University of Rajshahi Rajshahi-6205 Bangladesh.

RUCL Institutional Repository http://rulrepository.ru.ac.bd
Department of Statistics MPhil Thesis
2003

The Role of High Leverage Points in
Regression Diagnostics

Khan, Md. Ashraful Islam

University of Rajshahi

http://rulrepository.ru.ac.bd/handle/123456789/1105
Copyright to the University of Rajshahi. All rights reserved. Downloaded from RUCL Institutional Repository.



THE ROLE OF HIGH LEVERAGE POINTS
IN
REGRESSION DIAGNOSTICS

A

Dissertation
Submitted to the University of Rajshahi in
Fulfillment of the Requirements for the degree of
Master of philosophy

By
Md. Ashraful Islam Khan

DEPARTMENT OF STATISTICS
UNIVERSITY OF RAJSHAHI
RAJSHAHI, BANGLADESH.

NOVEMBER, 2003



Certificate

I am pleased to certify that Md Ashraful Islam Khan, Lecturer, Department of
Population Science & Human Resource Development, University of Rajshahi for
submission of the M. Phil. Thesis entitled “The Role of High Leverage Points in

Regression Diagnostics”.

I do hereby certify that the works embodied in this dissertation were carried out by
the candidate. His work is original and genuine. No part of this study has been

submitted in substance for any higher degree or diploma.

I wish his success.

AHM. Rl bk, §pn

19:1.03
(Dr. A H. M. Rahmatullah Imon)

Supervisor

Associate Professor
Department of Statistics
University of Rajshahi,
Bangladesh



Rajshaii University Library
Documeniaiion Section g
Document No .. D5, 22452~

Date... 7/ 20 Fuerreerss e



Statement of Originality

This dissertation does not incorporate any part without acknowledgement of any
material previously submitted for a higher degree or diploma in any University or
Institution and to the best of my knowledge and belief, does not contain any
material previously published or written by another person except where due

reference is made in the text.

19-1.0%
(Md. Ashraful Islam Khan)

University of Rajshahi Lecturer,

November. 2003 Dept. of Population Science & Human
Resource Development
University of Rajshahi

Bangladesh.



DEDICATED
TO
MY PARENTS
AND
FRIEND




Acknowledgement

I would like fo thank my supervisor Dr. A.H.M. Rahmatullah Imon of the Department
of Statistics, University of Rajshahi for his constant inspiration, constructive guidance

and help throughout my research work for which I am in a position to submit this thesis
I gratefully acknowledge all of my honourable teachers and colleagues.

Finally, I would like to thank my family members especially to my parents for their

encouragement and supports. [ would also like to thank all of my beloved friends.

Md. Ashraful Islam Khan




Synopsis

In fitting a linear regression model by the least squares method,

leverage values play a very important role. They often form the basis of
regression diagnostics as measures of influential observations in the explanatory
variables. Much work have been done on the detection of high leverage values
and a good number of diagnostic measures are now available in the literature. But
neither of these methods is effective in the identification of high leverage points
when multiple high leverage points are present in the data. In our study we
proposed a new method for the identification of multiple high leverage points.
The usefulness of this newly proposed method is studied under a variety of
leverage structures through Monte Carlo simulation experiments. We also
investigated the performance of the newly proposed method as a remedy to

multicollinearity problem caused by the presence of multiple high leverage points.
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Chapter One

Introduction

The role of high leverage points in linear regression has drawn a great deal of

attention in recent years. These points individually or together with some other
measures often form the basis of effective diagnostics. Ordinary Least Squares
(OLS) technique has been generally adopted in the fitting of regression model

because of tradition and ease of computation. We often observe that

“not all observations have an equal importance in least squares regression and

hence, in conclusions that result from an analysis” [Chatterjee and Hadi (1986)].

It is, therefore, important to be able to locate such observations and assess their
impact on the model. Regression diagnostics mainly deal with cases, which are
affected by departures from the assumed model. The prime objective of diagnostic
methods is the detection of outliers. In a regression problem, observations
corresponding to excessively large random disturbances are treated as outliers.
Since the true disturbances are unobserved, they are often estimated by the OLS

residuals, which can depend strongly on points in the space of the explanatory
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variables which are known as leverage points. Pefia and Yohai (1995) point out
that high leverage points are mainly responsible for causing masking and
swamping of outliers which make the identification procedure of outliers very
complicated. Sometimes high leverage points also become responsible for
generating the multicollinearity problem in regression analysis. So assessment of
high leverage points is equally or sometimes even more important as the

identification of outliers in a regression analysis.

A large body of literature is now available for the identification of a single high
leverage point and it is generally believed that this problem has already been
resolved [see Hawkins, Bradu and Kass (1984)] by the existing methods. But these
methods may be ineffective when multiple high leverage points are present in the

data.

In chapter two, we discussed in detail about regression, the most popular
regression technique, the OLS, and regression diagnostics. We also emphasis upon
the discussion about unusual observations such as oultiers, influential observations
and high leverage points. In section 2.8, we showed on the basis of some examples
that how they differ from one another and the interrelationship among them. We
also discussed the consequences of the presence of such unusual observations.

Finally we discussed in a brief about robust regression techniques.

In chapter three, we discussed different measures of leverages. Mainly the
diagonal elements of the weight matrix are considered as leverage values which
measure influences in the X-space, therefore, different properties of the weight
matrix (or leverage matrix) and the measures that are used to identify the high
leverage points are discussed in this chapter. We also introduced single case-

deleted potentials as measures of leverages. The two well known effects, masking
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and swamping for which the identification of high leverage points (outliers as

well) becomes complicated are also discussed in this chapter.

The performances of different measures of leverages are investigated through a
Monte Carlo (MC) simulation in chapter four. At first we briefly discussed about
the MC simulation methods. We then considered several examples where different
leverage measures are used in both no high leverage and a single high leverage
situation. We termed the tendency of any leverage measure to identify cases as
high leverage points in a no high leverage situation as sensitivity of that particular
measure and compare their sensitivity through an MC simulation. We investigated
the usefulness of different leverage measures in the identification of a single high

leverage point.

In chapter five, we proposed a new method of detecting multiple high leverage
points in linear regression using generalized potential and reported another
simulation study which is designed to investigate the performances of the newly
introduced method compare to the other existing various commonly used leverage
measures in the presence of multiple high leverage points through the Monte Carlo
simulation study. We considered both the cases where high leverage points have
equal and different weights. After that we also introduced a new graphical display
for locating multiple high leverage points together with outliers and influential
observations and investigated the performance of this new diagnostic plot along

with other existing diagnostic plots.

In chapter six, we reported another Monte Carlo simulation study which is
designed to investigate how high leverage points behave as a source of
multicollinearity. At first we discussed in a brief what we really mean by

multicollinearity and noted its sources, consequences and detection techniques.



Chapter One Introduction 4

We observed how a single high leverage point causes multicollinearity. We also
investigated the behavior of multicollinearity when high leverage points thus
identified by the existing detection techniques along with generalized potential and
omitted from the regression model. We extended this experiment to the case when
a group of high leverage points of equal and unequal weights are present in the

explanatory variables.
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Chapter Two

Diagnostics in Linear Regression

Avpplications of regression are numerous and occur in almost every field,

including engineering, the physical sciences, economics, management, life and
biological sciences and social sciences. In fact, regression analysis may be the
most widely used statistical technique. In this chapter we discussed in detail about
regression analysis, the unusual factors those are responsible for the poor fitting of

regression model, regression diagnostics and robust regression techniques.

2.1 Regression Analysis

Regression analysis is a statistical technique for investigating and modeling the
relationship between variables. In other words, regression analysis is concerned
with the study of the dependence of one variable, the dependent variable, on one
or more other variable(s) with a view to estimate and or predict the (population)
mean or average value of the former in terms of the known or fixed (in repeated

sampling) value of the latter.
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Chatterjee and Hadi, (1988) have proposed a flow chart as an illustration of

iterative regression procedure which is given below:

1. Choose an appropriate set of variables.

Formulate the 2. Choose form of model.
> 3. Choose method of fitting (e.g. OLS, robust
Problem :
regression, etc.)
4. Specify assumptions.
Fit the Model Using least squares method.
Validate 1. Residual plots.
Assumptions 2. Influential data analysis.
3. Test for outliers, etc.
< No OK ?
Yes
Evaluate the Fit Tests for goodness of fit.
No

Use the model for the intended purpose.
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2.2 Historical Origin of the Term ‘Regression’

The term “Regression” was introduced by Sir Francis Galton (1886). In a famous

paper, Sir Galton reported his findings:

“It is some years since I made an extensive series of experiments on the produce of
seeds of different size but of the same species......... It appeared from these
experiments that the offspring did not tend to resemble their parent seeds in size, but
to be always more mediocre than they to be smaller than the parents, if the parents

were large; to be larger than the parents, if the parents were very small... ... ...

The experiments showed further that the filial regression towards mediocrity was

directly proportional to the parental deviation from it.”

Galton called this phenomenon “regression toward mediocrity”, later “mediocrity”

replaced with “mean”.

Galton’s law of universal regression was confirmed by his friends Karl Pearson
and A. Lee (1903). They found that the average height of sons of a group of short
fathers was greater then their father’s height. Thus “regressing” tall or short sons
alike toward the average height of all men. In the words of Galton, this was

“regression to mediocrity”.
2.3 The Most Popular Regression Technique

Out of many possible regression techniques, the ordinary least squares (OLS)
method is the most popular regression technique that was introduced by Carl
Friedrich Gauss, a German mathematician. The popularity of ordinary least

squares method is attributable to its low computational costs, its intuitive
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plausibility in a wide variety of circumstances and its support by a broad and

sophisticated body of statistical inference.

Given the data, the tool of least squares can be employed on at least three separate

conceptual levels.

First, it can be applied mechanically or descriptively, merely as a means of curve

fitting.
Second, it provides a vehicle for hypothesis testing.

Third and most generally, it provides an environment in which statistical theory;

discipline specific theory and data may be brought together.

From each of these perspectives, it is often the case that the relevant statistical
theory has been quite well developed and those practical guidelines have arisen

that make the use and interpretation of least squares straightforward.

2.4 Principles of Ordinary Least Squares Method

We define the simplest form of a general linear model by
v, =x] B+e, (2.1)
Where yi is the i-th observed response,
x; is a kx 1 vector of predictors,
B s a kx/ vector of unknown finite parameters and

&;’s are uncorrelated random errors.

Writing Y=[y,,¥,,»»,1", X=[x,,%,,x,]" and e e, €s...,6,]" the equation

> n

(2.1) can be written as

Y=XpB+e 2.2)
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Where
Yis an (nx1) vector of response or dependent variables,

X is an {axk (n>k)} matrix of predictors (explanatory variables) possibly

including one constant predictor,

B is a (kx1) vector of unknown finite parameters to be estimated and

e 1s an nx1 vector of random disturbances.

The assumptions on which several of the least squares results are based are given

below:

(a). Linearity Assumption

This assumption is implicit in the defined model (2.1), which says that

each observed response value y, can be written as a linear function of the

i-th row of X, x,”, that is,

T B
v, =x; Bt+e; , i=1,2,,n

(b). Computational Assumption

In order to find a unique estimate of S it is necessary that (X TX )_l exist or

equivalently,
rank (X) =k.

(¢). Distributional Assumption

The statistical analysis based on least squares (i.e., &-test, F-test etc.) assume that

(i) X is measured without errors,

(ii) e, does notdepend on x; ; i=1,2,--,n and

(iii) e~N,(0,0°.1)
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(d). The Implicit Assumption

All observations are equally reliable and should have an equal role in

determining the least squares results and influencing conclusions.

2.4.1 The Ordinary Least Square Estimator of the Regression Coefficient B

If those assumptions hold, then the OLS estimator of the regression coefficient,

is obtained by minimizing

S(B)=€"e= (¥ - Xp) (¥ - Xp) (2.3)
Which implies to,
XTxp=Xx"y (2.4)

Equations (2.4) are the least squares normal equations.

Now premultiplying both sides of (2.4) by (X ¢ )_] gives the least squares

estimator of £, that is,

A TyvY! yr

p=(x"x"'xTy (2.5)
The properties of the ordinary least squares estimator, B are

(i) A is an unbiased estimator of £, that is, £( B)=5.

(i) A is the best linear unbiased estimator (BLUE) for f$, that is, among the
class of linear unbiased estimators, 4 has the smallest variance. The
variance of 7 is

Var () = az(XTX)_l.

(iii) A ~Nk[ﬂ,02(XTX)“].
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Where N [u,z] denotes a k-dimensional multivariate normal distribution with

mean vector x (a kx1 vector) and variance covariance matrix £ (a kxk matrix).

The nx1 vector of fitted (predicted) values of Y is

P=x(X"X]' XY =Wy
=YV=WY (2.6)
Where W is the weight matrix, which is defined as

w=x(x"x]' X" (2.7)
The following are the properties of the fitted values

(@) E(P)=x8
(b) Var(f’)=0'2W and

©) ¥ ~N,[xg,0W].

2.5 The Ordinary Least Squares (OLS) Residuals

In regression analysis, since the random errors are unobserved, they are
traditionally estimated by the Ordinary Least Squares Residuals, which are
actually the differences between observed and estimated responses, when the OLS

method is used to fit the model. Mathematically the i-th residual is given by

€=y, ~
=&=y,-x' 5 ; i=12,,n (2.8)
In matrix notation
e=Y-XT8 (2.9)

Se=Y-XT(X"Xx)]' XY
=(I-w)y (2.10)

Rajshahi University Pibrary
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That is the ordinary least squares residuals can be expressed in terms of predicted

values, Y.

Again we have from equation (2.10)
e=(I-w)y
= &é=(I-W)YXB+e)
S>e=XB-WXB+(I-W)e

iee=(-W)e (2.11)

That implies the ordinary least squares residuals can be expressed interms of

unobserved errors, €

The ordinary least squares residuals have several properties, which are extremely
useful in defining estimation and test procedure based on them. Here we present

some of them.

(i) The sum of the residuals in any regression model that contains an intercept
term is equal to zero; that is,

n
€=0

f=1
(ii) The sum of the residuals weighted by the corresponding value of the

predictor always equal to zero; that 1s,

n
Zx,. €=0
i=l

(iii) The sum of the residuals weighted by the corresponding fitted value is

equal to zero; that is,

>
m»>
1l
o
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(iv) Under the equation (2.2), the variance of the i-th residual is
V(é.') = (1 - Wﬁ) o’
(v) In this case the covariance between i-th and j-th residuals is

P 2
Cov(ei,ej)= —W,; O

In both case w, and w, are the i-th diagonal and {7j}-th element of the weight matrix, /7.

Thus under the equation (2.2) the variance—covariance matrix of the residual vector &

can be expressed as
Var (&)=(1-W) o’
(vi) Also the correlation between i-th and j-th residual is

— Wi

(I_Wi.‘)yz(l_wjf)yz

(vii) The residual vector & is distributed as n-dimensional multivariate normal

Corr (€, €)=

distribution with mean vector 0 (zero) and variance—covariance matrix

I-W)? ie
(r-w) ,

&~ N, [0(I-W)c?] and

AT A
(vii) ? ~ Xty Where x7,_,, denotes as y’ distribution with (n-k) degrees of
o

freedom (d.f) and &7 & is the residual sum of squares.

Here an unbiased estimator of o is given by

ey ENE
(0} =
n—k
;
IRCRD (1-w)y
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2.6 The Weight Matrix, W

The diagonal elements of W, denoted as w; are called the leverage values which

measure how far the input vector x; are from the rest of the data.

The weight matrix W, which is defined in equation (2.7) plays an important role in

least squares regression. The elements of W, denoted by w,and defined as

wy= x| (X" X)™x; have some nice properties which we shall present in section 3.2.1.

2.7 Regression Diagnostics

It is always necessary to consider how general conclusions would be affected by
departures from the assumed model. All of the methods for obtaining estimates
and tests based on the OLS technique are computed as if the model and the
assumptions are correct, but in many real situations those may be in doubt. So an
analysis is designed to check assumptions and build a model is usually required.
This is generally known as regression diagnostics since they are designed to find

problems with assumptions in an analysis.

2.7.1 Departure from Classical Assumptions

Unfortunate consequences of departure from the simple OLS model have long
been suspected by statisticians [see Hampel et al (1986)]. Despite this fact, the
OLS method has retained its popularity over the years in a hope that slight
departure from standard assumptions would not affect inferences too much. It 1s
now evident that this type of departure may have drastic consequences on both

estimation of parameters and testing of hypotheses.
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To quote Tukey (1960)

“A tacit hope in ignoring deviations from the ideal model was that they would not
matter; that statistical procedures which were optimal under the strict model would
still be approximately optimal under the approximate model. Unfortunately, it turned
out that this hope is often drastically wrong; even mild deviations often have much

larger effects than were anticipated by most statisticians.”

So a check in model adequacy can often be essential in analysing data and using

the model.
2.7.2 The Normality Assumption

The normal distribution is the most commonly used distribution in statistical
practice. Earlier it was almost a convention to statisticians that the population of
the observations would be Normal. This distribution possesses many nice and
attractive properties and many classical estimation and testing procedures have
been developed on the basis of a Normal assumption of the observations. In the
last hundred years attitudes towards a Normal distribution assumption have varied

from one extreme to another. According to K Pearson (1905),

“... towards the end of the nineteenth century not all were convinced of the need for

curves other than normal,”
By the middle of this century Geary (1947) made this comment,
“Normality is a myth; there never was and never will be a normal distribution.”

This might be an overstatement, but the fact that non-Normal distributions are

more prevalent in practice than formerly assumed.
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2.7.3 Why Testing for Normality Assumption

In a regression context, there has been some effort to argue that the unobserved
errors are Normal based on a priori considerations [Judge et al (1985)]. The errors
are perhaps made up of the sum of a large number of separate influences and the
distribution of these sum approaches Normal by virtue of the Central Limit
Theorem. Under a Normal assumption the OLS method has many desirable
properties in both estimation of parameters and test of hypotheses. But in practice
we often deal with data sets which are not Normal in nature. If we knew that the
distribution of the errors are not Normal, then a different model and different
methods could be used, but in reality the true errors are unknown and the are
traditionally estimated by the OLS method. Hence it is essential to observe the
robustness of OLS estimation and test procedures, which are designed to be

optimal at the Normal model.
2.7.4 Problems for Departure from the Normality Assumption

A serious problem may occur when there is any deviation from the Normality
assumption, since many of the OLS estimation and test procedures have been
developed on the basis of this assumption. A departure from a Normal assumption,
such as variance heterogeneity, can cause a great deal of damage to both the

estimation and test procedures based on the OLS method.

Gnanadesikan (1977) point out

“ ... the effects on classical methods of departure from normality are neither clearly

or easily understood ”
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Nevertheless evidence is available that shows such departures can have

unfortunate effects in a variety of situations.

In regression problems, Huber (1973) studied the effects of departure from
Normality in estimation. He pointed out that under non-Normality it is difficult to

find necessary and sufficient conditions such that all estimates of the form

k
azzmﬂi are asymptotically normal. One may also face the problem of

estimating correctly the variance~covariance matrix for 3.

In testing hypotheses, the effect of departure from Normality has been investigated

by many statisticians. A good review of those investigations is available in Judge

et al (1985). When & are not Normally distributed, /4 and M are no
-

longer Normal and Chi-square and consequently the ¢ and F test of f are not
generally valid in finite samples. However, they have an asymptotic justification.
The size of ¢ and F tests appears fairly robust to deviation form Normality
[Pearson and Please (1975)]. This robustness of validity is obviously an attractive
property, but it is important to investigate the response of test’s power as well as
size to departure from Normality. Koenker (1982) pointed out that the power of ¢
and F tests is extremely sensitive to the hypothesized error distribution and may
deteriorate very rapidly as the error distribution becomes long-tailed. Arnold

A2
Zer

(1980) studied the distribution of m,(&)= 7 /  and showed that the

significance level of the usual > test of the hypothesis ¢ =o, is not even

asymptotically valid in the presence of non-Normality.



Chapter Two Diagnostics in Linear Regression 18

Furthermore, Bera and Jarque (1982) have found that homoscedasticity and serial
independence tests suggested for Normal errors may result in incorrect
conclusions under non-Normality. It may be also essential to have proper
knowledge of distribution in prediction and in confidence limits of predictions.
Most of the standard results of this particular study are based on the Normality
assumption and the whole inferential procedure may subject to error if there is a
departure from this. In all violation of the Normality assumption may lead to the

use of suboptimal estimates, invalid inferential statements and inaccurate

predictions.

This non-Normality may occur because of their inherent random structure or
because of the presence of Outliers or High Leverage Points or Influential

Observations.

2.8 Influential Observations, High Leverage Points and Outliers:

In fitting a linear regression model by the OLS method we often observe that a
variety of estimates can be substantially affected by one observation or a few
observations. Therefore, it is important to be able to locate such observations and
assess their impact on the model. In this section we shall discuss three frequently
used concepts, that is, Outliers, High Leverage Points and Influential

Observations.

2.8.1 Outliers

In a sample of moderate size taken from a population, it can often appear that a

few values are surprisingly far away from the main group. According to Barnett

and Lewis (1994),
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“Observations that, in the opinion of the investigator, stand apart from the bulk of the

data have been called outliers”.

In the framework of linear regression, we define an outlier to be an observation for
which the fitted residual is large in magnitude compared to the other observations
in the data set, that is, observations are judged as outliers on the basis of how
unsuccessfully the fitted regression equation is in accommodating them and that is

why observations corresponding to excessively large residuals.

For example, in the following figure we shall easily illustrate about an outlier.

50
3
40 - A
30 -
20 ® * *
* . s o °* @
&
10 - . P *
0 . . :
0 2 4 6 8 10 12

Figure 2.1: Scatter Diagram that Shows Outlier.

In the given figure, if a straight line regression model is fitted to the data, we see
clearly that the observation marked by ‘A’ is an outlier, because it will have a
large residual and its omission may not change the slope but will change the
intercept of the fitted line. Its omission will also change the estimated error
variance, and hence the variance of the estimated coefficients, that is, the fitted

line will hardly changed if this point is omitted.
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2.8.2 Influential Observations

Influential observations are those observations that, individually or collectively,
excessively influence the fitted regression equation as compared to the other

observations in the data set. According to Belsley Kuh and Welsch (1980),

“An influential observation is one which either individually or together with several
other observations, has a demonstrably larger impact on the calculated values of

various estimates then is the case for most of the other observations.”

In this situation, parameter estimates or predictions may depend more on the
influential observations than on the majority of the data and their omission from

the data may result in substantial changes to important features of an analysis.

If we consider the following example, that is, the following figure, then we shall

see that the observation marked by B has a small residual, yet it is omitted, the

40
35
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20 - @
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5
0

0 2 4 6 8 10 12 14

Figure 2.2: Scatter Diagram that Shows Influential Observation.

estimated regression coefficients change substantially. Thus the point marked by

‘B’ is an example of an influential observation.
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2.8.3 High Leverage Points

According to Hocking and Pendletion (1983),

“High leverage points are those observations for which the input vector x; is, in some

sense, far from the rest of data.”

Equivalently, a High Leverage Point is an observation with large w;; the i-th
diagonal element of the weight matrix #, in comparison to other observations in
the data set. Observations which are isolated in the X space will have high
leverage. Points with high leverages may be regard as outliers in X space. The
concept of leverage is linked entirely to the predictor variables and not to the

response variable.

Consider the following figure as an example, suppose that we currently have the

data plotted in the figure. If a straight line regression model is fitted to the data we

35
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Figure 2.3: Scatter Diagram that Shows High Leverage Point.

shall see that the point marked by ‘C’ will have a small residual because its ¥
position is near where the line passes through other points. It will be a High

Leverage Point because it is an outlier in X. However, it will not have a large
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influence on the fitted regression equation. It is clear that point C is an example of
a high leverage point, which is neither an outlier nor an influential point. Also note
that point C is influential on the estimated regression coefficients because it is an
extreme point in the X space, however, it may be influential on the standard error

of the regression coefficients.

2.8.4 Inter relationships among Outliers, Influential Observations and

High Leverage Points

It is generally believed that outliers would be highly influential. But that is not
always true. Andrews and Pregibon (1978) have presented some examples where
outlying observations have little influence on the results. Their examples illustrate

the existence of an outlier that does not a matter.

Chatterjee and Hadi (1986) discussed the inter relationship among outliers,

influential observations and high leverage points. They observed that,

(a) Influential Observations need not be Outliers in the sense of having high

residuals.
(b) Outliers need not be Influential Observations.

(c) While observations with large residuals are not desirable, a small residual
does not necessary mean that the corresponding observation is a typical
one. This is because least squares fitting avoids large residuals, and thus it
may accommodate a point (which is not typical one) at the expense of
other points in the data set. In fact there is a general tendency for high

leverage points to have small residuals and to influence the fit

disproportionately, and
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(d) As with outliers, high leverage points need not be influential observations

and influential observations are not necessarily high leverage points.

However, high leverage points are likely to be influential observations.

To distinguish Outliers, Influential Observations and High Leverage Points we

shall consider the following examples:

Example 1: This example illustrating the distinction among outliers, high

leverage points and influential observations.

Suppose that we currently have the data plotted in the given figure page and we

wish to add one of three points marked by the letters ‘A’, ‘B’ and ‘C’.
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Figure 2.4: Scatter Diagram that Distinguishes Qutliers, High Leverage Points

and Influential Observations.

If point ‘A’ is considered for inclusions, it will have a small residual because its ¥’

position is near where the line passes through other points. It will be a high

leverage point because it is an outlier in X. However, it will not have a large

influence on the fitted regression equation. Hence point ‘A’ is a high leverage

point, which is neither an outlier, nor an influential point.
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On the other hand, if point ‘B’ is considered for addition, it will not be a high
leverage point because it is close to the center of X, but it will clearly be an outlier
and an influential point. It will have a large residual, and its inclusion may not
change the slope but will change the intercept of the fitted line. Its inclusion will

also change the estimated error variance, and hence the variance of the estimated

coefficients.

Now let us consider the adding point ‘C’ to the data points. It is clear that point
‘C’ will be an outlier, a high leverage point, and an influential observation. It will
be an outlier because it will have a large residual. It will be a high leverage point
because it is an extreme point in the X space, It is an influential observation
because its inclusion will substantially change the characteristics of the fitted

regression equation.

Example 2: This is an example illustrating that outliers need not be influential

observations and influential observations need not be outliers.
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Figure 2.5: Scatter Diagram that Shows Inter Relation among Outliers and

Influential Observations.

Consider the data plotted in the given figure. If a straight-line regression model is

fitted to the data, we see clearly that the observation marked by ‘A’ is an outlier.
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However, the fitted line will hardly change if this data point is omitted. This is an
example of an outlying observation that has a little influence on the estimated
regression coefficient. The figure also shows that the observation marked by ‘B’
has a small residual, yet, when it is omitted, the estimated regression coefficients

change substantially. Thus the point marked by ‘B’ is an example of an influential

observation that is not an outlier.

The point marked by ‘A’ is an outlier, yet the fitted line will hardly change if this
point is omitted; whereas the point marked by ‘B’ has a small residual but is
highly influential because of its high leverage. Thus outliers need not be

influential observations, and influential observations need not be outliers.

2.8.5 Consequence of the presence of outliers, high leverage points and

influential observations

It is generally believed that outlying observations in statistical data are often
caused by gross measurement or recording errors. Hampel et al. (1986) claim that
a routine data set typically contains about 1-10% gross errors, and even the highest
quality data set cannot be guaranteed free of gross errors. One immediate
consequence of the presence of outlying observations is that they may cause
apparent non-Normality and hence one may face the unfortunate consequences
mentioned in the previous section. Because the OLS technique minimizes squared
deviations, it has a tendency to put a relatively heavy weight on outlying
observations and parameter estimates are extremely sensitive to their presence. In
OLS method, the residual mean square is generally used to estimate the variance
of the errors. The residual mean sum of squares can be greatly inflated by outlying

observations so that we may not be able to reliably estimate the variance of the

Normal errors.
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2.9 Robust Regression Techniques:

In recent years the idea of robustness has been given much more importance in

every branch of statistics. To quite Kadane (1984),

“Robustness is a fundamental issue for all statistical analyses, in fact it might be

argued that robustness is the subject of statistics .

One may consider this comment as an overstatement but the importance of

robustness cannot be ignored.

In linear regression, robust techniques grew up in parallel to diagnostic [Hampel ez
al. (1986)] and initially they were used to estimate parameters and to construct
confidence intervals more efficiently. In recent years diagnostics and robust
regression are considered to be complementary to each other [Staudte and
Sheather (1990)] in the process of model building and verification. The main
application of robust techniques in a regression problem is to try to devise
estimators that are not strongly affected by outliers. One objective of robust
techniques is to cope with outliers by trying to keep small the effects of their
presence. But in recent years, a rationale for this technique has been mainly the
identification of multiple outliers. Therefore, diagnostic and robust regression

have the same goals, but in the opposite order. To quote Rousseeuw and Leroy

(1987),

“When using diagnostic tools, one first tries to delete the outliers and then to fit the
‘good’ data by the least squares, whereas a robust analysis first wants to fit a
regression to the majority of the data and then to discover the outliers as those points

which possess large residuals from that robust solution.”
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In recent years, robust regression techniques are commonly used to identify
multiple outliers. Among them ‘most likely outlier subset’ proposed by
Gentleman and Wilk (1975), elemental sets proposed by Hawkins, Bradu and Kass
(1984), least median of squares and least trimmed squares proposed by Rousseeuw
(1984), reweighted least squares proposed by Rousseeuw and Leroy (1987) have
become very popular with the statisticians. In our paper we would suggest a robust

procedure to identify multiple high leverage points.
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Chapter Three

Measures of Leverages

In regression analysis, the inferences are highly affected by the outlying

observations like as leverages. For accurate inference we must identify these
outlying observations otherwise the inference will be inaccurate. But sometimes 1t
is difficult to identify those outlying observations for masking and swamping. In
this chapter we shall discuss about Masking and Swamping, the measures of
leverages, properties of weight matrix and relation between leverages and

potentials.
3.1 Masking and Swamping

As the term masking is most commonly used, it arises when a sample contains
multiple outliers but on analysis by a particular outlier detection method, some or all

of the outlying observations appear to be inlying. The converse problem of swamping
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arises when the method of analysis wrongly suggests that a good data point is

outlying. Indeed, two notions of masking have emerged [see Lawrance (1995)], as

indicated by the following quotations:

“... the structure would not be revealed by the calculation of single deletion
diagnostic measures for each observation in turn, although it might well be
detected by multiple deletion measures. This effect, which has been called

‘masking’..”[ Atkinson (1985)];

0

. there may exist situations, in which observations are jointly but not
individually influential, or the other way round ... This situation is sometimes

referred to as the masking effect...” [Chatterjee and Hadi (1988)];

“..masking effect. This means that afier the deletion of one or more influential
points, another observation may emerge as extremely influential, which was not

visible at first...” [Rousseeuw and Leroy (1987)];

“... the importance of a particular observation may not be apparent until some
other observation has been delete ... In the presence of such a masking effect...”

[Atkinson (1985)].

The earliest well-known example of masking was given by Pearson and Chandra

Sekar (1936). Let X,,X,,--, X, be a sample of size n have mean X and variance

. : X, -X : :
5?, and consider the use of the studentized residuals LS——) for outlire detection.

Pearson and Chandra Sekar (1936) showed by example that if n is sufficiently
small, as X, and X, ; tend to infinity; the largest studentized residual may tend to a
constant below the rejection level. Thus paradoxically as the two outliers become
more outlying, the probability of identifying either of them as a significant outlier

using the maximum absolute studentized residual goes to zero. This basic
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framework also illustrates swamping: fix X,.; and increase X, until X=X, Then
using the maximum absolute studentized residual, all of the n-2 good observations

appear more outlying than X,

In this example the reason for the masking is that the outlying observations inflate
S by an amount more than compensating for the matching increase in max (Xi - X ).
Another much less easily diagnosed problem of masking and swamping can arise
in regression, where an additional complication is the leverage of the predictors;
i.e., the ability of data point with extreme values of the predictors to lever the
regression line over toward themselves. See for example Belsley, et al (1980). To
illustrate these points, consider a set of (x; ¥;) pairs, (20, 20), (10,A), (-8, 0) and
seven (x; Y;) pairs that are independent N (0, 1). The first two pairs are outliers (if
A#0); the rest are good. The residuals of the first three points obtained in a
simulation with A=12 were 1.30, 1.90, and 5056; using the known o =1, the
studentized residuals were 2.25, 2.16, and 6.60. This shows both outliers being
masked, with the (-8, 0) inlier being swamped. With A= 0, so that the second
point is actually inlying, the residuals are 5067, -7.45, and 4.95, and the
studentized residuals are 10.58, -8.44, and 5.87. Here the outlier has been

unmasked, but the second and third, inlying points, remain swamped.

As the preceding discussion suggests, masking and swamping are deficiencies not
of the sample, but of the particular outlier detection method applied to it. For
example, while with A=12 the second observation has a larger residual than the
first, studentizing to correct for their different variances shows the first to be in
fact the more extreme. In the Pearson—Chandra Sekar (1936) case, masking and
swamping are easily avoided by replacing X and S with robust measures of

location and scale or by removing the k most aberrant points and then successively
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testing them for reinclusion. This method, however, will fail in the regression
example by swamping the third, good observation pair. In principle the robust
estimate remedy applies to the regression, but in practice there may be severe
difficulties in finding consistent robust estimators when some points have high
leverage. That is why Pafia and Yohai (1995) commented that high leverage points

are mainly responsible for masking and swamping.

3.2 Measures of Leverages

In regression analysis it is sometimes very important to know whether any set of
X-values are exerting too much influence on the fitting of the model. In the past
chapter we already defined the high leverage points. Mainly a set of influential X-
values is known as a high leverage point. Since residuals are functions of leverage
and disturbances (that shown in the past chapter), we observe from (2.11) that high
leverage points together with large disturbances (outliers) may pull the fitted least
squares line in a way that the fitted residuals corresponding to that outliers might
be too small. This may cause masking and/or swamping of outliers [see Pefia and
Yohai (1995)] and that is why the identification of high leverage points is really

necessary.

The i-th diagonal element of the weight W=X(XT.X)"XT, is traditionally used as

measures of leverages.
In the next section we shall discuss different properties of the weight matrix.

3.2.1 Properties of the weight matrix, W

The properties of the weight matrix W are given bellow:
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Property (i)

W is an idempotent matrix of rank k. By the idempotent property of W it is easy to
show that,

Proof: We know that if a matrix M is idempotent then M’ M=M. Hence
W =[XX X)X XXX X
= XXX XX X)X
o wd
=W
That s, ww=w

This implies that the weight matrix, ¥ is an idempotent matrix.

Now we want to find out the rank of . We know that

Rank (W) = tr (W)
=tr [X(X'%) "X
=1r [(XX) (X'X)" ]
=tr [1]
=k

= Rank (W)=*.

n n i

Now we shall show that ZZwi = zr:wﬁ =k.

i=l j=1 i=t



Ghapier Thies Measures of Leverages 33

We know by the property of idempotent matrix that

W w= W, [Since W is an idempotent matrix]

w ' d
1 21 i Wy Wy Wi W Wy Wi
- W2 Wp Wal| Y2 Ya iz | | W2 Yo Wz
wl n WZ n wnu w]n W, n WIHI wl n WZn wmr
r n 3 n n 1
Z Wy DWW, DWWy
j=1 Jj=1 Jj=1 Wi Wy, Wy,
n n n -
2
s, Zwu.wzj ZWZJ. szjw“j _ Wy,  Wa Wan (3.1)
=t =1 j= : : : : )
i ’ z 2 Wltr WZ n e Wrm
W Wy DWW, Z Waj
BE J=] j=1 i
Since we know that
tr (W)= Rank (W)
Wy, Wy o Wy
W, W W
12 22 2
=t . ; : " 1= Rank (W)
wl n WZH T wnn
n
=>w,=k [Since k is the rank of W] (3.2)

ii=1

We know that two matrices will be equal iff each element of one is equal to each

element of the other.

Hence we get from (3.1) and (3.2)

1" n

33w =§wﬁ =k. (3.3)

i=1 j=1

(Proved)
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Also we can say from equation (3.2) that

Average of w, = k (3.4)
n

Property (ii)

Here we present further properties of the w,’s which we use frequently in our

subsequent work. For any 7 and ;j ranging over 1,2,...,n

(1) 0w, <1 foralli
(2) -0.5<w,; 0.5 [ Chatterjee and Hadi (1988) ]

(3) If X contains a constant column then for all i, than

i

w. =L [Wetherill (1986) ]
n

Proof (ii)(1)

We already got from equation (3.3) that

1t n 3 n
SSwi=3m
i=1

i=1 j=1

oow =Wk YW (3.5)

Jw#i=1

2
2 : 2
= w2 W , Since E w; 20

fi i
J=i=l
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; k . - .
Now since the average of w, =— ;(n>k) and w? can not be negative, this implies
n

that
0<w, <1 , foralli

(Proved)

Proof (ii)(2)
We get from equation (3.5) that

n
. 2
Wy =w; + § ,WU

jeis=]

n
=Sw, =w + W+ sz
W = Wy i i

rei,j=1

2, .2 ; 2
=w, 2w, +w; , dSince E w;, 20
2
= w; < w,(l- w;)

Since 0<w, <1 this implies that —0.5<w; <0.5

(Proved)
Proof (ii)(3)
If X contains a constant column, define X=(1 : X ), where 1 is the n-vector of ones.

Now we know by a property that if X=(X;: X, ), where X, is an (n x r ) matrix of
rank r and Xs is an { n x (k- r)} matrix of rank (k-r) and if W; = X; X, 7x,)" X, be
the prediction for X, V' = (I- W,)X; be the projection of X, onto the orthogonal
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complement of X; . Finally, if W,= ¥V (¥'V)' V" be the prediction matrix for ¥, then

W (the weight matrix) can be expressed as

w=X"X"X)"XT = X, (X, X)X, T+ (- W)Xof X (- W )Xo ' X (- W)

= W=W, + W, (3.6)
Here W,=1(1"1)"'1"

=W,=n'11";
Now V = (I- W)X, = (I- n'111) X, ;

The matrix (I- #n'117) is known as centering matrix because it is the linear

transformation of X that produces the centered X.

Therefore,

w,=v Vv

Thus W can be written as
W= W/ + Wg

—w=n'11" v Vv
Now each of the diagonal elements of W, is equal to n' and since W, is a

prediction matrix, then by property (ii)(2), its diagonal elements are nonnegative,

hence

4.1
Wi = —
14}

= Wii » L] (Proved)
n
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Accept the above important properties; we shall give some other properties. They

are given below:

Property (iii)

Fori=1,2,,n and j=12,n
(1) if w; =1 or 0, then w; = 0.
(2) (1- wi)(1- wy) - w; 20.

(3) wyw; 2w}

4) le,.j €,=0 [Montgomery and Peck (1992) ]
j=1

N

(5) w,+—=i_<1 [Chatterjec and Hadi (1988) ]

n
2
i

&;

i=l

3.2.2 Different Measures of Leverages

Since in fitting regression model by the Ordinary Least Squares method,
estimation and tests are highly affected by the high leverage points, thus we need
to identify the leverage points. Much work has been done on the identification of
high leverage points and a good number of diagnostic measures are now available

in the literature.

In this subsection we shall discuss about different measures of leverages.
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(1). Twice the Mean Rule

Hoaglin and Welsch (1978) represented the “twice the mean rule” for identification

of high leverage points.

We know that the i-th diagonal element, w;; of the weight matrix W is traditionally

used measures of leverage of the response value y; on the corresponding value ;.
We showed that the average value of wy; is % and observations and data points

having large w;; values are generally considered as high leverage points. But the
immediate questions comes to mind how large is large? Hoaglin and Welsch

considered observations are said to be high leverage points when w; exceeded

2% and this method is known as “twice the mean rule’.

(2). Thrice the Mean Rule

Vellman and Welsch (1981) proposed this method for identification of high
leverage points. Since data points having large w; values are generally considered

as high leverage points. Vellman and Walsch consider w; will be large when it

exceeds 3% 4 This method is known as “thrice the mean rule”.

(3). Huber’s Conservative Choice of Cut-off Value for wi

For a definition of when w;; is large, Huber (1981) suggested to break the range of
possible values of w;. We know that lies between o (zero) to / (one), that is,

0<w, <1 for all i. Huber suggested that w;; will be large when it exceed 0.2, that

is, w;; is said to be large if w; >0.2. This method is known as “Huber’s conservative

choice of cut-off value for w;;”’, hat we call Huber-1 method.
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(4). Huber’s Liberal Suggestions

For another definition of when wy; is large, Huber (1981) suggested that wj; is large
when it exceed 0.5, that is, w; is large if w;; >0.5. This method of identification of

high leverage points is known as “Huber’s liberal suggestions”, that we call

Huber-2 method.

(5). Hadi’s Potentials with the Identification Based on

Mean

Hadi (1992) pointed out that traditionally used measures of leverages are not
sensitive enough to the high leverage points. In the presence of a high leverage
point, the weight matrix 7 may break down easily and after that it may not contain
necessary information on high leverage points. In this situation neither of the
above methods may be effective in the assessment of the true leverages and
consequently the identification of high leverage points becomes complicated. He
introduced a new type of measures, named as potentials, where the leverage of the
i-th point is based on a fit to the data with the i-th case deleted and that is why 1s
more sensitive to the high leverage points. Every possible subset of n-—1
observations is used to form the weight matrix, and weight of every deleted
observation in turn is generated externally which is known as potentials. Although
it seems that calculation of potentials will require construction of »n weight

matrices, it is possible to calculate them from w;,’s in a very simple way.

Writing the data matrix of & explanatory variables as X = [xl,xz,---,xn]r, the i-th

leverage value is defined as

w, = T (XTX) ',
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We define the i-th potential as
Pi = xiT(X(’l;)X(i))_ #;

Where Xy, is the data matrix X with the i-th row deleted. Using the result of Miller
(1974)

1

(x0x) = ("X -2 )

_ (XTX)_I 2 (XTX)_lx,.x,. (XTX)_l
1- x.T(XTX)”‘xi

t

3.7)

It is easy to obtain a simple relationship between w; and p, as

1]

1-x"(X"X ) x, 1-w;

T T 2
(XX X; .
pi=x (XX )"x,.+(x' IR L .

Observations corresponding to excessively large potential values are considered as

high leverage points. Hadi (1992) proposed a cut-off point for p, as
Mean ( p, )+ c. St.dev. (p; )

Where ¢ is an appropriately chosen constant such as 2 or 3. This implies that the

observations are said to be high leverage points having

p; > Mean (p, ) +c. St.dev.(p, ).

This form is analogous to a confidence bound for a location parameter. This
method is known as “ Hadi’s potentials with the identification based on mean” ,

which we name “Potential (mean)”.
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(6). Hadi’s Potentials with the Identification Based on
Median

In potential (mean) method, the problem with the cut-off point is that both mean
and variance of p, may be non-robust in the presence of a single extreme value

yielding a high cut-off point. To avoid such a problem the alternative suggestion

of Hadi (1992) is to consider
Median (p, )+ c* MAD (p; )

where the Median Absolute Deviation (MAD) is computed by
MAD ( p, ) =Median { | p, -Median (p; )| }

and c* is a suitable chosen constant between 3 and 5.

Hence the observations are said to be high leverage points having

p; > Median (p, )+ c* MAD (p; ).

This method is known as “ Hadi’s potentials with the identification based on

median” , which we name “Potential (median)”.
(7). Mahalanobis Distance

The leverage of an observation can also be measured by the Mahalanobis distance

Suppose that X contains a column of ones and X denotes the centered X excluding
the constant column. A statistic which measures how far x, is from the center of

—1~

the data set is commonly computed as (n—1)"'%/ (X" X)X, , where %, is the i-th
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row of X. However, we are interested in measuring how far x, is from the rest of
other observations, hence it is natural to exclude x, when computing the mean and

variance-covariance matrix of X. Therefore, we define Mahalanobis distance as
M, = ‘2){"3 - Fof Bl -Gy 10 - ):((n}' @8]
Where X, () 18 the average b @+ Using (3.7) and noting that
):((,.) = (n —1)4.;?(7;)1 = ~(n - 1)_'f,.

The Mahalanobis distance becomes

|
M= n(n—Z). Wi A

Ton-1 1-w,

) i=12,,n.

3.2.3 Relation Between Mahalanobis Distance and Leverage Values

We can show the relation between Mahalanobis distance and leverage values as

follows:

In the case of regression with a constant, let us first split up the x, into the

essential part v, and the last coordinate 1:
= (xi,l’xz',il"”’xi,k—l’ljz (Vial)a
where v, = (xi,l’xi,Z’m’xi, k—l) is a (k —1) dimensional row vector.

One computes the mean v and covariance matrix C of these v;:
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l"

n i=]

C=—-3(,-7) (v, 7).

n—17%

V= v,

=1
One than measures how far v, from v in the matrix define by C, yielding
Mi2 = (vi - U)C_l(v,. - ‘_’)T’

which is known as the squared Mahalanobis distance of the i-th case .The purpose
of this squared Mahlanobis distance is to point to observations for which the

explanatory part lies far from that of the bulk of the data.

Now, we first note that we may subtract the average of each of the first  (k-1)
explanatory variables, because this changes neither the weight matrix nor the

squared Mahalanobis distance. Therefore, we may assume without loss of

generality that [l) ix,j =0 for each variable j=1,2,...,(k-1), hence v=0.

nJ =
Therefore,
X 1
x . x Y x !1

11 il nl :
xTx=|: : e 1

1 1 I :

_xnl 1_

n 2 n n -‘
an o fole.k—! e Z Xi
i=1 i=l i=
T n n
— 2
=X X = Zx:',k—lxil " zxr',k—l in,k—l
i=1 i=1

0 ' I " e x
Zx” . e Zx,"k_l e n
i=l
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From which it follows that

-~ XTX _ (n—1) C
0 0
By = x,.(XTX)_lx[T
=(fia 1)[{1/ (n-1)jC”
0
1,1
:>p,-,- —"(;;j'l")'Mi '}‘;

This implies that there is a one-to-one relationship between squared Mahalanobis

distance and Leverage values.

3.3 Comparison between Potentials and Leverage values

Hadi pointed out that in the presence of high leverage point, potentials are more

sensitive then the traditionally used measures of leverages. Here we consider an

example. We slightly modify an artificial data set presented by Pafia and Yohai
(1995), which is given in Table 3.1.

Table-3.1: Modified Pafia and Yohai (1995) Data.

Index | Observations (x) | Leverages (w;) | Potentials (p;)
1 1 0.3122 0.4539
2 2 0.2315 0.3013
3 3 0.1700 0.2049
4 4 0.1278 0.1465
5 5 0.1047 0.1170
6 6 0.1009 0.1121
7 7 0.1162 0.1315
8 8 0.1508 0.1776
9 9 0.2046 0.2572

10 12 0.4813 0.9278
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For this two variable regression model we have one high leverage case

(i.e. point 10). We calculate leverage and potentials for this data that are also
presented in Table 3.1.

Using the above data we shall form the following figure:

1 s
a ® Wil

08 A api

06 —

04| =B *A

02| B @ :

' o o o o ®

0 , ‘
0 2 4 6 8 10 12

Figure-3.1: Index plot of leverages and potentials.

Figure 3.1 presents the index plot of leverages and potentials for the above data. In

(182

this figure the leverage values (w, ) are shown as “e” while the potential values

(p;) are shown as “ w”. Values corresponding to the highest leverage and the

highest potential values are marked as ‘A’ and those of the second highest values
are marked as ‘B’. It is clear from the above figure that for low leverage values,
both the leverages and potentials are almost identical. But the potential values are
more sensitive for high leverage cases. Even for the second highest leverage value
‘B’ we observe a marked difference between leverage and potential. This
difference is severe for the highest leverage value ‘A’. Thus we may conclude that

the potential values more sensitive than leverage values.
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Chapter Four

Identification of a

Single High Leverage Point

In this chapter, we consider several measures of leverages to see how effective

they are in the identification of a single high leverage point. We also investigate
the sensitivity (in the sense that how this methods identify observations as points
of high leverage when in fact there is no high leverage point) of these measures in
a no high leverage situation because it is no good if any of the methods identify
low leverage cases as points of high leverages. We consider six set of measures,
(a) Hoaglin and Welsch’s twice-the-mean rule, (b) Vellman and Welsch’s thrice-
the-mean rule, (c) Huber’s conservative choice of cut-off value for w;

(i.e.w, > 0.2), that we call Huber-1, (d) Huber’s liberal suggestions (i.e. w; > 0.5),
and we call it Huber-2, (e) Hadi’s potentials with the identification based on mean
[Mean (p, )+c.St.dev.(p; )], which we name Potential (mean) and (f) Potential

(median) where the identification criterion is based on [Median( p, )+c*MAD(p, )].
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For the last two measures we have chosen ¢=3 and c*=5 throughout the

experiment.

In our investigation, we consider the Monte Carlo simulation to generate the

observations. In next section we shall discuss about simulation.

4.1 SIMULATION

In our research work, we first simulate the X-values keep them fixed to compute
all necessary results and then repeat the whole process 10,000 times. Since we use
the simulation data in our research work so it is important to know, what is the
nature of simulation and how it is performed? In this section, we shall discuss
about the basic concept of simulation, and Monte Carlo simulation that is used in

research works.

In order to study a system (a system is defined to be the facility or process of
interest or a collection of entities, e.g., people or machines that act and interact
together toward the accomplishment of some logical end) scientifically we often
have to make a set of assumptions about how it works. These assumptions, which
usually take the form of mathematical or logical relationships, constitute a model
that is used to try to gain some understanding of how the corresponding system

behaves.

If the relationship that compose the model are simple enough, it may be possible
to use mathematical models (such as algebra, calculus, or probability theory) to
obtain exact information on questions of interest; this is called an analytic
solution. However, most real-word systems are too complex to allow realistic

models to evaluate analytically, and these models must be studied by means of



Chapter Four Identification of a Single High Leverage Point 48

simulation. In a simulation we use a computer to evaluate a model numerically,

and data are gathered in order to estimate the desired true characteristics of the

model.

The Monte Carlo Simulation Method is considered as a significant development in
the computational statistics. According to Imon (2000), this method helps us to
create an artificial “real type” situation and the problems from the real world are
matched with this simulated situation. In many statistical problems, simulated
values are replacing distributional values when no easy way is available to
compute them. This method also has been used with several different meanings

[Kendal and Buckland (1967)]:

(i) To denote the approximate solution of distributional problems by sampling

experiments.

(ii) To denote the solution of mathematical problems arising in a stochastic

context by sampling experiments.

(iii) By extension of (ii), the solution of any mathematical problem by sampling
methods; the procedure is to construct an artificial stochastic model of the

mathematical process and then to perform sampling experiments upon it.

Monte Carlo methods are those in which properties of the distributions of random
variables are investigated by use of simulated random numbers. The methods,
aside from the collection of data, are similar to the usual statistical methods in
which random samples are used in making inference concerning actual
populations. Generally in applications of statistics, a model is used to simulate

some phenomenon that has a random component. In Monte Carlo methods, on the
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other hand, the object of the investigation is a model itself, and random or pseudo-

random events are used to study the model.

Often in application of Monte Carlo methods, the problem being studied does not
have an explicit random component; however, in these cases a deterministic
parameter of the problem is expressed as a parameter of the random distribution
and than that distribution is simulated. During World War-Z/ and immediately
therefore, Monte Carlo methods were extensively used in studying deterministic
problems (primarily solutions of differential equations) arising in work on the
atomic bomb by Fermi, Von Neumann, Ulam, and Metropolis [see Gentle (1982)].
The name Monte Carlo (from the casino in Monaco) for these methods dates from

that period.

Monte Carlo methods are often used by statisticians to investigate distributional
problems that are mathematically intractable, such as evaluation of distribution
functions or moments of a distribution [Hartley (1977), Imon (1996) and Imon
(1999)]. Monte Carlo is also widely used in robustness studies of statistical
procedures. The method in this case involves simulating observations from an
alternative distribution and computing from these observations the statistics for the
procedure in the usual way. From the empirical distributions for the statistics
obtained in this manner, the robustness of the ordinary statistical procedure can be

evaluated.

Since the introduction of the digital computer, the random numbers used in Monte
Carlo studies are most often generated by the computer [Newman and Odell
(1971)], and this facility has led to the widespread use of the Monte Carlo
technique. In the period from 1978 to 1982, Monte Carlo methods were used in the

research is approximately 30% of the articles in the “Journal of the American
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Statistical Association”. The role of Monte Carlo methods has become similar to
that of experimentation in the natural sciences, and the need for proper, careful
conduct and reporting of Monte Carlo experimentation has been emphasized. A
good example of extensive and well-planned use of Monte Carlo is reported in
Andrews et al. (1972), a study conducted at Princeton University of alternative
point estimators of location in symmetric distributions with heavy tails (see
Heavy-Tailed Distributions). In such distributions (i.e, Cauchy) the ordinary
sample mean is not a good estimator because its variance is large or even infinite.
The distributions of many of the other estimators studied are quite intractable, and
hence Monte Carlo methods were used to estimate their moments and other
properties. Imon (2003) used this type of study to approximate moments and
coefficients of skewness and kurtosis of regression residuals. The Monte Carlo
studies made extensive use of variance reduction methods, but even so these
studies consumed many hours of computer time. While the Monte Carlo results
are interesting in their own right, one of the important uses of Monte Carlo is to

identify quickly promising statistical methods worthy of further study.

An excellent review of recent computational advances in linear regression and the
use of different computer packages in it is available in Ryan (1997) and Imon
(2000). Most of the commonly used statistical packages like SPSS, BMDP,
MINITAB, SAS, STATA, S-PLUS, LISPSTAT can simulate observations.

Now a day, a large number of computer packages are designed for simulation such
as Monte Carlo simulation. Throughout our experiment we use Minitab Version
12.23 for Windows package program for Monte Carlo simulation, since it is
simple, readily applicable, safe and very speedy (in the sense of computation time

involved in a simulation process).
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4.2 Sensitivity of Different Measures of Leverages

To investigate the sensitivity of different measures of leverages let us consider the

following examples. The examples are given in the following tables, which show

the results for different measures of leverage points in presence of no high

leverage point. Here the data sets are generated as Uniform (0,1) for three

predictor variables and for different sample sizes such as n=10, 20 and 40 RAND

command of MINITAB statistical package for simulating data. Here we have

chosen k=4, and c¢*=5. The six set of measures of leverages are denoted in 2M

(twice-the-mean), 3M (thrice-the-mean), Hul (Huber’s conservative choice), Hu2

(Huber’s liberal choice), P.mean (Hadi’s potential based on mean) and P.mid.

(Hadi’s potential based on median).

Example-1

Table-4.a.1: Results of different measure of leverages forn = 10

S.N. X, X, X3 2M | 3M | Hul | Hu2 | P.mean | P.med
1 0.864320 0.568475 0.818749 0 0 1 0 0 0
2 0.878396 0.473262 0.618576 0 0 1 0 0 0
3 0.842802 0.303031 0.637115 0 0 1 0 0 0
4  0.682822 0.642951 0.231928 0 0 0 0 0 0
5 0.480566 0.796949 0.272067 0 0 1 0 0 0
6 0.466354 0.845542 0.832563 0 0 1 1 0 1
7  0.397212 0.896034 0.008591 0 0 1 0 0 0
8 0.261917 0.504752 0.392234 0 0 1 1 0 1
9 0.798344 0.354651 0.822990 0 0 1 0 0 0
10 0.869169 0.688198 0.086895 0 0 1 1 0 0
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Example-2

Table-4.a.2: Results of different measure of leverages for n = 20.

SN.] X [ X [ X; [2M[3M [Hul [Hu2][ P.mean | Pmed
1 0113981 0.114947 0374460 0 0 1 O 0 1
2 0466643 0.609756 0.747534 0 0 0 O 0 0
3 0366845 0.638600 0321566 0 0 0 0 0 0
4 0942490 0.815849 0717088 0 0 1 0 0 0
5 0915512 0334328 0571522 0 0 0 O 0 0
6 0778861 0.194310 0.662487 0 0 0 O 0 0
7 0.594300 0.386302 0.868061 0 0 0 0 0 0
8 0321238 0733446 0657299 0 0 0 O 0 0
9  0.410564 0.119197 0776130 0 0 0 O 0 0
10 0.243830 0421769 0902693 0 0 1 0 0 0
11 0574727 0260327 0.151792 0 0 0 0 0 0
12 0.878745 0.514596 0.207859 0 0 0 O 0 0
13 0761828 0.534407 0381438 0 0 0 0 0 0
14  0.866674 0.858013 0380795 0 0 0 0 0 0
15 0946227 0381680 0568873 0 0 0 0 0 0
16  0.842683 0.698638 0.860280 0 0 0 O 0 0
17 0391032 0.049196 0.023729 0 0 1 0 0 1
18 0431322 0811956 0667877 0 0 0 0 0 0
19  0.349001 0.248340 0.820308 0 0 0 0 0 0
20 0.432600 0.983170 0.053760 1 0 1 0 1 1
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Example-3

Table-4.a.3: Results of different measure of leverages for n = 40

SN] Xi [ X, [ X, [2M | 3M | Hul [Hu2 [ P.mean | P.med

0.017070  0.225284 0.640941
0.696856 0.867442 0.216194
0.040521 0.268515 0.684648
0.407694 0.825471 0.248444
0.130147 0.053321 0.795865
0.055987 0.479750 0.907299
0.604971 0.170489 0.667680
0.188605 0.101831 0.772676
0.384386 0.219363 0.337050
0.362117 0.919912 0.991654
0.108350 0.161503 0.893317
0.942092 0.921921 0.034566
0.214357 0365121 0.704652
0.667498 0.801627 0.190790
0.706351 0.222835 0.943404
0.609853 0.357124 0.543285
0.667448 0.981204 0.384749
0.232929 0.414669 0.612031
0.746899 0.535671 0.505708
0.006866 0.286428 0.979625
0.263605 0.794207 0.198770
0.325486 0.753091 0.882168
0.589991 0.171909 0.310800
0.192364 0.466240 0.840413
0.485929 0.222155 0.098780

I T S T G T N T N R e el B R
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OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOOP—‘OOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOO'—‘OOOOOOOOOOOOO

26 0.154928 0.369529 0.794789
27  0.147609 0.712685 0.934185
28 0.151357 0.100537 0.768463
29  0.995890 0.992052 0.562380
30 0.167518 0.274811 0.690047
31 0.877638 0.638389 0.307413
32 0.755439 0.872067 0.536830
33 0.166897 0.513302 0.180965
34 0.416015 0.600289 0.285590
35 0.905523 0.833914 0.281912
36 0.471661 0.916765 0.156111
37  0.029969 0.100725 0.535087
38 0.224596 0.243858 0.177413
39 0.567410 0.052890 0.089323
40 0.788180 0.696711 0.073541
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4.2.1 Result Discussion for No High Leverage Cases

From Table-4.a.1, we observe that for sample of size 10, the Twice the mean rule,
Thrice the mean rule and Potential (mean) rule do not identify any observation as
high leverage points but Huber-1 rule, Huber-2 rule and Potential (median) rule
identify 9, 3, and 2 observations respectively as high leverage points where as
there is no high leverage point in the data sets. Again from Table-4.a.2, we
observe that for sample of size 20, the Thrice the mean rule and the Huber-2 rule
identify no high leverage point but the Twice the mean rule, the Huber-1 rule,
Potential (mean) and Potential (median) rule identify 1, 5, 1, and 3 observations as
high leverage point respectively where as there is no high leverage point in the
data sets. Similarly from the table-4.a.3 for sample of size 40, we investigate that
the Thrice the mean rule and the Huber-2 rule identify no observation as high
leverage points but the twice the mean rule, the Huber-1 rule, the potential (mean)
and the Potential (median) rule identify 1 (one) observation respectively as a high

leverage point where as there is no high leverage point in the data sets.
4.2.2 Simulation Results for Different sample sizes

In this subsection we shall show the results of different commonly used measures
of high leverage point after simulating the results 10,000 times by applying the

Monte Carlo simulation design.
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Table-4.b: Swamping of Cases Using Different Measures of Leverages

Sample size Measures | Mean | Median | Trmean | Min | Max
Twice mean 0.118 (1.180)  0.000 0.072 0

Thrice mean 0.000 (0.000) 0.000 0.000 0 0
=10 Huber-1 9.125 (91.250) 9.000 9.177 5 10
Huber-2 2.499 (24.990)  3.000 2.497 0 S

Potential mean 0.000 (0.000)  0.000 0.000 0 0

Potential Med. 0.800 (8.000) 1.000 0.742 0 4

Twice mean 0.400 (2.000)  0.000 0.349 0 3

Thrice mean 0.004 (0.020)  0.000 0.000 0 1

n=20 Huber-1 9.026 (45.130)  9.000 9.007 5 13
Huber-2 0.040 (0.200)  0.000 0.000 0 1

Potential mean 0.207 (1.035)  0.000 0.174 0 1

Potential Med. 0.682 (3.410)  0.000 0.582 0 4

Twice mean 0.534 (1.780)  0.000 0.467 0 4

Thrice mean 0.006 (0.020) 0.000 0.000 0 1

=30 Huber-1 3.440 (11.667)  3.000 3413 0 8
Huber-2 0.000 (0.000)  0.000 0.000 0 0

Potential mean 0.260 (0.867)  0.000 0.231 0 2

Potential Med. 0.610 (2.033)  0.000 0.498 0 5

Twice mean 0.644 (1.610)  1.000 0.589 0 3

Thrice mean 0.008 (0.020)  0.000 0.000 0 1

=il Huber-1 0.644 (1.610)  1.000 0.589 0 3
Huber-2 0.000 (0.000)  0.000 0.000 0 0

Potential mean 0.310 (0.775)  0.000 0.282 0 2

Potential Med. 0.484 (1.210)  0.000 0.407 0 4

Twice mean 0.746 (1.492) 1.000 0.700 0 3

Thrice mean 0.012 (0.024)  0.000 0.000 0 1

=50 Huber-1 0.068 (0.136) 0.000 0.020 0 1
Huber-2 0.000 (0.000)  0.000 0.000 0 0

Potential mean 0.336 (0.672)  0.000 0.304 0 2

Potential Med. 0.510 (1.020)  0.000 0.398 0 5

Twice mean 1.194 (1.194) 1.000 1.113 0 7

Thrice mean 0.000 (0.000)  0.000 0.000 0 0

=100 Huber-1 0.000 (0.000)  0.000 0.000 0 0
Huber-2 0.000 (0.000) 0.000 0.000 0 0

Potential mean 0.496 (0.496)  0.000 0.433 0 1

Potential Med. 0.412 (0.412)  0.000 0.320 0 1

Twice mean 2.054 (1.027)  2.000 1.980 0 7

Thrice mean 0.000 (0.000)  0.000 0.000 0 0

=200 Huber-1 0.000 (0.000)  0.000 0.000 0 0
Huber-2 0.000 (0.000)  0.000 0.000 0 0

Potential mean 0.674 (0.337)  1.000 0.620 0 4

Potential Med. 0.298 (0.149)  0.000 0.216 0 3
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4.2.3 Simulation Result Discussion for No high leverage Cases

Table-4.b reports a Monte Carlo simulation designed to investigate how sensitive
are the different measures of leverages in situations where actually no high
leverage points is present. The results of six sets of measures for each of seven
samples of size n=10, 20, 30, 40, 50, 100, and 200 are based on the average of
10,000 simulations. This table presents the average results of the mean, the median
and the trimmed mean of swamping per sample and the minimum and maximum

numbers of observations, which are swamped in each samples for different sample

sizes.

This Table clearly shows that Huber 1 method is very sensitive and is not suitable
at all for small sample sizes. For a sample of size 10, more than 91% of the total
number of observations are appearing as high leverage points. Out of 10
observations, this method identifies on average 9.125 observations as high
leverage points with median 9.00 and trimmed mean 9.177. We also observe from
the above table that, it identifies minimum 5 observations and maximum 10
observations as high leverage point. Also for a sample of size 20 we observe that,
almost half of the total number of observations are appearing as high leverage
points, i.e. out of 20 observations, this method identifies on average 9.026
observations as a high leverage points whose median is 9.00 and trimmed mean is
90.007. We also observe from the above table that out of 20 observations, it
identifies minimum 5 observations and maximum 13 observations as high leverage
points. This swamping rate is over 10% even for » = 30. Some times it identifies 8
observations as high leverage points with mean 3.44, median 3.00 and trimmed
mean is 3.413. On the other hand, Huber-2 method is least affected by swamping

(except the sample of size n=10 i.e. for sample of size »=10, the swamping rate is
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24.99%) followed by thrice-the-mean rule, Potential (mean), twice-the-mean rule
and Potential (median). For small sample sizes (e.g. for n=20 and n=30) the last
three detection rules have relatively higher (1% to 3%) swamping rates but these
rates tend to decrease with the increasing sample sizes. Also for sample of size 10,

the Thrice-the-mean rule and the Potential (mean) rule is least affected by

swamping.

4.3 ldentification of a Single High Leverage Point

In this section we shall investigate how the different measures of leverages are
successful in the identification of a single high leverage point when in fact a single
high leverage point is present in the data. Throughout the experiment we simulate
the first (n-1) observations of the three predictor data are generated as Uniform
(0,1) and the n-th observation for each of the three predictors and for each of the
sample sizes are fixed at 10, so that the n-th observation will come up as high
leverage point. Let us first consider few examples of similar type. We have used

the same type of design and same notations as considered in the previous section.

Example-1

Table 4.c.1: Results of different measure of leverages in presence of single

leverage point for n = 10.

S.N. | X, [ X, | X, [ 2M [3M [Hul [Hu2 | P.mean | P.med.
1 0.7063 0.0292  0.5548 1
2 0.2604 0.7856  0.7359
3 0.0893 0.3957  0.5815
4 0.6150 0.7822  0.0353
5 0.2951 0.0423  0.5731
6 0.3893 0.1311 0.5373
7
8
9
0

0.7855 0.4354 0.0269
0.3065 0.7322 0.7412
0.1071 0.1734 0.4193
10.0000 10.0000  10.0000
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Example-2

Table 4.c.2 : Results of different measure of leverages in presence of single

leverage point for n = 20.

S.N. X X, X, 2M | 3M | Hul | Hu2 | P.mean | P.med.
1 0.9665 09782 04930 0 0 0 O 0 0
2 0.2101 02455 00753 0 0 0 O 0 0
3 0.7351 0.8326 0.0227 O 0 1 0 0 0
4 04299 05150 07788 0 0O 0 O 0 0
5 04232 02656 08255 0 0 0 O 0 0
6 0.4952 0.7402 0.4510 O 0 0 0 0 0
7 04704 05638 09497 0 0 0 O 0 0
8 0.7216 04274 09457 0 0 0 O 0 0
9 0.0046 03272 03310 0 0 O O 0 0

10  0.0657 04463 0779 0 0 0 O 0 0
11 0.6746 02020 0.1134 0 O 1 0 0 0
12 0.3671 01818 04432 0 0 0 O 0 0
13 0.2491 02650 01281 0 O O O 0 0
14 0.1627 09453  0.6101 0 O 1 0 0 0
15 0.7084  0.2945 07091 0 O 1 0 0 0
16 0.0140 04442 09145 0 O 1 0 0 0
17 0.6.55 07077 06563 0 0 0 O 0 0
18 04098 03785 01028 0 O O O 0 0
19 07599 09111 0.1468 0 0 1 0 0 0
20 10.0000  10.0000  10.0000 1 1 1 1 ] 1
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Example-3

Table 4.c.3 : Results of different measure of leverages in presence of a single
leverage point for n= 40.

S.N. | X, | X | X; [2M [ 3M | Hul [Hu2 [ P.mean | P.med.
1 0.2530 0.8562  0.2397
2 0.5893 0.4001  0.1474
3 0.7595 0.9799  (.8683
4 0.0469 0.4721 (0.2266
5 0.4581 0.2644  0.0290
6 0.1549 0.3776  0.1914
7 0.9884 0.9440  0.0528
8 0.4226 0.6257  0.9384
9 0.2380 0.0844  0.2599

10 0.5719 0.7449 0.9332
11 0.7928 0.5927 0.5169
12 0.8175 0.3623 0.0409
13 0.6792 0.7558 0.1911
14 0.0227 0.8388 0.8965
15 0.3874 0.9378 0.0175
16 0.9622 0.8478 0.9375
17 0.3005 0.5985 0.4179
18 0.5608 0.8601 0.9392
19 0.1415 0.1190  0.8178
20 0.7893 0.9180  0.9082
21 0.2760 0.9202 0.8690
22 0.7558 0.7489 0.3722
23 0.0430 0.9041 0.5897
24 0.3077 0.5388 0.3403
25 0.1018 0.2147 0.6384
26 0.0403 0.9403 0.3576
27 0.4657 0.5788 0.6352
28 0.8509 0.5071 0.0364
29 0.7992 0.9226  0.9942
30 0.9702 0.0959 0.0564
3l 0.0825 0.4437 0.5191
32 0.6663 0.2350  0.8165
33 0.2490 0.7195 (.4096
34 0.1599 0.4027  0.4889
35 0.2690 0.6374  0.7086
36 0.3161 0.9621 0.1342
37 0.7508 0.8032 0.9585
38 0.9847 0.5343 0.5861
39 0.8415 0.5043 0 1Ly
40 10.0000 10.0000 10.0000
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4.3.1 Result Discussion for Single High Leverage Case

From Table 4.c.1 we observe that for the sample of size n=10, Huber-1 and Huber-2
rule identify 9 and 3 observations as high leverage points respectively where in fact
there is only one high leverage point in the data set. It is also observed from the table
that the twice-the-mean rule and potential (median) rule correctly identify the actual
high leverage point. But thrice-the-mean rule and potential (mean) rule identify no
observations as high leverage points i.e. it is failed to identify the actual high leverage

point.

For a sample of size 20, we observe from the table 4.c.2 that the twice the mean rule,
the thrice-the-mean rule, Huber-2, potential (mean), potential (median) rules correctly
identify one observation as high leverage point. But the Huber-1 rule identifies 6

observations as high leverage points including the actual high leverage point.

We observe from Table 4.c.3 that out of 40 observations with a single high leverage
point the thrice-the-mean rule; Huber-2 rule and potential (mean) rule correctly
identify the high leverage point. Both the twice-the-mean rule and Huber-1 rule
swamp 1 observation each as high leverage point after correctly identifying the actual
high leverage point. Also from this table we see that, the potential (median) rule

correctly identifies the high leverage point but it swamp three observations.
4.3.2 Simulation Results for Different Measures of Leverages

In this subsection the simulation experiment is designed to investigate how the
different measures of leverages are successful in the identification of a single high
leverage case. The first (n-1) observations of the three predictor data set for seven

sample sizes are generated as Uniform (0,1) and the n-th observation for each of the
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three predictors and for each of the sample sizes are fixed at 10, so that the n-th
observation will come up as high leverage point in every simulation. The results of

this experiment are presented in the following tables (Table 4.d.1-4.d.7) that are

P —

based on the average of 10,000 simulations.

Table 4.d.1: Simulation results on the identification of a single high leverage

point for n =10

Measures | Identification status | Mean |Median l Tr.mean l Min ‘ Max
Identified 1.000 (100.00%) 1.000 1.000 1 1
2 Mean
Swamped 0.074 (0.74%) 0.000 0.024 0 2
3 Mean Identified 0.000 (0.00%) 0.000 0.000 0 0
Swamped 0.000 (0.00%) 0.000 0.000 0 0
Identified 1.000 (100.00%) 1.000 1.000 1 1
Huber-1
Swamped 6.874 (68.74%) 7.000 0.880 3 9
Huber-2 Identified 1.000 (100.00%) 1.000 1.000 1 1
er-
Swamped 1.448 (14.48%) 0.000 1.440 0 4
Potential Identified 0.000 (0.00%) 0.000 0.000 0 0
(mean) Swamped 0.000 (0.00%) 0.000 0.000 0 0
Potential Identified 1.000 (100.00%) 1.000 1.000 1 1
(median) Swamped 0.546 (5.46%) 0.000 0.482 0 3
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Table 4.d.2: Simulation results on the identification of a single high leverage

point for n = 20

Measures Identification status Mean Median | Tr.mean | Min | Max
5 Mean Identified 1.000 (100.00%) 1.000 1.000 1 1

Swamped 0.194 (0.97%)  0.000 0.151 0 2

Identified 1.000 (100.00%) 1.000 1.000 1 1
3 Mean

Swamped 0.002 (0.01%)  0.000 0.000 0 1

Identified 1.000 (100.00%) 1.000 1.000 1 1
Huber-1

Swamped 5.188 (25.94%) 5.000 5.202 2 8

Identified 1.000 (100.00%) 1.000 1.000 1 1
Huber-2

Swamped 0.010 (0.05%) 0.000 0.000 0 1
Potential Identified 1.000 (100.00%) 1.000 1.000 1 1
(mean) Swamped 0.000 (0.00%) 0.000 0.000 0 0
Potential Identified 1.000 (100.00%) 1.000 1.000 1 1
(median) Swamped 0.600 (3.00%) 0.000 0.511 0 4

Table 4.d.3: Simulation results on the identification of a single high leverage

point for n = 30

Measures \Identiﬁcation status \ Mean I Median | Tr.mean | Min ] Max
Identified 1.000 (100.00%) 1.000 1.000 1 1
2 Mean
Swamped 0.264 (0.88%) 0.000 0.222 0 2
3 Mean Identified 1.000 (100.00%) 1.000 1.000 1 1
Swamped 0.002 (0.00%) 0.000 0.000 0 1
Huber-1 Identified 1.000 (100.00%) 1.000 1.000 1 1
uber-
Swamped 1.798 (5.99%) 2.000 1.769 0 5
Identified 1.000 (1 00.00%) 1.000 1.000 1 1
Huber-2
Swamped 0.000 (0.00%) 0.000 0.000 0 0
Potential Identified 1.000  (100.00%) 1.000 1.000 1 1
(mean) Swamped 0.000 (0.00%) 0.000 0.000 0 0
Potential Identified 1.000 (100.00%) 1.000 1.000 1 1
(median) Swamped 0.726 (2.42%) 0.000 0.593 0 6
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Table 4.d.4: Simulation results on the identification of a single high leverage

point for #n = 40

Measures I Identification status | Mean | Median l Tr.mean i Min l Max
2 Mean Identified 1.000 (100.00%) 1.000 1.000 1 1
Swamped 0.238 (0.60%) 0.000 0.178 0 2
3 Mean Identified 1.000 (100.00%) 1.000 1.000 1 ]
Swamped 0.000 (0.00%) 0.000 0.000 0 0
Identified 1.000 (100.00%) 1.000 1.000 1 1
Huber-1
Swamped 0.238 (0.60%) 0.000 0.178 0 2
13 (4]
Huber-2 Identified 1.000 (100.00%) 1.000 1.000 1 1
Swamped 0.000 (0.00%) 0.000 0.000 0 0
Potential Identified 1.000 (100.00%) 1.000 1.000 1 1
(mean) Swamped 0.000 (0.00%) 0.000 0.000 0 0
Potential Identified 1.000 (100.00%) 1.000 1.000 1 1
(median) Swamped 0.704 (1.76%) 0.000 0.576 0 9

Table 4.d.5: Simulation results on the identification of a single high leverage

point for n= 50

Measures ‘ Identification status | Mean 1 Median | Tr.mean l Min I Max
2 Mea Identified 1.000 (100.00%) 1.000 1.000 1 1
n
Swamped 0.322 (0.64%) 0.000 0.273 0 2
3 Me Identified 1.000 (100.00%) 1.000 1.000 1 1
an
Swamped 0.000 (0.00%) 0.000 0.000 0 0
Identified 1.000 (100.00%) 1.000 1.000 1 1
Huber-1
Swamped 0.028 (0.06%) 0.000 0.000 0 1
Huber-2 Identified 1.000 (100.00%) 1.000 1.000 1 1
uber-
Swamped 0.000 (0.00%) 0.000 0.000 0 0
Potential Identified 1.000 (100.00%) 1.000 1.000 1 1
(mean) Swamped 0.000 (0.00%) 0.000 0.000 0 0
Potential Identified 1.000 (100.00%) 1.000 1.000 1 1
(median) Swamped 0.674 (1.39%) 0.000 0.531 0 6
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Table 4.d.6: Simulation results on the identification of a single high leverage

point for n = 100

Measures ] Identification status I Mean | Median | Tr.mean l Min | Max

> Mean Identified 1.000 (100.00%) 1.000 1.000 1 1
Swamped 0.400 (0.40%) 0.000 0.000 0 4

3 Mean Identified 1.000 (100.00%) 1.000 1.000 1 1
Swamped 0.000 (0.00%) 0.000 0.000 0 0
I -

Huber-1 dentified 1.000 (100.00%) 1.000 1.000 1 1
Swamped 0.000 (0.00%) 0.000 0.000 0 0

= =

Huber-2 Identified 1.000 (100.00%) 1.000 1.000 1 1
Swamped 0.000 (0.00%) 0.000 0.000 0 0

Potential Identified 1.000 (100.00%) 1.000 1.000 1 1

(mean) Swamped 0.000 (0.00%) 0.000 0.000 0 0

Potential Identified 1.000 (100.00%) 1.000 1.000 1 1

(median) Swamped 0.768 (0.77%) 0.000 0.609 0 9

Table 4.d.7: Simulation results on the identification of a single high leverage

point for n = 200

Measures | Identification status l Mean I Median | Tr.mean I Min | Max
2 Mean Identified 1.000 (100.00%) 1.000 1.000 1 1
Swamped 0.516 (0.26%) 0.000 0.420 0 5
5 Tiawi Identified 1.000 (100.00%) 1.000 1.000 1 k
Swamped 0.000 (0.00%) 0.000 0.000 0 0
Huber-1 Identified 1.000 (100.00%) 1.000 1.000 1 1
Swamped 0.000 (0.00%) 0.000 0.000 0 0
Identified 1.000 (100.00%) 1.000 1.000 1 1
Huber-2
Swamped 0.000 (0.00%) 0.000 0.000 0 0
Potential Identified 1.000 (100.00%) 1.000 1.000 1 1
(mean) Swamped 0.000 (0.00%) 0.000 0.000 0 0
Potential Identified 1.000 (100.00%) 1.000 1.000 1 1
(median) Swamped 0.896 (0.045%) 0.000 0.736 0 7
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4.3.3 Simulation Results Discussion for Single High Leverage Case

It is observed from Table-4.d.1 that out of 10 observations twice-the-mean rule
correctly identify the leverage value. The success rate of this rule is 100%. The
mean, median, and trimmed mean are 1 respectively while the no of high leverage
point is also 1. It is also observed from table that, Huber-1, Huber-2 and Potential
(median) rules perform similarly for correct identification. But Huber-1 rule
swamped 68.74% of the total observations. The mean of swamping is 06.874,
median is 7.00 and trim mean is 6.88. This rule identifies minimum 3 and
maximum 9 observations as high leverage point, where as there is only one high
leverage point present in the data set. The huber-2 and potential (median) rule
swamped 14.48% and 5.46% of the total observations. The swamping mean is
1.448 and 0.546, median is 1 and 0, and trim mean is 1.44 and 0.482 respectively.
The Huber-2 method swamped minimum 0 and maximum 4 observations. Also the
potential (median) rule swamped minimum 0 and maximum 3 observations. On
the other hand, the thrice the mean rule and the Potential (mean) rule can not

identify any of the high leverage points.

From Table-4.d.2 we observe that out of 20 observations all the six measures
successfully identified the high leverage points. The success rate is 100%. But
Huber-1 rule swamped 25.94 % of the total observations. The mean, median and
trimmed mean of swamping are 5.188, 5.00 and 5.202 respectively. This rule
swamped minimum 2 and maximum 8 observations. The potential (median) rule
swamped 3% of the total observations. The mean, median and trimmed mean are
0.60, 0.00 and 0.511 respectively. It swamped minimum 0 and maximum 4
observations. The twice-the-mean, thrice-the-mean, and Huber-2 rule swamped

0.97%, 0.10%, and 0.05% of the total observations, the mean is 0.194, 0.002 and
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0.005, the median is 0.00 and trim mean is 0.151, 0.00 and 0.00 respectively. The

potential (mean) rule swamped no observations.

From Table-4.d.3 we observe that all measures of leverages correctly identify the
high leverage points. The success rate is again 100%. The Huber-2 and potential
(mean) rule swamped no observations. The twice-the-mean rule swamped 0.88%
of the total observations, the swamping mean is 0.264, median is 0.00, trimmed
mean is 0.222 respectively and it swamped minimum O and maximum 2
observations. The thrice-the-mean rule swamped 0.01% of the total observations.
The mean is 0.002, median is 0.00, trimmed mean is 0.00, and it swamped
maximum 1 observation. The Huber-1 and potential (median) rule swamped
5.99% and 2.42% of the total observations respectively. The mean, median and
trimmed mean is 1.798 and 0.726, 2.00 and 0.00, and, 1.769 and 0.593
respectively. Out of 30 observations, these two rules swamped minimum 0 and

maximum 5 and 6 observations respectively.

From the Table-4.d.4 we observe that all the measure of leverages showed a good
performance for identification. The rate of identification is 100%. The thrice-the-
mean, Huber-2 and potential (mean) swamped no observations. The twice-the-
mean, Huber-1 and potential (median) rule swamped 0.60%, 0.60% and 1.76% of
the total observations. The mean, median and trimmed mean is (0.238, 0.238 and
0.704), (0.00, 0.00 and 0.00) and (0.178, 0.178 and 0.576) respectively. Out of 40

observations, each of these three methods swamped maximum 2 observations.

From Table-4.d.5 we observed that all the measure of leverages showed a good
performance for identification. The rate of identification is 100%. The thrice-the-
mean, the Huber-2 and potential (mean) swamped no observations. The twice-the-
mean, Huber-1 and potential (median) rule swamped 0.64%, 0.06% and 1.35% of

the total observations. The mean, median and trimmed mean is (0.322, 0.028 and
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0.674), (0.00, 0.00 and 0.00) and (0.273, 0.00 and 0.531) respectively. Out of 50

observations, these three methods swamped maximum 2, 1 and 6 observations

respectively.

We observe from Table-4.d.5 that all the measure of leverages showed a good
performance for identification. The rate of identification is 100%. The thrice-the-
mean, the Huber-1, the Huber-2 and potential (mean) swamped no observations.
The twice-the-mean, and potential (median) rule swamped 0.40%, and 0.77% of
the total observations. The mean, median and trimmed mean is (0.40 and 0.768),
(0.00, and 0.00) and (0.316 and 0.609) respectively. Out of 100 observations, these

two methods swamped maximum 4 and 9 observations respectively.

Finally from Table-4.d.6 we observe that all the measure of leverages showed a
good performance for identification. The rate of identification is 100%. The thrice-
the-mean, the Huber-1, the Huber-2 and potential (mean) swamped no
observations. The twice-the-mean rule and potential (median) rule swamped
0.26%, and 0.45% of the total observations. The mean, median and trimmed mean
is (0.516 and 0.896), (0.00, and 0.00) and (0.420 and 0.736) respectively. Out of
200 observations, these two methods swamped maximum 5 and 7 observations

respectively.

From the above discussion we can conclude that, except the sample of size 10,
each and every methods considered in this experiment is very successful in the
identification of the high leverage point as the success rate is always 100%. But
Huber 1 method possesses a very high swamping rate. For a sample of size 20, this
rate is over 25% and for n = 30, this rate is over 5%. Potential (mean) performed

best in this experiment since it did not swamp any of the good cases.
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Chapter Five

Identification of
Multiple High Leverage Points

In the previous chapter we consider cases with no high leverage point or with a

single high leverage point. But often we experience that a group of observations in
the X-space can exert too much influence in the fitting of a model. This group of
observations is known as multiple high leverage points. We observed in chapter
four that commonly used leverage measures are being successful in the
identification of a single high leverage case. But we anticipate that it is not easy to
identify multiple high leverage points. It has been reported by many authors [see
Rousseeuw and Leroy (1987), Barnett and Lewis (1994), Pefia and Yohai (1995)]
that multiple high leverage points are mainly responsible for masking outliers. But
the presence of multiple high leverage points may mask themselves in such a way
that many of them are not identified when using commonly used leverage

measures.
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In this chapter we shall propose a new method of detecting multiple high leverage
points in linear regression using generalized potential. We shall show how this
method works to identify multiple high leverage points compare with the existing
methods. At first we present an example and few figures, and then we report a
Monte Carlo simulation experiment, which is designed to investigate how, this
method along with other six existing methods effective to identify the multiple

high leverage points in linear regression.

At last we shall present some graphical techniques, which are also use to identify

the multiple high leverage points.
5.1 GENERALISED POTENTIALS

In this section we extend the idea of a single case deleted potential to a group
deletion study. Let us denote a set of cases 'remaining' in the analysis by R and a
set of cases 'deleted’ by D. Let us also suppose that R contains (n-d) cases after
d<(n-k) cases in D are deleted. Without loss of generality, assume that these

observations are the last of d rows of X and Y so that the weight matrix

W = X(X"X)"' X" can be partitioned as
W =
vTou,
Where U, = X (X" X)X, and U, = X (XTX)'X," are symmetric matrices of

order (n-d) and d respectively and ¥ =X, (X" X)X, is a (n-d)xd matrix.

Using the result of Henderson and Searle (1981), (X FX,)" can be expressed as

(XTX, ) = (XTX)" + (XX ) Xp(1, =Up )" Xp( X' X)” (5.1)
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Where I, is an identity matrix of order d. When a group of observations D is

omitted, we define

w, " =2 (XTX ) %, i =12, m (5.2)

It should be noted that w,™ is the i-th diagonal element of X(X;X,)"'X'

matrix. It can also be expressed by using (5.1) as
w, P = w, X (XX XD, - U)X (XTX) ' x,
Which also implies that for any i,

w. D

i 2 wii (53)

When the size of R is (n-1) and D = i, we observe from (2.1) that

bl WFrwl L
Wi =X (X(i)X(i)) X; = Dy

n

Which shows that w,"™ is a natural extension of p; .

Suppose now that a further point i is removed from the remaining subset R and
joins the deletion subset D. For any such #, from (5.1) and (5.2) it is easy to show
that

TeyT 2 (-D)
(x; (XrXg) X)) L (5.4)

wi®@D — T XTX Yy +
i (XpXp) ", ]-_xiT(X.gXR) X, —

i

This tells us that the potential value of any case I, generated externally should be

_ ' WD
equivalent to the quantity 1—”—(_—[)7 when w;
— W,

(-P) is generated internally on a

reduced sample space R. From (5.2) and (5.4) generalised potentials for all

members in a data set are defined as
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by =~ for ieR, for ieD (5.5)

Where D is any arbitrary deleted set of points. It is obvious from (5.2) and (5.5)
that for any i, p, > w, and p,” will be more sensitive to the high leverage points.
There exists no finite upper bound for p, ’s and it may not be easy to derive a
theoretical distribution of them. But this does not make any problem to obtain a

suitable confidence bound type cut-off point for them. One could consider p, to

be large if
p. > Median (p,") + ¢* MAD (p,) (5.6)
Where M4D (p,’) = - 61745 [Median {| p, - Median (p, )|}]

Although the expression of generalised potentials is available for any arbitrary set
of deleted cases, D, the choice of such a set is very important. For Hadi’s
potentials, we have no similar choice. Each and every observation is deleted in
turn to determine weights in those cases. But for generalised potentials, it is an
important choice which group of observations should be deleted, since the

omission of this group determines the weights for the whole set.

Example: The well known Hawkins, Bradu, and Kass (1984) may be a classic
example of such a case. They constructed a three predictor artificial data set
containing 75 observations with 14 high leverage points (cases 1-14) and 61 low

leverage points (cases 15-75) which are given in the next page as Table-5.a.1.
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Table 5.a.1: Hawkins-Bradu-Kass (1984) Artificial Data

ﬂdexl X | X [ x5 Y Index | X, | X, [ X3 | Y
10.1  19.6 283 9.7 39 2.1 0.0 1.2 -0.7
95 205 289 10.1 40 0.5 2.0 1.2 -0.5
10.7 202  31.0 10.3 41 3.4 1.6 29 -0.1
99 218 317 9.5 42 0.3 1.0 2.7 0.7

10.3  21.1 31.1 10.0 43 0.1 33 0.9 0.6
10.8 204 282 10.0 44 1.8 0.5 32 -0.7
10.5 209 29.1 10.8 45 1.9 0.1 0.6 -05
9.9 19.6 28.8 10.3 46 1.8 0.5 3.0 -04
9.7 20.7 31.0 9.6 47 3.0 0.1 0.8 -09
9.3 19.7 303 99 48 3.1 1.6 3.0 0.1
11.0 24.0 35.0 -0.2 49 3.1 2.5 1.9 09
120 23.0 37.0 -0.4 50 2.1 2.8 29 -04
120 26.0 34.0 0.7 51 2.3 L 04 0.7

1
2
3
4
5
)
7
8
9
10
11
12
13
14 11.0 34.0 34.0 0.1 52 3.3 0.6 1.2 -0.5
15 3.4 2.9 2.1 -04 53 0.3 0.4 3.3 0.7
16 3.1 2.2 0.3 0.6 54 1.1 3.0 0.3 0.7
17 0.0 1.6 0.2 -0.2 55 0.5 2.4 0.9 0.0
18 2.3 1.6 2.0 0.0 56 1.8 3.2 0.9 0.1
19 0.8 2.9 1.6 0.1 57 1.8 0.7 0.7 0.7
20 3.1 34 2.2 0.4 58 24 34 1.5 -0.1
21 2.6 2.2 1.9 0.9 59 1.6 2.1 3.0 -0.3
22 0.4 3.2 1.9 0.3 60 03 1.5 33 -0.9
23 2.0 2.3 0.8 -0.8 61 04 34 3.0 -0.3
24 1.3 2.3 0.5 0.7 62 0.9 0.1 0.3 0.6
25 1.0 0.0 0.4 -0.3 63 1.1 2.7 0.2 -0.3
26 0.9 33 2.5 -0.8 64 2.8 3.0 2.9 -0.9
27 3.3 2.5 2.9 -0.7 65 2.0 0.7 2.7 0.6
28 1.8 0.8 2.0 0.3 66 0.2 1.8 0.8 -0.9
29 1.2 09 0.8 0.3 67 1.6 2.0 1.2 -0.7
30 1.2 0.7 34 -0.3 68 0.1 0.0 1.1 0.6
31 3.1 1.4 1.0 0.0 69 2.0 0.6 0.3 0.2
32 0.5 2.4 0.3 -0.4 70 1.0 2.2 2.9 0.7
33 1.5 3.1 1.5 -0.6 71 2.2 2.5 2.3 0.2
34 0.4 0.0 0.7 -0.7 72 0.6 2.0 1.5 -0.2
35 3.1 2.4 3.0 0.3 73 0.3 1.7 2.2 0.4
36 1.1 2.2 2.7 -1.0 74 0.0 2.2 1.6 -0.9
37 0.1 3.0 2.6 -0.6 75 0.3 0.4 2.6 0.2

1.2 0.2 0.9

W
co
—
Lh
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Table 5.a.2: Leverages, Potentials and Generalised Potentials for Hawkins-Bradu-

Kass (1984) Data

Il’ldex W;; Pii p; Index W, P p;
1 0063 | 0067 | 1446 | 39 0.035 | 0.036 |0.07
2 0.060 | 0.064 | 1522 | 40 0030 | 0.031 |0.04
3 0.086 | 0.094 | 1697 | 41 0052 | 0.055 |0.09
4 0.081 | 0088 | 18.02 | 42 0055 | 0058 |0.07
5 0.073 | 0079 | 1738 | 43 0061 | 0.065 |0.09
6 0076 | 0082 | 1561 | 44 0041 | 0043 |0.09
7 0.0068 | 0.073 | 1571 45 0.029 | 0.030 |0.07
8 0063 | 0067 | 148 | 46 0.038 | 0.040 |0.07
9 0080 | 0087 | 17.03 | 47 0.066 | 0.071 |0.10
10 0087 | 0095 | 1597 | 48 0041 | 0.043 |0.08
11 0094 | 0104 | 2239 | 49 0047 | 0.049 |0.06
12 0.144 | 0.168 | 24.03 50 0016 | 0.016 |0.05
13 0109 | 0122 | 2273 51 0.036 | 0.037 |0.05
14 0564 | 1294 | 2816 | 52 0072 | 0.078 |0.09
15 0.058 | 0.062 008 | 53 0079 | 0.086 |0.12
16 0.076 | 0.082 009 | 54 0.040 | 0042 |0.08
17 0.039 | 0.041 008 | 55 0.034 | 0035 |0.05
18 0023 | 0.024 0.03 56 0037 | 0.039 |0.06
19 0031 | 0.032 004 | 57 0023 | 0024 |0.05
20 0048 | 0.050 009 | 58 0040 | 0.042 |0.07
21 0029 | 0.030 004 | 59 0019 | 0019 |0.04
22 0046 | 0.048 007 | 60 0.062 | 0.066 |0.09
23 0029 | 0.030 0.04 | 6l 0.051 | 0.054 |0.10
24 0026 | 0.027 0.05 62 0.021 | 0.021 |0.08
25 0022 | 0.022 008 | 63 0036 | 0.037 |0.07
26 0032 | 0033 007 | 64 0026 | 0.027 |0.07
27 0042 | 0.044 008 | 65 0031 | 0.032 |0.06
28 0024 | 0.025 0.03 66 0.036 | 0.037 |0.05
29 0018 | 0.018 004 | 67 0019 | 0.019 |0.02
30 0047 | 0.049 009 | 68 0046 | 0.048 |0.09
3] 0.059 | 0.057 007 | 69 0029 | 0.030 |0.07
3 0.036 | 0.037 007 | 70 0.027 | 0.028 |0.05
33 0.026 | 0027 004 | 71 0019 | 0019 |0.03
34 0032 | 0033 0.09 | 72 0028 | 0.0290 |0.03
35 0034 | 0.035 008 | 73 0043 | 0.045 |0.05
36 0023 | 0.024 004 | 74 0050 | 0.053 |0.05
37 0059 | 0.063 008 | 75 0.062 | 0.066 |0.09

38 0021 | 0.021 0.05
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Table-5.a.2 presents the commonly used leverage values w, together with Hadi’s

potential values p; and generalised potential p;.

It is clear from the results presented in the Table-5.a.2 that w, values corresponding
to the most of the high leverage points are not large enough and if any one
considered Vellman and Welsch (1981)'s “thrice-the-mean” rule only observation
14 appears as the point of high leverage. Similar conclusion might be drawn
following Huber (1981)'s suggestion. Though the p, values are more sensitive to
high leverage points this table shows that they fail to focus on first 13 cases. But

generalised potential clearly distinguishes 14 high leverage points from other

observations.

Index plot of each of the three regressors of Hawkins-Bradu-Kass (1984) data is
presented in figure-5.1 while figure-5.2 presents index plots of leverages, and

potentials for the same.
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Figure 5.1.a: Index Plot of X;
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Figure 5.2.a: Index plot of Leverages
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Figure 5.2.b: Index Plot of Potentials
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Figure 5.2.c: Index Plot of Generalized Potentials

From the above figures we observe that Figures 5.1.a-5.1.c clearly show the first
14 observations are too far from the rest of the data. It is interesting to see from
figures 5.2.a and 5.2.b that when w, and p; are considered only case 14 appears
as high leverage point in their respective index plots. The other 13 high leverage

points appear as points of low leverages. Although these 14 points have similar X
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values, w, and p,value for the 14-th observation is different from those of the first

13 observations. Thus the first 13 observations are masking from the leverage
point of view when the first 14 observations are high leverage points. In order to
avoid this problem we introduced “Generalised Potential”. From figure 5.2.c we

clearly observe that the first 14 observations are high leverage points.

5.2 Identification of Multiple (10%) Equally High Leverage Points

In this section we shall investigate how successfully the different measures of
leverage identify high leverage cases when a group of leverage points are present

in the data.
5.2.1 Different examples for the performance of the seven sets of measures

In order to compare the performances of six sets of measures as considered in the
previous chapter for the identification of multiple equally high leverage points, we
shall consider at first the cases where high leverage points are of same value. Let
us consider the following examples. For the three examples considered here we
generate the first 90% observations for each of the three predictor data set as
Uniform (0, 1) by using the Monte Carlo simulation design and the last 10%
observation for each of the three predictors and for each of the sample sizes are

fixed at 10, so that the last 10% observations will come up as high leverage point.
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Example-1

Table-5.b.1 Results of measures of leverages for 10% high leverage data for =20

SN X | X% | X [aMm | 3M [ Hu-1 [ Hu-2 [ P.mean | P.med [ G.P.
1 0.1458 0.6596 03083 0 0 0 0 0 0 0
2 0.8435 0.8946  0.1619 0 0 1 0 0 0 0
3 06859 0.8649 0.7653 0 0 0 0 0 0 0
4 0.6105 0.2509 04001 0 0 0 0 0 0 0
5 02787 08215 02578 0 0 0 0 0 0 0
6 0.5008 0.7062 05396 0 0 0 0 0 0 0
7 07945  0.7248 05502 O 0 0 0 0 0 0
g8 09151 0.6714 03794 0 0 0 0 0 0 0
9 0.1353 0.5854 0.9806 1 0 1 0 0 1 0

10 0.9025 0.1465 0.7231 1 0 1 0 0 1 0
11 05578  0.2271 0.1733 0 0 0 0 0 0 0
12 0.2467 0.6634 05191 O 0 0 0 0 0 0
13 0.3145 09176  0.7040 O 0 0 0 0 0 0
14 09918 0.6518 04217 0 0 0 0 0 0 0
15 0.0622 09769 03183 O 0 1 0 0 0 0
16 0.7060 0.6193 04252 0 0 0 0 0 0 0
17 0.6484  0.8561 08119 0 0 0 0 0 0 0
18 08268 0.8738 0.7385 O 0 0 0 0 0 0
19 10.0000 10.0000 10.0000 1 0 1 0 0 1 1
20 10.0000 10.0000 10.0000 1 0 1 0 0 1 1
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Example-2

Table-5.b.2 Results of measures of leverages for 10% high leverage data for n=30

SN. [ X I Xy | Xy | 2M [ 3M [ Hu-1 | Hu2 | P.mean | P.med | G.P.
1 0.6608 0.0605 08122 0 0 0 0 0 0 0
2 03945 0.6917 0.5998 0 0 0 0 0 0 0
3 0.4442 0.8255 0.8999 0 0 0 0 0 0 0
4 08128 0.5395 0.5000 0 0 0 0 0 0 0
5 0.1807 0.6104  0.1908 0 0 0 0 0 0 0
6 07162 0.4220 03534 0 0 0 0 0 0 0
7  0.5662 0.9231 0.5169 O 0 0 0 0 0 0

08  0.2394 0.9454 0.5043 © 0 0 0 0 0 0
9 0.0742 0.3208 0.3096 O 0 0 0 0 0 0
10  0.0728 0.3762 09164 0 0 1 0 0 0 0
11 0.0355 0.8962 0.1278 0 0 0 0 0 0 0
12 0.1621 0.8259 03893 O 0 0 0 0 0 0
13 0.9170 0.1571 0.9019 O 0 0 0 0 0 0
14 0.5297 0.4689 05155 O 0 0 0 0 0 0
15 0.0793 0.4790 0.8532 O 0 0 0 0 0 0
16  0.7856 0.1278 0.8728 0 0 0 0 0 0 0
17 0.2602 0.4841 0.1598 O 0 0 0 0 0 0
18  0.1555 0.3042 0.5285 O 0 0 0 0 0 0
19 0.2943 0.1164 0.4657 O 0 0 0 0 0 0
20 0.4659 0.0266 0.0031 O 0 0 0 0 0 0
21 0.0154 0.1982 0.1588 0 0 0 0 0 0 0
22 0.8779 0.6096 0.7665 O 0 0 0 0 0 0
23 0.7688 0.2673 0.8404 O 0 0 0 0 0 0
24 0.6194 0.4255 05032 O 0 0 0 0 0 0
25  0.3685 0.8498 0.4523 0 0 0 0 0 0 0
26 0.9078 0.9798 0.1536 1 0 1 0 0 1 0
27 0.5305 0.4324 09982 0 0 0 0 0 0 0
28 10.0000 10.0000 10.0000 1 0 1 0 0 1 1
29 10.0000 10.0000 10.0000 1 0 1 0 0 1 1
30 10.0000 10.0000 10.0000 1 0 1 0 0 1 1
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Example-3

Table-5.b.3 Results of measures of leverages for 10% high leverage data for =40

SN. | X, | X X5 2M | 3 - -
L | X [ | 3M [ Hu-1 [ Hu-2 | P.mean | P.med | GP.
2 02707 0.7609  0.6883
3 0.8935 0.5368 0.1118
4 07309 0.8714  0.4200
5 04913  0.2684 0.7213
6 0.9929  0.1250  0.9353
7 0.1107 0.0912  0.9285
8 01632 0.6284  0.5632
9 0.8475 0.9535  0.8187

10 05185  0.6364  0.6536
11 0.7971 0.5416  0.9988
12 0.0184 03178  0.5986
13 0.0777 0.2884  0.5982
14 0.7331 02946  0.1659
15 0.1451 0.5110  0.8217
16 0.6507  0.6811 0.8198
17 0.7319  0.2811 0.8801
18 0.8869  0.6271 0.2023
19 07162 0.9966  0.2819
20 09296  0.4457  0.9908
21 03103  0.6357  0.2463
22 00792 0.1556  0.8185
23 0.5296  0.4175 0.7495
24 0.5708  0.5601 0.7038
25 03262 02012  0.8336
26 0.8654 0.7048  0.3735
27 04372 02928  0.6551
28 0.1371 0.5677  0.8451
29 02672  0.5275 0.7127
30 09564  0.0211 0.5381
31  0.3804 0.6439  0.1322
32 04278 03384  0.8871
33 07952 0.1675 0.1940
34 04783 0.6712  0.7999
35 0.6201 0.7163 0.8226
36 04760  0.8758 0.2251
37 10.0000 10.0000 10.0000
38 10.0000 10.0000 10.0000
39 10.0000 10.0000 10.0000
40 10.0000 10.0000 10.0000
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5.2.2 Result Discussion

We observe from Example-1 that when multiple (10%) high leverage points are present the
twice-the-mean rule, the Huber-1 rule and the potential (median) rule correctly identify the hi gh
leverage points. They also identify 2, 4 and 2 observations respectively as high leverage points,
which are in fact not high leverage points. Rest of the three rules fail to identify any
observations as high leverage points though there are two high leverage points present in the
data set. But Generalised Potential correctly identifies the high leverage points and it does not

swamp any good observations as high leverage points.

Similar results are obtained found from Example-2. Here twice-the-mean rule, Huber-1 rule
and potential (median) rule correctly identify the three high leverage points. They also
respectively swamp 1, 2 and 1 other observation(s). Rest of the three rules can’t identify any
observations as high leverage points i.e., three high leverage points are masked here. Here too
Generalised Potential correctly identifies the high leverage points and it does not identify any

good observations as high leverage points or masks any high leverage points.

We also observe from example-3 that the twice-the-mean rule, the Huber-1 rule and potential
(median) rule correctly identify the four high leverage points. It is also observed that twice-the-
mean rule and Huber-1 rule swamped another observation each. In this example too, rest of the
three rules cannot identify any observations as high leverage points though there are four high
leverage points present in the data set. Generalised Potential produced the best set of results for

this data.

5.2.3 Simulation Results

Here we report a Monte Carlo simulation experiment designed to compare the performances of
seven sets of measures in the identification of multiple high leverage points when 10% of the
data set are of equally high leverage. We constructed the data sets for different sample sizes as
it was generated for the examples presented in the subsection 5.2.1. Tables 5.c.1-5.c.6 present
simulation results of the measures of equally high leverage points for different sample sizes.

Each of the results presented here is based on the average of 10,000 simulations.
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Table S.c.1: Simulation results in presence of multiple (10%) equally high

leverage point (2)

I SEsTEeS Identification Sample size,
Status 20 | 30 [ 40 [ s0 [ 100 | 200

2 Mean Identified 2.000  3.000 4.000 5.000 10.000 20.000
Swamped 0.268 0.420  0.563 0.605 1.063 1.910
3 Mean Identified 0.000  0.000 0.000 0.000 0.000  0.000
- Swamped 0.000 0.008 0.008 0.010 0.008 0.000
Huber-1 Identified 2.000  3.000 4.000 0.000 0.000  0.000
Swamped 5710 2425 0.563 0.065 0.000 0.000
Huber-2 Identified 0.000  0.000  0.000 0.000 0.000 0.000
Swamped 0.038  0.000  0.000 0.000 0.000  0.000
Potential (mean) Identified 0.000 0.000 0.000 0.000 0.000 0.000
Swamped 0.008 0.025 0.028 0.020 0.018 0.003
Potential {med) Identified 1.860  2.318 2.560 2.963 2.525 1.000
Swamped 0.470 0.390 0.368 0.323 0.208 0.145
=3 Identified 2.000 3.000 4.000 5.000  10.000 20.000
Generalised Swamped 0.208 0.150 0.200  0.170 0.130  0.125
Potential =5 Identified 2.000  3.000 4.000 5.000 10.000 20.000
Swamped 0.013 0.010 0.005 0.010 0.005 0.000

Table 5.c¢.2: Simulation results in presence of multiple (10%) equally high

leverage point (3)

MeasiiFes Identification Sample size, n
Status 20 | 30 | 40 [ 50 [ 100 | 200

2 Mean Tdentified  20.000 3.000 4.000  5.000 10.000 20.000
Swamped 0258 0398  0.525 0570  1.063 1898
Identified 0000 _ 0.000 _ 0.000  0.000  0.000  0.000
= e Swamped  0.000 0008  0.005 _ 0.010  0.000 _ 0.000
Tdemtified  2.000  3.000 4.000 0.000  0.000  0.000
Huber-1 Swamped 5640 2303 0525  0.058  0.000  0.000
Identified __0.000 _ 0.000 _ 0.000 _ 0.000  0.000  0.000
Huber-2 Swamped 0025 0000 _ 0.000 _ 0.000  0.000  0.000
. Identified _0.000 0000 0000  0.000 0.000  0.000
Potential (mean) g phed 0005 0013 0010 0015 0.000  0.000
: ldentified 1970 2790 3470 3525 5100  5.050
Potential (med-) g onined 0450 0363 0325 0268 0.155  0.103
Tdentified  2.000 3.000 4000  5.000 10.000 20.000
Generalized <>  Swamped _ 0.150  0.145 0150 0173 0.138 0.120
Potential Tdentified 2000 3.000 4000 5000 10.000 20.000
=5  Gwamped 0013 0013 0000 0008 0000 _0.000
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Table 5.c.3: Simulation results in presence of multiple (10%) equally high

leverage point (4)

Y P— Identification Sample size, 1t
Status 20 | 30 [ 40 [ s0o [ 100 | 200

2 Mean Identified 2000  3.000 4.000 5.000 10.000 20.000
Swamped 0268 0.443 0.505 0.605 0.953 1.773
3 Mean Identified 0.000  0.000 0.000 0.000 0.000 0.000
- Swamped 0.003 0.005 0.003 0.005 0.000  0.003
Huber-1 Identified 2.000  3.000 4.000 0.000 0.000 0.000
Swamped 5.613 2250  0.505 0.0400 0.000  0.000
Huber-2 Identified 0.000  0.000 0.000 0.000 0.000  0.000
Swamped 0.035 0.000 0.000 0.000 0.000 0.000
Potential (mean) Identified 0.000  0.000  0.000 0.000 0.000  0.000
Swamped 0.003 0.007 0.003 0.005 0.003 0.003
Potential (med.) Identified 1.975 2.850 3490  3.862 5150  5.400
Swamped 0433 0395 0.323 0.265 0.130  0.070
=3 Identified 2,000  3.000 4.000 5.000 10.000 20.000
Generalized Swamped 0.163 0.170 0.170 0.175 0.130 0.128
Potential - Identified 2.000 3000 4.000 5000 10.000 20.000
Swamped 0.005 0.018 0010 0.008 0.000 0.000

Table 5.c.4: Simulation results in presence of multiple (10%) equally high

leverage point (5)

M Identification Sample size, n
HERRES Status 20 | 30 | 40 | 50 | 100 | 200

Tdentified _ 2.000 _3.000 4000 5000 10.000 20.000
2 Mean Swamped 0270 0415  0.538  0.640  1.053  1.850
Identified 0000 _ 0.000 0000  0.000  0.000  0.000
2 Mean Swamped 0008 0005 0003  0.005  0.005 _ 0.000
Tdentified  2.000 _ 3.000  4.000  0.000  0.000  0.000
Huber-1 Swamped 5430 2325 0538  0.058  0.000 _ 0.000
Identified __0.000 _ 0.000 _ 0.000  0.000 _ 0.000  0.000
Hber-2 Swamped 0038 _ 0000  0.000  0.000 _ 0.000 _ 0.000
Identified 0000 0.000 0000 0000  0.000  0.000
Eotenthl {riean) Swamped  0.008 0005 0005 0005  0.005  0.000
- 085 2.865 3550 4313 5900  8.500
Potenfial (med.) é‘:f;’;lﬂﬁg (1).235 0423 0318 0300 0230  0.070
Tdentified 2000 3.000 4000 5.000 10.000 20.000
Generalized >  Swamped 0190 0165 0145 0203 0.153 02113
Potential Tdemtified 2000 3.000 4000  5.000 10.000 20.000
- ¢=5  Gwamped 0015 0010 0010 0005 0003 0.000
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Table 5.¢.5: Simulation results in presence of multiple (10%) equally high

i

leverage point (8)

e — Identification Sample size, n
- Stat.us 20 | 30 [ 40 [ so [ 100 | 200

3 Mean Identified 2.000 3.000 4.000 5.000 10.000 20.000
Swamped 0275 0403 0528  0.535 1.005 1.7625
3 Wisan Identified 0.000  0.000 0.000 0.000 0000 0000
Swamped 0.013 0.000 0.003 0.003 0.000 0.000
—— Identified 2000 3.000 4.000 0.000 0.000 0.000
Swamped 5465 2203  0.528  0.045  0.000  0.000
—_— Identified 0.000  0.000 0.000 0.000 0.000 0.000
Swamped 0.045 0.000 0.000 0.000 0.000 0.000
. Identified 0.000  0.000 0.000 0.000 0.000 0.000
Potential (mean) Swamped 0.013  0.003 0005 0.003 0000  0.000
] Identified 1.995 2.865 3.620 4283 6200 8.200
Potential (med.) Swamped 0445 0393 0303 0240 0110  0.063
=3 Identified 2.000 3.000 4.000 10.000 10.000 20.000
Generalized Swamped 0.180 0.168 0.165 0.123 0.123 0.140
Potential Identified 2.000 3.000 4.000 10.000 10.000 20.000
Swamped 0.020 0.010 0.005 0.000 0.000  0.000

Table 5.¢.6: Simulation results in presence of multiple (10%) equally high

leverage point (10)

Measures Identification Sample size, n
Status 20 | 30 [ 40 [ 50 | 100 | 200

Identified 2000  3.000 4000 5000 10.000 20.000
2 Mean Swamped 0230 0418 0518  0.605 1015  1.840
Identified _ 0.000 _ 0.000  0.000  0.000  0.000  0.000
= Mean Swamped  0.000 0005  0.003 0000 _ 0.000 _ 0.000
Tdentificd  2.000 _ 3.000 4000 0.000 0.000  0.000
Huber-1 Swamped  5.650 2273 0518 0068 0000  0.000
Identified  0.000 0000  0.000 0000  0.000  0.000
Hnberd Swamped  0.013 0000 _ 0.000 0000  0.000  0.000
Idemtified _0.000 0000  0.000 0000  0.000  0.000
Potential (mean) ~ glonneq 0000 0008  0.003 0000 0000  0.000
dentified 1995  2.873  3.650 4350 6450 8299
Potential (med.)  ooeq 0373 0373 0370 0253 0138 0.077
Identified 2000 3.000 4000 5.000 10.000 20.000
Generalized >  Swamped  0.123 0158 0190 0.175 0.15 0.112
Potential Tdenfified 2000  3.000 4000 5.000 10.000 20.000
=5 Swamped 0018 0013 0003 0008 _0.000 _0.000
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We observe from Tables 5.c.1 to 5.c.6 that the performance of 3 Mean, Huber-2
and potential (mean) is very poor. All the methods could not detect a single high

leverage point for different sample sizes and different weight of leverage points.

They have a negligible swamping rate.

Huber-1 method is performed well for small samples and for each set of leverage
points, For example in Table 5.a.1, this method identified on average 2, 3, 4 high
leverage points for sample sizes 20, 30, and 40 where the magnitude of leverage
points is 2. We also observed from this Table that the swamping rate of this
method is high. For sample sizes 20, 30 and 40 it swamps 5.71, 2.425 and 0.563
observations respectively. That is the swamping rate decreases with the increases
of sample sizes. But even for the moderate sample size like 50 it is not
satisfactory. It could not identify even a single high leverage points for rest of the

sample sizes. Similar results are found from the all other Tables.

Potential (med) is performed comparatively well for small samples, but its

performance tends to become worse with the increase in sample sizes.

The performance of Twice the mean rule is satisfactory for all samples and
different values of high leverage points. It correctly identifies the high leverage

points. It has a considerable swamping rate.

From our simulation experiment, we observed that Generalized Potential
performed best. It was able to identify all high leverage points correctly and

produced very low swamping rate.
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5.3 Identification of multiple (10%) unequally high leverage points

In this section we shall investigate how successfully the different measures of
leverage identify the multiple high leverage points when in fact 10% of the
observations are high leverage points and have different weights. The first 90%
observations of the three regressor data set for sample sizes n = 20, 30, 40, 50, 100
and 200 are generated as Uniform (0,1) and the last 10% observations are
constructed as high leverage points. To generate the high leverage values of
unequal weights the values for each of the three regressors corresponding to the
first high leverage point are kept fixed at 2 and those of the successive values have
increments of 2. Ten thousand simulations are run for each of five set of measures
and for each of six sample sizes and the results based on their averages are

presented in Table 5.d.

Table 5.d: Simulation results in presence of multiple (10%) unequally high

leverage points

Measures Identification Sample size, n
Status 20 | 30 | 40 | 50 [ 100 | 200
Identified 1.000 2000 2000 2000 5.000 10.000
2 Mean Swamped 0283 0410 0425 0593 0963 1638

Identified 1.000 1.000 1.000 2.000 4.000 7.000

e Swamped  0.005 0003 0008  0.000  0.000 _ 0.000
ldentified 1000 2.000 2.000  2.000  2.000  0.000
Huber Swamped 5433 2268 0425 0025  0.000  0.000
Identified 1000 1000 1000  0.000  0.000  0.000
Huber-2 Swamped  0.035 0000  0.000 0000  0.000 _ 0.000

Tdentificd 1000 1.000 1000 1000  3.000  5.600

Potential (mean) g0 eq 0000 0000 0000 0.000  0.000  0.000
Tdentified 1000  1.640 2000 2100 4683 8918

Potential (med.) ~ goon g 0.618 0635 0375 0473 0370  0.238
Hentified 2000 3.000 4000  5.000 10.000 20.000

Generalized Swamped 0.1900 0.178 0.170 0.145 0.150 0.145
Potential ontificd 2000 3.000 4000 5000 10.000 20.000
=5 Gwamped 0018 0013 0005 0000 _0.000 _0.000

c=3
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5.3.1 Simulation Result Discussion

From the table 5.c it is interesting to note that all the detection techniques accept
Generalised Potential break down completely here. So far successful 2-mean rule
breaks down here. For sample sizes 20, 30, 40, 0, 100 and 200, it identified 1, 2, 2,
2, 5 and 10 high leverage points respectively. Almost similar results are found for
the other methods. The performance of Generalised Potential method is

outstanding. For all the samples this method is correctly identified each high

leverage points.
5.4 Graphical Display for Locating Multiple High Leverage Points

In this section we would like to introduce a new graphical display for locating
multiple high leverage points together with outliers and influential observations. A
good number of diagnostic plots are now available in the statistical literature [see
Atkinson (1985), Gray (1986), Hadi (1992), Ghosh (1996), Tsai et al. (1998)] for
various purposes. In this section we consider a class of plots that uses residuals
and leverages of any observation simultaneously to assess the influence of them on
the fit. Although the locating and testing of a single unusual case has been largely
resolved by the use of single case deletion methods, these methods may be
ineffective when a group of unusual cases are responsible for the poor fitting of
the model and hence methods based on group deletions are required. Similar
remarks may apply to the diagnostic plots, which involve residuals and leverages.
We introduce two types of diagnostic plots, the first of which is based on the least

squares residuals and leverage values, and the second plot is based on single case

deleted residuals and leverages.
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5.4.1 Leverage-Residual (L-R) Plot

Gray (1986) proposed the Leverage-Residual (L-R) plot, which is a simple
graphical display of the leverage and residual values for each case in a regression

data set. In this plot, the leverage value w, for each observation i, is plotted against

the square of a normalised form of its corresponding residual &/ iéf . The bulk

P
of the cases will be associated with low leverage and small residuals so that they
cluster near (0, 0). The unusual cases will have either high leverages or large
residual components and will tend to be separated from the bulk of the cases. High
leverage cases will be located in the upper area of the plot and observations with

large residuals will be located in the area to the right.
5.4.2 Potential-Residual (P-R) plot

Hadi (1992) pointed out that in the L-R plot the high leverage cases do not get a
proper emphasis in comparison with the cases having large residuals. He proposed
an alternative plot, which he named as the Potential-Residual (P-R) plot, where

potentials are used as alternatives to the leverages. In a P-R plot, the potential

value p. =w,/(1-w,)for each observation i, is plotted against a normalised

residual component

a 2

kg,
(1 — Wi )(Zéiz - éi2 )

Both the L-R plot and the P-R plot could be useful in assessing influences of

observations in a single case diagnostic study. The P-R plot gives more emphasis

to high leverage cases than the L-R plot. But in a masking and/or swamping
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situation both of them could produce misleading plots and therefore diagnostic
plots based on group deletions are wanted.

5.4.3 Generalized Potentials-Deletion Residuals (GP-DR) Plot

It is now evident that the diagnostic plots discussed in the previous section could
only be informative when the right choice of leverage and residual components is
made. If any group deletion method is able to produce a better set of residuals
which are free of masking and swamping effects, one might expect an appropriate
graphical display when these are used in a plot with their corresponding leverage

components free from the same effects like the generalized potentials.

Here we propose a simple graphical display of group deleted leverages and
residuals. We would use generalised potentials as leverages and the robust RLS
residuals as deletion residuals in this plot and call it ‘generalised potentials -
deletion residuals (GP-DR)’ plot. Since the high leverage points need not to be
outliers and outliers may not be points of high leverage we would expect different
deletion sets D for the computation of these two quantities. The main advantage of
the GP-DR plot is that it is suitable for the data where masking and/or swamping
makes single case diagnostic plots misleading. It is also interesting to note that this
plot, unlike the L-R and P-R plots retains the signs of residuals, which we believe
is very important when their interpretation is considered. Another difference
between the GP-DR plot and the other plots is that we do not propose the

normalisation of residuals or leverages. It is quite possible to suitably normalise

generalized potentials and deletion residuals so that they could be measured on a

similar scale, but for plots it is not crucial, as they are only scale factors. Since the

bulk of the cases will be associated with low leverage and small residuals £6 MOSE
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. ~ (_D) * .
of the pairs (E,- » Py ) will cluster near (0, 0). The unusual cases will have either

high leverages or large residual components and will tend to be separated from the

bulk of the cases. High leverage cases will be located in the upper area of the plot

and observations with large residuals will be located either in the area to the left or

to the right depending on the sign of them.

Examples

Here we consider several well-known data sets, which are frequently referred to in
the study of the identification of influential observations, high leverage points and
outliers. It should be noted that a large body of data sets is now available in the
literature for the same purpose, but in general we would prefer to consider data
sets where we definitely know the real situation. Although such simulated data
sets are artificial in nature, it may help us to investigate the performance of
different methods more reliably. Otherwise there is always uncertainty [Cook and
Hawkins (1990)] about which observations are actually unusual. For each of the
examples considered in this section we would display three different plots; the L-R
plot, the P-R plot and the GP-DR plot. For GP-DR plot we compute reweighted
least squares residuals as deletion residuals (DR) by using PROGRESS program
given by Rousseeuw and Leroy (1987) while the computation of generalized

potentials (GP) are done with a simple program written in MINITAB.

Examlpe-1

First we would consider the well-known Hawkins, Bradu, and Kass (1984) data. It
has been reported by many authors [Rousseeuw and Leroy (1987)] that all single
case deletion methods not only fail to identify the true outliers but most of them

also identify high leverage inliers as outliers. Imon (1996) pointed out that



hapter Five i ;
Chap ldentification of Multiple High Leverage Points 91

commonly used leverage measures also fail to focus on all of the high leverage
points. Table.d.1 presents leverages, potentials, generalized potentials, OLS

residuals and RLS residuals for this data.

Table 5.e:_ OLS and RLS residuals for Hawkins-Bradu-Kass (1984) Data

Index | OLS | RLS Index |[OLS [RLS Index |[OLS [RLS
1 3.38 9.74 26 -048  0.70 51 0.89 0.65
2 3.99 10.18 27 137 074 52 -1.16  -0.55
3 3.00 10.41 28 -0.24 0.41 53 -0.12 1.01
4 2.56 9.56 29 039 0.39 54 1.71 0.69
5 3.06 10.11 30 -127 007 55 0.73 0.09
6 3.44 10.00 31 027 0.8 56 0.78 0.05
7 4.51 10.80 32 056  -0.34 57 0.62 0.74
8 3.84 10.38 33 011 059 58 028  -0.17
9 2.71 9.77 34 068 052 59  -074  -0.18
10 3.04 10.10 35 -0.40 0.29 60  -135  -0.63
11 -7.83 -0.06 36 -1.17  -0.86 61  -0.02  -0.13
12 937 -0.20 37 023 -041 62 069 0.72
13 -6.12 0.62 38 1.25 0.92 63 0.65 -0.31
14 -3.80 -0.21 39 127 -0.63 64 089  -0.52
15  -0.66 -0.50 40 002  -0.38 65  -0.29 0.73
16 0.87 0.46 41 <110 -0.11 66 026  -0.77
17 0.65 -0.07 42 <108 -044 67 049  -0.67
18 -0.39 0.03 43 1.72 0.69 68 0.54 0.83
19 0.65 0.18 44 180  -0.52 69 0.19 0.21
20 0.34 0.31 45 076  -045 70 0.47 0.86
21 0.67 0.88 46 -143  -0.23 71 0.01 0.22
2 0.93 0.42 47  -150  -0.93 72 014 007
23 -043 -0.83 48 087 0.12 73 0.44 0.60
24 1.35 0.71 49 065 0.83 74 039 072
25 030 -0.18 50 -0.69 035 75 -0.35 0.47

It should be noted that to compute GP the first 14 observations of this data set

were omitted while the first 10 observations were deleted to compute RLS

residuals.



Chapter Five

ldentification of Multiple High Leverage Points 92

0.6
™~
0.5 id
0.4
0.3
0.1 » ®
e X ®
, B0
0 0.05 0.1 0.15 0.2 0.25 0.3
Figure 5.3.a. L-R Plot for Hawkins er al. (1984) data
1.4 - —
1.2 e
14
1
0.8
0.6
: Pk
L, pe—ee o bt b
Figure 5.3.b. P-R Plot for Hawkins et al. (1984) data
0.5 @ ¢
11-14 el
0.6
0.4
0.2 -
, : y 4 6 8 10 12

Figure 5.3.c. GP-DR Plot for Hawkins et al. (1984) data
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Figures 5.3.a o 5.3.c show different diagnostic plots for the Hawkins ef al. (1984)
data. Both the L-R plot and the P-R plot fail to identify true outliers, which cluster

near (0,0) with other 61 clean observations. Only one of the 14 high leverage

points, ie. the observation no. 14 is identified as the point of high leverage and
unfortunately 3 high leverage inliers (cases 11-13) are identified as outliers.
However, the newly proposed GP-DR plot becomes very successful in locating
three groups of observations, which are clearly separated from one another. All of
the clean observations cluster around (0,0), 10 high leverage outliers (with positive

signs) are located in the top right corner of the plot and 4 high leverage inliers are

located in the top of the center of this plot.
Example-2

Our next example is Pefia and Yohai (1995) artificial data set-B. The main feature
of this single predictor data set is that the two outlying observations (cases 9 and
10), which are also the points of equally high leverage, correspond to the true
disturbances which are equal in magnitude but have opposite signs. The RLS and
the GP are computed for this data set after the omission of these two high leverage
outliers. The leverages, potentials, generalised potentials, OLS residuals and RLS

residuals for Pefia and Yohai (1995) data set-B are presented in Table 5.1.

Table 5.f: Leverages and residuals for Pefia and Yohai (1995) artificial data set-B.

Case W Di pi OLS RLS
0.4072 0.4167 0.021 0.025
; 8:.3_3?; 0.2840 0.2738 -0.081 -0.079
3 0.1682 0.2022 0.1786 -0.083 -0.082
4 0.1303 0.1498 0.1310 0.115 0.i14
5 0.1076 0.1205 0.1310 0.212 0.211
6 0.1000 0.1111 0.1786 -0.090 -0.?32
7 0.1076 0.1205 0.2738 -0.192 -8'100
8 0.1303 0.1498 0.4167 0.105 5.986
9 0.3727 0.5942 1.4640 5.996 6. 86
10 0.3727 0.5942 1.4640 -6.004 -6.
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It is interesting to observe from this table-5 . that the RLS and the OLS residuals

for this data are almost identical. Because of balancing effect, these two outliers

do not cause any damage to the fitting of the model that is why they are not jointly

influential. Andrews and Pregibon (1978) have termed such cases as

do not matter.

outliers that

Different diagnostic plots for this data set are given in figures 5.4.a to 5.4.c.

0 70.1 0.2 0.3 0.4 0.5 0.6

Figure- 5.4.a. L-R Plot for Pefia-Yohai (1995) data set-B
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Figure 5.4.b. P-R Plot for Pefia-Yohai (1995) data set-B
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Figure 5.4.c. GP-DR Plot for Pefia-Yohai (1995) data set-B

Both the L-R plot and the P-R plot can locate the two outliers successfully but the
two high leverage points are not much focused on these plots. The GP-DR plot
clearly focuses on the high leverage and the outlying behavior of cases 9 and 10,
but more crucially they exhibit the balancing effect of the two outliers.
Observation 9 appears in the top right corner of this plot while observation 10 is
located in the top left corner of the plot indicating that those are high leverage
outliers but because of their balancing effects they are outliers that do not matter.
Neither the L-R plot nor the P-R plot can tell us that the two outliers are actually
not jointly influential since both of them are located at the right corner of these
plots. This example emphasises our concern that diagnostic plots should retain the

signs of the residuals for the better interpretation of the results.
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Chapter Six

Multicollinearity and

High Leverage Points

Multicollinearity is considered as one of the most serious consequences when the

assumptions regarding the OLS technique is violated. As we already mentioned
that linear independence among the regressors is one of the fundamental
assumptions of the OLS and violation of this assumption has a drastic
consequence on the subsequent analysis. We suspect that the presence of high
leverage point is responsible for causing multicollinearity. At first we discuss in a
brief what is multicollinearity, the sources, consequences, detection techniques,
and methods of dealing with multicollinearity. We observe how a single high
leverage point causes multicollinearity. We also investigate whether the existing
methods can successfully detect high leverage points or not and, the behavior of
multicollinearity when high leverage points thus identified are omitted from the
regression model. We also extend this experiment to the case when a group of

high leverage points is present.



Chapter Six Multicollinearity and High Leverage Points 97

6.1 Concept of Multicollinearity

[n a linear regression model, if there is no relationship between the regressors,
they are said to be orthogonal. When the regressors are orthogonal, inferences
such as (a) identifying the relative effects of the regressors, (b) prediction or
estimation and (c) selection of an appropriate set of variables for the model, can be
made relatively easily. Unfortunately in most applications of regression, the
regressors are not orthogonal. Sometimes the lack of orthogonality is not serious.
However, in some situations the regressors are nearly perfectly linearly related,
and in such cases the inferences based on erroneous. When there are near linear
dependencies between the regressors, the problem of multicolinearity is said to

exit.

6.2 The Nature of multicolinearity

The term multicolinearity is due to Ragnar Frisch (1934). Originally it meant the
existence of a “perfect” or exact linear relationship among some or all explanatory

variables of a regression model.

For the  k-variable  regression involving explanatory variable

X, X, , e X, (where X, =1 for all observations to allow for the intercept

term), an exact linear relationship is said to exit if the following condition is

satisfied:

AKX+ LK+ e + A Xy = (6.1)
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Today, however the term multicolinearity is used in a broader sense to include the
case of perfect multicolinearity, as shown by (6.1), as well as the case where the X

variables are intercorrelated but not perfectly so, as follows:

AKX, + X, 4 e + X +V, =0 6.2)

Where V, is a stochastic error term.

To see the difference between perfect and less than perfect multicolinearity,

assume, for example, that A, # 0, then equation (6.1) can be written as

Xz:’:ﬁXU_ig‘Xs/_ """" /?'_KXK,- (6.3)
4 A 4
Which shows how X, is exactly linearly related to other variables or how it can be

derived from a linear combination of other X variables. In this situation, the co-

efficient of correlation between the variable X,and the linear combination on the

right side of (6.3) is bound to be unity.

Similarly, if A, = 0, equation (6.2) can be written as

X, =y, Py = e ey Ly (6.4)

A 4 2 Z3

Which shows that X, is not an exact linear combinations of other X"s because it is

also determined by the stochastic error term V.

Kennedy (1981) suggested the Ballentine views of multicolinearity are as follows:

(a) No collinearity (b) Low collinearity
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(¢) Moderate collinearity (d) High collinearity (e) Very high collinearity

6.3 Sources of Multicolinearity

There are several sources of multicolinearity. As Montgomery and Peck (1992)

note, multicollinearity may be due to the following factors:

(2)

(b)

(©)

(d)

The data collection method employed, for example, sampling over a limited

range of the values taken by the regressors in the population.

Constraints on the model or in the population being sampled. For example, in

the regression of electricity consumption on in come (X)) and house size
(X,) there is a physical constraint in the population in that families with

higher incomes generally have larger homes than families with lower

Incomes.

Model specification, for example, adding polynomial terms to regression

model, especially when the range of the X variable is small.

An over defined model. This hélppens when the model has more explanatory
variables than the number of observation. This could happen in the medical
research where there may be a small number of patients about whom

information is collected on a large number of variables.
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6.4 Effects or consequences of Multicolinearity

The presence of near or high multicolinearity can occur the following

problems:

(a) Although BLUE, the OLS estimators have large variances and

covariances, making precise estimation difficult.

(b) Because of the consequence (a), the confidence intervals tend to be much
wider, leading to the acceptance of the ‘zero null hypothesis’ (i.e. the true

population coefficient is zero) more readily.

(c) Also because of consequence of (a), the ¢ ratio of one or two coefficients

tends to be statistically insignificant.

(d) Although the ¢ ratio of one or more coefficients is statistically

insignificant, R?, the overall measure of goodness of fit, can be vary high.

(e) The OLS estimators and their standard errors can be sensitive to small

changes in the data.

(f) The OLS estimators those are too large in absolute value.

6.5 Detection Techniques of Multicollinearity

Several techniques have been proposed for detecting multicollinearity. Some of

them are,

(a) Examination of the correlation matrix.
(b) Variance inflation factors (VIF)

(c) Tolerance

(d) Condition number

(e) Eigen value decomposition
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(a) Examination of the correlation matrix

A very simple suggested multicollinearity detection technique is that if the pair-
wise correlation coefficient between two regressiors is high, say, in excess of 0.8,

the multicollinearity is a serious problem.

(b) Variance Inflation Factor (VIF)

The diagonal elements of the C = (X TX )" matrix are very useful in detecting
multicolinearity. We see that C,;, the j-th diagonal elements of C can be written as

1 s - ; . . .
Gy =g where R; is the coefficient of determination obtained when x;1s

J

regressed on the remaining (k-1) regressors. Marquardt (1970) has called

C; = (1 ~ R} )_1 , the “Variance Inflation Factor (VIF).”

The VIF for each term in the model measures the combined effect of the
dependencies among the regressors on the variance of that term. One or more large
VIF’s exceeds 5 or 10; it is an indication that the associated regression coefficients

are poorly estimated because of multicollinearity.
(c) Tolerance

In recent times tolerance values are suggested [see Sen and Srivastava (1990)] to
use as a measure of multicollinearity. Tolarences are in fact the inverse of the VIF
values, i.e. TOL;= (1- R?). Higher R] values lead to multicollinearity that is why
lower values of tolerance are undesirable. Tolerance value less then 0.1 indicates a

strong multicollinearity, whereas values between 0.1 and 0.2 indicates moderate

multicollinearity.
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(d) Condition Number

The characteristic roots or eigen values of (X Tx ), say A, A, oo A, can be used to

measure the exact of multicollinearity in the data. Some analysis perform to

examine the condition number of defined as

ﬂ"lﬂf
p) = SEC

‘min

This is just a number of the spread in the eigen values spectrum of (X "X )
Generally if the condition number is less than 100, there is no serious problem

with multicollinearity, condition numbers (7) between 100 and 1000 imply
moderate to strong multicollinearity and if #n exceeds 1000 Serious

multicollinearity is indicated.
(e) Eigen or Singular Value Decomposition

Figen system analysis can be used to identify the nature of the near linear

dependencies in the data. The (X' X ) matrix may be decomposed as

XTX =TATT
Where A is a kxk diagonal matrix whose main diagonal elements are the eigen
values 4, (j=1,2,---k) of (X"X)and T is a (kx k) orthogonal matrix whose

columns are the eigen vectors of (X7X). Let the columns of I denoted by

by byyreenes t,. If the eigen value A j is close to zero, indicating a near linear
dependency in the data, the elements of the associated eigen vector £ ; describe the

nature of this linear dependency. Belsley, Kuh and Welsch (1980) purpose a
similar approach for diagnosing multicollinearity. Then X  matrix of order

nx kmay be decomposed as
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X =UDTT

Where U is (nxk), Tis (kxk), UUT=I and D is a (kx k) diagonal matrix with
non-negative diagonal elements K, j=12,--k.The pu j are called the singular
values of X. The singular-value decomposition is closely related to the concepts of
eigen values and eigen vectors, since X' X = (UDTT)TUDTT =TD'DT" =TAT', so
that the squares of the singular values of X are the eigen values of (X7.X ). T is the

matrix of eigen vectors of ( X7 X )defined earlier, and U is a matrix whose columns

are the eigen vectors associated with the % nonzero eigen values of (X' X ).

The covariance matrix of ,5’ is
v(p)=o(x"x)' = oA

and the variance of the j-th regression coefficient is the j-th diagonal element of

this matrix, or

Note also that apart from 0'2, the j-th diagonal element of TA'T” is the j-th
variance inflation factor, so

k
VIF, =Y L =2
= i=1 le; IZ=1:' ‘;L’

Clearly, one or more small singular values (or small eigen values) can
dramatically inflate the variance of B j- Belsley, Kuh and Welsch (1980) suggest

using variance decomposition proportions, for example
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as measures of multicollinearity. If a high proportion of the variance for two or
more regression coefficients is associated with one small singular value,

multicolinearity is indicated. For example if 73, and 734 are large, the third

singular value is associated with a multicollinearity. Variance decomposition

proportions greater than 0.5 are recommended guidelines.
6.6 Methods for dealing with multicolinearity

Several techniques have been proposed for dealing with the problems caused by

multicolinearity. The general approaches include,

(a) Collecting additional data.

(b) Model respecification

(¢) Ridge regression

(d) Principle components regression

(¢) Transformation of variables.

(f) Reducing Collinearity in polynomial regression.
(g) Combining cross sectional and time series data

(h) A priori information.

(a) Collecting additional data

Collecting additional data has been suggested as the best method of combating
multicollinearity [see Farrar and Glauber (1967) and Silvey (1969)]. The
additional data should be collected in a manner designed to break up the

multicollinearity in the existing data.
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(b) Model respecification

Multicollinearity is often caused by the choice of model, such as when two highly
correlated regressors are used in the regression equation. In these situations some
re-specification of the regression equation may lessen the impact of

multicollinearity
(c) Ridge regression

When the method of least squares is applied to nonorthogonal data, very poor
estimates of the regression coefficients are usually obtained. The problem with the
method of least squares is the requirement that ﬁ’ be an unbiased estimator of S.

The Gauss-Markoff property assures us that the least squares estimator has
minimum variance in the class of unbiased linear estimators, but there is no

guarantee that this variance will be small. One way to alleviate this problem 1s to

drop the requirement that the estimator of 4 be unbiased.

A number of procedures have been developed for obtaining biased estimators of
regression coefficiants. One of these procedures is ridge regression, originally
proposed by Hoerl and Kennard (1970). The ridge estimator is found by solving a

slightly modified version of the normal equations. Specifically, we define the

ridge estimator BR as the solution to (XTX ¥ pI)ﬁR =X"Y

or Bo=(X"X+pI]' XY

where p >0 is a constant selected by the analyst.
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Now it is shown that

-2

5 k -3
MSE (Bg) =0’ L p BT XX+ B (6.12)
2T o] ( )’
Where A4 Ao A, are the eigen values of (X7X). The first term on the right-

hand side of (6.12) is the sum of the parameters in B » and the second term is the

square of the bias. If p >0, note that the bias in /;’R increases with p. However,

the variance decreases as p increases.
(d) Principal Components Regression

Biased estimators of regression coefficients can also be obtained by using a
procedure known as principal components regression. Consider the canonical form

of the model,

y=Za+¢g
Where Z=X4, a=ATf, and ATXTx4=2"Z=4

Recall that A =diag( 4 A,-- 4,) is a kxk diagonal matrix whose columns are the
eigen vectors associated with 4, A,----- A, . The columns of Z, which define a new
set of orthogonal regressors, such as Z= (2,2, ,Z,] are referred to as

principal components.

The least squares estimator of & is

a=z7z) zTy=n"2"y
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and the covariance matrix of & is
5 —1
V(a)=0'2(ZTZ) g’ A}

Thus a small eigen value of (X I'x Ymeans that the variance of the corresponding

orthogonal regression coefficient will be large. Since

k&
72=3327] = 4

i=1 j=1

We often refer to the eigen value A ;j as the variance of the j-th principal
component. If all the 4 jare equal to unity, the original regressors are orthogonal,
while if an A jis exactly equal to zero this implies a perfect linear relationship
between the original regressors. One or more of the A jnear zero implies that

multicollinearity is present.

The principal components regression approach combats multicollinearity by using
less than the full set of principal components in the model. To obtain the principal

components estimator, assume that the regressors are arranged in order of

decreasing eigen values, 4, =2 4, 2+ > A, >0. Suppose that the last s of the eigen

values are approximately equal to zero. In principal components regression the
principal components corresponding to near zero eigen values are removed from

the analysis and least squares applied to the remaining components. That is,

A pe =Ba

Where bl =b2 Sap— :bkand bk—s—l _—_bk_s_2 = "'=bk =0.
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Thus the principal components estimator is &, =

or in terms of the standardized regressors

ﬂpc A&pc

k=s

-1 T T
2 Aa X  ya;
j=I

A simulation study by Gunst and Mason (1977) showed that principal components
regression offers considerable improvement over least squares when the data are

ill-conditioned.

Now the above remedial measures, the first four measures discussed in detail and
the remaining four measures such as transformation of variables; reducing
Collinearity in polynomial regression; a priori information and combining cross

sectional and time series data discussed detail in Gujarati (1995, pp.340-44).

We anticipate that high leverage points may be another source of multicollinearity,
but so far as we know no detection technique of multicollinearity has been
developed on the high leverage issue. In the next section, we will try to address

this issue and establish high leverage points as a source of multicollinearity.
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6.7 High Leverage Points and Muiticollinearity

It is now evident that high leverage points may cause multicollinearity in linear
regression. If we are able to detect the high leverage points correctly we may get rid of
the multicollinearity problem by deleting those observations. But we suspect that the
commonly used detection techniques may fail to identify all of multiple high leverage
points and the omission of observations thus identified may not help to reduce the effect
of multicollinearity. Here we present an example in favor of our proposition. We

consider again data set which is presented in Table 5.a.1

Table S.a.2 presents the commonly used leverage values w, together with Hadi's
potential values p, and generalised potentials p, . Itis clear from the results presented

in this table that w, values corresponding to the most of the high leverage points are

not large enough and if any one considered 'twice-the-mean' rule only observations 12,
13 and 14 appear as the points of high leverages. Thrice-the-mean rule identifies only
the 14-th observation as high leverage point. Similar conclusion might be drawn

following Huber (1981)'s suggestion. Though the p, values are more sensitive to high

leverage points this table shows that they fail to focus on the first 13 cases. When we
apply rule (13) of the previous section we observe that the first 14 observations are
appearing as points of high leverages. The generalized potential values presented in
Table 6.7.a are thus obtained from (12) with cases 1-14 deleted. This table also shows
that the generalized potential values for the first 14 observations are clearly separated

from the rest of the values.
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Now we present various multicollinearity diagnostics for Hawkins ef al. (1984) data.

Table 6.7.a: Multicollinearity diagnostics for Hawkins et al. data

Data Correlation | Eigen Value | Condition Index Variance proportion
X [ X | X
r12=0.946 3.369 2.402 000 000 000
e r13=0.962 0.584 10.026 080 028  0.02
-iginal (#=75 7 :
Original (#=75) ra3=0.979 0.034 15.997 020 072 098
0.013
712= 0945 3.352 2.364 000 000  0.00
~ r13=0.951 0.600 9.320 097 008 005
. Lev. (n=72
Del. Lev- (7=72) |, = 0,987 0.039 19.091 003 092 095
0.009
r12= 0.044 3.383 3.434 076 022 007
ry3=0107 0.287 3.823 003 044  0.68
. Lev.GP. (n=61
Del. Lev.GP. (#=61) | .~ 9197 0.232 5.862 021 034 025
0.098

These results are presented in the above Table 6.7.a considers diagnostics for the
original data set and the deleted data sets where high leverage points identified by
twice-the-mean rule and generalised potentials are omitted. Several techniques have
been proposed in the literature for detecting multicollinearity. Among them
examination of the correlation matrix, variance inflation factor, tolerance, variance
decomposition, examinations of eigen values, condition index and eigen value
decomposition are very commonly used. For this particular data set we consider
correlations, eigen values, condition indices and variance decompositions. For the

original data we observe that the correlation coefficients between X,, X,and X, are

very high. We also observe two high condition indices and two very low eigen values,
which clearly indicate the presence of multicollinearity. Variance proportions
coresponding to X,and X, also show that these two variables are affected by
multicollinearity in the presence of X, . As we suspect that the high leverage points are
responsible for causing multicollinearity, their omission from the analysis should
improve the situation. That is why we expect better results for the data set where
deletion takes place on the leverage consideration. But we observe that the single case

deleted diagnostic methods do not help in the identification of high leverage points and
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consequently we observe a little improvement in the results of multicollinearity. But the
use of generalized potentials produces stunning results. When the high leverage points
dentified by this method are omitted from the analysis, we observe that the correlation
values among X, X, and X; are very low. We also observe that neither of the
condition indices is very high nor eigen values is very low. The results of variance

proportions also show that there is no evidence of the presence of mulicollinearity in

the data and none of the three variables is affected by it.

Now we present some 3D plots of explanatory variables that will show how

generalized potentials contribute in handling the multicollinearity problem.

Xi(Lev) °*

30
™ X3{Lev)

Figure 6.b. 3D plot of the X’s after deleting the cases by 2M method for Hawkins ef al. data
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X1(GP) '3
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X2(GP) 29 25 19 iz 0o

Figure 6.c. 3D plot of the X’s after deleting the cases by GP method for Hawkins ef al. data

Figure-6.a. presents a 3D plot of the X’s with the original data. As we know that
there are 14 out of 75 observations are high leverage points we observe a strong
indication of the presence of multicollinearity in the data. We observe similar
picture in Figure-6.b. where 3 out of 14 high leverage points are omitted. Figure
6.c. Presents 3D plot of the X’s where high leverage points detected by generalized
potential method are omitted. This plot clearly shows no sign of multicollinearity
that reemphasises our view that the problem of multicollinearity could be

eliminated if all of the genuine high leverage points are omitted from the analysis.

6.8 Simulation Results

Here we report a Monte Carlo simulation study, which is designed to investigate
how high leverage points behave as a source of multicollinearity. At first we
demonstrate how a single high leverage point causes multicollinearity. We also
Investigate whether the existing methods can successfully detect high leverage

points or not and, the behaviour of multicollinearity when high leverage point thus
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identified is omitted from the regression model. Then we extend this experiment to
the cases where multiple high leverage points are present in the data. Likewise the
examples considered earlier we generate three-predictor artificial data set for a
single high leverage and multiple (10%) high leverage cases. For both of the
designs we consider cases for six different sample sizes (n=20, 30, 40, 50, 100 and
200) and six high leverage points (x=2, 3, 4, 5, 8 and 10) and pairwise correlation
coefficient for these there sets of variable are computed. Throughout our
simulation experiment we use seven detection techniques to identify high leverage

points. Correlation coefficients r,, 3 and ry; are computed together with result

after omitting the observations identified by these seven detection techniques.

Each of which is based on 10000 simulations.
6.8.1 Simulation Results for a Single High Leverage Point

In this subsection we report the simulation results where the X variables contain a
single high leverage point have equal weight. The first (#-1) observations for each
of the three explanatory variables are simulated as Uniform (0, 1). The n-th
observation for each of the X's is kept fixed at a same high leverage value.
Correlation coefficients of X’s together with the results after excluding the suspect
high leverage cases are presented in Tables 6.a.1-6.a.6 that are based on the

average of 10,000 simulations.
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Table 6.a.1: Simulation results in presence of single high leverage point = 2
lation | Measures Value of n
come 20 | 30 [ 40 ] 50 ] 100 ] 200
ACTUAL 0.59185 0.48318 041129 0.35741 0.21549 0.21365
2 Mean 0.01471  0.00917 0.00838 0.01073  0.00817  0.18406
3 Mean 0.00194 -0.00102 -0.00028 0.00299 0.00177 0.05641
' Huber-1 0.25331 0.06069 0.00838 0.00342 0.00177 -0.00163
Huber-2 0.00348 -0.00138 -0.00046 0.00299 0.18942 0.18324
Potential (mean) | 0.00141 -0.00138 0.00287 0.00299 0.00177 -0.00163
Potential (med) 0.03943  0.02295 0.02078 0.01954 0.00996  0.00505
G.P. 0.00141 -0.00138 -0.00046 0.00299 0.00177 -0.00163
ACTUAL 0.58394  (0.48377 0.41203 0.35640 0.21445 0.21209
2 Mean 0.01321 0.01049 0.01178 0.00551 0.00507 0.18162
3 Mean -0.00006 -0.00049 0.00078 -0.00076 -0.00040  0.05268
s Huber-1 0.24691 0.06252 0.01178  0.00005 -0.00040 -0.00319
Huber-2 0.00195 -0.00091 -0.00046 -0.00076 0.18774  0.18207
Potential (mean) | -0.00028 -0.00091  0.00081 -0.00076 -0.00040 -0.00319
Potential (med) 0.03635 0.02592 0.02269 0.01374 0.00655 0.00510
G.P. -0.00028 -0.00091  0.00081 -0.0076 -0.00040 -0.00319
ACTUAL 0.59462 0.48260 0.41209 0.35900 0.21407 0.21308
2 Mean 0.02311 0.00678 0.01032 0.01262 0.00491  0.18819
3 Mean 0.00846 -0.00138 0.00296 0.00459 -0.00055 0.05116
¢ Huber-1 0.25684 0.05852 0.01032 0.00498 -0.00055 -0.00216
= Huber-2 0.01054 -0.00120 0.00081  0.00459 0.18742  0.18302
Potential (mean) | 0.00818 -0.00120  0.00287 0.00459 -0.00055 -0.00216
Potential (med) 0.04863 0.02180 0.02401 0.02218 0.00580 0.00456
G.P. 0.00818 -0.00120 0.00287 0.00459 -0.00055 -0.00216
Table 6.2.2: Simulation results in presence of single high leverage point =3
. Value of n
Correlation | Measures 20 l 30 l 20 I 50 100 [ 200
ACTUAL 0.79995 0.72601 0.66172  0.60579  0.43282  0.27242
2 Mean 0.02160 0.02250 0.01561  0.00663  0.00671 0.00141
3 Mean 0.00952 0.01181 0.00709 -0.00198 0.00157 -0.00249
o Huber-1 0.25241 0.07115 0.01561 -0.00150 0.00157 -0.00249
12 Huber-2 0.01205 0.01181 0.00709 -0.00198  0.00157 0.01169
Potential (mean) 0.00903 0.01181 0.00709 -0.00198 0.00157 -0.00249
Potential (med) 0.05053 0.03883 0.03044 0.01940 0.01447  0.00302
G.P. 0.009903 0.01181 0.00709 -0.00198 0.00157 -0.00249
ACTUAL 0.79770 0.72339 0.66075 0.60540 0.43297 0.27339
2 Mean 001116 0.01459 0.01139 0.00550 0.00776 0.00273
3 Mean .0.00264 0.00663 0.00453 -0.00174 0.00165 -0.00132
" Huber-1 0.24749 0.06308 0.01139 -0.00118 0.00165 -0.00132
¥ Huber-2 0.00016 0.00663 0.00453 -0.00174 0.00165 0.01275
Potential (mean) | -0.00270 0.00663 0.00453 -0.00174 0.00165 -0.00132
Potential (med) 0.03819 0.03143 0.02547 0.01950 0.01546  0.00507
G.P. -0.00270  0.00663 0.00453 -0.00174 0.00165 -0.00132
ACTUAL 0.79897 0.72314 0.65867 0.60858 0.43188 0.27813
2 Mean 0.01704 0.01447 0.00706 0.01151 0.00374  0.00994
3 Mean 0.00336 0.00374 -0.00339 0.00305 -0.00048 0.00528
r Huber-1 0.25536 0.06555 0.00706  0.00371 -0.00048  0.00528
B Huber-2 0.00469 0.00374 -0.00339  0.00305 -0.00048 0.01934
Potential (mean) | 0.00336  0.00374 -0.00339  0.00305 -0.00048  0.00528
Potential (med) 0.04569 0.03068 0.02005 0.02426 0.01170 0.01183
; G.P. 0.00336  0.00374 -0.00339  0.00305 -0.00048 _ 0.00528
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Table 6.2.3: Simulation results in presence of single high leverage point =4
— Value of n
Correlation | Measures 20| 30 | 40 | 50 | 100 [ 200
ACTUAL 0.88620 0.83492 0.79112 0.75096  0.59891 0.42495
2 Mean 0.00866 0.00227 0.00627 0.00708 0.00542  0.00357
3 Mean -0.00454 -0.00837 -0.00099 0.00104 0.00235 -0.00018
" Huber-1 0.24717 0.05136 0.00627 0.00127 0.00235 -0.00018
12 Huber-2 -0.00305 -0.00835 -0.00099 0.00104 0.00235 -0.00018
Potential (mean) | -0.00459 -0.00835 -0.00099 0.00104 0.00235 -0.00018
Potential (med) 0.03277 0.01665 0.01880 0.01703 0.01348  0.00869
G.P. -0.00459  -0.00835 -0.00099 0.00104 (0.00235 -0.00018
ACTUAL 0.88697 0.83527 0.79067 0.75046 0.59960  0.42579
2 Mean 0.02352  0.01188 0.00736  0.00660 0.00760  0.00360
3 Mean 0.01217 0.00179 -0.00136 -0.00088 0.00266  0.00019
r Huber-1 0.26894  0.05815 0.00736 -0.00002 0.00266 0.00019
L Huber-2 0.01406  0.00165 -0.00136 -0.00088 0.00266 0.00019
Potential (mean) 0.01140 0.00165 -0.00136 -0.00088 0.00266 0.00019
Potential (med) 0.05507 0.02698 0.02019 0.01654 0.01601 0.00857
G.P. 0.01140 0.00165 -0.00136 -0.00088 0.00266 0.00019
ACTUAL 0.880647 0.83766 0.79103 0.74915 0.59703 0.42532
2 Mean 0.01600 0.02067 0.01132 -0.00077 0.00209 0.00311
3 Mean 0.00810  0.01079 0.00323 -0.00654 -0.00218 0.00013
. Huber-1 0.24683  0.06811 0.01132 -0.00557 -0.00218 0.00013
3 Huber-2 0.00358 0.01035 0.00323 -0.00654 -0.00218 0.00013
Potential (mean) [ 0.00149  0.01035 0.00323 -0.00654 -0.00218 0.00013
Potential (med) 0.04485  0.03767 0.02220 0.00849  0.00980  0.00893
G.P. 0.00149  0.01035 0.00323 -0.00654 -0.00218  0.00013
Table 6.a.4: Simulation results in presence of single high leverage point = 5
. Value of n
Correlation | Measures 70 30 | 40 l 50 [ 100 | 200
ACTUAL 0.92744  0.89201 0.86171 0.83336 0.70927  0.54907
2 Mean 0.00035 0.00217 0.00897 0.00582 0.00036 0.00070
3 Mean -0.01292 -0.00833  0.00019 0.00062 -0.00375 -0.00242
Fiz Huber-1 0.23364 0.05385 0.00897 0.00094 -0.00375 -0.00242
Huber-2 -0.01208 -0.00842 -0.00018 0.00054 -0.00375 -0.00242
Potential (mean) | -0.01275 -0.00842 -0.00018 0.00054 -0.00375 -0.00242
Potential (med) 0.02184 0.01970 0.01913 0.01739 0.00733 0.00644
G.P. -0.01275 -0.00842 -0.00018 0.00054 -0.00375 -0.00242
ACTUAL 0.92943  0.89272 0.86194 0.83241 0.70997  0.55048
2 Mean 0.03357 0.00694 0.00845 0.00563  0.00401 0.00404
3 Mean 0.02035 -0.00090 -0.00030 -0.00242 -0.00124  0.00085
Irs Huber-1 0.27303  0.05334 0.00845 -0.00227 -0.00124 0.00085
Huber-2 0.02201 -0.00111 -0.00021 -0.00237 -0.00124 0.00085
Potential (mean) | 0.02005 -0.00111 -0.00021 -0.00237 -0.00124  0.00085
Potential (med) 0.06011 0.02208 0.01824 0.01599 0.00984  0.01009
G.P. 0.02005 -0.00111 -0.00021 -0.00237 -0.00124  0.00085
ACTUAL 0.92782 0.89289 0.86176 0.83211 0.71116  0.54972
2 Mean 0.01650 0.00667 0.01273  0.00441 0.00524  0.00272
3 Mean 0.00290 -0.00419 0.00449 -0.00312 0.00105 -0.00044
- Huber-1 0.24838  0.05803 0.01273 -0.00255 0.00105 -0.00044
Huber-2 0.00383 -0.00479 0.00437 -0.00320 0.00105 -0.00044
Potential (mean) | 0.00232 -0.00479 0.00437 -0.00320 0.00105 -0.00044
Potential (med) 0.04217 0.02648 0.02914 0.01556 0.01123  0.00842
G.P. 0.00232 -0.00479 0.00437 -0.00320 0.00105 -0.00044
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Table 6.a.5: Simulation results in presence of single high leverage point = 8
s

tion | Measures Value of n
ﬂfﬁhﬁ 20 | 30 T 40 ] 50 | 100 | 200
ACTUAL 0.97241 095903 0.94585 0.93262 0.87124 0.77264
2 Mean 0.00083 0.01626 0.01597 0.01111 -0.00043  0.00504
3 Mean -0.01210  0.00705 0.00751 0.00484 -0.00467 0.00141
s Huber-1 0.24102 0.06866 0.01597 0.00546 -0.00467 0.00141
! Huber-2 -0.01025  0.00684 0.00751 0.00484 -0.00467 0.00141

Potenti'al (mean) | -0.01223  0.00684 0.00751 0.00484 -0.00467 0.00141
Potential (med) 0.02178  0.03224  0.02614 0.02164 0.00385  0.00810

G.P. -0.01223  0.00684  0.00751 0.00484 -0.00467  0.00141

ACTUAL 0.97295 0.95891 0.94523 093199 0.87158  0.77231

2 Mean 0.01816  0.01593  0.00541 0.00286 -0.00057  0.00256

3 Mean 0.00690  0.00737 -0.00189 -0.00473 -0.00450 -0.00060

. Huber-1 0.24986  0.06495 0.00541 -0.00434 -0.00450 -0.00060
2 Huber-2 0.00889 0.00731 -0.00189 -0.00473 -0.00450 -0.00060

Potential (mean) | 0.00659 0.00731 -0.00189 -0.00473 -0.00450 -0.00060
Potential (med) 0.04219  0.03453 0.01562 0.01063  0.00324  0.00556

G.P. 0.00659  0.00731 -0.00189 -0.00473 -0.00450 -0.00060

ACTUAL 0.97245  0.95890 0.94522  0.93237 0.87270  0.77215

2 Mean 0.01161 0.00774 0.00454 0.00332 0.00776  0.00105

3 Mean -0.00292 -0.00066 -0.00417 -0.00273  0.00312 -0.00134

. Huber-1 0.24016  0.06207 0.00454 -0.00255 0.00312 -0.00134
" Huber-2 -0.00109 -0.00077 -0.00417 -0.00273  0.00312 -0.00134

Potential (mean) | -0.00301 -0.00077 -0.00417 -0.00273  0.00312 -0.00134
Potential (med) 0.03442  0.02500 0.01494 0.01296 0.01206  0.00408
G.P. -0.00301 -0.00077 -0.00417 -0.00273  0.00312 -0.00134

Table 6.a.6: Simulation results in presence of single high leverage point = 10

] Value of n
Correlation | Measures 20 | 30 | 20 l 50 [ 700 | 200
ACTUAL 0.98300 0.97357 0.97357 0.96533 0.95709 091654
2 Mean 0.02055 -0.00103 -0.00103 0.00981 0.00953  0.00345
3 Mean 0.00746 -0.01152 -0.01152 0.00171 0.00283 -0.00011
. Huber-1 0.26028 0.04918 0.04918 0.00981 0.00334 -0.00014
Huber-2 0.00964 -0.01169 -0.01169 0.00171 0.00283 -0.00014

Potential (mean) | 0.00688 -0.01169 -0.01169 0.00171  0.00283 -0.00014
Potential (med) 0.04408 0.01178 0.01178 0.02230 0.01724  0.00658

G.P. 0.00688 -0.01169 -0.01169 0.00171 0.00283 -0.00014

ACTUAL 0.98275 0.97410 0.97410 0.96533 0.95682 0.91637

2 Mean 0.00395 0.02227 0.02227 0.01115 0.00809 0.00489

3 Mean -0.00714  0.01320 0.01320 0.00333  0.00205  0.00020

Iys Huber-1 0.24065 0.07378 0.07378 0.01115 0.00240  0.00016
Huber-2 -0.00572 0.01308 0.01308 0.00333  0.00205 0.00016

Potential (mean) | -0.00717  0.01308  0.01308  0.00333  0.00205 0.00016
Potential (med) 0.02863 0.03839 0.03839 0.02380 0.01656  0.00899

G.P. -0.00717 0.01308 0.01308 0.00333  0.00205  0.00016

ACTUAL 0.98273 0.97412 097412 096554 0.95634 091704

2 Mean 0.00935 0.01832 0.01832 0.01398 -0.00058  0.00997

3 Mean -0.00330  0.00730 0.00730  0.00503 -0.00803  0.00568

I Huber-1 0.24971 0.06760 0.06760 0.01398 -0.00736  0.00572
Huber-2 -0.00286  0.00719  0.00719 0.00503 -0.00803  0.00572

Potential (mean) | -0.00336  0.00719  0.00719  0.00503 -0.00803  0.00572
Potential (med) | 0.03337 0.03338  0.03338  0.02475  0.00762  0.01425
G.P. -0.00336 0.00719  0.00719 _ 0.00503 -0.00803 _ 0.00572
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6.8.2 Simulation Results Discussion for a Single High Leverage Point

In Tables 6.a.1 to 6.a.6 it is observed that for every #, the presence of a single high
leverage point causes strong multicollinearity. It is interesting to mnote that the
correlations between the X’s tend to reduce slightly with the increase in sample size for
example, in Table-6.a.1, the values of 7/, are 0.59185, 0.48318, 0.41129, 0.35741,
021549 and 0.21365, for n = 20, 30, 40, 50, 100 and 200 respectively. It is also
observed that the correlation tends to increase with the increase in leverage values, for
example, in Tables-6.a.1 to 6.2.6, the values of r,, are 0.59185, 0.79995, 0.88620,
0.92744, 0.97241 and 0.98300 respectively when the value of » = 20. Similar results
are observed for different sample sizes. Throughout the simulations we observe that the
performance of Huber-1 method is very poor. The performance of each of the other

methods is good.
6.8.3 Simulation Results for 10% equal High Leverage Point

In this subsection first we present the simulation results where the X variables contain
10% equal high leverage points. For each of the cases the first 90% observations are
simulated as Uniform (0, 1). The last 10% observations of X; X5 and Xj are set at six set
of high x values (i.e. x =2, 3, 4, 5, 8 and 10) so that these points are considered as high
leverage points with equal weights. Correlation coefficients of X’s together with the
results after excluding the suspect high leverage cases by different detection techniques
are presented in Tables-6.b.1 to 6.b.6 those are based on the average of 10,000

simulations.
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Table 6.b.1: Simulation results in presence of 10% equal high leverage point = 2

clation | Measures Value of n
Corr 20 [ 30 [ 40 [ 50 [ 100 ] 200
ACTUAL 074840 0.73694  0.73566 073238 0.73204  0.73077
2 Mean 0.03582  0.01212 0.01884 000637 0.01550 0.01037
3 Mean 0.74870  0.73714 0.73572 073240 073207  0.73077
. Huber-1 0.029200 0.08210 0.01884 0.73307 0.73204  0.73077
Huber-2 075010 073694 073566 0.73238  0.73204  0.73077

Potential (mean) | 074212 0.68194  0.67850 0.65638  0.66304  0.66624
Potential (med) | 0.08620 0.017290 0.28270 0.34580 0.56557  0.68528

G.P. 0.01597 -0.00184 0.00329 -0.00850 0.00236 _ 0.00010

ACTUAL 0.74435  0.73927  0.73699  0.73415  0.73108  0.73084

2 Mean 0.02084  0.03281 0.02185 0.00904 0.01083  0.01059

3 Mean 0.74453  0.73946  0.73717 0.73422  0.73113  0.73084

. Huber-1 0.28476  0.09508 0.02185 0.73476 0.73108  0.73084
. Huber-2 0.74589  0.73927  0.73699 0.73415 0.73108  0.73084

Potential (mean) | 0.73706  0.68546  0.67916 0.65662 0.66024  0.66641
Potential (med) 0.0718 0.18220 0.28370 0.34520 0.56510  0.68644

G.P. 0.00214  0.00856  0.00248 -0.00419 -0.00233 0.00063

ACTUAL 0.74721  0.73770  0.74034  0.73474  0.73351  0.72969

2 Mean 0.02942  0.02061  0.03109 0.01186 0.02120  0.00518

3 Mean 0.74761  0.73798  0.74046  0.73479  0.73353  0.72969

. Huber-1 0.29060  0.08304 0.03109 0.73535 0.73351  0.72969
& Huber-2 0.74936  0.73770  0.74034  0.73474  0.73351  0.72969

Potential (mean) | 0.74001  0.68372  0.68227 0.66001 0.66363  0.66596
Potential (med) | 0.07770 0.17640 0.29280 0.34890 0.56807  0.68458
G.P. 0.00858 0.00419 0.01574 -0.00175 0.00666 -0.00403

Table 6.b.2: Simulation results in presence of 10% equal high leverage point =3

. Value of n
Correlation | Measures 20 I 30 I 20 | 50 | 100 | 300
ACTUAL 0.88876 (.88645 0.88618 0.88442 0.88375 0.88296
2 Mean 0.01626 0.01596 0.02401 0.01124 0.00880 0.01012
3 Mean 0.88883 0.88652 0.88627 0.88445 0.88376  0.88296
re Huber-1 027753 0.07861 0.02401 0.88488 0.88375 0.88296
Huber-2 0.88955 0.88645 0.88618 0.88442 0.88375 0.88296

Potential (mean) | 0.88808 0.84647 0.83593  0.83091 0.83162  0.84025
Potential (med) | 0.04012  0.08693  0.15510 0.20530  0.44350  0.66750

G.P. -0.00126 -0.00077 0.00797 -0.00382 -0.00225 0.00117

ACTUAL 0.88803 0.88511 0.88583  0.88463  0.88393  0.88272

2 Mean 0.01209 0.00756 0.02012 0.01359 0.01222  0.00960

3 Mean 0.88810 0.88516  0.88586  0.88467 0.88395  0.88272

" Huber-1 0.27518 0.07518 0.02012  0.88503  0.88393  0.88272
B Huber-2 0.88872 0.88511 0.88583  0.88463 0.88393  0.88272

Potential (mean) | 0.88737  0.84522  0.83550  0.83000 0.83086 0.84133
Potential (med) | 0.03127 0.07710  0.15040  0.21170 0.44280  0.66810

e G.P. -0.00513 -0.00674 0.00527 -0.00052 0.00014  -0.00007
ACTUAL 0.88896 0.88684  0.88459 0.88458  0.88308  0.88329

2 Mean 0.02029 0.01790 0.01050 0.01524  0.00621  0.01269

3 Mean 0.88897 0.88692 0.88471 0.88464  0.88308  0.88329

N Huber-1 0.27885 0.07880 0.01050 0.88499  0.88308  0.88329

23 Huber-2 0.88957 0.88684 0.88459  0.88458 0.88308  0.88329

Potential (mean) | 0.88772  0.84804 0.83185 0.83439  0.82940  0.84248
Potential (med) | 0.03770  0.08920 0.13910 0.20850  0.43730  0.66800
G.P. -0.00018 0.00179 -0.00530 -0.00075 -0.00603 0.00300
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Table 6.b.3: Simulation results in presence of 10% equal high leverage point = 4

elation | Measures Value of n
Cort 20 [ 30 | 40 | 50 | 100 | 200
ACTUAL 0.94105 0.938890 0.93797 0.93777 0.93737 0.93656
2 Mean 0.03514  0.02915 0.01330 0.01528 0.01661  0.00691
3 Mean 0.94109  0.93893 0.93802 0.93779 0.93738  0.93656
By Huber-1 0.29283  0.09354 0.01330 0.93805 0.93737 0.93656
Huber-2 0.94145 0.93889 0.93797 0.93777 0.93737 0.93656

Potenti.al(mean) 0.93997 091205 0.88869  0.89423  0.89697 0.91311
Potential (med) | 0.05029  0.07401 0.09700 0.18940 0.40650 0.61940

G.P. 0.01800  0.00722  -0.00470  0.00051  0.00561 -0.00187

ACTUAL 0.93980 093813 0.93783  0.93760 0.93719  0.93662

2 Mean 0.02160  0.01265 0.01194 0.01447 0.01349  0.01080

3 Mean 0.93984  0.93816  0.93788  0.93763  0.93720  0.93662

s Huber-1 0.28377  0.07964 0.01194 0.93784  0.93719  0.93662
Huber-2 0.94023  0.93813 093783  0.93760 0.93719  0.93662

Potential (mean) | 0.93908 091180 0.88835 0.89510 0.89773  0.91308
Potential (med) | 0.03471 0.06202 0.09630 0.18270  0.40530 0.61970

G.P. 0.00110  -0.00044 -0.00398 -0.00067 0.00115  0.00083

ACTUAL 0.93959  0.93833  0.93792 0.93753  0.93686  0.93654

2 Mean 0.01772 0.01538 0.01313  0.01450 0.00785  0.00891

3 Mean 0.93965 0.93838 0.93793 093755 0.93687 0.93654

. Huber-1 0.28051 0.08290 0.01313 0.936778 0.93686  0.93654
% Huber-2 0.93996 0.93833 093792 093753 0.93686 0.93654

Potential (mean) | 0.93879 091181 0.88727 0.89448  0.89722  0.91290
Potential (med) | 0.03233  0.06403  0.09760  0.18760  0.40270 0.6l 850
G.P. -0.00132 -0.00215 -0.00315 0.00030 -0.00399 -0.00153

Table 6.b.4: Simulation results in presence of 10% equal high leverage point =5

. Value of n
Correlation | Measures 20 | 30 l 20 l 50 l 100 i 300
ACTUAL 0.96295 096214 096155 0096135 0.96095 0.96063
2 Mean 0.02998 0.02013 0.01150 0.01694 0.01219  0.00703
3 Mean 0.96296 0.96216 096160 0.96136 0.96095  0.96063
. Huber-1 0.29452  0.09122 0.01150 0.96151 0.96095  0.96063
12 Huber-2 0.96320 0.96215 096155 0.96135 0.96095  0.96063
Potential (mean) | 0.96295 0.94133 091687 091959 092453  0.93436
Potential (med) | 0.04562 0.06413  0.11330  0.18510  0.38490  0.61830
G.P. 0.00898  0.00253 -0.00465 0.00122 -0.00129 -0.00198
ACTUAL 0906311 0096136 096170 096097 0.96072 0.96060
2 Mean 0.02534 0.00695 0.01382  0.00458  0.00649  0.00890
3 Mean 096315 0.96140 0.96172  0.96097 0.96072  0.96060
. Huber-1 028287 0.06773 0.01382  0.96110 0.96072  0.96060
B Huber-2 096339 0.96137 0.96170  0.96097  0.96072  0.96060
Potential (mean) | 0.96313 093990 091781 091932  0.92396  0.93388
Potential (med) | 0.04497 0.05208 0.11640  0.17520 ~ 0.38110  0.61870
G.P. 0.00761 -0.00963 -0.00167 -0.01070 -0.00631 -0.00126
ACTUAL 096264 096185 096165 0.96123 0.96102  0.96055
2 Mean 001824 001707 0.01382  0.00976 0.01224  0.00650
3 Mean 096267 096190 0.96169 0.96123  0.96102  0.96055
" Huber-1 028235 0.08147 0.01382 096137 096102  0.96055
B Huber-2 096291 096186 0096165 096123 0.96102  0.96055
Potential (mean) | 0.96265 0.94131  0.91836  0.92109  0.92404  0.93444
Potential (med) | 0.03039 0.06092 0.11290 ~ 0.18000 038750  0.61910
. G.P. -0.00185 -0.00005 -0.00264 -0.00260 _0.00161 -0.00163
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Table 6.b.5: Simulation results in presence of 10% equal high leverage point = 8

relation | Measures Value of n
fir_( 20 | 30 | 40 | 50 [ 100 | 200
ACTUAL 0.98611  0.98593  0.98578 0.98585 0.98559 0.98543
2 Mean 0.01916  0.01573  0.02121  0.02329 0.01504  0.00691
3 Mean 0.98611  0.98495 098580 0.98585 0.98560 0.98543
o Huber-1 0.27609  0.08205 0.02121 0.98590  0.98559  0.98543
Huber-2 0.98617 098593  0.98578  0.98585 0.98559  0.98543

Potenti.al(mean) 098611  0.96250 0.95458 0.94815 0.94800 0.96682
Potential (med) | 0.02881 0.05028 0.10640 0.17450 0.37830 0.57660

G.P. -0.00057  0.00139  0.00305 0.01043  0.00379  -0.00223

ACTUAL 0.98603  0.98591 0.98579 0.98569  0.98565  0.98556

2 Mean 0.01561  0.01675 0.02014 0.01497 0.01932  0.01521

3 Mean 0.98604  0.98592  0.98581 0.98569 0.98565 0.98556

- Huber-1 0.26550  0.08588  0.02014 0.98575 0.98565  0.98556
Huber-2 0.98610  0.98591  0.98579 0.98569  0.98565  0.98556

Potential (mean) | 0.98604 096191 0.95429  0.94933  0.94755 0.96668
Potential (med) | 0.02690 0.05006 0.10280 0.17110  0.38010  0.58100

G.P. -0.00150 -0.00060  0.00258  0.00284  0.00588  0.00408

ACTUAL 0.98626 0.985963 0.98573 0.98559 0.98565  0.98546

2 Mean 0.02298  0.01843  0.01725 0.00822 0.01713  0.00863

3 Mean 0.98627 0.98593  0.98575 0.98559 0.98565 0.98546

" Huber-1 0.29015 0.07426 0.01725 098563 0.98565  0.98546
= Huber-2 0.98631 0.98593  0.98573 0.98559 0.98565 0.98546

Potential (mean) | 0.98627 0.96259  0.95361  0.94792  0.94622  0.96672
Potential (med) | 0.03446  0.05260 0.10530 0.16640 037810  0.57910
G.P. 0.00443 -0.00259 -0.00022 -0.00803 0.00516 -0.00031

Table 6.b.6: Simulation results in presence of 10% equal high leverage point = 10

; Value of n
Correlation Measures 20 I 30 l 20 | 50 I 100 | 200
ACTUAL 099147 099123 0.99103 0.99110 0.99093  0.99089
2 Mean 0.03326 0.01806 0.00914  0.02081 0.01054  0.00904
3 Mean 0.99148 0.99123  0.99103 0.99110 0.99093  0.99089
. Huber-1 0.29059 0.08454 0.00914 0.99114 0.99093  0.99089
12 Huber-2 099155 0.99123 0.99103 0.99110 0.99093  0.99089

Potential (mean) | 0.99147  0.96924  0.95036 0.94607 0.95539  0.96990
Potential (med) | 0.01121  0.04971  0.09560  0.16120 0.36600  0.57880

G.P. 001172 0.00298 -0.00708 0.00464 -0.00141 -0.00027

ACTUAL 099149 099129 0.99116 0.99107 0.99096  0.99093

2 Mean 0.02277 0.02644 0.02039 0.01687 0.01393  0.01488

3 Mean 099150 099130 0.99116 0.99108  0.99097  0.99093

. Huber-1 028703 009350 0.02039 0.99112  0.99096  0.99093
& Huber-2 0.09155 099129 099116 0.99107 0.99096  0.99093

Potential (mean) | 0.99147  0.96662 0.95107 0.94588  0.95720 0.96970
Potential (med) | 0.03719  0.05385 0.10840 0.15360 0.36910  0.57730

G.P. 000315 0.00902 0.00496  0.00218  0.00299  0.00331

ACTUAL 009139 0099110 099106 0099104 099097 0.99088

2 Mean 002117 001023 001549 0.01140 0.01415  0.00718

3 Mean 009140 099110 099107 0.99104 099097  0.99088

. Huber-1 028090 0.07426 0.01549 0.99108  0.99097  0.99088
B Huber-2 099145 099110 099106 0.99104  0.99097  0.99088

Potential (mean) | 0.99139  0.96680 0.94854 0.94642  0.95554 0.97034
Potential (med) | 0.03823  0.03849 0.10500 0.15100 0.36890  0.57650
L G.P. 0.00088 -0.00913 -0.00075 -0.00140 _0.00098 -0.00165
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6.8.4 Simulation Results Discussion for 10% Equal High Leverage Point

We observe in Tables 6.b.1 to 6.b.6 that for every n, the presence of multiple high
leverage points causes strong multicollinearity. Here it is also observed that the
correlations between the X’s tend to reduce slightly with the increase in sample size for
example, in Table-0.b.1, the values of r),, 7,3, and 7,; are (0.74840, 0.74435, 0.74721),
(0.73694, 0.73927, 0.73770), (0.73566, 0.73699, 0.74034), (0.73238, 0.73415, 0.73474),
(0.73204, 0.73108, 0.73351) and (0.73077, 0.73084, 0.72969) for n=20, 30, 40, 50, 100
and 200 respectively. In Tables-6.b.1 to 6.b.6, the values of #,, are 0.74840, 0.88876,
0.94105, 0.96295, 0.98611and 0.99147 respectively for the values of x=2, 4, 6, 8, 10,
12,...... with #=20. Similar results are obtained for different sample sizes and for the other
two correlation values ;3 and 75;. This implies that the correlation between the X’s tends
to increase with the increase in leverage values. Throughout the simulations we observe
that the performance of 3M is very poor. We observe no improvement of using this
technique in multicollinearity reduction. Huber-1 method is appeared to be good for
small samples, but even for the moderate sample size like 50 it breaks down. Potential
(med) method is also good for small samples, but its performance tends to deteriorate
with the increase in sample size. The performance of 2M rule is satisfactory for all

samples but throughout the simulation experiment generalized potentials performed best.
6.8.5 Simulation Results Discussion for 10% Unequal High Leverage Point

In this subsection first we present the simulation results where the X variables contain
10% high leverage points having unequal weights. For each of the cases the first 90%
observations are simulated as Uniform (0, 1). The last 10% observations of X, and X,
ands X; are taken serially from a set of observations starting from 2 and then having
increments of 2 (i.e. x=2, 4, 6, 8, 10,12, ....occvvveennn ) so that these points are considered as
high leverage points with unequal weights. Correlation coefficients of Xs together with
the results after excluding the suspect high leverage cases by different detection
techniques are presented in Tables-7.c those are based on the average of 10,000

simulations.
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Table 6.c.1: Simulation results in presence of 10% unequal high leverage point (2, 3. 4, 5......, 40)

; Value of n
Correlation | Measures 20 I 30 | n i =0 100 | 200
ACTUAL 0.9416 0.94983 0.96983 0.97992 0.99445 0.99855
2 Mean 0.62036 0.51774 0.83446  0.92516  0.96257  0.98960
3 Mean 0.60657  0.86308 0.93558 0.92173  0.97569  0.99496
. Huber-1 0.81202 0.58111 0.83446 0.92210 0.98956  0.99855
12 Huber-2 0.60744  0.86302 0.93555 0.97992 0.99445  0.99855

Potential (mean) | 0.60612 0.86302 0.93555 0.96318 0.98480  0.99650
Potential (med) 0.63702 0.67554 0.83419 0.90944 0.96743  0.99203

G.P. 0.00557  0.00408 0.00676 -0.00291  0.00160  0.00146

ACTUAL 0.90398 094964 096984 0.98010 0.99441 0.99854

2 Mean 0.61798 0.51465 0.83386 092618 0.96241 0.98955

3 Mean 0.60490 0.86243  0.93560 0.92243 0.97644  0.99494

Huber-1 0.80794 0.57908 0.83386  0.92287 0.98948  0.99854

Fzs Huber-2 0.60667 0.86243 0.93559 0.98010 0.99441  0.99854

Potential (mean) | 0.60474 0.86243 093559 0.96351 0.98470  0.99649
Potential (med) 0.63501 0.67343  0.83351 0.91037 096722  0.99200
G.P. -0.00228 -0.00208 0.00912 0.00112 -0.00177 -0.00461

ACTUAL 0.90229 094966 0.96984  0.98021  0.99443  0.99854

2 Mean 0.61284 051571 0.83441 0.92642 0.96235  0.98958

3 Mean 0.59845  0.86254 093559 0.92291 0.97648 0.99495

Huber-1 0.80340 0.57898  0.83441 0.92328  0.98950 0.993854

Tz Huber-2 0.60043  0.86250 0.93558 0.98021 0.99443  0.99854

Potential (mean) [ 0.59819 0.86250 0.93558 0.96372 0.98473  0.99650
Potential (med) 0.62842  0.67782 0.83426  0.91115 0.96723  0.99203
G.P. -0.01444 -0.00254  0.00540  0.00474 -0.00318 0.00113

6.8.6 Simulation Results Discussion for 10% Unequal High Leverage Point

We observe from results of Table-6.c that the presence of multiple unequal high leverage
points causes strong multicollinearity, even stronger than the equal high leverage cases.
Likewise the previous experiment the correlations between the X’s tend to increase with
the increase in leverage values. For this experiment both the number and magnitude of
leverage values go up with the increase in sample size, which also lead to higher
correlation. But it is interesting to note that all detection techniques except the
generalized potentials break down completely in the presence of unequal high leverage
points. So far successful 2M method also breaks down here. Even for a small sample size
like n = 20, we observe little improvement of using this technique in the multicollinearity
reduction and its performance tends to deteriorate with the increase in sample size.
Similar remarks may go with 3M, Huber and potential methods. But the performance of
generalized potentials is quite outstanding. For all samples we observe that the omission
of the cases identified by this method produces very low correlation coefficients can

entirely remove the multicollinearity effect from the data.
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Chapter Seven

Conclusion and

Areas of Further Research

7.1 Discussion of Results

In our study, we considered some commonly used leverage measures in a
comparative study to investigate their sensitivity and usefulness in the detection of
high leverage cases under a variety of situations. We notice two major things in
our study. Firstly, many of the commonly used diagnostics are too much sensitive,
i.e, they have a tendency to identify good cases as high leverage points and
secondly, all of them more or less suffer from masking in the presence of multiple
high leverage points. Hoaglin and Welsch’s twice-the-mean rule performed best
overall. This method is very effective in the identification of a single high leverage
point and in a situation where multiple high leverage cases have equal weights.
When multiple high leverage cases have unequal weights, its performance is not

entirely satisfactory but it is still better than any other methods considered in this
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paper. This method also produceed a low swamping effect which indicates that
twice-the-mean rule is not too prone to declare low leverage cases as points of
high leverage. This method is followed by Hadi’s Potential (median) whose
overall performance can be considered as satisfactory. The conservative
suggestion of Huber (Huber-1 method) is the mnext choice. This method is
successful in identifying a single high leverage point, but when a group of high
leverage points is present it becomes successful only when the sample size 1s
small. But for small sample we observe that this method possesses a very high
swamping rate in every occasion. The good thing about the other three methods
considered in this paper that neither of them is sensitive in no high leverage
situations and they are successful in the identification of a single high leverage
case but their performances seemed to be very poor in the presence of multiple

high leverage cases.

The ineffectiveness of all of the commonly used diagnostic measures in the
identification of multiple high leverage cases tells us that we require new

diagnostics which are designed to identify multiple high leverage points.

Then we introduced a group deleted version of Hadi’s potential and follow Imon
(1996) to call it as generalized potentials. We proposed a new technique based on
generalized potentials to identify multiple high leverage points. At first we
consider a well known data set and observe that this newly proposed diagnostic
becomes very successful in the identification of multiple high leverage points
when all other commonly used diagnostics fail to do so. The simulation results
also support the merit of using our proposed diagnostics. It possesses a relatively
low swamping rate in a now high leverage situation, but it produced outstanding

result when the data contains several high leverage points.



Chapter Seven Conclusion and Areas of Further Research 125

In our study, we also introduce a new graphical display for location multiple high
leverage points with outliers and influential observations. We observe from a well

known data set that our proposed diagnostic plot could be very effective in the

detection of multiple unusual observations.

We also observe in our study that high leverage point may produce strong
multicollinearity among the regressors. The omission of the high leverage points
could be an option to get rid of this problem. Since the traditional detection
procedures are in doubt, we observe that neither of them becomes successful to
remove the problem of multicollinearity. But the diagnostic technique based on
generalized potentials as we suggest in our study produces stunning results. The
omission of observations identified by this method can remove the effect of

multicollinearity entirely from the data.
7.2 Areas of Further Research

In our study, we only considered a linear regression setup. But in many occasion
we have to consider non-linear regression model and we sincerely believe that our
ideas could be extended to non-linear regression. We anticipate that many of our
results could be applied readily to logistic regression analysis which is a growing
area of research. We also believe that the group deleted leverage measures could

be successfully used to measure influence of observation.






Appendix
MINITAB Programs

Program-1: MINITAB Simulation Program for Identification of
Multiple High Leverage Points When 10% Unequal High
Leverage Point are Present in the data set for a Sample
of Size 100:

Let k40 = k40+1
rand 45 c2-c4;
uniform.

let c2(91)=2
let c2(92)=4
let c2(93)=6
let c2 (94)=28
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let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let

c2 (95)=10
c2 (96) = 12
c2(97)=14
c2 (98)=16
c2 (99) =18

c2 (100) =20

c3 (91)=2
c3(92)=4
c3(93)=6
c3(94)=28
c3 (95)=10
c3 (96) =12
c3(97)=14
c3 (98)=16
c3(99)=18

c3 (100) =20

cd (91)=2
c4(92)=4
c4(93)=6
c4 (94)=28
c4 (95)=10
c4 (96) =12
c4 (97)=14
c4 (98) =16
c4 (99) =18

¢4 (100) = 20

rand 100 c5

let ¢l = 1-0.5%c2+3%*c3-2*c4+c5
regr cl 3 c2-c4;

hi

c6.
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let ¢7 = c6/(1-c6)

let ¢8 = c6>(8/100)
let ¢9 = c6>(12/100)
let c10=c6>0.2

let c11=¢c6>0.5

let k1 = mean (c7)

let k2 = stdev (c7)

let k3 =k1+ (3*k2)

let k4 = median(c7)

let c12 =c7-k4

let c13 =abso (c12)
let k5 = median (c13)
let k6 = k4 + (5*kS5)
let k7 =k4+(10*kS)
let cl4=c7>k3

let c15=c7>k6

let c16 =c7>k7

set cl7

1 (1:1/1) 100

copy ¢l7 ¢2 ¢3 ¢4 ml

Il

Il

tran ml m2

copy c2-c4 c21-¢23;

omit 81 : 100.

Set cl8

(1:1/1) 80

copy cl8 ¢21 ¢22 ¢23 m3
tran m3 m4

mult m4 m3 m5

inverse m5 mo6

mult ml mé m7
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mult m7 m2 m8§

diag m8 c24

let ¢25 = c24-median (c24)
let ¢26 = abso (c25)

let k& = median (c26)/0.6745
let k9 = median (c24)+3*k8
let k10 = median (c24)+5*k8
let c27=c24>k9

let ¢28 =c24>k10

set c29

80 (0)

20 (1)

end

let ¢30=(1-c29)

let c31=c8%c29

let ¢32 =c8%c30

let ¢33 =c9*c29

let ¢34 =c9*c30

let ¢35 =cl10*c29

let c36=cl0*c30

let ¢37 =cl1*c29

let ¢38 =cl11*c30

let c39 =cl14*c29

let c40=c14*c30

let c41 =ccl5%c29

let c42 =c15*c30

let c43 =cl16*c29

let c44 =cl6*c30

let ¢45=c27*c29

let c46 =c27%c29
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let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let

c46 = c28*c29

c47 =c28*c30

k11 = sum (c31)
k12 = sum (c32)
k13 =sum (c33)
k14 = sum (c34)
k15 = sum (c35)
k16 =sum (c36)
k17 = sum (c37)
k18 = sum (c38)
k19 = sum (c39)
k20 = sum (c40)
k21 = sum (c41)
k22 = sum (c42)
k23 = sum (c43)
k24 = sum (c44)
k25 = sum (c45)
k26 = sum (c46)
k27 = sum (c47)
k28 = sum (c48)
c50 (k40) =kl11
c51 (k40) =k12
¢52 (k40) =k13
c53 (k40) =kl14
c54 (k40) =kI15
¢55 (k40) =k16
¢56 (k40) =k17
c57 (k40) =k18
c58 (k40) =k19
c59 (k40) =k20
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let
let
let
let
let
let
let
let

c60 (k40) = k21
c61 (k40) = k22
c62 (k40) = k23
c63 (k40) = k24
c64 (k40) =k25
c65 (k40) =k26
c66 (k40) = k27
c67 (k40) = k28

name c50 ‘2Mz1’

name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name

end

c51
£92
c53
c54
c55
c56
c57
c58
c59
c60
c61
c62
c63
c64
c65
c66
c67

‘2Ms’

3MY’

‘3Ms’

‘Hulr’

‘Huls’

‘Hu2v’

‘Hu2s’

‘H.mean 1’
‘H.mean s’
‘H.med (c=5) 1’
‘H.med (c=5) s’
‘H.med (c=10) V’
‘H.med (c=10) s’
‘GP (c=3) 1’

‘GP (c=3) s’

‘GP (c=5) 7’

‘GP (c=3) s’
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Program-2: MINITAB _Simulation Program to Investigate How High
Leverage Points Behave as a Source of Multicollinearity

When 10% Unequal High Leverage Point are Present in
the data set for a Sample of Size 100:

Let k40 =k40+1
rand 45 c2-c4;
uniform.

let c2(91)=2
let c2(92)=4
let c2(93)=6
let ¢2 (94) =28
let ¢2(95)=10
let ¢2 (96) =12
let c2(97)=14
let c2 (98)=16
let ¢2(99)=18
let c2 (100)=20
let c3(91)=2
let c3(92)=4
let c3(93)=6
let ¢3(94)=38
let c3(95)=10
let ¢3(96) =12
let ¢3(97)=14
let ¢3 (98) =16
let ¢3(99)=18
let ¢3 (100)=20
let c4 (91)=2
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let c4 (92)=4

let ¢4 (93)=06

let c4 (94)=8

let c4 (95)=10

let c4 (96) =12

let c4 (97)=14

let c4 (98) =16

let c4 (99)=18

let c4 (100) =20

rand 100 c5

let ¢l =1-0.5%c2+3*c3-2*c4+c5
regr ¢l 3 c2-c4;

h; c6.

let ¢7 = c6/(1-c6)

let c8 = c6>(8/100)
let ¢9 = ¢6>(12/100)
let c10=c6>0.2

let c11=c6>0.5

let k1 = mean (c7)
let k2 = stdev (c7)

let k3 =k1+ (3*k2)
let k4 = median(c7)
let c12 =c7-k4

let ¢13 =abso (c12)
let k5 = median (c13)
let k6 =k4 + (5*k5)
let cl4=¢c7>k3

let ¢c15=c7>k6

set cl7

1 (1:1/1) 100

copy cl7 c2 c3 c4 ml
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tran ml m2

copy c2-c4 ¢21-¢23;

omit 81 : 100.

Set c18

(1:1/1) 80

copy cl8 c21 ¢22 ¢23 m3
tran m3 m4

mult m4 m3 mS

inverse m5S mo6

mult ml mé6 m7

mult m7 m2 m38

diag m8 c24

let ¢25 = ¢24-median (c24)
let ¢26 = abso (c25)

let k8 = median (c26) / 0.6745
let k9 = median (c24)+3*k8
let ¢27 =c24>k9

copy c2-c4 c30-c32;

omit c8=1.

copy c2-c4 c33-c35;

omit c9=1.

copy c2-c4 c36-c38;

omit ¢10=1.

copy c2-c4 ¢39-c4l;

omit cll=1.

copy c2-c4 c42-cd4,

omit cl4=1.

copy c2-c4 c45-c47;

omit c15=1.

copy c2-c4 c48-¢c50;

omit ¢27=1.
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corr c2-c4 ml0
copy ml0 c51-¢53
let k10 =¢c51(2)
let k11 =¢51(3)
let k12 =¢c52 (3)
corr ¢30-c32 mll
copy mll c54-¢56
let k13 =c54 (2)
let k14 =c54 (3)
let k15=c55(3)
corr ¢33-¢35 ml2
copy ml2 ¢57-¢59
let k16=1c57(2)
let k17 =¢57 (3)
let k18 =c58 (3)
corr ¢36-c38 ml3
copy ml3 c60-c62
let k19 =c60 (2)
let k20 =c60 (3)
let k21 =c61 (3)
corr ¢39-c41 ml4
copy ml4 c63-c65
let k22 =c63 (2)
let k23 =¢63 (3)
let k24 = c64 (3)
corr c42-c44 ml5
copy ml5 c66-c638
let k25 = c66 (2)
let k26 =c66 (3)
let k27 = c67 (3)
corr c45-c47 ml6
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copy ml6é c69-c71

let k28 =c69 (2)
let k29 =¢c69 (3)
let k30=c70 (3)

corr ¢48-¢50 ml17
copy ml7 c72-c74

let k31=c72(2)
let k32 =c72 (3)
let k33 =c73 (3)

let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let

c75 (k40) =k10
c76 (k40)=k11
c77 (k40)=k12
¢78 (k40) =k13
¢79 (k40)=k14
80 (k40)=k15
c81 (k40)=k16
c82 (k40) =k17

c83 (k40)=k18
c84 (k40) =k19
¢85 (k40) =k20
c86 (k40)=Kk21
c87 (k40)=k22
c88 (k40) = k23

c89 (k40) = k24
c90 (k40) =k25
c91 (k40)=k26
92 (k40) = k27
93 (k40) = k28
c94 (k40) = k29

¢95 (k40) = k30

c96 (k40) = k31
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let ¢97 (k40) = k32

let c98 (k40) =k33

name c75 ‘corr (1, 2)

name c76 ‘corr (1, 3)

name c77 ‘corr (2, 3)

name ¢78 ‘2Mcorr (1, 2)
name c79 ‘2Mcorr (1, 3)
name ¢80 ‘2Mcorr (2, 3)
name c81 ‘3Mcorr (1, 2)
name c82 ‘3Mcorr (1, 3)
name c83 ‘3Mcorr (2, 3)
name c84 ‘Hul corr (1, 2)
name ¢85 ‘Hul corr (1, 3)
name c86 ‘Hul corr (2, 3)
name ¢87 ‘Hu2 corr (1, 2)
name c88 ‘Hu?2 corr (1, 3)
name c89 ‘Hu2 corr (2, 3)
name ¢90 ‘H mean corr (1, 2)
name ¢91 ‘H mean corr (1, 3)
name ¢92 ‘H mean corr (2, 3)
name ¢93 ‘H med corr (1, 2)
name ¢94 ‘H med corr (1, 3)
name c95 ‘H med corr (2, 3)
name ¢96 ‘GP corr (1, 2)
name ¢97 ‘GP corr (1, 3)
name c98 ‘GP corr (2, 3)

end
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