkIt
I

au

2tanh
4148

12121688242

2

1
cot2

tanh2
4148

12121688242

2

1
cot2

122

1

2

221

2

2

2

121

2

2

2

121

122

1

2

221

2

2

2

121

2

2

2

121

05









































  

 
 

 
  Itxkxk

kkkIk

kkkkIkIkkIkIt

txkxk
kkkIk

kkkkIkIkkIkIt
I

au

2tanh
4148

12121688242

2

1
cot2

tanh2
4148

12121688242

2

1
cot2

122

1

2

221

2

2

2

121

2

2

2

121

122

1

2

221

2

2

2

121

2

2

2

121

06











































 

iv.   When
2

1
,

2

1
22  pq , then 

     
       2tanhsectanh2

tanh2sec2tanh2

12121

12121
07






txkxkthIxkt

txkxkthIxkt
au  

     
       2tanhsectanh2

sec2tanh2tanh2

12222

22221

08





txkxkthIxkt

xkthIxkttxk
au  

     
       2tanhsectanh2

tanh2sec2tanh2

12121

12121
09






txkxkthIxkt

txkxkthIxkt
au  

     
       2tanhsectanh2

sec2tanh2tanh2

12222

22221

010





txkxkthIxkt

xkthIxkttxk
au  
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where 
144

2

1
2212

2

221

2

1

2

2

2

121

1













kkkk

kkkk

and 
144

2

5
101012

2

221

2

1

2

2

2

121

2













kkkk

kkkk

 

Family-2: When ,
2

1
., 111410  pqconstwaaa  then we can some complexion 

solutions: 

i. When 122  pq , then 

     
       2tansectan2

sec2tan2tan2

1123

1231
011






txktxkxkt

txkxkttxk
au  

     
       2tansectan2

tan2sec2tan2

1124

1124
012






txktxkxkt

txktxkxkt
au  

     
       2tansectan2

tan2sec2tan2

1124

1124
013






txktxkxkt

txktxkxkt
au  

     
       2tansectan2

tan2sec2tan2

1123

1123
014






txktxkxkt

txktxkxkt
au  

where 
 

144

1882

2

1
2

221

2

1

2

221

2

1
3






kkkk

kkkk
and 

 
144

116164

2

1
2

221

2

1

2

221

2

1
4






kkkk

kkkk
 

ii.   When 122  pq , then 

     
       2tanseccot2

tan2sec2cot2

1125

1125
015






txktxkxkt

txktxkxkt
au  

     
       2tanseccot2

tan2sec2cot2

1126

1126
016






txktxkxkt

txktxkxkt
au  

     
       2tanseccot2

tan2sec2cot2

1126

1126
017






txktxkxkt

txktxkxkt
au  

     
       2tanseccot2

tan2sec2cot2

1125

1125
018






txktxkxkt

txktxkxkt
au  

where 
 

144

1882

2

1
2

221

2

1

2

221

2

1
5






kkkk

kkkk
and 

 
144

116164

2

1
2

221

2

1

2

221

2

1
6






kkkk

kkkk
. 

iii.   When 
2

1
,

2

1
22  pq , then 
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         
          ItxktxkxktIxkt

txktxkxkthIxktI
au

2tansecsectanh2

tan2sec2sectanh2

112727

112727
020,19




  

         
          ItxktxkxkthIxkt

txktxkxkthIxktI
au

2tansecsectanh2

tan2sec2sectanh2

112828

112828
022,21







 

where 
2

1

2

221

2

2

2

121

2

2

2

121

7
12

2

3

2

3

2

1

2

1
3

2

1
2

kkkIk

kkkkIkIkkIkI













 and 

2

1

2

221

2

2

2

121

2

2

2

121

8
12

2

3

2

3

2

1

2

1
3

2

1
2

kkkIk

kkkkIkIkkIkI


















. 

Family-3: When 1., 111410  pqconstwaaa  then we can some complexion solutions: 

i. When 122  pq , then 

 
 

 
  2tan

1484

2484

2

1
cot2

tan2
1484

2484

2

1
cot2

122

221

2

1

2

221

2

1

122

221

2

1

2

221

2

1

024,23





txkxk
kkkk

kkkkt

txkxk
kkkk

kkkkt

au

































  

ii.   When 
2

1
,

2

1
22  pq , then 

       
       ItxkxkthIxkt

txkxkthIxktI
au

2tansectanh2

tan2sectanh2

12929

12929
025




  

       
       ItxkxkthIxkt

txkxkthIxktI
au

2tansectanh2

tan2sectanh2

1210210

1210210
026




  

       
       ItxkxkthIxkt

txkxkthIxktI
au

2tansectanh2

tan2sectanh2

12929

12929
027




  

       
       ItxkxkthIxkt

txkxkthIxktI
au

2tansectanh2

tan2sectanh2

1210210

1210210
028




  

where 
2

1

2

221

2

2

2

121

2

2

2

121

9
414

2

3
64462

kkkIk

kkkkIkIkkIkI













  and 
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2

1

2

221

2

2

2

121

2

2

2

121

10
414

2

3
64462

kkkIk

kkkkIkIkkIkI













   

Family-4: When 1., 111410  pqconstwaaa  then we can some complexion 

solutions: 

i.   When
2

1
,

2

1
22  pq , then 

       
       ItxkxkthIxkt

txkxkthIxktI
au

2cotsectanh2

cot2sectanh2

1211211

1211211
030,29




  

       
       

.
2cotsectanh2

cot2sectanh2

1212212

1212212
032,31

ItxkxkthIxkt

txkxkthIxktI
au




  

where 
2

1

2

221

2

2

2

121

2

2

2

121

11
414

2

3
64462

kkkIk

kkkkIkIkkIkI

















and 

2

1

2

221

2

2

2

121

2

2

2

121

12
414

2

3
64462

kkkIk

kkkkIkIkkIkI













 . 

Similarly, we can obtain more complexiton solution of Eq. (4.16) using Eq. (4.18) and Eq. (4.19), 

which 

are omitted for convenience. 

 

4.4 The (2+1)-dimensional Breaking Soliton (BS) equation 

In this section, we study (2+1)-D Breaking soliton equation via direct method called Hirota’s 

bilinear method. With the assist of this method, we construct its rogue wave and solitary wave 

solutions using particular auxiliary function. Finally, the interactions between solitary waves and 

rogue waves are offered with a complete derivation. 

The (2+1)-dimensional Breaking Soliton (BS) equation [67-69] reads as 

,044:),(  vuuvuuvuP xxxxytBS                   (4.21) 

where  is arbitrary constant and xy vu  . It is known that the BS equation above possesses a 

Hirota bilinear form: 



Chapter Four                     Applications  

      

Page | 35  

 

  

   ,033

:)( 3





xxxyxxxyxxxyxxxyxtxt

xytxBS

ffffffffffff

ffDDDDfB




    (4.22) 

under the links from f to u and v  are as follows: 

 
 

,
3

ln3
2

2

f

fff
fu xxx

xx


                  (4.23) 

and    
 

2

3
ln3

f

ffff
fv

yxxy

xy


 .                (4.24) 

Such potential transformations used in Bell polynomial theories of soliton equations and a proper 

relation is 

xx

BS
BS

f

fB
vuP 










2

)(
),( .                (4.25) 

It is clear that, if f  solves the bilinear breaking soliton equation (4.22), then  
xx

fu ln3 and 

 
xy

fv ln3 will solve the (2+1)-dimensional breaking soliton equation (4.21). 

4.4.1 Rogue wave solutions  

Let us adopt that Eq. (4.22) has a ansatz in the following form: 

,1 22 hgf        (4.26) 

with 

  ,,, 4321 atayaxatyxg       (4.27) 

  ,,, 8765 atayaxatyxh       (4.28) 

where ,ia  81  i are arbitrary constants. Setting Eq. (4.26) along with Eq. (4.27) and Eq. (4.28) 

into bilinear form Eq. (4.22), we obtain some polynomials which are functions of the variables 

yx, and t . Equating all the coefficient of tyx ,, and the constant term to be zero, we can obtain the 

set of algebraic equations for ,ia  81  i  . Solving the system with the aid of symbolic 

computation system Maple, gives the following relations between the parameters ia : 

.0,., 73

1

65
286541  aa

a

aa
aconstaaaaa     (4.29) 

Therefore, substituting Eq. (4.29) and Eq. (4.26) along with Eq. (4.27) and Eq. (4.28) into Eq. 

(4.22) yields the following rogue wave solution, 
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   

 22

2

2

1

2

5211

2

2

2

1

2

5

2

1

1

223

1

223





 









aaaa
u ,       (4.30) 

with 

  
4

1

65
11 a

a

yaa
xa  and .8652 ayaxa   

where the parameters satisfy the constraints (4.29). 

4.4.2 Solitary wave solutions  

Here, we seek the solitary wave solutions of Eq. (4.21). We expand the test function f  with small 

parameter   

     2211,, fftyxf   ,              (4.31) 

with 

         ,exp,exp 654

2

321

1 tkykxkftkykxkf              (4.32) 

where ,ik  61  i  are arbitrary constants to be determined later. Setting Eq. (4.31) into bilinear 

form Eq. (4.22) and equating all the coefficient of exponential term to be zero, we can obtain the 

set of algebraic equations for ,ik  61  i . Solving the system with the aid of symbolic 

computation system Maple, gives the following relations between the parameters ik : 

 
 
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 
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


     (4.33) 

Setting Eq. (4.33) and Eq. (4.31) into Eq. (4.22) yields the following two-soliton solution 

   
 
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



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


       

(4.34) 

with 

 
 

 
 
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2

2
5

2

4541

414
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3

1
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4151

1 tkkykxkt
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y
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kkkk
xk 


 









   (4.35) 

If we taking   02 f in Eq. (4.31), same as before we attain the following relations among the 

parameters ik : 

2

2

132211 ,, kkkkkkk  ,      (4.36) 
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Inserting Eq. (4.36) and Eq. (4.31) into Eq. (4.22) yields the resulting one-soliton solution 

 
 

,
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1

3
2
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1
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1




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
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



e
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e
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u





        (4.37) 

where .2

3

121 tkkykxk    

4.4.3 Interaction between rogue wave and solitary wave 

In this sub-section, we will be discussed the interaction phenomena between rogue wave solution 

and solitary wave solution of a (2+1)-dimensional breaking soliton equation. We choose two 

different cases of stripe soliton named exponential and hyperbolic sine function respectively. 

Case-1 

In the first case, we choose ),,( tyxf as a quadratic function with exponential part, that is, 

 ,exp1 22  hgf        (4.38) 

where g and h are defined by Eq. (4.27) and Eq. (4.28), and ,),,( 321 tkykxktyx  ,ik

 31  i  are the constant parameters which are determined later.  

Substituting Eq. (4.38) into Eq. (4.22), with the help of symbolic computation system Maple, we 

get twenty number equations. After, solving these equations we find some relations one of them 

relation is: 


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





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    (4.39) 

Setting Eq. (4.38) and Eq. (4.39) into Eq. (4.22) yields the resulting solution 
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with 
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
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        (4.41) 

where the parameters satisfy the constraints (4.39).  
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Case-2 

Here, we choose ),,( tyxf as a quadratic function with hyperbolic sine part, that is, 

 ,sinh1 22  hgf           (4.42) 

where hg, and  have been defined in the first case. Again, substituting Eq. (4.42) into Eq. (4.22), 

with the help of symbolic computation system Maple, gives the following equations for the 

parameters: 
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(4.43) 

Substituting these equations in hg, and   which gives 
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with  
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Setting Eq. (4.44) into Eq. (4.42) along with Eq. (4.45), we obtain the expression of ),,( tyxf , 

which is 
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 (4.46) 

Finally substitute Eq. (4.46) into Eq. (4.22), we obtain a new exact interaction solution of the 

(2+1)-dimensional breaking soliton equation 



Chapter Four                     Applications  

      

Page | 39  

 

 
 

 
 

,
sinh1

cosh2123

sinh1

sinh3
2

1

2

3

2

2

115352

1

2

3

2

2

1

2

1

















 kaak
u     (4.47) 
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where the parameters satisfy the constraints (4.43).  

 

4.5 The (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov (ANNV) equation 

In this paper, we will consider the (2+1)-dimensional ANNV equation [72, 73],  

  ;03  xxxxt uvuu          
yx vu  .        (4.49) 

where u  and v  are the components of the (dimensionless) velocity [74]. Eq. (4.49) is the only 

known isotropic Lax extension of the Korteweg-de Vries equation [75]. The ANNV equation has 

important applications in incompressible fluids, such as shallow-water waves, long internal waves 

and acoustic waves. 

Bilinear form 

Let us introduce the following potential transformation 

xyqtcu )( and xxqtcv )(        (4.50) 

in which )(tcc  is a function to be known later. Substituting (4.50) into (4.49) and integrating the 

equation with respect to x once and taking 1c , we get 

.0)(  xxxyyt qqqE        (4.51) 

by choosing the integration constant as zero. Based on the results presented in Refs. [82-83], we 

obtain  

.0)()()(  qPqPqE xxxyyt
       (4.52) 

with the help of the following two important transformations, we get 

.
)],,([ln2),,(ln2

)],,([ln2),,(ln2









xxxx

xyxy

tyxfcqvtyxfq

tyxfcqutyxfq
     (4.53) 

Substituting above transformations (4.53) into Eq. (4.49), (2+1)-dimensional asymmetric Nizhnik-

Novikov-Veselov equation can be linearized into  
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  ,03  ffDDDD xyty         (4.54)   

4.5.1 Soliton solutions of the (2+1)-dimensional ANNV equation 

The 1-soliton solution 

To seek one-soliton solutions of Eq. (1), we suppose f  is expressed in the following form 

tnymxl
eaaf 111

10


      (4.55) 

where ,,, 111 nml  1,0, iai are arbitrary constants to be determined later. Inserting Eq. (4.55) into 

Eq. (4.54) and after some simplification, equating all the coefficient of exponential term to be zero, 

we can obtain the set of algebraic equations for ,,, 111 nml  1,0, iai . Solving the system with the 

aid of symbolic computation system Maple, we obtain the subsequent solution: 

.,,,, 3

1111111100 lnmmllaaaa         (4.56) 

Therefore, setting Eq. (4.55) and Eq. (4.56) along with Eq. (4.53) into Eq. (4.54), yields the desired 

one-soliton solution of Eq. (4.49). 

The 2-soliton solution 

To seek two-soliton solutions of Eq. (4.49), we choose f  is expressed as 

tnymxltnymxltnymxltnymxl
eaeaeaaf 222111222111

3210


      (4.57) 

where  ,1,0, iai  2,1,, inml iii are all real parameters to be determined. Substituting Eq. (4.57) 

into Eq. (4.54) and after some simplification, equating all the coefficient of exponential term to be 

zero, we can obtain  

  
  








 .,.,),31(,, 3

22

3

112121

21213

212121
0 lnlnconstmmlliaa

mmlla

mmllaa
a ii  (4.58)  

which should satisfies the conditions ,03 a   ,021  ll and   .021 mm  

Therefore, inserting Eq. (4.57) and Eq. (4.58) along with Eq. (4.53) into Eq. (4.54), yields the 

desired two- soliton solution. If we setting ,10,1,1 321  aaa ,5.2,2 21  ll 5.3,1 21  mm , 

we can obtain a two-soliton solution of Eq. (4.49). If we setting  21 ll and  21 mm , 

then we obtain another type of two soliton solution. First type solution is elastic but second type 

is non-elastic solution.  
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Based on the above method Eq. (4.57) gives the breathers by asset of selecting suitable parameters.  

Breather solutions of Eq. (4.49) can be obtained in the  yx,  plane, where the parameters in Eq. 

(4.58) meeting the following conditions  

,11 Ibl  ,22 Ibl  ,11 ka  ,22 ka  ,33 ka  ,1 Ikbm  .2 Ikbm     (4.59) 

For instance, setting parameters as follows ,1 Il  ,22 Il  ,21*

21 Imm  ,25.11 a ,5.12 a

,23 a  we can obtain breather wave solution. 

The 3-soliton solution 

To seek three-soliton solutions of Eq. (4.49), we suppose f  is expressed as 

321313221321

1231323120

 
 eaeaeaeaeeeaf   (4.60) 

with   

3,2,1,  itnymxl iiii         (4.61) 

where ,0a ,,,, 123132312 aaaa  3,2,1,, inml iii are all real parameters to be determined. Based on 

above method, substituting Eq. (4.60) with Eq. (4.61) into Eq. (4.54), we can obtain the following 

relations among parameters  
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       (4.62) 

which needs to satisfy the condition .0, 213 la  

Therefore, substituting Eqs. (4.60)- (4.62) along with Eq. (4.53) into Eq. (4.54), the three-soliton 

solution of Eq. (4.49) can be obtained. 

4.5.2 Lump solutions of the (2+1)-dimensional ANNV equation  

To seek lump solutions of Eq. (4.49), we suppose f  is expressed in the following form: 

,1

22 phgf                (4.63) 

where,  

  ,,, 111 tnymxltyxg  and   ,,, 222 tnymxltyxh      (4.64) 

where iii nmlp ,,,1
 2,1i  are all real constants to be determined. A direct symbolic computation 

with f gives rises to the following relations:  
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0,0,,,,, 21221122
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m

lm
lpp .     (4.65) 

Therefore, substituting Eq. (4.65) with Eq. (4.64) into Eq. (4.63), we can get a class of quadratic 

function solutions Eq. (4.53). Then, the resulting exact rational solution for Eq. (4.49) are obtained 

through the transformation 
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and 
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where   ,,, 111 tnymxltyxg    ,,, 222 tnymxltyxh  for example, the resulting solutions of 

Eq. (4.65)  are as follows 
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with the function g and h are given as follows 

,1

1

22 ym
m

xlm
g   and .22 ymxlh           (4.69) 

For the exact solution  tyxu ,,  and  tyxv ,, to Eq. (4.49) to be lump ones, it is observed that 

  ,0,,lim
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yx

  and   ,0,,lim
22


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tyxv
yx

  .t       (4.70) 

It is easy to see that for any given time ,t  the lump solutions ,0u  ,0v if and only if the 

corresponding summation of squares ,22  hg which is equivalent to .22  yx  

Substituting the noted values of imlp ,, 21
 2,1i  into Eq. (4.68), then we can get abundant exact 

lump solutions of Eq. (4.49). We can notice that the solutions we obtained have a unified form of 

(4.67). If we taking the values of ,0tt   then the coordinates of the central point of the obtained 

lump solution is 


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where .01221  mlml  Substituting Eq. (4.71) and 0tt  into Eq. (4.67), the amplitude of v  is 

attained  Max  
 

 ,0
4

1

1

2

2

2

1 


 p
p

ll
v from which we observe that the amplitude of the lump 

solution is depend on the values of  21, ll and .1p  As we seen from Eq. (4.71) the lump soliton is 

centered at the origin when .0t    

4.5.3 Interaction of lump waves with solitary waves 

To get the interaction phenomena between lumps and solitary waves solutions of Eq. (4.49), 

assuming ),,( tyxf  in the following new form 

 ,exp1

22  phgf         (4.72) 

with 

    tnymxltyxhtnymxltyxg 222111 ,,,,,   and   ,,, 333 tnymxltyx    (4.73) 

 where  31,,,1  inmlp iii are all real parameters to be determined. Substituting Eq. (4.72) along 

with Eq. (4.73) into Eq. (4.54) with the aid of symbolic computation system Maple, we can gain 

the following relations among parameters:    
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l      (4.74) 

which should satisfy .02 m  

Therefore, substituting Eq. (4.74) into Eq. (4.72), we can get a class of quadratic function solutions 

to the bilinear equation (4.54). Then, the resulting exact rational solution for Eq. (4.49) are obtained 

through the transformation, 

      
        

 
,

2

484

)(ln2
2

1

22

233213312211331

22

22

2211122112211

phg

ehmlmlgmlmlmlmlmlphg

hgmlmlmlmlghpmlml

fu xy










 (4.75) 

    
 
   

 
,

42
24164

)(ln2
2

1

22

321

2

2

2

1

2

31

22

222

2

2

1211

2

2

2

1

phg

e
lhlglll

lphg
hglllghlpll

fv xx
























    

(4.76) 

where hg, and  are defined in Eq. (4.73).
 

for example, the resulting solutions of  Eq. (4.74)  are as follows 
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where ,11 ymxlg  ymx
m

ml
h 2

2

11  and .3

33 tlxl 
     (4.78) 

4.5.4 Multi lump solutions of (2+1)-dimensional ANNV equation 

In this section, we will find the multi lump solution of Eq. (4.49). To this aim, the above function 

),,( tyxf can be taken as, 

,sin 221
11 

hehef 
                              (4.79) 

with  twynxp 1111  and  ,2222 twynxp                           (4.80) 

where  2,1,, iwnp iii are all real parameters to be determined. Substituting Eq. (4.79) along with 

Eq. (4.80) into Eq. (4.54) with the aid of symbolic computation system Maple, we can obtain the 

following relations among parameters  
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which should satisfy .0, 11 ph  

Under the transformation Eq. (4.53), we can get the periodic lump solutions of the (2+1)-

dimensional ANNV equation as, 
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and 
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          (4.84) 
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4.6 The (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili (gBKP) equation 

Inspired by the mechanism of interaction solutions, we focus on the interaction solutions of 

the (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili (gBKP) equation [84] 

.0333  xxxyyxxxyxxzyt uuuuuuu        (4.85) 

Through the dependent variable transformation 

  ,
2

ln2



 x

xu           (4.86) 

the (3+1)-dimensional gBKP equation can be convert to the bilinear D-operator form 

 33 xyzxty DDDDDD    ,0        (4.87) 

where  tzyx ,,,  and the derivatives 
tzyx DDDD ,,, are the Hirota’s bilinear operators [3] 

defined in 
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    ttzzyyxxtzyxtzyx 
 ,,,,,,,,,   

The chief aimed of this paper is to present mixed lump-stripe, breather and various dynamical 

of collision wave solutions for gBKP equation via suitable ansatzes approach.  

2. Interaction phenomena between solitary wave and lump wave 

In this section, we explore the dynamics of collisions between lump soliton and one stripe soliton 

of gBKP model (4.85). For this, we choose  tzyx ,,, as a combination of two positive quadratic 

functions and an exponential function as 
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where ( 1, ...,11),ia i k= and ( 1, ..., 4)ik i =  are real factors to be later calculated. Plugging Eq. 

(4.89) into Eq. (4.87), and with a direct symbol calculation, we acquire 6 classes of solutions. We 

only select one of them to analyze characters of the similar solutions. 
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with .07 a  

Combining Eq. (4.91) and Eq. ( 4.89), we obtain the expression of  tzyx ,,, :  
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which, consecutively, produces the interaction of lump and stripe solitons to Eq. (4.85) through 

the transformation (4.86) as: 
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  (4.93) 

3. Breather-wave solutions 

In this section, we spotlight on the breather-wave solutions of Eq. (4.85) that comes from the 

collisions between exponential and trigonometric functions. 

Case-1: Here, we take  tzyx ,,,  as a combination of a cosine function with two exponential 

functions: 

 ,cos21   hehe           (4.94) 

with 

   

   ,,,,

,,,,

22222

11111

tczbyaxrptzyx

tczbyaxrptzyx








       (4.95) 



Chapter Four                     Applications  

      

Page | 47  

 

where  2,1,,,,,, ihrpcba iiiiii are parameters to be designated later. Plugging Eq. (4.934) along 

with Eq. (4.95) into Eq. (4.87), with the help of symbolic computation system Maple, we achieve  
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(4.96) 

which needs to satisfy the following conditions 0,0 11  pa and .02 r  

Setting Eq. (4.96) along with Eq. (4.95) into Eq. (4.94), we obtain the expression of  tzyx ,,, , 

which is 
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(4.97) 

Finally, inserting Eq. (4.97) into Eq. (4.86), we attain a periodic lump solution of the (3+1)-

D gBKP equation 
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with 
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Putting 122 ,2 pph  and taking limit as ,01 p the equation (4.97) reduce to a perturbation 

solution 
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Through the transformation (4.86), it reduces to a single lump wave solution as follows: 
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Case-2: In this case, we consider  tzyx ,,,  as a combination of a sine function with two 

exponential functions: 
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 ,sin21   hehe           (4.101) 

where  and   have been defined in the first case. Again, inserting Eq. (4.101) into Eq. (4.87), 

with the help of symbolic computation system Maple, gives the following solution. 
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which needs to satisfy the following condition .02 a  

Setting Eq. (4.102) into Eq. (4.101), leads to the expression of  tzyx ,,, : 
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Finally, setting Eq. (4.103) into Eq. (4.86), we attain a periodic lump waves solution of the (3+1)-

dimensional gBKP equation 
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4. Interaction solutions with fission phenomena 

In this section, we spotlight on a new interaction solutions of Eq. (4.85). For this aim adopt a 

different test function [44, 84, 86, 88, 89] as follows: 
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22  qpaHG         (4.105) 

where 
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Here,  ,9,.....,2,1iai  ,3,2,1iki p and q are real parameters while  3,2,1imi are real or 

imaginary constants. Plugging Eq. (4.105) into Eq. (4.87), via symbolic computation software 

Maple, we gain three sets of constraints. In the following, we analyze the three cases in details. 



Chapter Four                     Applications  

      

Page | 49  

 

Case-1: 
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where 02 a and .05 a Inserting Eq. (4.107) along with Eq. (4.105) into the Eq. (4.86), we 

advance into the interaction solution of Eq. (4.85): 
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where .01 k  Inserting Eq. (4.109) along with Eq. (4.105) into the Eq. (4.86), we get the interaction 

solution of Eq. (4.85) as 
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(4.111)

 

where .06 a Inserting Eq. (4.111) along with Eq. (4.105) into the Eq. (4.86),we get the interaction 

solution of Eq. (4.85). 
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Chapter Five 

Graphical representation 

In this section we describe some features of the solutions that we obtained from Burger equation, 

Gardner equation (or combined KdV-mKdV), Hirota-Ramani equation, Breaking Soliton (BS), 

asymmetric Nizhnik-Novikov-Veselov (ANNV) and generalized B-type Kadomtsev-Petviashvili 

(gBKP) equations in different cases. We depicted these solutions graphically with the help of 

computational software Maple and explain their behaviors in details. 

5.1 Graphical illustration of the solutions of Burger Equation 

In this subsection, we explain different type of traveling wave solution of Burger equation 

graphically obtained by using Modified Double Sub-Equation (MDSE) method. By implementing 

MDSE method, we obtained Sixty four complexiton solutions of Burger equation and have 

different type periodic shape. Some of these solutions are stated for specific values of the arbitrary 

constants with graphical illustration.  

The complexiton solutions to the Burger’s equations consist with two traveling variables  and 

expressed in-terms of tanh and  sec,tan ; tanh and  eccos,cot and coth and ,tan  sec

gives the kinky –periodic wave. When coefficients of  is greater than that of the  gives solution 

with kinky dominate on periodicity (see Fig. 1.1) but when coefficients of  is smaller than that of 

the  gives solution with periodicity increases and dominate on kink type (see Fig. 1.2).   

  

Fig-1.1: Kinky-periodic wave solution for ,20 b

5.1,1 21  kk of the real part of 2,1u . 

Fig-1.1(a): 2D plot shows the wave propagation pattern 

at 0x . 
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Fig-1.2: Kinky-periodic wave solution for
 

5,1,1 210  kkb of the real part of 
18,17u . 

Fig-1.2(a): 2D plot shows the wave propagation 

pattern at 0x . 

On the other hand, the complexiton solutions consist with two traveling variables  and 

expressed in-terms of coth and  eccos,cot ; coth and tan  gives multi-soliton solutions like 

Fig. 1.3 of 
8,7u . 

 

Fig-1.3: Multi-soliton solution for
 

2,1,1 210  kkb of the real part of 8,7u . 

The complexiton solutions consist with two traveling variables  and  expressed in-terms of cot

and  eccos,cot ; cot and tan  gives double-periodic solutions like Fig. 1.4 of 
42,41u . 
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Fig-1.4: Doubly-periodic wave solution for
 

2,1,2 210  kkb of 
42,41u . 

Fig-1.4(a): 2D plot shows the wave propagation pattern 

at 0x . 

The complexiton solutions consist with two traveling variables  and  expressed in-terms of tan

and  hsec,tanh ; tan and  echcos,coth  gives bell type-periodic solutions like Fig. 1.5 of 

58,57u . 

  

Fig-1.5: Bell-periodic wave solution for
 

3,1,1 210  kkb of the real part of 
58,57u . 

Fig-1.5(a): 2D plot shows the wave propagation pattern 

0x . 
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5.2 Graphical representation of the solutions of Gardner Equation 

In this subsection, we explain different type of traveling wave solution of Gardner equation 

graphically obtained by using Modified Double Sub-Equation (MDSE) method. By implementing 

MDSE method, we obtained Forty complexiton solutions of Gardner equation and have different 

type periodic shape. The graphical demonstrations of the obtained solutions for specific values of 

the arbitrary constants are exposed in Fig. 2.1 to Fig. 2.4.  

The complexiton solutions to the Gardner equations consist with two traveling variables  and 

expressed in-terms of tanh and  sec,tan ; coth and  sec,tan ; tanh and  eccos,cot ; 

coth and  sec,tan gives the kinky –periodic wave. The Fig. 2.1 gives this type of wave and it 

is plotted for the solution 
2,1u . The solutions involving combinations of tanh and tan ; coth  

and cot gives kinky-periodic wave solutions like Fig. 2.2 and it is plotted for the solution 
18,17u . 

The solutions involving combinations of coth and  echcos,coth ; tanh and cot ; coth  

and tan ; some times tanh and  eccos,cot gives single soliton solutions. The Fig. 2.3 gives 

this type of wave and it is plotted for the solution
12,11u . The solutions involving combinations of 

tanh and  hsec,tanh ; coth and  hsec,tanh ; coth and  echcos,coth gives collitions of 

three solitons (two kinks with one bell type wave) solutions like Fig. 2.4 and it is plotted for the 

solution 
28,27u . 
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Fig-2.1: Cross Kinky-periodic wave solution for
 

,2,0,1 223214  kwbbba 31 k of the 

real part of .2,1u  

Fig-2.1(a): 2D plot along 0t  shows the wave 

propagation pattern. 

  

Fig-2.2: Kinky-periodic wave solution for
 

3,2,0,1 1223214  kkwbbba of 

the real part of 
18,17u . 

Fig-2.2(a): 2D plot along 0t   shows the wave 

propagation pattern. 

  

Fig-2.3: Single soliton wave solution for
 

3,2,0,1 1223214  kkwbbba of 

the real part of 
12,11u . 

 Fig-2.4: Collision of two kink with a bell shaped 

soliton solution for ,22232  kwbb
 

,14 a ,01 b 31 k of the real part of 
28,27u . 
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5.3 Graphical representation of the solutions of Hirota-Ramani Equation 

In this subsection, we explain different type of traveling wave solution of Hirota-Ramani equation 

graphically obtained by using Modified Double Sub-Equation (MDSE) method. By implementing 

MDSE method, we obtained thirty-two traveling wave solutions and have different type periodic 

shape. The graphical demonstrations of some obtained complexiton solutions for choosing suitable 

values of the arbitrary constants are exposed in Fig. 3.1 to Fig. 3.6.  

The complexiton solutions contain with two traveling variables  and  expressed in-terms of  

tanh and  sec,tan ; tanh and cot  gives soliton solutions like Fig. 3.1 and Fig. 3.2 

respectively.  

  

Fig-3.1:  Profile of 1u  for
 

5.2,1,1 210  kka . 

  

Fig-3.2: Profile of 5u  for
 

25.2,25.0,1 210  kka . 
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On the otherhand, the complexiton solutions consist with two traveling variables  and 

expressed in-terms of tan and sec  gives soliton solutions like Fig. 3.3 and  tan,sec and cot  

gives doubly-periodic wave solution like Fig. 3.4 of 15u  and  tan,sec and  hsec,tanh gives 

breather wave solutions like Fig. 3.5 of 19u and  tan,sec and  hsec,tanh  gives bell shaped 

periodic solution like Fig. 3.6 of 22u . 

 
 

Fig-3.3: Soliton Profile of 8u  for
 

5.0,025.0,1 210  kka . 

 

  

Fig-3.4:  Doubly-periodic wave solution for
 

5.2,1,1 210  kka of 15u .  

Fig-3.5:  Kinky periodic lump wave solution for 

,10 a
 

2,1 21  kk of 19u . 
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Fig-3.6:  Interaction of Bell and periodic wave solution for
 

2,5.1,1 210  kka of 22u . 

 

5.4 Graphical representation of the solutions of BS Equation 

In this subsection, we explain different type of traveling wave solution of Breaking Soliton 

equation graphically obtained by Hirota’s bilinear method. Using this method, we obtained some 

traveling wave solutions which are denoted as Eq. 4.30, Eq. 4.34, Eq. 4.37, Eq. 4.40, and Eq. 4.47. 

The graphical demonstrations of some obtained complexiton solutions for choosing suitable values 

of the arbitrary constants are exposed in Fig. 4.1 to Fig. 4.7.  

Fig.4.1 shows the sketch of rogue waves for dissimilar values 86541 ,,,, aaaaa , (a) gives 3D views 

from which one can reveal the standard rogue wave feathers. It is also clear that the Fig.4.1 of Eq. 

4.30 is the recognized eye-shaped rogue wave solution which has one local hump and two valleys 

(clears from the views (b)). Besides this, we discover that rogue wave has the uppermost peak in 

its surrounding waves and it can be forms in a short time and also can be realized from the 

perspective view of (c). 
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Fig-4.1: Rogue wave solution (4.30) for Eq. (4.21) by choosing suitable parameters:
 

,11 a ,24 a

,4,2 65  aa and 28 a . (a) 3-D plot of the wave at .10t (b) Corresponding contour plot of the wave. (c) 

2-D plot of the wave along the x axis. 

From Fig. 4.2, it is clear that the amplitude, velocity and width of the one-soliton keep constant 

during the wave propagation. One can show that the amplitudes of anxious position are limited 

and almost same in different spaces. In Fig. 4.3, the collision into the couple of bell-shaped soliton 

has elastic characteristics. When they fully meet, the amplitude changed and the changed 

amplitude is more than two times than the real amplitude of the two waves. The two waves 

converted to one eave direction after the collision with their original amplitude and shape. All the 

phenomena indicate that there is no energy loss during collision.  

Now we will show the wave propagation situations of solitary wave by two figures. Fig. 4.2 and 

Fig. 4.3 show the one-soliton (4.37) and two-soliton solution (4.34), respectively, by choosing 

suitable parameters. 

  

 

 

Fig-4.2: One-soliton solution Eq. (4.37) for Eq. (4.21) in the    xtxy ,,,  and  ty,  three different planes with 

suitable parameters:
 

,5.11 k 5.0,5.1,5.02  k .  
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Fig-4.3: Two-soliton solution Eq. (4.34) for Eq. (4.21) with: ,5.21 k  ,5.14 k ,25 k ,5.1  2 in the

   xtxy ,,,  and  ty,  three different planes and corresponding contour plots (bottom) respectively. 

In what follows, Fig. 4.4 and Fig. 4.5 appeared exact solution (4.40) by taking the suitable 

parameters. 
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Fig-4.4:  Interaction phenomena between rogue wave and solitary wave solution (4.40) for Eq. (4.21) by choosing 

suitable parameters: 1.0,5.0 41  aa 2,1,1,6.0 96  aa with three-dimensional plots for 

different times (a) ,15t (b) ,0t and (c) 15t and corresponding contour plots (bottom) respectively. 
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Fig-4.5: Interaction phenomena between rogue wave and solitary wave solution (4.40) for Eq. (4.21) by choosing 

suitable parameters: 1.0,5.0 41  aa 2,5.1,1,6.0 96  aa with three-dimensional plots for 

different times (a) ,15t (b) ,0t and (c) 15t and corresponding contour plots (bottom) respectively. 

In what follows, Fig. 4.6 and Fig. 4.7 appeared exact solution (4.47) by taking the suitable 

parameters. 

  

  

Fig-4.6: Profile of interaction between rogue wave and hyperbolic solution (4.47) for Eq. (4.21) by choosing suitable 

parameters: ,10,1,8.0,3.0,5.0,54.0 98754  aaaaa
 

,1.0
 
with 3D plots for different 

times (a) ,0t (b) ,3t and (c) 5t respectively; (d) 2D plot (c).
 



Chapter Five                                                                         Graphical Representation      

Page | 63  

 

  

  

Fig-4.7: Interaction between rogue wave and hyperbolic solution (4.47) for Eq. (4.21) by choosing suitable 

parameters: ,1,8.0,3.0,5.0,54.0 98754  aaaaa ,5.0 2 with 3D plots for different 

times (a) ,0t (b) ,3t and (c) 5t respectively; (d) 2D plot (c). 

5.5 Graphical representation of the solutions of (2+1)-D ANNV Equation 

In this subsection, we explain different type of traveling wave solution of asymmetric Nizhnik-

Novikov-Veselov (ANNV) equation graphically obtained by using Direct method called Hirota’s 

bilinear method. Using this method, we obtained some traveling wave solutions which are denoted 

as Eq. 4.55, Eq. 4.57, Eq. 4.60, Eq. 4.68, Eq. 4.77, Eq. 4.82 and Eq. 4.83. The graphical illustrations 

of some obtained solutions for choosing suitable values of the arbitrary constants are exposed in 

Fig. 5.1 to Fig. 5.10.  
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During the wave propagation, we see that the amplitude, velocity and envelop shape of the one-

soliton keep constant (see Fig. 5.1). One can confirm that the amplitudes of impatient position are 

limited and around same in different spaces.  

As depicted from Fig. 5.2, the collision is elastic between two bell-shaped solitons, because the 

velocities, amplitudes and envelop shapes of a moving soliton always keep fixed their shapes after 

the interaction.  All the phenomena concludes that energy will remain unchanged during collision. 

Whereas we see that from Fig. 5.3, the interaction between two bell-shaped solitons is completely 

non-elastic. That is the soliton velocity, amplitude and wave shape are changed after collision. 

Now we will illustrate the wave pattern situations of solitary wave by three figures. Fig. 5.1 

highlight the one-soliton (4.55), Fig. 5.2 and Fig. 5.3 demonstrates the two-soliton solution (4.57), 

Fig. 5.4, special type solution of Eq. (4.57) called breather solution and Fig. 5.5 demonstrates the 

three-soliton solution (4.60), by selecting appropriate parameters. 

 

(a) 

 

(b) 

 

(c) 

Fig-5.1: The one-stripe soliton solution for Eq. (4.49) with ,20 a  ,11 a ,25.11 l ,5.21 m  3D shape in 

different planes at (a) ;0t (b) ;0x  and (c) .0y  

 
  

 

(a) (b) (c) (d) 

Fig-5.2: The two-stripe soliton solution for Eq. (4.49) with ,11 a ,10,1 32  aa ,5.2,2 21  ll ,11 m  

,5.32 m with 3D plots for different times (a) ;5.1t
 
(b) ;0t and (c) 5.1t  respectively, (d) Corresponding 

2D plot. 
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(a) 

 

(b) 

 

(c) 

Fig-5.3: The two-stripe soliton solution (non-elastic) for Eq. (4.49) with ,10,1,1 321  aaa ,21 l ,32 l  

,121  mm at time 0t  (a) 3D plot (b) Contour plot and (c) Corresponding 2D plot for different time. 

   

(a) (b) (c) 

Fig-5.4: The breather solution for Eq. (4.49) with ,11 a ,12 a ,103 a ,5.2,2 21  ll ,11 m  5.32 m

with :0t  3D plots (a), (b) and (c) Corresponding 2D plot. 

    

(a) (b) (c) (d) 

  Fig-5.5: The three-stripe soliton solution for Eq. (4.49) by choosing parameters: ,213 a  ,11 l ,22 l ,23 l  

,3,1 32  mm with 3D plots at (a) ,0t  (b) ,5.0t  and (c) 1t respectively, (d) 2D plot at 5.0,0 t

and 1t respectively. 
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Fig. 5.6 shows the sketch the lump solution u in Eq. (4.68) whereas Fig. 5.7 shows the sketch lump 

of  v  in Eq. (4.68) called rogue waves for some  values ,21 p  ,12 l ,21 m and 12 m , (a) gives 

3D views from which can expose the standard rogue wave features. It is also clear that the Fig. 

5.7(a) is the well-known eye-shaped rogue wave solution which has two valleys and one local 

hump. Moreover, we notice that rogue wave has the highest peak in its surrounding waves and 

forms in a tiny time, which is clear from Fig. 5.7(c). For fixed t , the variables can determine the 

rogue wave is symmetric about the x  axis (see Fig. 5.7(b)). 

   

(a) (b) (c) 

Fig-5.6: Lump solution u  in (4.68) for Eq. (4.49) by choosing suitable parameters:
 

,2.11 p ,8.02 l

,8.01 m and 4.02 m . (a) 3-D plot of u  (b) density plot of u   (c) 2-D plot of u . 

   

(a) (b) (c) 

Fig-5.7: Lump solution v  in (4.68) for Eq. (4.49) by choosing suitable parameters: ,21 p
 

,12 l ,21 m and

12 m . (a) 3-D plot of v  (b) density plot of v  (c) 2-D plot of v .  
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In what follows, Fig. 5.8 presents exact solution of Eq. (4.77) by choosing the suitable parameters, 

which can show the interaction phenomena between solitary wave and lump waves.
 

   

   

Fig-5.8: Profiles of v  in (4.77) with :0t  3d plots, density plot and contour plot (top for 52 a ) and bottom for 

05.02 a  with ,5.21 a ,3.21 m ,12 m   ,5.11 l  and .13 l  

In what follows, Fig. 5.9 and Fig. 5.10 present exact solution of Eq. (4.82) and Eq. (4.83) 

respectively by choosing the suitable parameters, which can demonstrate the interaction 

phenomena among multi lump solution. 

    
(a) (b) (c) (d) 

Fig-5.9: Profiles of u  in (4.82) with :5.1,0,5.1t  3d plots (a), (b), (c) respectively and (d) corresponding density 

plot (b) with
 

,11 h ,22 h 1,1 21  pp and 12 n .  
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(a) (b) (c) (d) 

Fig-5.10: Profiles of v  in (4.83) with :2,0,2t  3d plots (a), (b), (c) respectively and (d) corresponding density 

plot (b) with ,11 h ,22 h ,11 p  12 p  and 12 n . 

5.6 Graphical representation of the solutions of (3+1)-D gBKP Equation 

In this subsection, we explain different type of traveling wave solution of generalized B-type 

Kadomtsev-Petviashvili (gBKP) equation graphically obtained by using Direct method called 

Hirota’s bilinear method. Using this method, we obtained some traveling wave solutions which 

are denoted as Eq. 4.93, Eq. 4.98, Eq. (4.100), Eq. 4.104, Eq. 4.108 and Eq. 4.110. The graphical 

illustrations of some obtained solutions for choosing suitable values of the arbitrary constants are 

exposed in Fig. 6.1 to Fig. 6.7.  

  In what follows, Fig. 6.1 present particular solution of Eq. (4.93) in xy plane and Fig. 6.2 

present this in the xz plane at dissimilar times by appropriate parameters selection. Curved 

lines strained in the bottom of the 3D figures are its corresponding contour plots.  

 

(a) 

 

(b) 

 

(c) 

Fig-6.1: Profile of solution (4.93) for Eq. (4.85) with ,3,1 571  aaa ,2108  aa ,5.111 a 25.1  

(a) ,5.1t (b) ,0t and (c) 5.1t respectively for .0z  
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(a) 

 

(b) 

 

(c) 

Fig-6.2: Profile of solution (4.93) for Eq. (4.85) with ,3,1 571  aaa ,2108  aa ,5.111 a 25.1  

(a) ,5.1t (b) ,0t and c) 5.1t respectively for .0y  

In what follows, Fig. 6.3 present exact solution via the Eq. (4.98) by selecting the appropriate 

values of constants, that illustrate the solitonic interaction between lump and periodic waves 

produce a breather waves solution. Curved lines strained at the bottom of these figures are 

corresponding contours. While Fig. 6.3(b) produces the shape of single lump wave degenerated 

from the solution (4.98) via parametric limit approach. 

  

Fig-6.3: Profiles of solution (4.98) for Eq. (4.85) with 12121221  hprpcba at 0t : (a) 

Perspective view of the wave for ,0z and (b) degeneration of (4.98) by parametric limit of the wave Eq. (4.100) 

when and 0y . 

The Fig. 6.4 interprets the wave shapes of the solution Eq. (4.104) with totally 

different parameters and consequently the curve exhausted below of the figure is the shape line. 
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From the figures we see that the desired lump wave is y periodic and propagate along x

direction as time goes. 

 

(a) 

 

(b) 

 

(c) 

Fig-6.4: Profile of solution (4.104) for Eq. (4.85) with ,5.2,1 122  rba ,5.01 h  ,2.12 h ,25.01 p  

25.12 p (a) ,1t (b) ,0t and (c) 1t  respectively taking 2z . 

Different conditions on the parameters p and ,q 4u (i,e., Eq. (4.108)) offers four different 

interaction solutions among the kinky, lumps and periodic waves. On the condition 0p and 

,0q  4u  exhibits a single lump solution (see Fig. 6.5(a)). It is known that a lump wave has one 

valley and one peak (see Fig. 6.5(a)). But for the parametric condition 0p and ,0q 4u (i,e., 

Eq. (4.108)) displays an interaction between a lump and a periodic wave (see Figs. 6.5(b)–6.5(c)). 

In such case, the interaction between a lump and a periodic wave delivers one valley and one peak 

serially which split into two valleys and two peaks by fission (i.e. a fission phenomenon occurs for 

lump wave)  as q  gradually increases depicted in the Figs. 6.5(b)–6.5(c). Fission of lump is cleared 

from the comparison of Fig. 6.5(b) and Fig. 6.5(c), as in Fig. 6.5(b) has one lump (one peak and 

one valley) and but in Fig. 6.5(c) has two lumps (two valleys and two peaks). 

Due to the condition 0p and ,0q  4u  (i,e., Eq. (4.108)) offers an interaction solitonic wave in 

which a lump get into a double kink waves (see Fig. 6.6(a)). Finally, on the condition 0p and 

,0q  4u  exposes an interaction among the lumps, double kinks and periodic waves. On 

observations of the Figs. 6.6(b)–6.6(c), It is obvious that one valley and one peak of the lump (in 

Fig. 6.6(b)) split into two valleys and two peaks (in Fig. 6.6(c)) by fission as q  increases into a 

double kinky periodic waves.  
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Fig-6.5: (Fission of lump wave) Profile of solution (4.108) for Eq. (4.85) with ,2,1 52  aa ,5.186  aa  

,29 a ,11 m ,21 k ,0p 0t and .0z  

   

Fig-6.6: (Fission of lump wave) Profile of solution (4.108) for Eq. (4.85) with ,2,1 52  aa ,5.186  aa  

,29 a ,11 m ,21 k
6

1
p  and 0z  : (a) ;0q (b) 10q , (c) .20q

 
The solution Eqs. (4.110) and (4.112) have the similar four conditions like Eq. (4.108). The Fig. 

6.7 present specific solution Eq. (4.110) by selecting the appropriate values of constants that 

illustrate the interaction phenomena. If we agreed with 0p and 0q in Eq. (4.110), then we 

experience with an interaction between a lump and double kinky waves of Eq. (4.85) (see Fig. 

6.7(a)). But If we agreed with 0p and 0q in Eq. (4.110), then we experience a fission 

phenomenon as 0q increases, in which lump waves split into more than one lump waves get 

into a double kinky wave (see Figs. 6.7(b)–6.7(c)). On comparison between the Figs. 6.7(b) and 

6.7(c), It is obvious that one valley and one peak of the lump (in Fig. 6.7(b)) split into two valleys 

and two peaks (in Fig. 6.7(c)) by fission as q  increases that get into a double kinky periodic waves. 
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Fig-6.7: Profile of solution Eq. (4.110) for Eq. (4.85) with ,5.1,2,1 86952  aaaaa ,111  km  

,13 k 02.0p : (a) a lump get into a double kinky waves,  (b) a lump going to fission that get into a double kinky 

waves and (c) a lump fission into two lump that get into a double kinky waves. 
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Chapter six 

Conclusions 

In this paper, modified version of double sub-equation method is proposed for solving non-linear 

evolution equation. As a concrete example, we consider the (1+1)-dimensional Burger’s equation, 

the (1+1)-dimensional Gardner equation (or combined KdV-mKdV) and the (1+1)-dimensional 

Hirota-Ramani equation. Applying this method, we acquired novel some complexiton solutions in 

the combination of trigonometric and hyperbolic functions with different structures. It is hoped 

that the study of these complexiton solutions could further assist understanding, identifying and 

classifying nonlinear integrable and nonintegrable differential equations and their exact solutions. 

In fact, we naturally use two or more really different sub-equations to handle complexiton solution 

with two different traveling variables i.e., multi-variable Riccati equations. Thus we can obtain 

more prosperous complexiton solutions possessing a mixture of trigonometric periodic and 

hyperbolic functions.   

Additionally, we have successfully implemented the direct method to the (2+1)-dimensional 

Breaking soliton equation, the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov and the 

(3 + 1)-D gBKP model. Based on the Hirota bilinear formulation and by a symbolic computation 

Maple, We have derived soliton solution, breathers, lump solutions, mixed lump stripe solutions 

of the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equation. We have presented 

some interaction phenomena between rogue waves and other kinds of solutions to the (2+1)-

dimensional Breaking soliton equation.  

We have successfully determined three types of interaction solutions among the lump, kink and 

periodic waves for the (3 + 1)-D gBKP model. By exploitation of direct approach, we have 

acquired some interactions solutions such as the lump-kink wave solution Eq. (4.93), breather-

waves solutions Eqs. (4.98) and (4.104) of the model. Also, we have presented some new 

interaction solutions among lump, kink and periodic waves solutions Eqs. (4.108), (4.110) and 

(4.112) via a different “rational-cosh-cos” type test functions. Moreover, we derive a single lump 

wave solution Eq. (4.100) by parametric limit approach that degenerate from the breather wave 

solution Eq. (4.98). Four different conditions on the exist parameters of the solutions Eqs. (4.108), 

(4.110) and (4.112) are given to illustrate fission properties of lump waves into kink waves. 
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Meanwhile, the performances of the mentioned techniques are substantially powerful and 

absolutely reliable to search new explicit solutions of other NPDEs. 
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