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Abstract

Nonlinear evolution equations (NLEEs) play a noteworthy role in various scientific and
engineering fields such as applied mathematics, plasma physics, fluid dynamics, optical fibers,
biology, solid state physics, chemical physics, mechanics and geochemistry. Various effective
procedure have been developed to solve NLEEs. In this work, we have discussed applications of
two types methods: first type is modified double sub-equation (MDSE) method which is apply in
the (1+1)-dimensional Burger equation, the (1+1)-dimensional Gardner equation and the (1+1)-
dimensional Hirota-Ramani equation and secondly, Hirota’s Bilinear method which is apply in
(2+1)-dimensional Breaking Soliton, the (2+1)-dimensional asymmetric Nizhnik-Novikov-
Veselov equations, and (3+1)-D generalized B-type Kadomtsev-Petviashvili equation.

Using Modified double sub-equation method, we have presented some complexiton solutions in
terms of trigonometric, hyperbolic functions. Finally, the interaction phenomena of the achieved
complexiton solutions between solitary waves and/or periodic waves are presented with in depth
derivation.

Based on the bilinear formalism and with the aid of symbolic computation, we determine multi-
solitons, breather solutions, rogue wave, lump soliton, lump-kink waves and multi lumps using
various ansatze’s function. We notice that multi-lumps in the form of breathers visualize as a
straight line. Besides this, the breather wave degenerate into a single lump wave is determined by
using parametric limit scheme. Also, we reflect a new interaction solution among lump, kink and
periodic waves via ‘rational-cosh-cos’ type test function. To realize dynamics, we commit diverse
graphical analysis on the presented solutions. Obtained solutions are reliable in the mathematical

physics and engineering.
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Chapter One Introduction

Chapter One
Introduction
Nonlinear phenomena have an extensive application in different branches of mathematical physics
and engineering. Basically all the fundamental equations of physics are nonlinear and, generally,
such types of nonlinear evolution equations (NLEEs) are often very tough to solve clearly. The
explicit solutions of NLEES play a prominent role in the study of nonlinear science. In recent years,
both mathematicians and physicists have devoted considerable effort to study of soliton solutions
of nonlinear partial differential equations (PDEs) and a number of powerful methods were
presented. For instance the inverse scattering theory [1], Darboux transformation [2], the Hirota's
bilinear method [3,4], the sech-function method [5], the homogeneous balance method [6],
Backlund transformation method [7], the hyperbolic tangent function series method [8,9], the sine-

cosine method [10], the (G'/G) -expansion method [11,12], the multiple exp-function method

[13], the Jacobi elliptic function expansion method [14,15]. These algebraic methods have the
power to give a clear picture of the relation between different terms of nonlinear wave equations
and are to simplify the routine calculation of the method. One of the most effectively
straightforward methods to constructing exact solutions of PDEs is the sub-equation method [16-
19]. The complexiton solution, firstly introduced by Ma et al. [20], can be constructed by the
multiple Riccati equations rational expansion method [21], which make use of two Riccati
equations with the same variable. Chen [22] has presented the double sub-equation method using
two ordinary differential equations (ODEs) with different independent variables. Complexiton
solutions are obtained by combining elementary functions and the Jacobi elliptic functions using

double sub-equation method [22].
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Chapter One Introduction

Another effectively direct method is Hirota’s bilinear method [23-25] which is one of the most
direct and convenient method to obtain the exact soliton solution of NLEEs. If a NLEE can attain
its bilinear form, Lax pairs, lump solutions, multiple soliton solutions of this equation can be
obtained [26-32]. Lately, we have seen two types of phenomena, two or more solitons may fuse to
a single soliton and at a specific time, a single soliton may fission to two or more solitons. These
types of scenarios were called as soliton fission and soliton fusion respectively [33]. Indeed, people
have observed these types of phenomena in many nonlinear science and engineering field such as
the gas dynamics, laser, plasma physics, electromagnetic, and passive random walker dynamics
[34-36]. Therefore, it very necessary to discuss about the elastic interactions into the solitary waves
in certain integrable or non-integrable system with a strong physical backgrounds.

Recently, researchers are highly impressed to rogue wave solutions [37-38] for it’s engrossing
class of lump-type solutions, which can be found in plasma, shallow-water waves, nonlinear optics
and Bose-Einstein condensates [39]. In 2002, Lou et al. studied the lump solution with the variable
separation method [40]. Very recently, Ma et al. proposed the positive quadratic function to get
the lump solution. Special examples of lump type solutions have been found, such as the KPI
equation [41], Boussinesq equation [42], BKP equation [43] and so on. Lump solution [44-45] is
a kind of rational function solution which is localized in all directions in the space whereas lump-
type [46-47] solutions are localized in almost all directions in the space. Rogue waves [47-50] are
localized in both space and time, arise from nowhere and disappear without a trace [51], have taken
the responsibility for unexpected disaster in the world.

In this work, we implement the Modified double sub-equation (MDSE) method and a direct
method called Hirota’s bilinear method to find new and more general traveling wave solutions to

some NLEEs namely the Burger equation, the Gardner equation, the Hirota-Ramani (HR)
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Chapter One Introduction

equation, the Breaking Soliton (BS) equation, the asymmetric Nizhnik-Novikov-Veselov (ANNV)
equation and the generalized B-type Kadomtsev-Petviashvili (gBKP) equation.

Outline of this work, In Chapter one, we introduce the application of NLEEs in different branches
of mathematical physics and engineering.

In Chapter two, we included the historical background /of Burger equation, the Gardner equation,
the HR equation, BS equation, ANNV equation and gBKP equation with the help different
methods.

In Chapter three, we explain the MDSE method and a direct method step by step and also explain
the working procedure of this method to solve different type’s nonlinear evolution equation.

In chapter four, we implement the Burger equation, the Gardner equation, the HR equation, BS
equation, ANNV equation and gBKP equation. We obtain some traveling wave solution such as
exponential, hyperbolic function solutions and trigonometric function solutions etc.

In Chapter five, we have discussed about the nature of the obtained traveling wave solution of
various equations which are mentioned above. With the aid of direct symbolic computation, we
explain these natures with 2-D, 3-D, Density and Contour graph.

Finally, we give some concluding remarks in the Chapter six.
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Chapter Two

Literature Review of Some PDEs

In this chapter, we will discuss the literature review of some nonlinear evolution equations
(NLEEs) such as (1+1)-D Burger, Gardner and Hirota-Ramani equations, (2+1)-D Breaking
Soliton and asymmetric Nizhnik-Novikov-Veselov equations, and (3+1)-D generalized B-type
Kadomtsev-Petviashvili equation.
2.1 The (1+1)-dimensional Burger Equation
Nonlinear evolution equations (NLEEs) play a noteworthy role in various scientific and
engineering fields such as applied mathematics, plasma physics, fluid dynamics, optical fibers,
biology, solid state physics, chemical physics, mechanics and geochemistry. Burger equation is
one kind of Diffusion reaction model.
Let us consider the (1+1)-dimensional Burger equation [52-54], in the following form,

u, +2uu, —u, =0, (2.1)
Burgers equation (2.1) is a model for nonlinear wave propagation, especially in fluid mechanics.
The equation arises in various characteristic areas of applied mathematics, such as modeling of
gas dynamics and traffic flow.
Burger equation [52-54] are solved by many researcher for finding complexiton solutions. On the
other hand, Burgers equation with space-and time-fractional order and and time-fractional
Boussinesq—Burger’s equations [55-57] are solved for soliton solutions which arise in propagation

of shallow water waves.
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Chapter Two Literature Review of Some PDEs

In this section, the modified double sub-equation method is proposed for constructing complexiton
solutions of nonlinear partial differential equations (PDEs). We apply this method to the Burger’s
equation [52-54].

2.2 The (1+1)-dimensional Gardner equation (or combined KdV-mKdV)

In this section, the modified double sub-equation method is proposed for constructing complexiton
solutions of nonlinear partial differential equations (PDEs). We apply this method to the Gardner
equation.

Let us consider the (1+1)-dimensional Gardner equation (or combined KdV-mKdV) [58-60], in
the form

=0, (2.2)

u, +buu, +b,uu, +byu

XXX

where u=u(x,t)and b;,b,,b,are arbitrary constants. The Gardner equation has two nonlinear

terms in the quadratic and cubic forms and the dissipative term is of third order. This is an
significant model to realize the propagation of negative ion acoustic plasma waves [60] and can
be derived from the structure of plasma motion equations in one dimension with arbitrarily charged
cold ions and inertia neglected isothermal electrons. This equation can also be a good explanation
of internal waves with large amplitudes [61].
2.3 The (1+1)-dimensional Hirota-Ramani equation
Nonlinear evolution equations (NLEES) play a notable role in scientific and engineering fields
such as mathematics, biology, mechanics, physics and geochemistry. Now a day’s many
mathematicians and physicists are engaged in the study of soliton solutions of nonlinear partial
differential equations (PDES).
We study the (1+1)-dimensional Hirota-Ramani equation [62-66], in the form

u, —u,, +au (l-u,)=0, (2.3)
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where « is a nonzero real constant. There are many researchers discussed about Hirota-Ramani
equation in diverse technique such as, Ji discussed above equation by Exp-function method [63],
Konprasert et al discussed the various types exact solution of Hirota-Ramani equation using F-
expansion process [64], Reza et al discussed some phenomena of above equation by (G'/G)-
Expansion Technique [65]. Recently, Roshid et al studied above equation by direct rational
exponential method to describe it’s multi soliton phenomena [66].

2.4 The (2+1)-dimensional Breaking Soliton equation

In this section, we study the (2+1)-dimensional Breaking Soliton (BS) equation [67-69] reads as

(2.4)

u, =V,.

{ut +au,,, +4auv, +4au,v =0,
where « is arbitrary constant. There are many researchers have been studied in Breaking soliton
equation (BSE) in many ways such as: Zhang formed nontraveling wave solutions to BSE by a
generalized auxiliary equation method [68], Mei investigated general solution of BSE using the
projective Riccati equation expansion method [69], Peng solved BSE by the singular manifold
method [70], and Dai derived BSE chaotic behaviors by the mapping method [71]. The structures
of (2 + 1)-dimensional BSE are rich and there are still more structures to be discovered.

In this paper, we will focus on the (2+1)-dimensional Breaking Soliton (BS) equation to show the
diversity of such interaction solutions aid of symbolic computation with Maple. The (2+1)-
dimensional BS equation has a Hirota bilinear form, and so, we will do a search for positive
quadratic function solutions to the corresponding (2+1)-dimensional bilinear BS equation. The

obtained quadratic function solutions contain a set of free parameters, and taking special choices

of parameters involved.

Page | 6



Chapter Two Literature Review of Some PDEs

2.5 The (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equation

In this part, we will consider the (2+1)-dimensional ANNV equation [72,73],

u, +u,, +3uv], =0; U, =V, . (2.5)

where u and v are the components of the (dimensionless) velocity [74]. Eqg. (2.5) is the only
known isotropic Lax extension of the Korteweg-de Vries equation [75]. The ANNV equation has
important applications in incompressible fluids, such as shallow-water waves, long internal waves
and acoustic waves. There are many researchers have been studied in ANNV equation in many
ways such as: Boiti et al. solved via the inverse scattering transformation [76]. Guo et al. discussed
the N-soliton solution and Pfaffian expression by using a nonlinearized method of Lax pair [72],
Osman et al. solved this system of equations via the unified and generalized unified method [77-
80]. Also, ANNV equations can also be obtained from the inner parameter-dependent symmetry
constraint of the KP equation [81].

The main purpose of this paper is to employ some proficient ansatzes to determine lump solution,
lump-kink wave and multi-lump wave solutions and their dynamics for the above (2+1)-
dimensional ANNV equation.

2.6 The (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation

Recently, finding accurate collision solutions of nonlinear partial differential equations (NLPDES)
is an essential issue in soliton theory. In recent years, scientists have been investing their research
effort to study of soliton solution of NLEEs.

In this section, we study (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili (gBKP)
equation is introduced to describe the dynamics of solitons and nonlinear waves in the field of
fluid dynamics, plasma physics etc. Let us consider the (3+1) dimensional generalized B-type

Kadomtsev-Petviashvili equation [84] in the following form:
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u, +3u,, —3u,u,, —3u,U, —U,, =0. (2.6)

Several researchers studied on the gBKP equation (2.6) in many ways such as: Ma and Zhu [85]
explored multiple wave solutions of Eq. (2.6) via the multiple exp-function scheme. Liu et. al. [86]
presented new exact non-traveling wave solutions by exploitation of the generalized (G'/G)-
expansion method. Ma [87] construct N-soliton solutions of Eq. (2.6) via the Hirota method.

Recently, Cao [84] presented only lump wave solutions of the model.
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Chapter Three
ALGORITHMS

In this Chapter, we will give a short overview of the Modified Double Sub-Equation Method and
Hirota’s bilinear method.
3.1 Description of the Modified Double Sub-Equation Method
In the following, we described the main steps of modified double sub-equation method.
Step 1: Consider a nonlinear partial differential equation (NLPDE), say in two independent
variables x and t, is given by

R(u,u,,u,,u,,u,,u .)=0 (3.2)

PYGLALEEREE

where u=u(x,t)is an unknown function, R is a polynomial of u=u(x,t)and its partial

derivatives in which the highest order derivatives and nonlinear terms are involved.

Step 2: For the suggested method, we assume that the solutions of Eq. (3.1) are as follows:

a,0(5) +ayw(n) (32)
Ao + 4o(E)w (1)

where g, (i = 0,1,2),5 and » are all functions of x and t, 4, and A, are arbitrary nonzero constants

u(x,t) =a, +

to be determined later. The new functions ¢(&) and () satisfy

0= dz’—if) 4+ P’ (O) (3.3)

dy ()

q =q, + Dzwz(n) ' (3.4)
n

and v (7) =

where & =k, x+w,t and 77 =k,x+ w,t respectively, which are known as wave transformation of

Eq. (1).
Step 3: The general solutions of the Riccati Eq. (3.3,3.4) [21] are as follows:
do(¢) :
—=q, +
0c g, + P, (&)
i. Whengq,=1p, =-1
@(&) = tanh(), p(&) = coth(S), (3.5)

ii.  When g, =p, =i%,
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@(&) =sec(§) tan(&), (&) = csc(e) + cot(S), (3.6)
iii.  Whenqg,=p, =1

@(&) = tan(<), (3.7)
iv. ~Whenqg,=p, =-1

@(&) = cot(&) (3.8)
v.  When q, =%, P, =—%,

(&) =tanh(&) tisech(&), p(&) = coth(&) £ csch(&), (3.9)
vii. When q,=0,p, =1,
1
pE+W’
Step 4: By setting Eqg. (3.2) into Eq. (3.1) along with Eq. (3.3) and Eq. (3.4) yields a system of

(&) =- (3.10)

equations with respect to ¢"y",(m=0,12,...,n=0,1,2,...)then set all coefficients of ¢"y" in the
obtained system of equations to be zero, we obtain a set of over-determined PDEs with respect to
a,,a,,a,,k,w,k,,w,, A,and 4,.

By solving the over-determined PDEs with the aid of symbolic computation system Maple, we
obtain the subsequent solution in terms of a,,a,,a,,k,,w,,Kk,,w,, 4,, 4,. Using the results obtained

in the above steps and the various solutions of Eq. (3.3, 3.4), we can derive many solutions for Eq.
(3.2).

3.2 Description of the Hirota’s Bilinear Method

In this subsection, we briefly described the main features of Hirota’s bilinear method that will be

used in this work. Firstly, we substitute
Q(x, y,t)=ememmt (3.11)
into the linear terms of any differential equation under discussion to determine the dispersion

relation among m,n and w. Secondly, substitute the Cole—Hopf transformation
Q(x,y,t)=PIn(y(x, y,1)),,. (3.12)
into the equation under discussion, where the auxiliary function w(x, y,t) is given by
w(x, y,t)=1+ By, (x,y,t)=1+Be* (3.13)

Where 6, =mx+ny+wt, 1=123,..... ,N
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and solving the resulting equation with the aid of symbolic computation system Maple, to
determine the numerical value for P . Notice that the N-soliton solutions can be gained by using
the following forms for w(x, y,t)into (3.12):

The steps of the Hirota’s bilinear method [4] are as follows:
(i) For dispersion relation, we use

Q(x,y,t)=e”, 6, =mx+ny+wt. (3.14)
(i) For single soliton, we use

w(x,y,t)=1+e" (3.15)
(iii) For two-soliton solutions, we use

w(x, y,t)=1+e% +e% + B g% (3.16)
(iv) For three-soliton solutions, we use

w(x y,t)=1+e”% +e% +e” + B,e%"” + B,,e%"" + B %" + B """ (3.17)
Notice that we use Eg. (3.14) to determine the dispersion relation, Eq. (3.16) to determine the
phase shift B,, to be generalized for the other factors B, and finally we use Eq. (3.17) to
determine B,,;, which is given by B,,, =B,,B,,B,, for completely integrable equations. The

determination of three-soliton solutions confirms the fact that N-soliton solutions exist for any

order.
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Chapter Four

Applications of the Modified Double Sub-Equation and Direct method

In this chapter, we will discuss the applications of the Modified Double Sub-Equation (MDSE)
method in (1+1)-D Burger, Gardner and Hirota-Ramani equations and Direct method named
Hirota’s Bilinear method in (2+1)-D Breaking Soliton and asymmetric Nizhnik-Novikov-Veselov
equations, and (3+1)-D generalized B-type Kadomtsev-Petviashvili equation.

4.1 The (1+1)-dimensional Burger equation

In this sub-section, we will generate many new types of complexiton solutions combining
elementary functions and the Jacobi elliptic functions using MDSE method. It makes the modified
double sub-equation method more thoroughly.

To establish validity and effectiveness of our method, we handle this method in the (1+1)-
dimensional Burger equation. Let us consider the Burger equation [52-54], in the following form:

u, +2uu, —u, =0, (4.1)

According to the method, we assume that the solutions of Eq. (4.1) are as follows:

b,p(&) + b,y () 4.2)
b; +b,0(E)w ()’

where b, (i=01234), &=kx+wt and 7 = k,x+w,t are arbitrary nonzero constants.

u(x,t) =b, +

Substituting Eq. (4.2) into Eq. (4.1) along with Eq. (3.3) and Eq. (3.4) yields a system of equations
with respect to ¢"y",(m=0,12,...,n=0,12,...), then set all coefficients of ¢™w" in the obtained
system of equations to be zero, we obtain a set of over-determined PDEs with respect to b,
(i=01234), k,,w,,Kk,,W,.

Solving the over-determined PDEs by use of Maple, we can obtain the following results.

Case 1.

{bo :bO'bl :O'b2 :_b4qul’b3 :O,b4 :b4,

(4.3)
w, = —2bk,, W, = w,.

Case 2.
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b, =b,,b, =-b,k,q,,b, =0,b, =0,b, =b,, (4.0)
W, =W, W, =—20,K,. '
Case 3.
b, = by, b, =0,b, =b,k,p,,b, =b,,b, =0, @5
W, =W, W, = —2b,K,. '
Case 4.
—by,b, =h;,b, =0,b, = b, =0,
ky Py (4.6)
w, =-2b,k,, W, =w,.
Case 5.
b, =by.b, =b,y.b, =b, b, = zbz(kzqz‘:quﬁ/) ’
p1q1k1 + szzkz + 2qulkz Y4 (4 7)
10a (K., +,07) W, = —2bgk,, W, = —2bok,.
plql 17/+ sz2k27/+2k plkzqz)
Case 6.
by =Dy, b, =b,y,b, =b,,b, = zbZ(yqul:_kqu) )
plqlkl + pzqzkz + 2k1Q1k2 Y4
b +k
b, - Pib, (kud +K,0,) = w, 4.8)
Ay (pikEy + pod,k2y + 2k, pik,0, )
W = — W, p; +2by K, p, + 2byk; p, .
? Y4

where y = /pl—qz .
P20,

Note that: Since the solutions obtained here are so many with complexitons and without

comple

xitons, we just write some new and complexiton solutions for the Burgers equation to

demonstrate the effectiveness of our method.

Using (

4.7), one can get various types of complexiton solutions of Eq. (4.1) as follows:

Family-1: When b, =b, =const.,q, =1, p, =—1, then we can get some complexiton solutions:

When q, = p, = then
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— ){ tanh(&) F (sec(7) — tan(n)}

1+ | tanh(&)(sec(n7) — tan(r7))

K, + Ik,) | tanh(&) £ (csc(y) —cot(n)
2 1F | tanh(&)(csc(y) — cot(r)

_a, ¢(% < Ik ){ coth(&) F (sec() — tan(n)}

1+ | coth(&)(sec(r7) —tan(#)

K, + 1k,) I coth(&) + (cscy) —cot()
2 1F I coth(&)(csc () —cot(n)

Uy =2 £ (K, T 1k, { | tanh(&) F (sec(yy) + tan(n) }
’ 2 1+ I tanh(&)(sec(n) + tan(n)

Ui = 20 £ (S K, F Ik, { | tanh(£) + (esc(y) + cot() }
| 2 1¥ | tanh(&)(csc ) + cot ()

U.. —a +(£k _ Icoth(§)$(sec(77)+tan(77)
e = G 21K 1+Icoth(§)(sec(77)+tan(77)

u1516 = a‘O + (1 Filk ){ I COth(é) * (CSC(T]) + COt(?]) }
| 2 1F | coth(&)(csc(y) + cot(y)

iii. When q, = p, =1, then

ATk Ak | tanh(&) + tan(z7)
18 =0 TAR2 T T 1T 1 tanh(&) tan(n)

Upg g0 =89 F (K, £ |k1){ | coth($) + tan(z) }

1% I coth(&) tan(#)

iv. When g, = p, =-1,then

b —a (kI )] () + cot(y)
2122 = o LK, ! 1% I tanh(&) cot(n)

At FIK) | coth(&) + cot(n)
224 %0 =12 T 13 1 coth(&) cot(y)

1 1
V. When ==,p,=—=,then
q, > P, 2
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1
Uss06 = 3 * (E k2 + kl)

1
Uy7 28 =8 * (E I(2 + kl)

1
U29130 =4a, * (Ekz * kl)

1
U31‘32 =4, * (E kz * kl)

1
U33y34 =4, * (E k2 * kl)

u3536 a0+( k+k)

1
Uss g = dg * (E k2 * kl)

1
Ugg a0 = 89 £ (E k, £k,)

tanh(&) i(tanh(n) -

Applications

I
cosh( )

1+ tanh(é)[tanh(n) -

tanh(&) i(tanh(n) +

cosh(y )j

)

1+ tanh(§)(tanh(77) +

tanh(&) + [coth(n) +

cos h(ﬂ)]

)

1+ tanh(cf)(coth(n) +

tanh(&) + [coth(ﬂ) -

smh( )J

1+ tanh(§)[coth(77) -

coth(&) + [tanh(n) -

5
|

sinh(7 )j
|

osh(y)

1+ coth(f)[tanh(n) —

coth(&) + (tanh(n) +

=
)

1+ coth(g-’)(tanh(n) +

coth(&) +(00th(77) +

0

1+ coth(§)[coth(n) +

coth(&) + (coth(n) -

smh( j

sinh(7) j

1+ coth(f)(coth(n) —
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where &=k x+wtand 7 =K, X+ w,t, w, =

Family-2: When b, =b, =const.,q, =

Applications

—2byk,, w, =—-2byk,.

p, = +; then we can get some complexiton solutions:

i When q, = p, =1, then

where &=k x+wtand 7 =K, X+ w,t, w, =

Family-3: When b, =b, =const.,q, = p, =

i When g, =

ii. When q,

Uyr40 =

tan(§)+ sec(n) tan(n)
1+tan(§) sec(n) tan(n)

Uszas = Qo +( k - 1)

tan(&) + (cscg) — cot())
1F tan(&)(csc () — cot(y))

tan(f) T (sec() + tan(r))
1+ tan(&)(sec(y) + tan(n7))

. ( o tan(§)+ (csc@) +cot(y))
Uy7 .48 1+tan(§) csc(n)+C0t(77)

1 T
Uys46 = T (E k2

—2b,k,, W, =—-2bk,.
=1, then we can get some complexiton solutions:

p, =—1then

(TR tan(¢) + cot(r)
4050 = %0 =12 TR 1 7 tan(&) cot(y)

1 1
==,p,=—=,then
2 pZ 2

| tan(&) + [tanh(n) -

|
cosh(n)J

I
cosh(n)

|
osh(n)j

|
osh(n)j

Usys, = @

1
+ (k2 1)

1+1 tan(g)[tanh(n) -

| tan(&) + {tanh(n) e

Ik,)

Usss4 = Qg * (E kz +

1+1 tan(f)(tanh(n) + .

Page | 16



Chapter Four Applications

)

| tan(&) + (coth(n) +

1
Uss 56 = 8o t (E k2 * Ikl)

1+1 tan(f)(coth(n) + sinh( )j

n
| tan(&) + [coth(n) - j

Us756 =89 T (%kz £ 1k,) sinh(77)
1+1 tan(rf)[coth(n) _nh()J

n

where &=k x+wtand 7 =Kk, x+w,t, w, =-2b k,,w, =-2bk,.

Again, using (4.8), one can get various types of complexiton solutions of Eq. (4.1) as follows:

Family-1: When b, =b, =w, =const.,q, =1 p, =—1, then we can get some complexiton

solutions:

i. When q, = p, :%,then

_ 1
Usgeo =3 + (E kz

| tanh(&) F (sec(n) — tan(z)
1+ 1 tanh(&)(sec(n) —tan(7))

I tanh(&) + (csc () — cot(n)
1+ I tanh(&)(csc () —cot(y)

{ coth(&) F (sec(r7) — tan(n) }

_ 1
Ugrgo =y + (E kz )

Usssa = 9 +( k, +1k;)

+ 1 coth(&)(sec() — tan(z)

| coth(&) + (csc(y) — cot(n) }

Ugs s = @ Hlk
6566 — %0 T\ = 1+|coth(§)(csc(¢7) cot(n)

ii. When q, = p, _—%,then

I tanh(&) + (sec(n) + tan(z)
1% | tanh(&)(sec(n) + tan(n)

_ 1
Ugres = 8p + (E k2 e Ikl){

| tanh(&) F (csc() + cot(n)
1+ 1 tanh(&)(csc(r) + cot(y)

| coth(&) = (sec(n) + tan(n)
1% I coth(&)(sec(n) + tan(7)

1
Ugg70 =89 + (E k2 = Ikl){

_1
U772 =8 + (E ky + Ikl){
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| coth(&) F (csc(r) + cot(n)
1+ 1 coth(&)(csc(r) + cot(n)

1
Uzg74 =89 + (E k, £ |k1){

iii. When ¢, = p, =1, then

oy =, (K, - Ikl){ | tanh(&) + tan(z) }

1% | tanh(&) tan(z)

| coth(&) + tan(n)
1% | coth(&) tan(7)

Uppop = g F (K, & |k1){
iv. When q, = p, =-1,then
£k, £ 1K) { | tanh(&) T cot(n7) }

Uzggo = 8o +
7080 = g 1+ I tanh(&) cot(n)

Ugyg, = o T (K, * |k1){ | coth(¢) + cot(r) }

1+ I coth(&) cot(n)

V. When d, =%, P, =—%,then

tanh(&) ¥ [tanh(n) - cosh(y )j

1. _
Ugzgs = Qg + (E kz + kl)

17 tanh(f)(t"’““h(’7 )= coSh(ﬂ)j

tanh(f)i(tanh(n)Jr sh( )J

0

1. _
Ugsge = Qg T (E k2 + kl)

1F tanh(g)(tanh(n) +

tanh(&) ¥ (

i)

sinh(n )j

1. _
Ugsgs = @y +(§k2 +k )

1F tanh(§)(coth(77) +

tanh(&) (coth(ry)—smh( )J

)

1. _
Ugggo = Qg T (E k2 + kl)

1F tanh(f)[

Page | 18



Chapter Four Applications

coth($) * (tanh(n) -

1. _
Ugigp =85 t (E kz + kl)

17 coth(cf)(tanh(n) - coslh(ﬂ)J

coth(&) * {tanh(n) + h(n)J

1. _
Uggos =89 + (E kz + kl)

1F coth(g)[tanh(n) +

coth(&) (coth(n) +

1 _
Ugsgs = 39 T (E kz + kl)

1F coth(é)(coth(n)+ sinh(7 )j

coth(¢$) ( oth(n) —

1 _
Ug7gg = 3o + (E kz + kl)

1F coth(é)(coth(n) - nh(n)]

211

v P10 P29,

P,0;

Where &=k x+wtand 7 =K,X+Ww,t, w, =w,,w, =—

P,

Family-2: When b, =b, =w, =const.,q, = pl_+1, then we can get some complexiton

I\)

solutions:
I. when g, = p, =1, then

Uassoo = 8 T (=K, £k ){ tan(&) ¥ (sec(y) - tan(n))}
, 2 1+ tan(&)(sec () — tan(7))

u =a, +( k, +k,) tan(£) £ (csc(y) - cottr)
101102 = - 1+tan(.§)(CSC(77) COt(ﬂ))

Uppsios = 8 F (E k, +k,) tin(i) +(sec(y) + tan(z))
| 2 1 tan(&)(sec(y) + tan(y))
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a7 (1 - kl){ tan(&) ¥ (csc@) + cot(n))}
2 1+ tan(&)(csc) + cot())

u105,106
ii. when g, = p, =-1, then

Y —a F(k, £ k) (sec(¢) +tan(&)) F cot(ny)
107208 770 T AR T 2 T 14 (sec (&) + tan(&)) cot(r)

iii. when g, =%, P, =—%,then

I (csc(§) —cot()) + (tanh(") - coslh(n)j

17 1 (csc(f) — cot(f))[tanh(n) B coslh(ﬂ)J

v P.10; P29,

sz P, + 2bok, p,
241

v P10 P29,

P.0;

Family-3: When b, =b, =w, =const.,q, = p, =1, then we can get some complexiton solutions:

R
Ujggr10 =@ + (E kz +- Ikl)

W1p1+2b0[
Where &=k x+wtand 7 =K,X+Ww,t, w, =w,,w, =—

P,

I. when g, = p, =—1,then

o a F(k k) tan(¢&) F cot(r)
tuiz =% T2 TR 1 4 tan(&) cot(n)

. 1 1
ii. when g, = P, =—§,then

I tan(&) F (tanh(n) - h(n)j

113114 a0 +( k + Ik )

171 tan(f)(tanh(”) - coslh(ﬂ)J

I tan(&) [tanh(n)JrC h(n)j

- |
171 tan(§)(ta”h(’7) " coSh(ﬂ)j

115116 a'O +( k + Ik )
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where &=k x+wtand 7 =K, Xx+w,t, w,

Family-4: When b, =b, =w, =const.,q, =

complexiton solution:

where &=k x+wtand 7 =K, X+ w,t, w,

117 118 —

u119,120

ulZ:LlZZ

a0+( k, ¥ 1k,)

=a, T (%k2 F 1k,)

1

=a, £k, F k)

=W, W, =—

=W, W, =—

I tan($) (coth(n) +

Applications

h(n)J

1F1 tan(g)(coth(n) +

| tan(&) F (coth(n) -

)
sinh(7)

)

1F1 tan(é)(coth(n) -

sinh(# )j

w, p, + 2b, [ plqlpzqu , P, + 20k, p,

P,

p,=-1, and q, =

I cot(¢) +(

P.9: P-4,

P.0;

)

1+1 cot(§)(coth(77) -

9

1 1
—.p, =—=,then we can get a
> P, > g

wp.+2b, [ plqlpzqu o+ 2k,

P,

P.9: P.0;

P,0;

Similarly, we can write down the other complexiton solution of Eq. (4.1) which are omitted for

convenience.

4.2 The (1+1)-dimensional Gardner equation (or combined KdV-mKdV)

In this sub-section, we will generate many new types of complexiton solutions combining

elementary functions and the Jacobi elliptic functions using MDSE method.

To establish validity and effectiveness of our method, we handle this method in the (1+1)-

dimensional
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Gardner equation (or combined KdV-mKdV) equation. Let us consider the Gardner equation [58-
60], in the following form:

u, +buu, +b,u’u, +bu, =0, (4.9)

where u =u(x,t)and b,,b,,b,are arbitrary nonzero constants.
According to the method, we assume that the solutions of Eq. (4.9) are as follows:

a,p(&) + a,y (1) (4.10)
a; +a,0(5)w(n) ’

where a,, (i=01234), &=kx+wt and 77 =k,x+Ww,t are arbitrary nonzero constants.

u(x,t) =a, +

Substituting Eq. (4.10) into Eq. (4.9) along with Eqg. (3.3) and Eq. (3.4) yields a system of equations
with respect to ¢"y",(m=0,12,...,n=0,12,...), then set all coefficients of ¢™w" in the obtained
system of equations to be zero, we obtain a set of over-determined PDEs with respect to a,,
(i=01234), k,,w,,Kk,,w,.

Solving the over-determined PDEs by use of Maple, we can obtain the following results.
Case 1.

a :_%tt))—l’al =0,a, =Aqka,,a; =08, =a,,
2 (4.11)
1
Wl :ZAZ,WZ W2
Case 2.
ay :_%E_l’al =0,a, =A3;k, p,,8; =2a;,8, =0,
2 (4.12)
1
W, = Wi, W, :ZAS'
Case 3.
1b
ay :_Eb_l’al =AK,0,8,,8, = 0,8, =0,a, =a,,
2 (4.13)

1
W, =W, W, :ZAg.

Case 4.
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a, = —lﬁ,a1 =Aak,p;,a, =0,a, =a,,a, =0,
. 25, (4.14)
w, :ZAZ,W2 =W,.
Case b.
8y :_%E_l’al =784,8; = 2_1227/014 p2b3?2k1q1k2 2 ,
2 (6b; p,q;k; + p,b,y +6a,0,.k p,b;)
_ 12b,a,q7k,0.k, ~
a5 = 2,2 2 y 8y, =38y,
(6b, p,q5k; + p,b,y + 60,0,k p;b,)
k. (-8 p2b22k1272b3 p.q; + p2b272b12 —24 p22b22q272b3k22 + 48b3Q22 p,b,k,w, (4.15)
_6b3%2 p2b12k22 -
W = 1480505 psbyk; +96b7a7 p,b, p,aik; —48b70,k;'b,q; py + Bbyq,k;bia, py)
b4 b, (60, p,q; + p,b,y* +60,k’ p,d,b,)
W, = W,.
—6b.b _ 2 2 _ 2 2
where, A, = v D% 4, = ky (=8 p1E1 b +5) |\ Kel 8b3p2lt;2Q2b2 +0) g
2 2 2

y= \/_ 6 p2b2b3q2 (qzkz2 P, + Q1k12 P+ 2k1k2 Y P, P10, )
P,b, |

Note that: Since the solutions obtained here are so many with complexitons and without

complexitons, we just write complexiton solutions for the (1+1)-dimensional Gardner equation (or
combined KdV-mKdV) equation.

Using (4.15), one can get various types of complexiton solutions of Eq. (4.9) as follows:
Family-1: When b, =b, =w, =const.,q, =1, p, =—1, then we can get some complexiton

solutions:

I. When q, = p, =%,then

{i 1(ala4 tanh(klx + ié‘lt) ¥ 3()Cla'4l:)3l(1k2 (Sec(ﬂ) + tan(ﬂ))]}
b2 4ﬂl bZﬂl

UL2 =a, +
5 3b3a4 k1k2 . + a4 tanh(klx + ié‘lt) (SeC(?]) + tan(n))
stkzz —3k12b3 iEal 4ﬂ1
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(a]_a4 tanh(k,x + ic?lt) - 3a,8,0:k,kK, (csc(r) - COt(ﬂ))J}
4B, bZﬂl

R

3b,a,k,k,

+a, tanh(k x + icSlt) (csc@z) - cot())
bk? ~ Kb, + o 45

(a]_a4 coth(k,x + iélt) F 3a,a,b,k K, (sec(y) + tan(n))J}

|
:

{ akck

|

|

R

+a, coth(k,x + 4’13510 (sec(n) + tan(z))

Shk2 — 3Kk, + !
4 2
+1£a a, coth(k,x + L t)F 3a,3.,b;kk, (Csc(r) - COt(n))j}
- 14 1 1

U.. —a + b, 4p, b,

78 — Y0

5 02Kk 4 coth(kx+ 2 81) |(cscly) - cotn))
2 hyk? —3kZb, + 45
4 2

1b, 1 s s 1 ?

where, a, =_Eb_' —6b,b, ﬂl b k, —3k; b, —3b, Ekz + 1k, | and
2

2 2 2
5, =kl(—24b2kfb§[%k2+ Ikl] —3b3[%k2+ Ikl) b12+18b2b§(%k2 ; Iklj %

+6b,b,k, W, —%bsbszz —gbgbzk; —12b2k2b,k2 — 24b2k ‘b, — 3b,kb?)

ii. When g, = p, =— %,then

{1 l(a2a4 tanh(klx + ié‘zt) + 3O!Za‘4b3k1k2 (590(77) - tan(ﬂ))}}
b2 4132 bzlgz

Ugip =3y +

: 30,a,k kK, +a, tanh(k,x+ ——&,t) |(sec(y) - tan(n))
— 7 bokg +3kibs £ e i
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i a a, tanh(k,x + L §2t)i3062a4b3k1k2(csc(77)+cot(77))j}
2 4p, bzﬂz

CT

1112

3b a, k k +a, tanh(klx + ié‘lt) (CSC(T]) + COt(ﬂ))
b K2 + 3k b, + R A

i a a, coth(k,x + L 52t)i30!2a4b3k1k2(sec(77)—tan(n))]}
2 45, bzﬂz

b
1314

3b,a,k Kk, ‘a, coth(k1X+i51t) (sec(7) —tan(n))
_7b k> +3k; b3_20£2 i

i 1,2, COt(K X + = 6,1) + 3a,2,b5K;k, (Cscr) + COt(ﬂ))j}
bz 45, b, 5,

1

where, a, —6bh, k+|k} By, =— bk2+3kb+3b(

bk2+3k b, + !
2
2
k2+lklj and
+ 1

3b,a,k.k, 1
{ 1 +a, coth(k,x + E(Slt) (CSC(ﬂ) + COt(ﬂ))

2 2
5, = k, (24b,kb? k kj +3b3(%k2 +|li b? —18b2b§(%k2 ; Iklj %
_6b,b,k,w, +%b3bfk22 . Ebgbzkg‘ +12b2k?b,k2 + 24b2k b, + 3b,k’b2)
iii. When q, = p, =1, then

{i bl (a3a4 tanh(kx+ = o,0) F L2%a@:Pakak, an(7) J}
2

455 b, 5,

Ui718 = 8 + 1
+a, tanh(k, x + 4—& 53t)J tan(#)

12b,a,k,k,
6b,k2 — 6k b, +

{i 1 £a3a4 coth(kyx+—5,t) F L2%a@:Pakak, tan(7) )}
b2 4/%

. s bZZ%
19,20 — ~0
122b3a4 Elk2 +a, coth(k, x + i53t) tan(n)
6b.k, — 6k b, £ o, 4,
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where, a, = —%E—l,% = J— 6b,b, (k, + Ik, )*, B, = 6b,kZ — 6k’b, —6b, (K, + Ik, )*and
2

5, =k, (—48b,k2b2 (k, + 1k, )* —6b,(k, + Ik, )*b? +144b,b? (k, + Ik, )’ k2 + 48b,b,k, W,
—6b,b’k2 — 48b2b,k; —96b2kb,k? — 48b2k. b, — 6b,kb?)

Iv. When g, = p, =—1,then

{1 1£a4a4 tanh(k,x+ 2 6,t) + 2%aBaPakiks Cm(’”}
b2 4ﬂ4 b2ﬂ1

Horze =80 12b,a,k.k 1
T +a, tanh(k,x + ——4,t) |cot(z)
—6b,k’ +6k’b, + a, 48,

2 ﬂ4 bZﬁl

1
+a, coth(k, x + 4ﬂ54t)j60t(77)

4

{1 bl(%% coth(k,x + 41 5,1) + 2% 2ubakik, Coty) J}

12b,a,k,k,
—6b,k? +6k’b, ar,

Uy =85 t (

where, a, = —%g—l,% = J—6h,b, (k, + Ik, )?, B, =—6b,k? + 6k 2D, + 6b, (K, + Ik, )* and

2

5, =k, (48b,kzb? (k, + Ik, )* +6b,(k, + 1k, )* b2 —144b,b2 (k, + Ik, )*k? — 48b,b,k,w,
+6b,b7k2 + 48b2b,k; +96b2kb,k? + 48b2k. b, + 6b,kb?)

1 1
V. When q, = P, =—§,then

I
3a.a,b.k, k.| tanh(n7) +
5, 03K, 2( (7) COSh(ﬂ)j

+ 1 asa, tanh(k, X+ i55t) F
b2 4 5 bZﬂS

Uys 6 =85 +

30,a,kk,

1 |
+a, tanh(k, X + = 5,t) (tanh(n) + J
~ Jbki-3b, = 4P coshér)
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|
3a.a,b.k k,| tanh(77) —
Q5a, 03K 2( (1) COSh(?])j

a, tanh(k1x+4’1865t)$ b, 5
5 2775

27 28 =
3b,a,kk,
ki —3Kibyx a,

1 |
a, tanh(k,x + —6.t) || tanh(n) —
+a, tanh(k, +455 st) [ (n) cosh(n)j

4. b, Bs

29 30 =
3b,a,k,k,
k2 —3Kk2b, +

1 1
a, tanh(k,x + —&.t) | coth

iy b, Bs

-1

b
{ b

1
3a.a,b.k. k.| coth(n) +

{ ! a.a, tanh(k,x + L O:t)F e 2[ v sinh(n)]

bi asa, 1 an 95
{ b

-1

b

3a:.a,b,k Kk COﬂIT]—
1 54312( ()smh()
a4, tallh(le + 7551:) +

3132

5 30,a,k;k, : +a4tanh(k1x+i55t) (COth(ﬂ)— o
— bk —3Kihy £ e e

H
AR

. ) 3a5a4b3k1k2[tanh(77)+ cosh(y )
a, coth(k,x+-—-0o.t) F
45, b, Bs

Ugzss =85 +

3b,a,kk,
3

+a, coth(k,x + 4,18550 (tanh(n) +
_stkz2 — 3k, b, iEas °

0
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I
3a.a,b.k.k,| tanh(n) —
C5a, 03K, 2( (7) COSh(i])j

1 1
F—| a.a,coth(k,x+ —05.t)F
b, asa, (k, 45, st) b, .

Ugs36 =39 +

3b,a,kk,
3

+a, coth(k,x + 4155t) (tanh(n) - ]
_Zbakz2 —3k12b3i§055 & ‘

osh()

3a5a4b3k1k2(coth(77)+ sinh(y )

1 1
F—| a.a,coth(k,x+ —0.t)F
b, asa, (k, 45, st) b, .

Ug7g = 3o +

3b,a,kk,
3

+a, coth(k, x + 4; ost) (coth(n) +
_stkz2 —3k’b, 9 ®

3a.a,b.k k,| coth(n) —
1 1 _0‘54312( @) nh()
+b— asa, coth(k,x +-———-5.t) F

2

45 b, s
Usggo =89 +
323 kK, +a, coth(k,x+——&.t) (coth(ry) _
_ §b3k22 —3k?b, + 1 455 sinh(77)
4
where, a, = —lﬂ —6b,b (1 } B = b k2 —3k/b, +3b3(1 K, —kljzand
2b, 2 2
1 ’ 1 ’ 1 ’
5. = k1(24b2kfb32( K, -kl] +3b3(§k2 —klj b? +18b2b§[5k2 —klj k2

— 6b,b,k,W, +%b3bfk§ —gbszbzk;‘ +12b2k2b,k2 — 24b2k ‘b, —3b,k2b?)

with 77 =k, X+ w,t and
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k,(-8 p2b22k1272b3 p.04; + p2b27/2bl2 —24 p22b22q272b3k22 + 48bst2 p,b, K, W,
—6b,q; p,b’k; —480;q; pob,k; +

1 96b§q22 pzbz p1q1k22 — 48b32(12k14b2q12 plz + 6b3Q2k12b12q1 p1)

4 b, (6, p2q22 + p2b272 + 6q1k12 p,d,b;)

Similarly, we can write down the other complexiton solution of Eq. (4.9) which are omitted for
convenience.
4.3 The (1+1)-dimensional Hirota-Ramani equation
Complexiton solution gives various types of wave speed which are produced by mix-up of
trigonometric and hyperbolic functions. Modifed double sub-equation (MDSE) technique is a
advantageous and practical tool to attain system of complexiton solutions of nonlinear evolution
equations.
In this part, we have studied MDSE method to create a complexiton system solution of (1+1)
Dimensional Hirota-Ramani equation [62-66], in the form

u, —u,, +au (l-u,)=0, (4.16)
where u(x,t)is the amplitude of the relevant wave mode and a « = Ois a real constant. Hirota-

Ramani equation is broadly used in several branches of physics, and such as plasma physics, fluid
physics, and quantum field theory. It also pronounces a variation of wave phenomena in plasma
and solid state [62].

According to the method, we assume that the solutions of Eq. (4.16) are as follows:
a,9(¢)+a, y(n)

a; +2, 9(&)y(n)

where a, (i=012,34), &=kx+wt and 7 =k,x+w,t are arbitrary nonzero constants.

u(x,t)=a, + (4.17)

Substituting Eq. (4.17) into Eq. (4.16) along with Eq. (3.3) and (3.4) yields a system of equations
with respect to ¢" ", (m=0,1,2,...,n=0,1,2,....), then set all coefficients of ¢"y" in the
obtained system of equations to be zero, we obtain a set of over-determined PDEs with respect to
a, (i=01234) k,w,k,,w,.

Solving the over-determined PDEs by use of Maple, we can obtain the following results.
Case 1.
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2 2
{a = —W2(4k2 P29, +1), a =-— Ga:kzqz ,a,=0,a,=0 (4.18)
K, W, (4k2 p,d, +1)
Case 2.
2 2
{a __waling ) o Bakip, g (4.19)
K, w, (4k2 p,g, +1)
Case 3.
a:_6a4(— k,q, + klpl\/Z), 0 - p,VA a, ‘a,=VRa,
a d, 2 o (4.20)
__ 0'\/K -80,0,p, p,a,w,k,k, — 64,3,k p,q, —6a,k;q; p,
d, P,3, 8P, pk.k VA —4p,k2q, —1-4p.kZq,)
where A = gﬁ and o = p,p, W, +12k; p, p,k,a,0, +4p; p,a,wk/’d, +4p,p;a,W,K;d,.
1M2

Using (4.20), one can get various types of complexiton solutions of Eq. (4.16) as follows:

Family-1: When a, =a, =a, =w, =const., g, =1, p, =-1 then we can get some complexiton

solutions:
. 1
i. Whenqg, =p, = then

| {sec(29,t —k,x)— I tan(29,t — k,x)} — tanh(xk, +1)

R {sec(29,t —k,x)— I tan(29,t -k, x)}tanh (xk, +t)+ |
U o—a I {sec(29,t —k,x)— I tan(29,t — k,x)} — tanh(xk, +1)
2770 Isec(29,t —k,x) - | tan(29,t — k,x)}Hanh(xk, +t)— |
(L4 6k, — 4K + K2 )+ dkok, + BK? — Sk2
I{1+6k Kk, —4k; +k; )+ 4k,k, +6k; 5k
where 9, = 5 5 and
"4k, —kZ —1+ 4k
2 2 2 3 2
(L+6k,k, — 4k + k2 )+ 4k, +6k2 — >k

9, = 2
? 41k, —k2 —1+ 4k?

ii. Whenq, = p, =1, then
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ol 1t(21 + 241kk, +8IK? +8Ik2 +16k K, +12k2 —12k? )
8lk,k, — 4k —1+ 4k’

- kzx] +2tanh(xk, +1)

Us =8, + 2 2 2 2
o 1t(21 + 241k .k, + 81k +8||<22 +16klk§ +12k —12k2)_k2X tanh(xk, +1)+ 21
2 81k, k, — 4k —1+ 4k’

o tan(lt(—Zl — 241Kk, —8Ik? —8Ik? +16k,k, +12k? —12k?)
—8lk,k, — 4k2 —1+ 4k
_Ztanilt(—Zl — 241Kk, —8Ik? —8Ik? +16k,k, +12k? —12k?)
—8lk .k, —4kZ —1+4k/

- kzxj+ 2 tanh(xk, +1)
u, =a, +

- kzxjtanh(xkl +t)-21

iii. Whenq, = p, =-1, then

2 2 _ 2 2
) CO{_lt(ZI + 241k k, +8IK; +8||<22 +16k1|<z 12k +12k2)+k2xJ+2tanh(xkl+t)
o 81k k, — 4k? —1+ 4k
5770 2 2 . 2 2
2co _ 1t(21 + 241k k, +8IK; +8Ik22 +16k1k§ 12k +12k2)+k2X tanh(xk, + 1)+ 2
81k k, — 4k —1+ 4k

oo _1t(-21 - 241k .k, —8Ik? ~8IK? +16k,k, ~12k? +12k?)
—8lk.k, — 4k? —1+ 4k’
2co ~ 1t(-21 - 241k.k, ~8Ik? —8Ik? +16k;k, —12k? +12k?)
—8lk.k, — 4k —1+ 4k?

+ ksz +2tanh(xk, +1)
Ug = a, +

+k2xjtanh(xkl+t)—2I
iv. Whengq, :%, P, :—%,then

2tanh(A,t + k,x)+ 21 sech(A,t + k,x)+ 2 tanh (xk, +1)
2(tanh(A,t + k,x)+ 1 sech(A,t + k,x))+ tanh (xk, +t)+ 2

u; =2,

2 tanh(xk, +1t)—2tanh(A,t + k,x)— 21 sech(A,t +k,X)
2(tanh (At + k,x) + 1 sech(A,t + k,x)) + tanh(xk, +t)—2

Ug =a, +

2tanh(A,t + k,x)+ 21 sech(A,t + k,x)+ 2 tanh (xk, +1)
2(tanh(A,t + k,x)+ 1 sech(A,t + k,x))+ tanh (xk, +t)+ 2

u9_0

2tanh(xk, +t)—2tanh(A,t + k,x)— 21 sech(A,t + k,X)
2(tanh(A,t + k,x)+ I sech(A,t +k,x))tanh(xk, +1)—2

ulO_ 0
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2(1+ 2k,k, + 2k + 1 kzzj 2(—1—10k1k2 +10k; + 2 kzzj
and A

where A, = =
! 4k? + 4k k, +k2 -1 2 4k? — 4k k, + k2 -1

. 1 .
Family-2: When a,=a, =a,=w, =const., g, =p, = iE’ then we can some complexion
solutions:

I. Wheng, = p, =1, then

. 2tan(xk +t)—2tan(At +k,x)+ 2sec(xk, +t)
0 2tan(A,t + k,x )sec(xk, +t)+ tan(xk, +1))+2

. 2tan(A t+k,x)+ 2sec(xk, +1t)+2tan(xk, +t)
“H T 2tan(A,t + k,x)(sec(xk, +t)+ tan(xk, +1))—2

L —a _ 2tan(At+k,x) - 2sec(xk, +1)+ 2tan(xk, +1)
20 2tan(A,t+ k,x Nsec(xk, +t)—tan(xk, +1))+ 2

2tan(A t+k,x)+ 2sec(xk, +1)—2tan(xk, +1)
Pt 2tan(A,t + k,x)(sec(xk, +1t)—tan(xk, +1t))—2

o2 Q2 —_Ak? _ _ 2 _
where A, =L ( 2|<21 +8k,k, 8k22 +1)an g, -t ( 4k12 16k k, 1652 1)
2 —k?+4kk, —4k? -1 2 —k; —4kk, —4k; -1

ii. When q, =p, =-1, then

2cot(A t —k,x)+ 2sec(xk, +t)+ 2tan(xk, +t)
Ujs =89 +
—2cot(Agt —k,x)sec(xk, +1t)+ tan(xk, +t))+ 2

L o—a 2cot(A gt —k,x)—2sec(xk, +1)—2tan(xk, +1)
70 _2cot(Agt —k,x Nsec(xk, +t)+ tan(xk, +t))—2

2cot(A gt —k,x)+ 2sec(xk, +t)—2tan(xk, +t)
Uy, = a8, +
—2cot(Agt —k,x)sec(xk, +1)—tan(xk, +t))+ 2

—2cot(Agt —k,x)+ 2sec(xk, +t)—2tan(xk, +t)
Ujg =89 +
—2cot(Agt —k,x)(sec(xk, +t)— tan(xk, +t))—2

1 (4k? —16k,k, +16k? +1)

1 (2k? +8k,k, +8k2 —1) 1
2 —k’ +4kk, —4k2 -

where Ag = =-— >
2 —k; —4kk, —4k; -1

nd A, =

1 1
iii. When q, =5 P, :—E,then
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{£21{~tanh(A,t —k,x)+ I sech(A,t —k,x)} + 2sec(xk, +t)+ 2tan(xk, +1t)}

Hiazo = 2{—tanh(A,t —k,x)+ | sec(A,t —k,x)Hsec(xk, +t)+ tan(xk, +t)}+ 21
U —a s {F 21 (tanh (A4t — k,x)— I sech(A,4t —k,x))+ 2sec(xk, +t)+ 2tan(xk, +t)}
222 770 T (tanh (Agt — k) — 1 sech(Agt —k,x))(sec(xk, +t)+ tan(xk, +1t))+ 21}

Z(il | +3lk,k, L1 Ik} L1 Ik? +k.k, —§k12 +3k§J
2 2 2 2 2
where A, =— and

+21k,k, +kZ —1-k/

2(1? +31k,k, iilkf TL;IkZZ +k.k, —zkf +2k§j
Ag =~

F2Ik,k, —kZ —1+k?
Family-3: When a, =a, =a, =w, =const., g, =p, =1 then we can some complexion solutions:
i. Wheng, = p, =-1, then

1t(ak? +8kyk, + 4k - 2)

2COE( - kzx] +2tan(xk, +1)

2 — 4k —8k.k, —4k2 -1

Heos =80 F = T v 8k, + k2 —2)
2coff — o2 2 Sl o (tan(xk, +1)F 2
2 — 4k —8k.k, — 4kZ ~1

ii. Wheng,==, p, :—%,then

{21(~tanh (At —k,x)+ I sech(A t —k,x))+ 2 tan(xk, +1)}
{2(~ tanh(Agt —k,x)+ I sech(Agt —k,x))tan(xk, +t)+ 21}

Uys =Q,

{~ 21(~tanh(A 4t —k,x)+ I sech(A t —k,x))+ 2 tan(xk, +t)}
{2(—tanh (A 4t —k,x)+ 1 sech(A,,t —k,x))tan(xk, +t)— 21}

Uy =8, +

{21(~tanh (A4t —k,x)— I sech(Aqt —k,x))+ 2 tan(xk, +1)}
{2(~ tanh(Ayt —k,x)— I sech(Agt —k,x))tan(xk, +t)+ 21}

Uy; =8,

{~21(~tanh(A,t —k,x)— 1 sech(A,t —k,x))+ 2 tan(xk, +1)}
{2(~ tanh(A ot —k,x)— 1 sech(A,t —k,x))tan(xk, +t)—21}

Uy =8, +

2(| +61k.k, + 41k + Ik. + 4k k, — 6k’ +2k§j

where Ay =— and

41k k, +k? —1- 4k}
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2(— | —61k.k, — 41k — Ik? + 4k,k, — 6k, +§k§j

Ay =~-

—4lk,k, +kZ —1-4k/
Family-4: When a, =a, =a, =w, =const.,, ¢, =p, =—1 then we can some complexion

solutions:
I. Whenq, =%, P, =—% , then
U o {£ 21 (- tanh (A, ,t —k,x)+ I sech(A,,t —k,x))+ 2cot(xk, +t)}
2930 70 (—tanh (A, t — k,x)+ I sech(A,,t —k,x))cot(xk, +t)+ 21 }
t

{£ 21 (- tanh(A,t —k,x)— I sech(A,t —k,x))+ 2cot(xk, +1t)}
Ugi3, =89 + .
’ {2(~tanh(A,t —k,x)— 1 sech(A,t —k,x))cot(xk, +t)+ 21}

2(i | +61k.k, + 41k’ F Ik. + 4k k, —6k; +‘;’k§j
and

where A, =—
H + 41k .k, + k2 —1— 4k’

Z(i | +61k.k, + 41k’ + Ik? +4k,k, — 6k, +2k§j
A = -

+4lkk, + k2 —1-4k/
Similarly, we can obtain more complexiton solution of Eq. (4.16) using Eq. (4.18) and Eq. (4.19),
which

are omitted for convenience.

4.4 The (2+1)-dimensional Breaking Soliton (BS) equation

In this section, we study (2+1)-D Breaking soliton equation via direct method called Hirota’s
bilinear method. With the assist of this method, we construct its rogue wave and solitary wave
solutions using particular auxiliary function. Finally, the interactions between solitary waves and
rogue waves are offered with a complete derivation.

The (2+1)-dimensional Breaking Soliton (BS) equation [67-69] reads as

Pas (U,V) = U, +au,,, +4auv, +4au,v =0, (4.21)
where « is arbitrary constant and u, =v,. It is known that the BS equation above possesses a

Hirota bilinear form:
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Bys (f) = (D,D, +aD,D)(f - 1)

4.22

[t f = f +alf,, f-3f f+3f f —ff )]=0, (4.22)
under the links from f to uand v are as follows:
2

u=3(nf), =—3(f“:2_ £ ) (4.23)
3\f, f—ff

and v=3(n f), =(Yf—zy) (4.24)

Such potential transformations used in Bell polynomial theories of soliton equations and a proper

relation is

Pas (U, v) = {BB;—(Z]:)} : (4.25)

XX

It is clear that, if f solves the bilinear breaking soliton equation (4.22), then u=3(In f)_and
v=3(In f),, will solve the (2+1)-dimensional breaking soliton equation (4.21).

4.4.1 Rogue wave solutions

Let us adopt that Eq. (4.22) has a ansatz in the following form:

f =1+9g°+h?, (4.26)

with
g(x,y,t)=ax+a,y+a;t+a,, (4.27)
h(x,y,t)=a,x+a,y +a,t+a,, (4.28)

where a, (1 <i< 8)are arbitrary constants. Setting Eq. (4.26) along with Eq. (4.27) and Eq. (4.28)

into bilinear form Eq. (4.22), we obtain some polynomials which are functions of the variables

X, yand t. Equating all the coefficient of X, y,tand the constant term to be zero, we can obtain the
set of algebraic equations for a,, (lg i 38) . Solving the system with the aid of symbolic

computation system Maple, gives the following relations between the parameters a, :

asds,

a, =a, =a; =a; =a, =const.,a, =— ,a, =a, =0. (4.29)

1

Therefore, substituting Eq. (4.29) and Eqg. (4.26) along with Eq. (4.27) and Eq. (4.28) into Eqg.

(4.22) yields the following rogue wave solution,

Page | 35



Chapter Four Applications

L 3(2a2 +2a2) 3(29,a, +2%,3;) | (4.30)

L+ e 9r+92f

with

aa
g =ax——2 Y

+a,and §, =a.x+agy+a,.

where the parameters satisfy the constraints (4.29).
4.4.2 Solitary wave solutions
Here, we seek the solitary wave solutions of Eq. (4.21). We expand the test function f with small

parameter A4
f(x,y,t)=1+Af @+ 22£@ (4.31)
with
f O —exp(k,x+k,y +Kkit), f@ =exp(k,x+kgy +Kkgt), (4.32)
wherek,, (L<i<6) are arbitrary constants to be determined later. Setting Eq. (4.31) into bilinear
form Eq. (4.22) and equating all the coefficient of exponential term to be zero, we can obtain the
set of algebraic equations for k;, (1£ i < 6). Solving the system with the aid of symbolic

computation system Maple, gives the following relations between the parametersk; :

_ k1k5 (kl — 2k4)
k4(2k1 - k4)

K :_ﬂkfks-

k, =k, =k, =const. .k, =

kK (ky - 2K,) (4.33)
Tk, (2K, —k,)

Setting Eqg. (4.33) and Eqg. (4.31) into Eq. (4.22) yields the following two-soliton solution

e o) (e e w30
1+ 2e” + Ae” (1+ e’ + A’e” )2 | |

with

_ klkS (kl — 2k4) /lklgks (kl — 2k4)

+ t, 0. =k, X+ K.y — 1k 2K, t. 4.35
k4(2k1—k4) y k4(2kl—k4) P1 4 5 Y — 1K, Kg ( )

p =k X

If we taking f@ =0in Eq. (4.31), same as before we attain the following relations among the

parametersk; :

ky =k, K, =k, Ky = _ﬂklzkz' (4.36)
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Inserting Eq. (4.36) and Eq. (4.31) into Eq. (4.22) yields the resulting one-soliton solution

20w 212 (v P

u= iik;eew ) 3(f+ki1£i )2 | (4.37)
where y =k X +K,y — 1k K, t.
4.4.3 Interaction between rogue wave and solitary wave
In this sub-section, we will be discussed the interaction phenomena between rogue wave solution
and solitary wave solution of a (2+1)-dimensional breaking soliton equation. We choose two
different cases of stripe soliton named exponential and hyperbolic sine function respectively.
Case-1

In the first case, we choose f (X, y,t) as a quadratic function with exponential part, that is,

f =1+g2 +h?+dexp(y), (4.38)
where gand hare defined by Eq. (4.27) and Eq. (4.28), and y(x,Yy,t) =k Xx+Kk,y+Kkst, k;,
(L<i < 3) are the constant parameters which are determined later.

Substituting Eq. (4.38) into Eq. (4.22), with the help of symbolic computation system Maple, we
get twenty number equations. After, solving these equations we find some relations one of them

relation is:

a, =a,=a, =k, =const.,a, =a, =0,a, =-a;,v-1,a, =a,v-1,

- JagV— (4.39)
a,=(a, —)vV-1,k, :%haﬁ—\/_l1k3 :_lﬂklae\/_l.

a 2 a,

Setting Eqg. (4.38) and Eqg. (4.39) into Eq. (4.22) yields the resulting solution

3k 2ef 3(2§lal +24/-15,a, + Ak,e’ )2
u= — £ > : (4.40)
1+&f +&; +4e (1+§12+§22+Ae5)
with
1 1 ,
~J-1ka,y 5 J-1uklat
§= k1X+ — '981 =a1x—\/—_1a6 +4a,, (4.41)

al a'l
&, =-lax+a,y++-1(a, -1)

where the parameters satisfy the constraints (4.39).
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Case-2
Here, we choose f (X, y,t) as a quadratic function with hyperbolic sine part, that is,

f =1+ 9% +h?+ Asinh(y), (4.42)
where g,hand y have been defined in the first case. Again, substituting Eq. (4.42) into Eq. (4.22),

with the help of symbolic computation system Maple, gives the following equations for the

parameters:
a, —a;v/-1,a,=a,v/-1,a, =a, =a, =k, =const.,
8, = 1a, (— 8J-1a2a? +8vJ-1a%a? +3J-1k22? +16a52a8a4)’
3 Lk 2
la (16\/_a a,a, +8a’a’ —8a’a —3kf/12) (4.43)
°73 yk;% ’
K, = 4 a7a5(2\/—_1a8a4 +a; — af), - 4 a7a5(2\/—_1a8a4 +a; — aj).
3 k37 3 kA

Substituting these equations in g,hand y which gives

g(x,y,t)= a\/_x——'ukl//l y+a,v—1t+a,,
1

1 4 4 (449
Vs
h(x,y,t)=ax+= +a,t+a,, (X y,t) =k x- —t.
(. y.t)=a 3ﬂk£‘fy WICAAE 3ﬂkfﬂ“zy 37
with
v, =a, (— 8/-1a%a? +8J/-1a%a? + 3J-1kA? +16a’a,a, )
(4.45)
v, =a, (16\/—_1a§a8a4 +8a’a’ —8a’a; —3kf}tz)z//3 =a,a, (2\/—_1a8a4 +aZ —aj)

Setting Eq. (4.44) into Eq. (4.42) along with Eq. (4.45), we obtain the expression of f(x,y,t),

which is

2 2
f :1+(a5\/—_1x_%ﬂk'//41/12 y+a7\/—_1t+a4j +£asxéﬁy+a7t+a8j
! ! (4.46)

+ Asinh| k,x — 4 "[/332y+ﬂ W32t.
3ki27 3k A

Finally substitute Eq. (4.46) into Eq. (4.22), we obtain a new exact interaction solution of the

(2+1)-dimensional breaking soliton equation
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_ —3akZsiohA,  3(2V=1A,a, + 228, + Ak cosha, a7
(L+A2 + A2+ Asinh A,) (L+ A2 + A% + Asinh A, |
with
A, = klx—ﬂ Wiyz +i Wa'tz A, =a5\/—_1x—1 l//jyz +-1at+a,,
3 kA~ 3kA 3k, A
1 (4.48)
Ay =aX+= Wiyz +at+a,.
A
where the parameters satisfy the constraints (4.43).
4.5 The (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov (ANNV) equation
In this paper, we will consider the (2+1)-dimensional ANNV equation [72, 73],
u, +u,, +3uv], =0; U, =V,. (4.49)

where u and v are the components of the (dimensionless) velocity [74]. Eq. (4.49) is the only
known isotropic Lax extension of the Korteweg-de Vries equation [75]. The ANNV equation has
important applications in incompressible fluids, such as shallow-water waves, long internal waves
and acoustic waves.
Bilinear form
Let us introduce the following potential transformation

u=c(t)q,,and v =c(t)q,, (4.50)
in which ¢ =c(t) is a function to be known later. Substituting (4.50) into (4.49) and integrating the
equation with respect to x once and taking ¢ =1, we get

E(Q) =0y + 0y =0. (4.51)
by choosing the integration constant as zero. Based on the results presented in Refs. [82-83], we

obtain
E(q) = Pyt (q) + I:)xxxy (q) = O (452)
with the help of the following two important transformations, we get

{q =2In f(x,y,t) & u=cq, =2[In f(x,y,1)],

: (4.53)
g=2In f(x,y,t) &v=cq, =2[In f(x,y,t)],,

Substituting above transformations (4.53) into Eq. (4.49), (2+1)-dimensional asymmetric Nizhnik-

Novikov-Veselov equation can be linearized into
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(D,D, +D,D?)f - f =0, (4.54)
4.5.1 Soliton solutions of the (2+1)-dimensional ANNV equation

The 1-soliton solution

To seek one-soliton solutions of Eq. (1), we suppose f is expressed in the following form
f =a, +ae>mn (4.55)
where I,,m;,n, a;,(i = 0,1)are arbitrary constants to be determined later. Inserting Eq. (4.55) into

Eqg. (4.54) and after some simplification, equating all the coefficient of exponential term to be zero,

we can obtain the set of algebraic equations for 1,,m,,n,, a;,(i = 0,1). Solving the system with the
aid of symbolic computation system Maple, we obtain the subsequent solution:

a,=a,a =a,l=l,m=m,n =-1’. (4.56)
Therefore, setting Eq. (4.55) and Eqg. (4.56) along with Eq. (4.53) into Eq. (4.54), yields the desired
one-soliton solution of Eq. (4.49).

The 2-soliton solution
To seek two-soliton solutions of Eq. (4.49), we choose f is expressed as

Lo x+myy+n,t

f — ao + a1ele+mly+n1t + a2e + a‘?'eI1x+mly+n1t+lz><+m2y+r12t (457)

where a,,(i =0.1), I, m,,n,(i =1,2)are all real parameters to be determined. Substituting Eq. (4.57)

into Eq. (4.54) and after some simplification, equating all the coefficient of exponential term to be

zero, we can obtain

{a — &8, (Il — |2)(m1 — mz)
0

a3(|1 +|2)(ml + mZ)

which should satisfies the conditions a, = 0, (I, +1,)#0,and (m, +m,)=0.

a =a,1<i<3),l, =l,=m, =m, =const.,n, =-1>,n, =13, (4.58)

Therefore, inserting Eq. (4.57) and Eq. (4.58) along with Eq. (4.53) into Eq. (4.54), yields the

desired two- soliton solution. If we setting a, =1a,=1,a,=10,1,=2,1,=25 m =1m, =35,
we can obtain a two-soliton solution of Eq. (4.49). If we setting |, # -1, e Rand m;, =m, e R,

then we obtain another type of two soliton solution. First type solution is elastic but second type

is non-elastic solution.
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Based on the above method Eq. (4.57) gives the breathers by asset of selecting suitable parameters.

Breather solutions of Eq. (4.49) can be obtained in the (x,y) plane, where the parameters in Eqg.
(4.58) meeting the following conditions
l, =1b, l,=-Ib,, a, =k, a, =k,,a, =k;, m; =b+ 1k, m, =b - 1k. (4.59)
For instance, setting parameters as followsl, = 1,1, =-21, m, =m; =1+2I, a, =1.25, a, =1.5,
a, = 2, we can obtain breather wave solution.
The 3-soliton solution
To seek three-soliton solutions of Eq. (4.49), we suppose f is expressed as

f=a,+e” +e” +e” +a,e”"” +a,”"" +a,,"" +a,e" """ (4.60)
with

o =l x+my+nt,i=123 (4.61)
where a,, a,,, 8y, a5, a5 |,,M;,N;(i=1,2,3)are all real parameters to be determined. Based on

above method, substituting Eq. (4.60) with Eq. (4.61) into Eq. (4.54), we can obtain the following
relations among parameters
I, -1, (21, -1
_ (=LY -1,) M, =a,=2a,,=3a,;,=0,a,=I, =1, =1,=m, =m, =const.,

a*13'2('1"2 +2|3) (4.62)
n, = =321, 3112 + 3171, =312 =17 +6l,L1,,n, =—13 + 3121, =312 ,n, =12,

0

which needs to satisfy the condition a,,l, # 0.

Therefore, substituting Egs. (4.60)- (4.62) along with Eq. (4.53) into Eq. (4.54), the three-soliton
solution of Eq. (4.49) can be obtained.
4.5.2 Lump solutions of the (2+1)-dimensional ANNV equation

To seek lump solutions of Eq. (4.49), we suppose f is expressed in the following form:
f=g*+h’>+p, (4.63)
where,
g(x,y,t)=I,x+my+nt,and h(x,y,t)=1,x+m,y+n.t, (4.64)
where p,,I.,m.,n. (i=12) are all real constants to be determined. A direct symbolic computation

with f gives rises to the following relations:
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m,l,

J, =1, m =m,m,=m,,n, =0,n, =0. (4.65)

p, = p11|1=_

1
Therefore, substituting Eq. (4.65) with Eq. (4.64) into Eq. (4.63), we can get a class of quadratic
function solutions Eq. (4.53). Then, the resulting exact rational solution for Eq. (4.49) are obtained
through the transformation

4(1,m, +1,m, )p, —8gh(l,m, +1,m, )+ 4(l,m, - Izmz)(— g%+ h2)

u=2(nf),, = , (4.66)
’ (g2 +h%+p, )

and

v=2(n 1. = 4(12 +12)p, —161,1,gh + 4(12 —12 )~ g +h2), 467)

(92 +h?+ pl)?'
where g(x,y,t)=Lx+my+nt, h(x,y,t)=L,x+m,y+n,t, for example, the resulting solutions of

EqQ. (4.65) are as follows

m, | mZl2 m, | i
8(—gm2 2 +hI2J(gml+hm2) 4( rr2122 +I22j 4[—gmj2+hI2J

U=— 1 V= 1 — , (4.68)
(g2 +h?+p,f g’ +h’+p (g*+h’+p,)
with the function g and h are given as follows
:_mz_lzx+ myy, and h=1,x+m,y. (4.69)
m

1

For the exact solution u(x, y,t) and v(x, y,t)to Eq. (4.49) to be lump ones, it is observed that
lim u(x,y,t)=0, and lim v(x,y,t)=0, VteR. (4.70)

x2+y? e x2+y? a0

It is easy to see that for any given time t, the lump solutions u — 0, v — 0, if and only if the
corresponding summation of squares g +h?® — oo, which is equivalent to x> + y> — oo
Substituting the noted values of p,,l,, m (i = 1,2) into Eq. (4.68), then we can get abundant exact

lump solutions of Eq. (4.49). We can notice that the solutions we obtained have a unified form of

(4.67). If we taking the values of t =t,, then the coordinates of the central point of the obtained

lump solution is

) = MiNoty =MaNity y- Lty —nilyt, (4.71)
l,m, —I,m, l,m, —I,m,
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where I,m, —l,m, # 0. Substituting Eq. (4.71) and t =t,into Eq. (4.67), the amplitude of v is

2 2
attained Max(v)zﬂ'(ll—jLIZ)(p1 #0),from which we observe that the amplitude of the lump
1

solution is depend on the values of I,,l,and p,. As we seen from Eq. (4.71) the lump soliton is
centered at the origin when t =0.

4.5.3 Interaction of lump waves with solitary waves

To get the interaction phenomena between lumps and solitary waves solutions of Eq. (4.49),

assuming f (x, y,t) in the following new form

f=g?+h*+p, +1exp(n), (4.72)
with
g(x,y,t)=Lx+my+nth(x,y,t)=Lx+m,y+n,t and 7(x,y,t)=l,x+m,y +nyt, (4.73)
where p,,1,,m,,n,(L<i <3)are all real parameters to be determined. Substituting Eq. (4.72) along
with Eq. (4.73) into Eq. (4.54) with the aid of symbolic computation system Maple, we can gain
the following relations among parameters:

l,m,

|, = N, =—12m,=n=n,=0,p,=1=I, =1, =m =m, =const. (4.74)

m2

which should satisfy m, = 0.
Therefore, substituting Eq. (4.74) into Eq. (4.72), we can get a class of quadratic function solutions
to the bilinear equation (4.54). Then, the resulting exact rational solution for Eq. (4.49) are obtained
through the transformation,

4(1,m, +1,m, )p, ~8gh(l,m, +1,m, )+ 4(l,m, —1,m, - g +h? )+

2{(92 +h? + pl)gm3 +(1,m, +1,m,)—(,m, +1,m )g —(I,m, + Iamz)h}ﬂe”

(g2 +h%+ pl)2

u=2(n f),, = . (4.75)
(g2+h2+ pl)|32+ }ﬂe”

2 12)g _ F-1;)-9°+h?
4('1 +|2)p1 16gh|1|2+4(|1 IZX . o )+2{2(|12+|22)_4(g|1+h|2)|3

v=2(In ), = ., (4.76)

(g2 +h?+ pl)2
where g,hand » are defined in Eq. (4.73).

for example, the resulting solutions of Eq. (4.74) are as follows
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17m?
8[g|1—h|1m1 _I_;Mgenj(gml_l_hmz) 4[|12 i _{_;/ﬂ“;eﬂj 4[g|1 _ h::]ml +12I3e’7)
m

2
: VS NN - Z L (4.77)
(gz+h2+pl+/1e’7) 9" +h"+p, +1e” (gz+h2+pl+ﬂe”)

U=-

where g =1, x+my, h=—

,yand 7=1x-13t. (4.78)

m2
4.5.4 Multi lump solutions of (2+1)-dimensional ANNV equation
In this section, we will find the multi lump solution of Eq. (4.49). To this aim, the above function

f (X, y,t) can be taken as,

f=e" +he” +h,siny,, (4.79)
with w, = p(x+ny —wt)and v, = p,(x+n,y —w,t) (4.80)
where p,,n,,w,(i =1,2)are all real parameters to be determined. Substituting Eq. (4.79) along with
Eqg. (4.80) into Eqg. (4.54) with the aid of symbolic computation system Maple, we can obtain the

following relations among parameters

2 .2
nl=_%hzhp—éznz,wl=pf_3p§,w2_ ps>+3pZ,h,=h, =n, =p, = p, =const., (4.81)
1M1

which should satisfy h;, p, #0.
Under the transformation Eq. (4.53), we can get the periodic lump solutions of the (2+1)-
dimensional ANNV equation as,

- ple_g1 + hl p1e51
+h,p, cosd,

_ 2(&,+ &, +hyp,n cos5{
2(_ p1§1+p1§2_h2p§nzsln52) 1 i T i

u=

(e +he® +h,sins, ) (e*‘51+h1e‘51+hzsin52)2 - (482)

and
2( 274 +h, pZe® thgsinaz)_z(— pe ™ +h p1e§l+h2p2c055)

(e +hle +h,sins, ) (e +he® +h,sins,f (4.83)

where
hZ pZn,e ™ hZpzn,e 1h

[ _hpine L,(;l:pl(x R piny (plz_sp;)tj

4h, p, 4p, 4 h, p; (4.84)

5, = p,(x+n,y—(- p? +3p2 k)
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4.6 The (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili (gBKP) equation
Inspired by the mechanism of interaction solutions, we focus on the interaction solutions of

the (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili (JBKP) equation [84]

u, +3u,, —3u,u,, —3u,u, —u 0. (4.85)

XXXy

Through the dependent variable transformation

u=2(Ing), = ZZX , (4.86)

the (3+1)-dimensional gBKP equation can be convert to the bilinear D-operator form
(D,D, +3D,D, -D,D?)(¢-¢)=0, (4.87)

Where¢:¢(x, y,z,t)and the derivatives D,,D,,D,,D,are the Hirota’s bilinear operators [3]

defined in

a B V4 5
S ey (3— a,J 2-2)(2-2] (4.88)

a o) \at ot

The chief aimed of this paper is to present mixed lump-stripe, breather and various dynamical

of collision wave solutions for gBKP equation via suitable ansatzes approach.

2. Interaction phenomena between solitary wave and lump wave
In this section, we explore the dynamics of collisions between lump soliton and one stripe soliton

of gBKP model (4.85). For this, we choose ¢(x, Y, z,t)as a combination of two positive quadratic

functions and an exponential function as
$=09°+h*+a, +u, (4.89)
where

{g(x, V. Z,t)=aX+a,y+a,2+a,t+a;, (4.90)

h(X,Y,z,t)=a,Xx+a,y +a,z +agt +a,,, 1 = exp(k,x + K,y +k,z + k,t),
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where a,(i = 1...,11),kand k(i = 1...,4) are real factors to be later calculated. Plugging Eq.

(4.89) into Eq. (4.87), and with a direct symbol calculation, we acquire 6 classes of solutions. We

only select one of them to analyze characters of the similar solutions.

_3a,a, K, - kl(—3a8 +a7kf)’ (4.91)

a,=a,=a,=3a,=k, =k;=0,a, = " .
7 7

with a, = 0.
Combining Eq. (4.91) and Eq. ( 4.89), we obtain the expression of ¢(x, y,z,t):

e k,(-3ag+a,k2

2
¢:[alx—3ta1a8 +a5] +(a,y+agz+a,) +a, +4e A (4.92)
a

7

which, consecutively, produces the interaction of lump and stripe solitons to Eq. (4.85) through
the transformation (4.86) as:

k (—Sa +a7k12)t
3ta,a k=2 =25
Z{Z(alx -8 asJal + Ak,e &
a

7

u, = (4.93)

klx+k1(—3a8+a7kf)t '

2
3ta, a, 2 a
(alx— Lt +(a,y+a,z+a,) +a, +1e g
7

3. Breather-wave solutions
In this section, we spotlight on the breather-wave solutions of Eq. (4.85) that comes from the

collisions between exponential and trigonometric functions.

Case-1: Here, we takeg(x,y,z,t) as a combination of a cosine function with two exponential

functions:
g=e" +he” +h,cos&) (4.94)
with

n(x,y,2,t)= p,(rx+ay+bz+ct),

E(x,y,2,t)= p,(r,x+a,y +b,z+c,t) (4.95)
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wherea,,b,,c;, p;,r,,h,(i =1,2)are parameters to be designated later. Plugging Eq. (4.934) along
with Eq. (4.95) into Eq. (4.87), with the help of symbolic computation system Maple, we achieve

3,2 2
r=a, =0,b1 =_la1(r2 P2 +Cz)’ c, = 3bzrzfz ’ h1 :1
3 r, a, p; 4

h?, (4.96)
which needs to satisfy the following conditionsa, =0, p, # 0and r, # 0.
Setting Eq. (4.96) along with Eq. (4.95) into Eq. (4.94), we obtain the expression of ¢(x,y,z,t),
which is
g=e""+ % hZe™ +h, cos(p,(c,t + r,x +b,2)). (4.97)
Finally, inserting Eq. (4.97) into Eq. (4.86), we attain a periodic lump solution of the (3+1)-

D gBKP equation

—2h, p,r, sin(p,(c,t +1,x+b,2))
(eplA +i|-1hzzep1A +h, Cos(p2 (czt +LX+ bZZ))j

u, = (4.98)

. t 2 3.2
with &= 30e00E o Lal?pf ey
a, P, 3 r,

Putting h, =2, p, = p,and taking limit as p, — 0, the equation (4.97) reduce to a perturbation

solution

a1t | o y— 2982 4 terx+b,z) (4.99)

1
al r2

¢=(

Through the transformation (4.86), it reduces to a single lump wave solution as follows:

ar,(c,t +r,x+b,z)

u (4.100)

wre T Byt

(
a

a.c,z '
Y= 1 (et + x4+ b,z)

1 2
Case-2: In this case, we consider ¢(x,y,z,t) as a combination of a sine function with two

exponential functions:

Page | 47



Chapter Four Applications

g=e" +he’ +h,sin(&) (4.101)

where pand & have been defined in the first case. Again, inserting Eq. (4.101) into Eq. (4.87),

with the help of symbolic computation system Maple, gives the following solution.

2n2
a=b=r,=c,=0, ¢ =_% rl(aZrl 21 3b2), (4.102)
2

which needs to satisfy the following conditiona, # 0.
Setting Eq. (4.102) into Eq. (4.101), leads to the expression of ¢(x,y,z,t):
¢ = e Pt ) b o) 4y sin(p,(a,y +b,2)), (4.103)

Finally, setting Eq. (4.103) into Eq. (4.86), we attain a periodic lump waves solution of the (3+1)-
dimensional gBKP equation

U = 2(_ plrle—Pl(A1t+r1X) + h1 p,re Pl(A1T+f1X))

_ ’ 4.104
e—pl(A1t+l’1X) + hle P1(Agt+rx) + h2 S |n( P, (a2 y+ bz Z)) ( )

with Al — rl(azrlz p12 _3b2)_
a,

4. Interaction solutions with fission phenomena

In this section, we spotlight on a new interaction solutions of Eq. (4.85). For this aim adopt a
different test function [44, 84, 86, 88, 89] as follows:

¢=G? +H? +a, + pcosh(&,)+qcod&, ), (4.105)
where

{G :alx+a2y+a3z+a4t’H = a6x+a7y+a82+a9t, (4106)

S =mx+m,y+mit, &, =k x+K,y+Kst,
Here, a,(i=12....9), k (i=123), pandqare real parameters while m,(i=123)are real or

imaginary constants. Plugging Eq. (4.105) into Eq. (4.87), via symbolic computation software

Maple, we gain three sets of constraints. In the following, we analyze the three cases in details.
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Case-1:
2
a — agas _ 1la,a, _ aga, _ laga, 3 kl(askl —ag)
1__ 13___ 14__ 17___ 1 N3 T 3
a, 3 a a, 3 a as (4.107)
m, (a;m? + ay ) '
m3 =%’k2 =m2 =0,
5

wherea, =0and a; = 0.Inserting Eq. (4.107) along with Eq. (4.105) into the Eq. (4.86), we

advance into the interaction solution of Eq. (4.85):

2y,a.a . .
2(_)%1“—)+ 2,8, + pm, sinh(ty, + m,x)+ gk, sin(ty, - klx)j
2
u, = , 4.108
) 72+ y% +a, + peoshlty, + mx)+qcosty, —k,x) (4.108)
where
2
ool e Lzaa L 123 miamiva)
a, a, 3 a, ag ag
kl (as k12 _as)
Xa a
5
Case-2:
C lalkrky) . 1ag(kirk,) . my (k2 +m2k, + k)

1
T3k, 73k k, ! (4.109)

where k, = 0. Inserting Eq. (4.109) along with Eq. (4.105) into the Eq. (4.86), we get the interaction
solution of Eq. (4.85) as

us =2(In ), , (4.110)

3 2 3 2
Where,¢=(azy—az(§T+k3)zJ +[a6x—a6(k§T+k3)y+agtJ +a, + pcosh(&,)+qcos(&, ),
1 1
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m, (k? +mZk, +Kk, )
k.

& =mX+ t, & =k x+kst.

Case-3:

a, =— s =, = ’
* a, a, : a, (4.111)

where a, = 0.Inserting Eq. (4.111) along with Eq. (4.105) into the Eq. (4.86),we get the interaction
solution of Eq. (4.85).

2(2(— 3t21a7 + alial + pm, sinh(ty, +m,x)+ gk, sin(ty, - le)J
6

Ug = 5 , (4.112)
3ta,a, 2
— 1% pa x| +(ya, +za, ) +a, + pcosh(ty, +m,x)+qcos(ty, —k,x)
aﬁ
where

~ ml(— 3a, + aemf) o k1(3a7 + a6kf)
Xs = a KXo = a :

6 6
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Chapter Five

Graphical representation

In this section we describe some features of the solutions that we obtained from Burger equation,
Gardner equation (or combined KdV-mKdV), Hirota-Ramani equation, Breaking Soliton (BS),
asymmetric Nizhnik-Novikov-Veselov (ANNV) and generalized B-type Kadomtsev-Petviashvili
(gBKP) equations in different cases. We depicted these solutions graphically with the help of
computational software Maple and explain their behaviors in details.

5.1 Graphical illustration of the solutions of Burger Equation

In this subsection, we explain different type of traveling wave solution of Burger equation
graphically obtained by using Modified Double Sub-Equation (MDSE) method. By implementing
MDSE method, we obtained Sixty four complexiton solutions of Burger equation and have
different type periodic shape. Some of these solutions are stated for specific values of the arbitrary

constants with graphical illustration.

The complexiton solutions to the Burger’s equations consist with two traveling variables £and 7
expressed in-terms of tanh £and tan#,secr ; tanh £and cotz,cosecrand coth& and tanz, secn
gives the kinky —periodic wave. When coefficients of £is greater than that of the 7 gives solution
with kinky dominate on periodicity (see Fig. 1.1) but when coefficients of & is smaller than that of

the 7 gives solution with periodicity increases and dominate on kink type (see Fig. 1.2).

13

Fig-1.1: Kinky-periodic wave solution for b, =2, Fig-1.1(a): 2D plot shows the wave propagation pattern
k, =1,k, = -1.50f the real part of U, , . at x=0.
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Fig-1.2: Kinky-periodic ~ wave  solution  for Fig-1.2(a): 2D plot shows the wave propagation
b, =1k, =1k, =5of thereal part of U, . pattern at X =0.

On the other hand, the complexiton solutions consist with two traveling variables £and 7
expressed in-terms of coth& and cot77,cosecr ; coth& and tan 7, gives multi-soliton solutions like

Fig. 1.3 of u,,.

Fig-1.3: Multi-soliton solution for by =1,k; =1,k, = 2 of the real part of U, .

The complexiton solutions consist with two traveling variables &and r expressed in-terms ofcot&

and cotr,cosecr; cotsand tanz gives double-periodic solutions like Fig. 1.4 of u,, ,,.
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200

u oo

-[100

-200 -

Fig-1.4: Doubly-periodic wave solution for Fig-1.4(a): 2D plot shows the wave propagation pattern

b, =2,k =Lk, = 20f u at x=0.

41,42

The complexiton solutions consist with two traveling variables &and 7 expressed in-terms oftan &

and tanhz,sechn; tan £and cothz,cosechn gives bell type-periodic solutions like Fig. 1.5 of

u57,58 )

2.5

uix,t)

-0.5+

Fig-1.5:  Bell-periodic  wave solution  for Fig-1.5(a): 2D plot shows the wave propagation pattern

b, =1,k; =1k, = 3of the real part of Ug; . x=0.

Page | 53



Chapter Five Graphical Representation

5.2 Graphical representation of the solutions of Gardner Equation

In this subsection, we explain different type of traveling wave solution of Gardner equation
graphically obtained by using Modified Double Sub-Equation (MDSE) method. By implementing
MDSE method, we obtained Forty complexiton solutions of Gardner equation and have different
type periodic shape. The graphical demonstrations of the obtained solutions for specific values of

the arbitrary constants are exposed in Fig. 2.1 to Fig. 2.4.

The complexiton solutions to the Gardner equations consist with two traveling variables &and 7
expressed in-terms of tanh &andtann,secn; coth&andtann,secrs; tanh &and cotz,cosecs;
coth £ and tan 77,secr gives the kinky —periodic wave. The Fig. 2.1 gives this type of wave and it

is plotted for the solution u, , . The solutions involving combinations of tanh & and tan7 ; coth&

and cot 77 gives kinky-periodic wave solutions like Fig. 2.2 and it is plotted for the solution u,, .

The solutions involving combinations of coth& and cothr, cosech ; tanh £andcotz ; coth&

and tanz; some times tanh &and cot#,cosecr gives single soliton solutions. The Fig. 2.3 gives

this type of wave and it is plotted for the solutionu,,,,. The solutions involving combinations of

tanh & and tanh 77,sechz; coth £ and tanh 77,sech#; coth& and cothz, cosech 7 gives collitions of

three solitons (two kinks with one bell type wave) solutions like Fig. 2.4 and it is plotted for the

solution U, 5.

150 4
100 4

S0 4

—100 4

—150
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Fig-2.1: Cross Kinky-periodic wave solution for Fjg-2.1(a): 2D plot along t =0 shows the wave

a, =1b, =0,b, =b, =w, =k, =2, k; =3o0f the propagation pattern.

real part of U, ,.

Fig-2.2:  Kinky-periodic ~ wave  solution  for Fjg-2.2(a): 2D plot along t =0 shows the wave
a, =1b, =0,b, =b; =w, =k, =2,k, =30f  propagation pattern.

the real part of U,, ;.

u(x,t)2. x 10

1.x 101

Fig-2.3:  Single soliton wave solution for Fig-2.4: Collision of two kink with a bell shaped

a, =1b, =0,b, =b; =w, =k, =2,k; =30f  soliton solution for b, =b, =w, =k, =2,

the real part of Uy, ,,. a, =1 b =0, k, =3of the real part of U,; ,,.
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5.3 Graphical representation of the solutions of Hirota-Ramani Equation

In this subsection, we explain different type of traveling wave solution of Hirota-Ramani equation
graphically obtained by using Modified Double Sub-Equation (MDSE) method. By implementing
MDSE method, we obtained thirty-two traveling wave solutions and have different type periodic
shape. The graphical demonstrations of some obtained complexiton solutions for choosing suitable
values of the arbitrary constants are exposed in Fig. 3.1 to Fig. 3.6.

The complexiton solutions contain with two traveling variables £and 7 expressed in-terms of
tanh £and tanz,secn; tanh &and cotn gives soliton solutions like Fig. 3.1 and Fig. 3.2

respectively.

%]
=
=]

10

Lh 4

Fig-3.2: Profile of U, for @, =1k, =0.25,k, =2.25.
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On the otherhand, the complexiton solutions consist with two traveling variables £and 7
expressed in-terms of tan £and sec# gives soliton solutions like Fig. 3.3 andsec&, tan £ and cot 7
gives doubly-periodic wave solution like Fig. 3.4 of u,, and sec&,tan&and tanh 77,sechz gives
breather wave solutions like Fig. 3.5 of u,andsecé,tan& and tanh7,sechn gives bell shaped

periodic solution like Fig. 3.6 of u,,.

Fig-3.4: Doubly-periodic wave solution for Fig-3.5: Kinky periodic lump wave solution for

a, =1k, =1k, =2.50f u. a,=1 k, =1k, =20f ug,.
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[B¥]
]

L
=
=]

-10 -5 o

,_.
1

Fig-3.6: Interaction of Bell and periodic wave solution for a, =1,k;, =—-1.5,k, =20of u,,.

5.4 Graphical representation of the solutions of BS Equation

In this subsection, we explain different type of traveling wave solution of Breaking Soliton
equation graphically obtained by Hirota’s bilinear method. Using this method, we obtained some
traveling wave solutions which are denoted as Eq. 4.30, Eq. 4.34, Eq. 4.37, Eq. 4.40, and Eq. 4.47.
The graphical demonstrations of some obtained complexiton solutions for choosing suitable values

of the arbitrary constants are exposed in Fig. 4.1 to Fig. 4.7.

Fig.4.1 shows the sketch of rogue waves for dissimilar values a,,a,,a;,a,,a,, (2) gives 3D views

from which one can reveal the standard rogue wave feathers. It is also clear that the Fig.4.1 of Eq.
4.30 is the recognized eye-shaped rogue wave solution which has one local hump and two valleys
(clears from the views (b)). Besides this, we discover that rogue wave has the uppermost peak in
its surrounding waves and it can be forms in a short time and also can be realized from the

perspective view of (c).
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(©

Fig-4.1: Rogue wave solution (4.30) for Eq. (4.21) by choosing suitable parameters: a, = -1, a, =2,

a; =2,a, =—4,and a; = 2. (a) 3-D plot of the wave at t =10. (b) Corresponding contour plot of the wave. (c)
2-D plot of the wave along the X axis.

From Fig. 4.2, it is clear that the amplitude, velocity and width of the one-soliton keep constant
during the wave propagation. One can show that the amplitudes of anxious position are limited
and almost same in different spaces. In Fig. 4.3, the collision into the couple of bell-shaped soliton
has elastic characteristics. When they fully meet, the amplitude changed and the changed
amplitude is more than two times than the real amplitude of the two waves. The two waves
converted to one eave direction after the collision with their original amplitude and shape. All the

phenomena indicate that there is no energy loss during collision.

Now we will show the wave propagation situations of solitary wave by two figures. Fig. 4.2 and
Fig. 4.3 show the one-soliton (4.37) and two-soliton solution (4.34), respectively, by choosing

suitable parameters.

Fig-4.2: One-soliton solution Eq. (4.37) for Eq. (4.21) in the (y, X), (t, X) and (y,t) three different planes with

suitable parameters: k; =1.5, k, =0.5,4 =15, 4=0.5.
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Fig-4.3: Two-soliton solution Eq. (4.34) for Eq. (4.21) with: K, =2.5, k, =1.5, k; =-2, 1 =1.5, g =2inthe

(y, X), (t, X) and (y, t) three different planes and corresponding contour plots (bottom) respectively.

In what follows, Fig. 4.4 and Fig. 4.5 appeared exact solution (4.40) by taking the suitable

parameters.

@) b)
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7 ©

r
w

Fig-4.4: Interaction phenomena between rogue wave and solitary wave solution (4.40) for Eq. (4.21) by choosing

suitable parameters: a, =0.5,a, =0.1a, =-0.6,a, =1,4 =1, £ = 2with three-dimensional plots for

different times (a)t = —15, (b)t =0, and (c)t =15and corresponding contour plots (bottom) respectively.
(©)

(a)

(b)

©

b
La
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Fig-4.5: Interaction phenomena between rogue wave and solitary wave solution (4.40) for Eq. (4.21) by choosing

suitable parameters: &, = 0.5,a, =-0.1 a5 =-0.6,a, =1, 4 =1.5, s = 2 with three-dimensional plots for

different times (a) t = —15, (b)t =0, and (c)t =15 and corresponding contour plots (bottom) respectively.

In what follows, Fig. 4.6 and Fig. 4.7 appeared exact solution (4.47) by taking the suitable

parameters.

@ (b)

SN Y. D

Fig-4.6: Profile of interaction between rogue wave and hyperbolic solution (4.47) for Eq. (4.21) by choosing suitable

parameters: a, =0.54,a, =-0.5,a, =0.3,a; =-0.8,a, =1,4 =10, 1 =0.1, with 3D plots for different

times (a) t =0, (b)t = 3,and (c)t = 5 respectively; (d) 2D plot (c).
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®)

(©)

Fig-4.7: Interaction between rogue wave and hyperbolic solution (4.47) for Eq. (4.21) by choosing suitable
parameters: a, =0.54,a, =-0.5,a, =0.3,a; =-0.8,a, =1, 1 =0.5, £ =2with 3D plots for different

times (a) t =0, (b)t = 3,and (c)t = 5respectively; (d) 2D plot (c).

5.5 Graphical representation of the solutions of (2+1)-D ANNV Equation

In this subsection, we explain different type of traveling wave solution of asymmetric Nizhnik-
Novikov-Veselov (ANNV) equation graphically obtained by using Direct method called Hirota’s
bilinear method. Using this method, we obtained some traveling wave solutions which are denoted
as Eq. 4.55, Eq. 4.57, Eq. 4.60, Eq. 4.68, Eq. 4.77, Eq. 4.82 and Eq. 4.83. The graphical illustrations
of some obtained solutions for choosing suitable values of the arbitrary constants are exposed in
Fig. 5.1 to Fig. 5.10.
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During the wave propagation, we see that the amplitude, velocity and envelop shape of the one-
soliton keep constant (see Fig. 5.1). One can confirm that the amplitudes of impatient position are
limited and around same in different spaces.

As depicted from Fig. 5.2, the collision is elastic between two bell-shaped solitons, because the
velocities, amplitudes and envelop shapes of a moving soliton always keep fixed their shapes after
the interaction. All the phenomena concludes that energy will remain unchanged during collision.
Whereas we see that from Fig. 5.3, the interaction between two bell-shaped solitons is completely
non-elastic. That is the soliton velocity, amplitude and wave shape are changed after collision.
Now we will illustrate the wave pattern situations of solitary wave by three figures. Fig. 5.1
highlight the one-soliton (4.55), Fig. 5.2 and Fig. 5.3 demonstrates the two-soliton solution (4.57),
Fig. 5.4, special type solution of Eq. (4.57) called breather solution and Fig. 5.5 demonstrates the
three-soliton solution (4.60), by selecting appropriate parameters.

(a) (b) (©)

Fig-5.1: The one-stripe soliton solution for Eq. (4.49) with a8, =2, a =1,1, =1.25, m, = 2.5, 3D shape in
different planes at (a) t = 0; (b) Xx=0; and (c) y =0.

g 2

x
[+ =15 —1t=0— —15]

(a) (b) (c) (d)
Fig-5.2: The two-stripe soliton solution for Eq. (4.49) with &, =1, a, =1,a, =10,1,=2,1, =25 m, =1,

m, = 3.5, with 3D plots for different times (a)t = —1.5; (b)t =0; and (c)t =1.5 respectively, (d) Corresponding
2D plot.
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(a) (b) (©)

Fig-5.3: The two-stripe soliton solution (non-elastic) for Eq. (4.49) with &, =1,a, =1,a, =10, 1, =2, |, =-3,
m, =m, =1 attime t =0 (a) 3D plot (b) Contour plot and (c) Corresponding 2D plot for different time.

z

)

« realv —— immaginary v

(a) (b) (©)

Fig-5.4: The breather solution for Eq. (4.49) with &, =1, a,=1,a,=10,1,=2,1,=25 m, =1 m,=35

with t =0: 3D plots (a), (b) and (c) Corresponding 2D plot.

(a) (b) (© (d)

Fig-5.5: The three-stripe soliton solution for Eq. (4.49) by choosing parameters: a,, =2, |, =1 1,=2, 1, =2,

m, =1, m, =3, with 3D plots at ()t =0, (b) t =—0.5, and (c) t = —Lrespectively, (d) 2D plot at t = 0,-0.5

andt = —1respectively.
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Fig. 5.6 shows the sketch the lump solution u in Eq. (4.68) whereas Fig. 5.7 shows the sketch lump
of v inEq. (4.68) called rogue waves for some valuesp, =2, |, =1, m, =2,and m, =1, (a) gives

3D views from which can expose the standard rogue wave features. It is also clear that the Fig.
5.7(a) is the well-known eye-shaped rogue wave solution which has two valleys and one local
hump. Moreover, we notice that rogue wave has the highest peak in its surrounding waves and

forms in a tiny time, which is clear from Fig. 5.7(c). For fixed t, the variables can determine the

rogue wave is symmetric about the x axis (see Fig. 5.7(b)).

005

-0.054

-0.104

(a) (b) (c)
Fig-5.6: Lump solution U in (4.68) for Eq. (4.49) by choosing suitable parameters: p, =1.2,1, =0.8,

m, =—0.8,and m, =0.4. (a) 3-D plot of U (b) density plot of U (c) 2-D plot of U .

T
10
X

Fig-5.7: Lump solutionV in (4.68) for Eq. (4.49) by choosing suitable parameters: p, =2, |, =1, m, =2, and

m, =1. (a) 3-D plot of V (b) density plot of V (c) 2-D plot of V.
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In what follows, Fig. 5.8 presents exact solution of Eq. (4.77) by choosing the suitable parameters,

which can show the interaction phenomena between solitary wave and lump waves.

Fig-5.8: Profiles of V in (4.77) with t = 0: 3d plots, density plot and contour plot (top for @, =5) and bottom for
a,=0.05 with a, =25, m; =2.3, m, =1, |, =15, and I, =1.
In what follows, Fig. 5.9 and Fig. 5.10 present exact solution of Eq. (4.82) and Eq. (4.83)

respectively by choosing the suitable parameters, which can demonstrate the interaction

phenomena among multi lump solution.

(a) (b) (©) (d)

Fig-5.9: Profiles of U in (4.82) with t =—1.5,0,1.5: 3d plots (a), (b), (c) respectively and (d) corresponding density

plot (b) with h, =1, h, =2, p, =1, p, =-1land n, =1.
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(a) (b) (c) (d)
Fig-5.10: Profiles of V in (4.83) with t =—2,0,2: 3d plots (a), (b), (c) respectively and (d) corresponding density

pIOt (b) Wlth h]_ :1! hz = 21 p]_ :1; pz = _1 and n2 = —1
5.6 Graphical representation of the solutions of (3+1)-D gBKP Equation

In this subsection, we explain different type of traveling wave solution of generalized B-type
Kadomtsev-Petviashvili (gBKP) equation graphically obtained by using Direct method called
Hirota’s bilinear method. Using this method, we obtained some traveling wave solutions which
are denoted as Eq. 4.93, Eq. 4.98, Eq. (4.100), Eq. 4.104, Eqg. 4.108 and Eq. 4.110. The graphical
illustrations of some obtained solutions for choosing suitable values of the arbitrary constants are

exposed in Fig. 6.1 to Fig. 6.7.

In what follows, Fig. 6.1 present particular solution of Eq. (4.93) in xy —plane and Fig. 6.2

present this in the xz —plane at dissimilar times by appropriate parameters selection. Curved

lines strained in the bottom of the 3D figures are its corresponding contour plots.

(b) ()

Fig-6.1: Profile of solution (4.93) for Eq. (4.85) witha, =a, =la. =3, a3 =a,, =2, a;; =1.5, 1 =1.25
(@t=-1.5()t=0,and (c)t =1.5respectively for z =0.
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(b) (©)

Fig-6.2: Profile of solution (4.93) for Eq. (4.85) with &, =a, =l a, =3, 8, =a,, =2, a,; =1.5, 1 =1.25
(@t=-15,(b)t =0,and c)t =1.5respectively for y = 0.

In what follows, Fig. 6.3 present exact solution via the Eq. (4.98) by selecting the appropriate
values of constants, that illustrate the solitonic interaction between lump and periodic waves
produce a breather waves solution. Curved lines strained at the bottom of these figures are
corresponding contours. While Fig. 6.3(b) produces the shape of single lump wave degenerated

from the solution (4.98) via parametric limit approach.

5 -10

(@) ' ®)

Fig-6.3: Profiles of solution (4.98) for Eq. (4.85) with &, =b, =C, =p, =, =p, =h, =1lat t=0: (a)
Perspective view of the wave for Z = 0, and (b) degeneration of (4.98) by parametric limit of the wave Eq. (4.100)

whenand Yy =0.
The Fig. 6.4 interprets the wave shapes of the solution Eqg. (4.104) with totally

different parameters and consequently the curve exhausted below of the figure is the shape line.
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From the figures we see that the desired lump wave is Yy — periodic and propagate along x—

direction as time goes.

(a) (b) (©)
Fig-6.4: Profile of solution (4.104) for Eq. (4.85) with @, =b, =11, =2.5, h, =0.5, h,=1.2, p, =0.25,
p, =1.25(@)t =-1, (b)t =0,and (c)t =1 respectively takingz = 2.
Different conditions on the parameters pand g, u,(i,e., Eq. (4.108)) offers four different

interaction solutions among the kinky, lumps and periodic waves. On the condition p =0and
q=0, u, exhibits a single lump solution (see Fig. 6.5(a)). It is known that a lump wave has one
valley and one peak (see Fig. 6.5(a)). But for the parametric condition p=0and q =0, u,(ie.,

Eq. (4.108)) displays an interaction between a lump and a periodic wave (see Figs. 6.5(b)-6.5(c)).
In such case, the interaction between a lump and a periodic wave delivers one valley and one peak
serially which split into two valleys and two peaks by fission (i.e. a fission phenomenon occurs for

lump wave) as q gradually increases depicted in the Figs. 6.5(b)—6.5(c). Fission of lump is cleared

from the comparison of Fig. 6.5(b) and Fig. 6.5(c), as in Fig. 6.5(b) has one lump (one peak and

one valley) and but in Fig. 6.5(c) has two lumps (two valleys and two peaks).

Due to the condition p = 0and q=0, u, (ie., Eq. (4.108)) offers an interaction solitonic wave in
which a lump get into a double kink waves (see Fig. 6.6(a)). Finally, on the condition p = Oand
q=0, u, exposes an interaction among the lumps, double Kinks and periodic waves. On

observations of the Figs. 6.6(b)-6.6(c), It is obvious that one valley and one peak of the lump (in

Fig. 6.6(b)) split into two valleys and two peaks (in Fig. 6.6(c)) by fission as q increases into a

double kinky periodic waves.
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Fig-6.5: (Fission of lump wave) Profile of solution (4.108) for Eqg. (4.85) with @, =1,a. =2, a5 = a5 =1.5,

a,=2,m =Lk =2, p=0,t=0and z=0.

x
(c) g=20

Fig-6.6: (Fission of lump wave) Profile of solution (4.108) for Eqg. (4.85) witha, =1,a, = 2, a, = a; =1.5,
a,=2,m =1k =2, p=% and z=0:() q=0;() =10, (c) q=20.
The solution Eqgs. (4.110) and (4.112) have the similar four conditions like Eq. (4.108). The Fig.

6.7 present specific solution Eq. (4.110) by selecting the appropriate values of constants that

illustrate the interaction phenomena. If we agreed with p = 0and q=0in Eq. (4.110), then we

experience with an interaction between a lump and double kinky waves of Eq. (4.85) (see Fig.

6.7(a)). But If we agreed with p=0and g=0in Eq. (4.110), then we experience a fission
phenomenon as q = Oincreases, in which lump waves split into more than one lump waves get

into a double kinky wave (see Figs. 6.7(b)-6.7(c)). On comparison between the Figs. 6.7(b) and
6.7(c), It is obvious that one valley and one peak of the lump (in Fig. 6.7(b)) split into two valleys

and two peaks (in Fig. 6.7(c)) by fission as g increases that get into a double kinky periodic waves.
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©q=5

Fig-6.7: Profile of solution Eq. (4.110) for Eq. (4.85) with &, =1,8, =a, = 2,8, =a; =1.5,m =k, =1,
k, =1, p=0.02: (a) a lump get into a double kinky waves, (b) a lump going to fission that get into a double kinky

waves and (c) a lump fission into two lump that get into a double kinky waves.
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Chapter six

Conclusions
In this paper, modified version of double sub-equation method is proposed for solving non-linear
evolution equation. As a concrete example, we consider the (1+1)-dimensional Burger’s equation,
the (1+1)-dimensional Gardner equation (or combined KdV-mKdV) and the (1+1)-dimensional
Hirota-Ramani equation. Applying this method, we acquired novel some complexiton solutions in
the combination of trigonometric and hyperbolic functions with different structures. It is hoped
that the study of these complexiton solutions could further assist understanding, identifying and
classifying nonlinear integrable and nonintegrable differential equations and their exact solutions.
In fact, we naturally use two or more really different sub-equations to handle complexiton solution
with two different traveling variables i.e., multi-variable Riccati equations. Thus we can obtain
more prosperous complexiton solutions possessing a mixture of trigonometric periodic and

hyperbolic functions.

Additionally, we have successfully implemented the direct method to the (2+1)-dimensional
Breaking soliton equation, the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov and the
(3 + 1)-D gBKP model. Based on the Hirota bilinear formulation and by a symbolic computation
Maple, We have derived soliton solution, breathers, lump solutions, mixed lump stripe solutions
of the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equation. We have presented
some interaction phenomena between rogue waves and other kinds of solutions to the (2+1)-

dimensional Breaking soliton equation.

We have successfully determined three types of interaction solutions among the lump, kink and
periodic waves for the (3 + 1)-D gBKP model. By exploitation of direct approach, we have
acquired some interactions solutions such as the lump-kink wave solution Eq. (4.93), breather-
waves solutions Egs. (4.98) and (4.104) of the model. Also, we have presented some new
interaction solutions among lump, kink and periodic waves solutions Egs. (4.108), (4.110) and
(4.112) via a different “rational-cosh-cos” type test functions. Moreover, we derive a single lump
wave solution Eg. (4.100) by parametric limit approach that degenerate from the breather wave
solution Eqg. (4.98). Four different conditions on the exist parameters of the solutions Egs. (4.108),

(4.110) and (4.112) are given to illustrate fission properties of lump waves into kink waves.
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Meanwhile, the performances of the mentioned techniques are substantially powerful and
absolutely reliable to search new explicit solutions of other NPDEs.
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