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Abstract

Fractional derivatives are most important to accurate nonlinear modeling of various real-world
difficulties in applied nonlinear science and engineering incidents especially in the fields of
crystal, optics and quantum mechanics even in biological phenomena. The investigation of exact
solutions of such nonlinear models has great important to visualize the nonlinear dynamics. We
consider the space-time fractional nonlinear differential equations for pulse narrowing
transmission lines model, the space-time fractional Equal-width (s-tfEW) and the space-time
fractional Wazwaz-Benjamin-Bona-Mahony (s-tfWBBM), complex Schrodinger and biological
population models, the complex time fractional Schrodinger equation (FSE) and low-pass
electrical transmission lines equation (ETLE) are studied with the effective unified method,
Jacobi elliptic expansion function integral technique, generalized Kudryshov technique, modified
simple equation (MSE) method respectively. As a result, we get some solitary wave solutions in
the form of hyperbolic and combo hyperbolic-trigonometric functions including both stable and
unstable cases. We obtain kink wave, bright bell wave, dark bell wave, combo periodic-rogue
waves, combo M-W shaped periodic-rogue waves in stable cases, and singular kink type in
unstable solitonic natures. Lastly, we proposed an Improved Kudryashov method for solving any
nonlinear fractional differential models. We apply the proposed approach to the nonlinear space-
time fractional model leading wave spread in electrical transmission lines (s-tfETL), the space-
time M-fractional Schrodinger-Hirota (s-tM-fSH) and the time fractional complex Schrodinger
(tfcS) models to verify the effectiveness of the propose approach. The implementations of the
introduced new technique on the models provide us periodic envelope, exponentially changeable
soliton envelope, rational, combo periodic-soliton and combo rational-soliton solutions, which
are much interesting phenomena in the nonlinear sciences. Beside the scientific derivation of the
analytical findings, we represent the results graphically for clear visualization of the dynamical

properties.
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Chapter-1
Introduction

Various real-world difficulties in applied nonlinear science and engineering are formed via
nonlinear evolution equations. Finding the soliton solutions of such nonlinear equations is a
vital field of experimentation. Nonlinear fractional differential equations are also taking deep
consideration for accurate modeling of the scientist and researchers in recent year. The
investigation of exact solutions of such nonlinear partial differential equations plays an
important role in the study of physical phenomena in various scientific and engineering
fields, such as of quantum mechanics [1-3], nonlinear optical communications [4-5], plasma
physics [6], fluid mechanics [7-8], nonlinear electric-transmission line [9-13],
superconductivity and Bose-Einstein condensates [14], signal processing [15], Biological
dynamics [16], electro-magnetic waves [17], neuron networks [18], dust acoustic and dense
electron-positron-ion wave [19], heat conduction [21], compact and non compact structure
[22] and many others fields [22-24]. Numerous numbers of systematic techniques have
proposed to achieve numerical or exact solutions of nonlinear or fractional nonlinear
differential equations. Several powerful imethods are as: Hirota bilinear [24-25], unified [26],
Jacobi elliptic function expansion [27], generalized Kudryashov [28-29], modified simple
equation method [30-31], Bécklund transformations [32], tanh method [33], tan(®/2)-
expansion [34], soliton ansatz [35-36], auxiliary equation [37], homogeneous balance [38],
(G'/ G) -expansion [39-40], Modified double sub-equation [41], variational iteration method
[42], homotopy perturbation method [43], fractional sub-equation method [44] and so on.

Huge amount of integral schemes are introduced in the literature. Few of them are effective

for both integrable and non-integrable models. Some schemes are not appropriate for non-
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integrable models. Among the above methods the Hirota bilinear [24-25], unified [26],

Jacobi elliptic function expansion [27], generalized Kudryashov [28-29], modified simple
equation method [30] are most useful, coincide, direct and attracted much more interest of
researchers which are appropriate for both integrable and non-integrable.

Our main works start in the next chapter-two. In this chapter, we tried to investigate four
influential non-linear evolutions equations namely, the first and second negative order
integrable Burgers equation [45], the fifth order Korteweg-de-Vries equation [46], and the
extended Sawada-Kotera [45] via Hirota bilinear method [24]. There solitons solutions
consists diverse types of solitonic nature with different free parameters. Taking complex
conjugate of free parameters on exact multi-soliton solutions, we illustrate the interaction
between line and periodic soliton, line and rogue soliton, two rogue type solitons. We also
provided some figures of the interaction of two, three and four soliton of the considered
nonlinear models.

In third chapter, we explain the unified method [26] to solve nonlinear fractional partial
differential equations. The method has applied on the space-time fractional nonlinear
differential equations for pulse narrowing transmission lines model [11-13] to verify the
effectiveness of the method. Different types of exact solution are derived. The derived results
are innovative and noteworthy to disclose the relevant features of the physical phenomena.

A mathematical technique is discussed in the chapter four to find the exact solutions of the
space-time fractional Equal-width [47] and the space-time fractional Wazwaz-Benjamin-
Bona-Mahony models [49]. Presented Jacobi elliptic method [27] is a superb way to

investigate and find exact solution of fractional nonlinear differential models.
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Chapter five is devoted to search new exact solitary wave solutions for time fractional

complex Schrodinger and time fractional biological population model [8] through the
generalized Kudryshov method [28-29]. Considered models have successfully analyzed by
this method. Finally some graphs of the exact solutions are presented in Fig-5.1 to Fig-5.6.
Chapter six uses the popular modified simple equation method [30-31]. The method applied
on the complex time fractional Schrodinger [3] and 'space—time fractional differential
equation governing wave propagation in low-pass electrical transmission lines equations.

The chapter seven covers a new class of fractional dynamical systems. Here, we proposed a
new method namely Improved Kudryashov method for solving any nonlinear fractional
differential models. We apply the proposed method to the nonlinear space-time fractional
models leading wave spread in electrical transmission lines [11], the time fractional complex
Schrodinger [3] and the space-time M-fractional Schrodinger-Hirota models [65] to bear out
the effectiveness of the propose method. All the obtained solutions are illustrated graphically.

Finally, overall concluding remarks are in the last chapter-eight.
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Chapter-2

Dynamics of interaction solutions of non-linear models
Acknowledgement
Based on the Hirota Bilinear Method, we study four influential non-linear evolutions
equations and its different solitons solutions consisting of line soliton, periodic soliton,
lump soliton, different type of breather type solitons with different free parameters.
Taking complex conjugate of free parameters on exact multi-soliton solutions, we
illustrate the interaction between line and periodic soliton, line and rogue soliton, two
rogue type solitons. On the perspective of dynamical characteristics, it is found that the
propagation directions, shapes and altitudes of waves are influenced by the exits
parameters. The exact soliton interaction are also analyzed and illustrated graphically.
2.1 Introduction
The research on nonlinear equations has started on the past decades. Now this field is
very important for its different character. There are different types of nonlinear equations
that are deliberate in various areas of science, such as acoustics, continuous stochastic
processes, and traffic system, dispersive of fluid, shock waves, heat conduction and
instability of fluid flow in the field of applied mathematics, physics, and engineering
science. Particularly the theory of solitons plays an significant role in nonlinear fields. Of
particular interests are in the field of quantum mechanics [1-3], nonlinear optical fiber
communications [4-5], plasma physics [6], water wave dynamics [7-8], nonlinear electric-
transmission line [9-13], superconductivity and Bose-Einstein condensates [14], electrics
signal processing [15], Biological dynamics [16], electro-magnetic waves [17], neuron
networks [18], dust acoustic and dense electron-positron-ion wave [19], and in many

aspect [20-24].
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The study of multi-soliton solution and their analysis of non-linear equations played an
important role and has become one of the most significant issues of such non-linear
fields. Various techniques have been used to handle the non-linear models such as the the
Hirota bilinear [25], Modified double sub-equation [26], Jacobi elliptic function
expansion [27], generalized Kudryashov [28-29], modified simple equation method [30-
31], Bécklund transformations [32], tanh method [33], tan(®/2)-expansion approach
[34], auxiliary equation [37], sine-cosine [38], homogeneous balance [38], (G'/G)-
expansion [39,40], Modified double sub-equation method [41], variational iteration
method [42], homotopy perturbation method [43]and so on. Some modified methods have
been applied to solve and analyze non-linear partial differential equations with variable
coefficients.

In this chapter, we want to inveétigatc the interaction solutions and identify the solitonic
phenomena for five non-linear partial differential equations. We consider five equations
namely, the first and second negative order integrable Burgers equation [45], the fifth
order Korteweg-de-Vries equation (KdV-5) [46], and the extended Sawada-Kotera
equation [45]. These five equations have infinite sets of conservation laws. So the above
five equations carry the N-soliton soluti.ons.

The Hirota bilinear method [25] is an essential tool to gather multi-soliton solutions and
its interaction with less computational efforts. This method is rather heuristic and
significant to handle non-linear equation with constant coefficients even with variable
coefficients. Hirota bilinear method posse powerful feathers that make it practical for the
determination of single soliton and multiple solitons solutions for a wide class of non-
linear evolution equations. By using the Hirota bilinear method, we shed light on the

derivation of multi-solitonic solutions and its interactions, and the results will be
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investigated graphically as well. The computer symbolic systems such as Maple and

Mathematica allow us to perform complicated and tedious calculations.

2.2. Applications
In this section, we are willing to determine solution of the interaction solutions of the first
and second negative order integrable Burgers equation [45], the fifth order Korteweg-de-
Vries equation (KdV-5) [46], and the extended Sawada-Kotera equation.
2.2.1 Integrable first negative-order Burger equation
The standard Burgers equation [45] reads

U, +20U, +U_ =0. (2.1)
Which is the most important evolution equation arises in propagation of waves specially.
The Burgers model holds the nonlinear UU, and dissipative effects U .., which are two
significant structures of solitonic propagation. The Burgers model was first presented in
1915 by Bateman [52], and after then further studied have done of the model in different
structure in 1948 by Burgers. We have to know that the standard Burgers equation is the
first equation in [52].
We initiate investigation of interaction solutions of the first negative-order integrable
Burgers equation given by,

e +0P +O D +P_=0. (2.2)
At first consider a solution as a form of exponential

O(x,0) =77, (2.3)
Using the Eq. (2.3) in the first and forth terms of Eq. (2.2) provides the dispersion
relation:

¥ =1 (2.4)
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It is seen that the dispersion variable is a fixed with value one and not a variable alike the
standard Burgers equation. Thus, we have the traveling variables
n;=lx—t. (2.5).

The multi solitons solutions we can apply the following transformation,

O (x,0) =rln f(x,1). (2.6)
Where the auxiliary function f(x, ¢) for the different one or more than one soliton solution

is given by,
A Lx—t
f(x,t)=l+z e, 2.7)
j=

For single soliton, i.e, when j =1, setting Eq. (2.6) into Eq. (2.2) and solving forr, we
find

r=1. (2.8)
Case-1: To determine lump wave, we have to consider at least two soliton solutions by
putting j =2 in Eq. (2.7), then the auxiliary function

f)=14+e™ +et=1+e"" +e, (2.9)
Suppose the constants are,l, = a, +ib,, I, = a, —ib,, then Eq. (2.9) reduce to

Flx, 1) =1+ @it 4 gla-ider
After some simplification, we get

f(x,2) =1+ 2cos(b,x)e" ™", (2.10)
Substituting Eq. (2.10) into Eq. (2.6)

®(x,t) = In(l + 2 cos(b, x)e*™"). (2.11)
The solution of Eq. (2.1) by using Eq. (2.11)

2e* {q cos(b,x) —b,sin(bx)}
1+ 2cos(b,x)e'™ ™"

Ux,t) = (2.12)
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From two soliton, we get the solution Eq. (2.12) by considering the existing parameters in
a complex conjugate and gives interaction of periodic fump waves and periodic line
waves. Nature of solution Eq. (2.12) is depicted in 3D plot of Fig-2.1 (a) and contour plot
of 2.1(b) with the parametric valuesa = 1,b =1.The corresponding 2D plots of Fig-(c) for
t=-1,=0,/=1. Figures show that lump wave of the interaction occurs along parallax
of xt-plane and it is cleared that waves were disappeared when it goes to negative
direction of space as time increases from the parallax. On the other hand, one can control
the direction of the lump waves taking the parametric values as purely imaginary and
propagate the wave along x-axis instead of parallax (see Fig-2.1(d), (¢) and (f)). Actual
shape of lump waves and line waves are clearly observed from its contour and 2D plots.

N

U(x_t)__-'!').'ﬁ'«u_

=3

Ulx,0)

(d) (@)

Fig-2.1(a).(b) shows plots of interaction of periodic lump and periodic line waves for the Eq. (2.12) in 3D
and contour plot with the parametric values @ =1 and b =1;1(c) represents corresponding 2D plots for
t=-1,£=0,t =1 and (d), () represent the interaction of breather type lump and periodic line waves for

the Eq. (12) in 3D and contour with the parametric values @ = 0 and b =1; (f) represents corresponding
2D plot in Fig-(f).

Case-2: Putting j =3 for three solitons solution in Eq. (2.7), then the assisting function
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S =1+e™ +e™ +e™ =1+ 42 4 b, (2.13)
Let the constants,/, = a, + ib,I, = a, —ib, and I, = c(say)then Eq. (2.13) reduce to

S 1) =1+ 4 o5 4 ot = 4 glatibdr-t 4 la-ibaen) 4 pert (2.14)
Simplifying the Eq. (2.14) we get

S(x,0) =1+ 2cos(h,x)e™™ + e~ (2.15)
Replacing Eq. (2.15) into the Eq. (2.6) gives

D(x,1) = In(l + 2 cos(b,x)e”*™ + ™). (2.16)
The solution of Eq. (2.1) by using Eq. (2.16) gives

22" {a, cos(b,x) —b, sin(bx)} + ce™*

U(x,t) =
(=2) 1+ 2cos(bx)e™™ + e

2.17)

The solution Eq. (2.17) comes from three soliton solutions considering two of the
parameters in a complex conjugate and one as real valued. Resulting solution gives
interaction of periodic lump waves with kink wave. Nature of solution Eq. (2.17) is

depicted in 3D and contour plot of Fig-2.2(a), (b) with the parametric valuesa, =1,b, =1

and c¢=-1. 2D shape represent in Fig-2.2(c). Figures show that the periodic lump waves
propagate along the parallax of x¢-plane and interact with the kink wave orthogonally at
the origin. It is observed that waves were disappear when it goes to negative direction of
space as time increases and above the parallax but only kink type line wave exist there.
On the other hand, one can control the direction of the periodic lump waves taking the
parametric values as purely imaginary and propagate the lump wave along x-axis instead
of parallax (see Fig-2.2(d), 2.2(e) and 2.2(f)) but direction of kink wave remain same. In
this case angle between the lump and kink wave is 135° Actual shape of periodic lump

wave and kink type line wave are clearly observed from its contour plot.



Chapter-Two - - i Dynamics of interaction of non-linear models

Fig-2.2(a), (b) shows plot of interaction of periodic lump wave with kink type line wave for the Eq. (2.17)
in 3D and contour plots with the parametric values @, = b, =1,¢ = —1; (c) represents the corresponding

2D plots for £ = 0.5, = 2,¢ = 3 . (d),(e) depicted the interaction of lump and kink waves for the Eg.
(2.17) in 3D and contour with the parametric values @, = 0,5, = 1,¢ = —1; (f) represents corresponding
2D plotof for t =0, =2,t =4,

Case-3: For four soliton solutions put j =4 in Eq. (2.7), then the auxiliary function

hx—t hx—t

x,D)=1+e" +e™ 4+ +e™ =1+e¢ +e™ ye Jugh®t 2.18
b
Let us consider the constants,/, =a, +ib, I, =a,—ib, I, =a,+ib,, and [, =a, —ib
1 1 1 2 1 1 3 2 2 4 2 2

then Eq. (2.6) reduce to

Fx, ) =1+ +e 4 4/,

= f(x,1) =1+ @5 4 plamibet g platiba)ect | (@amiba)xt (2.19)
After simplifying the Eq. (2.19)

f(x,t) =1+ 2cos(b,x)e™™" +2cos(b,x)e™™™, (2.20)
Substituting Eq. (2.20) into Eq. (2.6)

®(x,1) = In(1 + 2 cos(b,x)e™™ + 2cos(b,x)e™™). (2.21)

10
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The solution of Eq. (2.1) by using Eq. (2.21)gives

Ui = 2{a, cos(b,x) b, sin(b,x)}e"™ +2{a, cos(b,x) — b, sin(b,x) e
1+2cos(bx)e™™ + 2cos(p,x)e™ "

, (2.22)

The solution Eq. (2.22) comes from four soliton solution considering the parameters in
two pair of complex conjugates. Resulting solution gives interaction of two pair of
periodic cross lump waves. Nature of the solution Eq. (2.22) is depicted in 3D plot of Fig-
2.3(a) and contour plot of Fig-2.3(b) with the parametric values a, =1,b =1,a, =~land
b, =1. Figures show that two periodic lump wave propagate along opposite parallax of
xt-plane. The interaction occurs at the origin and act orthogonally. On the other hand,
one can control propagation direction of the lump waves taking the pérametric values as
purely imaginary. In that case, one lump wave propagate along x-axis instead of parallax
and other lump wave propagate along the parallax and interact at the origin with angle
135° (see Fig-2.3(c) & 2.3(d)).Actual shape of interaction of the periodic lump waves are

clearly identified from its contour plots.

[—t=1—1=0—1=1]

®
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Fig-2.3(a), (b) plotted the interaction of two pair of the periodic lump waves for the Eq. (2.22) in 3D and
contour with the unknown constants a, =b, =b, =1,a, = —1;3(c) represents corresponding 2D shape
for the time ¢ = 0,7 = 2,7 = 4. and (d),(c) shows plot of intetaction of lump and kink waves for the Eq.
(2.22) in 3D and contour plot with the parametric values a, =0,b, =b, =1,a, = —1; () represents
corresponding 2D plot for £ =—1,/ =0,/ =1.

2.2.2. Integrable second negative-order Burger’s equation
In this subsection, we analyse the second negative-order integrable Burger equation given
by

D, +0, P +D D +D _+20 O _+D__ =0. (2.23)
Here, firstly, consider a trial solution of second negative integrable burger’s equation as

an exponential form
O(x,7) =" 7. (2.24)
Using the Eq. (2.24) in the first, fourth and sixth terms of Eq.(2.23) provides the

dispersion relation:

7;=1;. (2.25)
It is seen that the dispersion variable is not fixed. Thus, we have the travelling variable as

n;=Lx-1;z. (2.26).
The multi solitons solutions can apply the following transformation

O(x,1)=rln f(x,2). . (2.27)
Where the auxiliary function f(x,f) for the different one or more than one soliton

solution is given by,
y Ix=l
Fen)=1+), e, (2.28)
Jj=l

For single soliton i.e. when j =1, setting Eq. (2.27) into Eq. (2.23) and solving forr , we

find

F=1. (2.29)

12
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Case-1: To determine breather type lump wave, put j =2 in Eq. (2.28), to consider at

least two soliton solutions, then the auxiliary function,

S ) =1+e™ + el =14 "W 4 ghtht (2.30)
Suppose the constants are,/, = a, +ib,, I, = a, —ib,, then Eq. (2.30) reduce to

S(x, 1) =1+ @00 | pla-ti)x-n)
After some simplification, we get

Fx,0)=1+2cos(b, (x—1))e™ . (2.31)
Inserting Eq. (2.31) into Eq. (2.27) gives

®(x,7) = In(1+ 2 cos(b, x)e™ " ™). (2.32)
The solution of Eq. (2.1) by using Eq. (2.32)gives

26" g cos(h, (x—1)) —b, sin(b, (x—1))}

U(x,t)=
() 1+ 2 cos(b, (x—1))e” ™"

(2.33)

The solution Eq. (2.33) comes from two soliton solution considering exist parameters in a
complex conjugate and provide lump type periodic breather wave. Nature of result in Eq.
(2.33) is depicted in 3D plot of Fig-2.4(a) and contour plot of 2.4(b) with the parametric
valuesaq =—0.5,b =1.5.Fig-2.4(c) is the corresponding 2D shape for t=-1L¢=0,1=1
.Figures show that breather waves occurs up to parallax of x7-plane and it is observed
that waves disappear when it was in positive direction of space before interaction (as¢ <0
).But, when we take the parametric values as purely imaginary, then we get the simple
periodic waves comes in-terms of sinusoidal function (see Fig-2.4(c) & 2.4(d)). Actual
shape of interaction of the periodic lump waves are clearly identified from its contour

plots.

13
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Fig-2.4(a},(b) shows plot of interaction of two pair of the lump type periodic breather wave for the Eq.
(2.33) in 3D and contourplot with the parametric values a = —0.5,b =1.5; (c) represents corresponding

2D plot forf = —1,f = 0,/ =1 . Fig-(d).(c). Shows the simple periodic waves comes in-terms of sinusoidal

function for the Eq. (2.33) in 3Dwith the parametric values @ = 0 andb =1.5; (f) represents
corresponding 2D plot with £ = =1,z =0,¢ =1.

Case-2: For kinky-lump type breather wave we have to consider three soliton solutions.

In this regard, consider the three solitons solution by putting j =3 in Eq. (2.28), then the

auxiliary function

) =1+em +e™ +e™ =1+ 4 4 N, (2.34)
Let the constants,/, = a, +ib, ,I, = a, —ib,and I, = c (say)then Eq. (34) reduce to

F, ) =14 47 4" =] 4 @RI 4 gl@mBE) g gt (2.35)
Simplifying the Eq. (2.35) we get

f(x,6) =1+ 2cos(h (x—1))e?"™ + e, (2.36)
Replacing Eq. (2.36) into Eq. (2.27)

O(x,) = In(l + 2cos(b, (x —1))e” ™™ + "), (2.37)
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The solution of Eq. (2.1) by using Eq. (2.37)

U(x I) = 2e% (x=1) {al COS(b] ()C — t)) —bl Sin(bl (x - t))} + Cec(z—r)
1+ 2cos(b, (x — 1))e D 4 o0 .

(2.38)

The solution Eq. (2.38) comes from three soliton solutions considering two of the
parameters are in complex conjugate and one as real valued. Resulting wave solution
gives kinky-lump type periodic breather wave. Nature of solution Eq. (2.38) is depicted in
3D plot of Fig-2.5(a) and contour plot of Fig-2.5(b) with the parametric values
a, =-2,b, =1.5,c=4. Figures show that kinky-lump type breather wave occurs up to
parallax of xt-plane and it is observed that waves were disappear when it goes to positive
direction of space before interaction (whent<0).The cormesponding 2D plot for

t=-1t=0,t=1 in Fig-2.5(c). Fig-2.5(d), (c) represent the 3D and contour plots for

a, =0,b, =1.5,c =4. And Fig-2.5(f) represents the corresponding 2D plot.

m!

(c)

4

Tl j2

B ’ .
®

Fig-2.5(a) shows plot kinky-lump type breather wave for the Eq. (2.38) in 3D with the parametric values
a, =-2,b, = 1.5, ¢ = 4 ; (b) represents corresponding contour plot. The corresponding 2D plot for
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t=—1,0=0,t =1 inFig-2.5(c). Fig-2.5(d) and (f) for the parametric values a, = 0,b, =1.5,c =4.
Fig-(f) represents the 2D plot.

Case-3: To analysis periodic-lump type breather wave consider four soliton solutions. For
the four solitons solution, put j = 4 in Eq. (2.28), then the auxiliary function

D =1+e" +e" +eP 4™ =1+ 4 vl | ghe-hit | -l (2.39)
Let us consider the constants,/, = a, +ib,, I, =a, —ib, l,=a,+ib,, and I, =a, —ib,
then Eq. (2.39) reduce to

F(,0) =14 @+t 4 plamib)am) | glaytibylat) 4 las=iby)a=1) (2.40)
After simplifying the Eq. (2.40)

S(x,0) =1+ 2cos(b, (x - 1))e" ™ + 2cos(b, (x — 1))e ™. 2.41)
Substituting Eq. (2.41) into Eq. (2.27)

O (x,7) = In(1+ 2 cos(b, (x — £))e ™ + 2cos(b, (x — 1)) ™). (2.42)
The solution of Eq. (2.1) by using Eq. (2.42)

2{a, cos(b,(x —1)) - b, sin(b, (x —1))}e* " +

2{a, cos(b, (x—1)) — b, sin(h, (x — 1))} (2.43)

Ulx,t)=

T 1+2 cos(b, (x —£))e ™ + 2cos(b, (x— 1))
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Fig-2.6(a) shows plot kinky-lump type breather wave for the Eq. (2.43) in 3D with the parametric values
a;=0.2; b, =0.8,a, =-0.5and b, = 0.4 (b) represents corresponding contour plot. Fig-(c) shows
plot completely periodic waves for the LEg. (2.43) in 3Dwith the parametric valuesa, = 0 ;

b =0.8, a, =0and b, = 0.4 (d) represents corresponding contour plot.

The solution Egq. (2.43) comes from four soliton solutions considering the parameters in
two pair of complex conjugates. Resulting solution gives interaction of two pair of
breather waves in the type of periodic-lump. Nature of the solution Eq. (2.43) is depicted

in 3D plot of Fig-2.6(a) and contour plot of Fig-2.6(b) with the parametric valuesa, = 0.2
,b,=0.8,a, =—0.5and b, = 0.4, Figures show that each breather wave of the interaction
occurs up to parallax of x¢-plane and the two pairs interact from opposite direction. But

when we keep both pair of parameters as purely imaginary, then we achieved completely
peripdic waves in terms of sinusoidal functions (see Fig-2.6(c, d)). On the other hand, if
we keep any one pair of complex conjugate as purely imaginary observed the dynamical
nature of the waves like Fig-2.6(a). In that case density of waves may be different before

or after parallax.

2.2.3. The fifth order Korteweg-de-Vries equation (KdV-5)

In this portion, we begin our analysis by studying extended KdV-5 [46] given by,

¥ +c¥, +3PY_ 452 (¥YY,_ +29. ¥ )+@—2—*P2\P
‘ P x xx PR 25 x (2.44)

+ ¥, +¥ )=0, B=0
At first consider a solution as a form of exponential

Y(x,H)=e" =™ Where V;, =KX~ 01 (2.45)
From the linear term of Eq. (2.44) to solve dispersion relation

@ =ck, + P +a’K), i =1,2,3,4 (2.46)
And the corresponding phase variables,

v, = x—{ek; + fG + &’} (247)

17
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The phase shift relation of Eq. (2.44),

_ (e —x,)?

(x, +x,)*°

where i, j =1,2,3,...N. (i< j). (2.48)

i

The multi solitons solutions we can use the transformation

P (x,t) = h(ln f(x,1)),,. (2.49)

Where the auxiliary function f(x,r) for the different one or more than one soliton
solution is given by,
N N
fx,D=1+ Zexp(vf) + ZAﬁ exp(v; +v;)
i=l

i (2.50)

N N N )
+ .ZkA"fAjkAi" exp(v; +v; + v, )+ +HA,.j (Zexp(v,.)
i<j< i<j i

For single soliton, i.e., N =1, then setting Eq. (2.49) into Eq. (2.44) and solving for A,
we find

h=4pf. (2.51)
Case-1: To determine lump wave, consider at two soliton solutions for N =2. In this
view, the auxiliary function from Eq. (2.50),

fx,H)=1+€" +e" + 4,e"™, (2.52)
where v, =xx—wtand v, = K,x—w,!

x, = p, +ig, and K, = p, —iq, then

@ =m+in and @, =m—in,
where m=a,c+ fp, +a’fp,’ -10a’fp g, +5a>fp.q,*),

n=bc+30p,’q ~3Pp.q! - Ba} +5¢°Bpq, —-10a* Bp*q’ + a* Bg,})

and the term phase shift term from Eq. (2.48),

_4ar

p - )
?op

Simplifying the Eq. (2.50) by using the above terms
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S(x,1) =1+ 2e" cos(&) + 4, (2.53)
where o\ =p x—mt and £ = q,x—nt
Replacing Eq. (2.53) in Eq. (2.49),
F(x,0) =4p{In(1+2e” cos(&)) + 4,,¢*)} .. (2.54)
The solution Eq. (2.54) comes via selecting complex form of exist parameters from two
solitons solution and gives rogue type breather waves.
Nature of the solution Eq. (2.54) is illustrated in 3D shape Fig-2.7(a) and contour plot
Fig-2.7(b) with the parametric values, P =-13,q,=2,c=0.02a=053=02. Fig-
2.77(c) represents 2D plots for time variation f=-5¢=0 and 7=5. Graphical

representation of the solution shows the multi-rogue type breather propagations along the
paradox. Its rapidity, wideness and path are unchanged over all the dynamical structure
and periodic rogues occur same distance from two wave. Actual shape, direction and
distance among rogues of the wave are clearly observed from its contour plots. On the
other hand, when we take the parameter as purely imaginary, then the sotution Eq. (2.54)
exhibits as a breather line waves. It portrayed 3D, contour and 2d plot in Fig-1(d), 1(e)
and I(f) respectively for the parametric valuesp, =0,q, =l,c=-1,¢ =2, =1and

t=-1t=0,t=1.
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- A1e?

-1fs A 16t

; it s dier]
! T e _v'“":ﬁ = —ro—1]
. (d) () ()
Fig-2.7(a) and (b) are outlook of the Eq. (2.54) in 3D, contour plots respectively with the parametric values
Py =-13,9,=2,c=0.02,a = 0.5, 8 = 0.2 (c) signifies corresponding 2D plot for the Eq. (2.54) for
the values of ¢ = —5,¢ = 0,¢ = 5; (d) and (d),(e) and (1) represent the outlook of the breather waves for

the parameters p, = 0,g, = l,c = ~1,& = 2, § = 1. () is corresponding 2D plot of breather wave for

time t = -1, =0and f =1.

Case-2: Consider N =3in Eq. (2.50) to find three soliton solutions. Then the function

S (x,t) takes the form

S =1+e" +e” +&" + 4, + 4,6 + 4,e" + 4, (2.55)
Where v, = ki x—ayt, v, = Kk,x—m,t and v; = K;Xx— 5t ,
Let «x =px+ig,x,=px—ig and kx; =7.
@, =m+in,®,=m~in and o, =c+ac’ +a’fc*,
h _ 3 2 5 _10 2 3 2 5 2 4
where m = p;z+ fp +a’fp, a fp g +5a fpg, ),
n=q,0+3fp q, ~3fpg; - Bai +5a fp,’q, — 102 fpq + @’ fig,’)

and phase shift terms from Eq. (2.48),

Ay = p, +ig, = p,exp(if))(say)and 4; = p, —ig, = p, exp(-if,),

4
where p, =+/p,” +¢," and 6 =tan I(;‘).
) 1

Simplifying the Eq. (2.55) by using the above terms

3 bIFTE]
[(x,1) =1+ 2e% cos(&,) + NN 4 4 e

(0, +AX—{cA+ BN +a P )t p 2 4 . plEoi+Ax=(cA+ BN +a’ BN )1} 2:56)
+2pe cos(g, +6))+p, " Ape

b
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where 0y = pix—mt and & =g x—nt
Replacing Eq. (2.56) in Eq. (2.49),

W(x, ) = 4B{In(l + 2™ cos(&,) + eM- ALK 4 g p2a

+ 2ple(0’|+Ax-—(cA+ﬂAJ+zzzm5)l cos(, +6,) + pl2Al2e{zal+,\x—(m+m’+a’mf):})}u (2.57)
In the Eq. (2.57), solution comes from the combination of exponential and periodic
sinusoidal function exhibits collision of a periodic rogue type soliton and bell-shaped line
soliton, as viewed in the Fig-2.8(a),(b),(c) with the values
pr=-13,4,=02,c=0.02, =0.05,8 = 2,A =-0.5. It is interesting that before (£ < 0)
collision there are two waves (periodic rogue and bell shaped line soliton) interact at ¢ = 0 and
then rogue type soliton split into two part of rogue type waves (See Fig). It means that the
collision is completely non-elastic. Actual shape of collision is clearly observed from its
3D plot Fig-2.8(a) and contour plots Fig-2.8(b). On the other hand, when we take the
parameter as purely imaginary, then the solution Eq. (2.57) exhibits the interaction of a
breather line solitons with kinky wave’s provides kinky type breather waves. It portrayed

in Fig-2.8(d),(e)(f) for the parametric values

p,=0,q,=035,c=05,0a=02,=05A=05.

19
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/

(d) (e) (®
Fig-2.8(a),(b).(c) shows plot of interaction between a periodic rogue wave with a bell shape line soliton for
the Eq. (2.57) in 3D with the parametric values
po=-12,9, =015, c=-1,a =0.005,8=2,A =-0.5 t=-2,t=0,t =2, Fig-2.8(d).(c)
and 2(1) represents corresponding3D plot, contour plot and 2D plot respectively for the parametric values
p1=0,9,=035,c=05,¢=02,0=05A=05,1==3,t=0,t=3.

[—t=3——1=0----- t'.;J

Case-3: For N = 4, the four soliton solutions. The auxiliary function from Eq. (2.50) is,

S(x,t)=1+e" +&" +e" + & + 4, + 4,e"™" +
A14eVL+V4 +A139V2+V3 "'Aa‘;evzw| + Ay e '*'Alzﬁulwzw3 + (2.58)
A @ g AL g g ,
where v, = K, x—@t,V, = K,X— 0,1,V = K;x— @t andv, =k, x—@,t.
Let «, =p, +iq,,k, =p, —iq,,k; = p, +iq, andx, = p, —iq,,
@, =m +in, 0, =m —in,w; =m, +in,andw, =m, —in,,
where m, = p, +a(p’ -3pa.") +a*B(p" -10p ¢ +5pa"),
n =g +aBp’q —q’)+a’f5p e, -10p g +4,°)
m=p, +a(P23 —3P2922)+a2ﬂ(1725 "'101)23922 +5P2q24)
n, =g, +a@p, q,~a,)+o’ BGp,'5, ~10p,°q, +4,")

The term phase shift terms of Eq. (2.44) from Eq. (2.48),

2
q : j
Ay =T 4, = py +ig, = p,exp(E6,)(say)

1

and A, =p, —iq,=p, exp(-i§,).

2
A, = -Iqj—zz, Ay = P, +ig, = p, exp(6; )(say)

2
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and Ay =p, —iq, = p, exp(-ib,).

To find the values of p,,p,,6, and 0, we will apply p, = p,-z'HI;2 and

6, =tan™ (45,
P;

where i=12.
Simplifying the Eq. (2.58) by using the above terms

F(,8)=1+2e" cos()) + A,e* +2e™ cos(&,) + A,,e* +
2pie(m+gﬂ cos($, +&, +6))+ zpze(qWﬂ cos(§, — &, +6,)+
2a,,p,0,6 7 cos(&, + 6, + 6,) + 245, P77 cos(§, + 6, — 6,) +

2 2 (20,+203)
AP pye 7

(2.59)

Here o\ =ax-mt, & =bx-nt, o, =a,x—mytand & =b,x—n,t
Replacing Eq. (2.59) in Eq. (2.49),

W(x,0) =481In(+2e” cos€ )+ 4,2 +2e” cos¢,) + 4,6 +
20, cosg, + & +6)+2p, " cos§ — &, +6,)+
2a,,0,p,"7" c0SE, +6, +6,)+24,,0,p,67 7 cos +6, ~6,)

2 2 (264203)
+anaup pet T ),a

(2.60)

In the Eq. (2.60), solution comes from the exponential and periodic sinusoidal function
exhibits crash of a pair of periodic rogue type solitons for
p,=-13,p, =08, =1,9g,=045,c=2,2=025 =1 viewed in the Fig-
2.9(a),(b),(c) . It is interesting that before (f < 0) and after (¢ > 0) collision each rogue shows

same solitonic character and interact at ¢ = 0 flowing all along reverse paradox (See Fig-
2.9(a),(b),(c). It is observed that the some rogue waves periodically get into each soliton, being at

equal distance from each other. Actual shape, direction and distance among rogues and their
interaction wave are clearly observed from its 3D plot Fig-2.9(a) and contour plots Fig-
2.9¢(b). On the other hand, when we take the parameters as purely imaginary, then the

solution Eq. (2.60) exhibits the interaction of a pair of breather type line solitons with
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acutc angle. It portrayed in Fig-2.9(d).(¢).(f) for the parametric  values

p|=0,p2=0,ql=l’q2=1,c=1’a=—-1’ﬁ:1.

X
| (d)
Fig-2.9 (a). (b) shows plot of interaction of two rogue waves for the Eq. (2.60) in 3D and contour plot with
the parametric values p, = —-1.3,p, = 0.8,9, =1, g, =0.45,c =2, @ = 0.25, g =1; Fig-

2.9(d),(c),(f) represents breather wave with p, = 0,p, =0,9, =1, g, =L, c=1, a=-1, 8=1.
2.2.4, The extended Sawada-Kotera equation

We start our investigation through the eSK equation,

O, + O, +a(6DD, + D, )+a*fASD’ D, +15D D, +150D, +d, )=0 (2.61)
At first consider a solution as a form of exponential
D(x,)=e" =™, where 7. =l x—at (2.62)
The linear terms of the Eq. (2.61), gives the dispersion relation as
=1+ + 3}, i=1234. (2.63)
So, the corresponding phase variables can be written as
n =lx—(, +ob’ +a* f). (2.64)

24



Chapter-Two @ Dynamics of interaction of non-linear models

To derive multi solitons solutions, we can use the transformation

D, ) =r(Inf(x,0),,. (2.65)

Where the function f(x,r) for one or more than one soliton solution is given by,

N
S(x,0) =1+Z e, (2.66)

For single soliton (i.e. j = 1), setting the Eq. (2.66) into the Eq. (2.61) and solving for 7,
we have

p=2, (2.67)
Case-1- To determine lump wave, we have to consider at least two soliton solutions by

putting j =2 in the Eq. (2.66), then the trail solution gives,

JxH=1+e" +e" +a,e™™, (2.68)
wherer, = [ x—w,t and 1, =L,x—a,t
Let [, =a,+ib, and [, =a, —ib,,
@ =M+iN and w, =M —IN,
where M =a, +a(a’ —=3ab’)+a*fla’ -100’> +5ab,"),
N=b +aBa’b ~b’)+a*f(5a°b —10a’’ +b),
and the term,

o b2 {ser(a? —3b7) +3}
2 @ lsap(3a? —b)+3)

Simplifying the Eq.(2.68) by using the above terms, we reach to
(x,0) =14 2e™ cos(&)) + aj,e™ , (2.69)
where o, =a,x—Mt and & =bx—Nt
Replacing the Eq.(2.69) in the Eq.(2.65),
O (x,1) = 2{In(1+ 2e° cos(&,) + a,e* ")} .- (2.70)
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The solution Eq. (2.70) comes via selecting complex form of exist parameters from two
soliton solution and gives rogue type breather waves from interaction of the sc.)Iitons.

Nature of the solution Eq. (2.70) is illustrated in 3D shape Fig-2.10(a) and contour plot
Fig-2.10(b) with the parametric valuesa, = -1.3,6, = 2,a = 0.2, # = 0.8. 2D plot in Fig-
2.10(c).Figures show that the solution exhibits as multi-rough type breather propagations
along the paradox. Its swiftness, breadth and direction remain unchanged over all the
dynamical system and periodic rogues oceurs equidistance from each other. Actual shape,
direction and distance among rogues of the wave are clearly observed from its contour
plots. On the other hand, when we take the parameter as purely imaginary, then the

solution Eq.(2.70) exhibits as a breather line waves. It portrayed in Fig-2.10(d),(e).(f) for

the parametric valuesa, = 0,5, =0.5,0=-0.8, #=0.5.

u(x,t) :

HLt)

(d)

Fig-2.10(a) Represent rogue type breather waves of the Eq. (2.70) in 3D with the parametric values
a, =13, =2, =02,6=0.8.;(b) signifies corresponding contour plot and (c) 2D plot. For the Eq.
] wady E] o

(2.70) the breather line waves for the parametersg, = 0,5, = 0.5, = -0.8, = 0.5 in the Fig-
2.10(d),(e)(f) .
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Case-2: To determine interaction of rogue and a line soliton wave, we consider three
soliton solutions. In this regard, consider the three solitons solution by putting j=3 in

the Eq. (2.66), then the function

S =1+e +e™ +e™ +a,e"" +a, "™ +q,6" +a,e"P (271
where 7, =l x - wt,n, = l,x— w,t and 7, = Lix-w,t.
Let [, =a,+ib,l, =a,~ib,l, =a, +ib, and L=c
and o, =M, +iN,,0,=M,-iN, and o, =c+ac’ +a’fc’,
where M, = a, + a(a,” ~3a,b’) + @ f(a,” —10a,’b,* + 5a,,"),
N, =b +aBa’b, -b’)+a’f(5a,°b, —10a,’b +b,°)
and the term,

_ b {sap(a? -3b7) +3)
al{5ap(3a? —b?)+3}

2 s@y = p+ig = pexp(if)(say)
and g, =p-ig= pexp(-ib),

in which p=+/p®+g° and 0:tan-1(%).

Simplifying the Eq. (2.71) by using the above terms

F(x,0)=1+2e" cos(£) +a,e’” + Zpe("‘““h(cms”!ﬂ”s"’ cos(&, +6)

+ pzalze‘z"'+”‘fc+m’+a‘ﬁc‘)x) s (272)
where oy =a;x—M tand & =bx—N.
Inserting the Eq. (2.72) into the Eq. (2.65), we reach to

D, ) = 21n(l + 267 cOS(E) +a,,e™ +2pe e EEEW o= 4 g) -

+plal2e(2o'l+cr—(c+zx‘3-lalﬂcs){))xx
In the Eq. (2.73), solution comes from the combination of exponential and periodic
sinusoidal function exhibits collision of a periodic rogue type soliton and bell-shaped line

soliton, as viewed in the Fig-2.11(a),(b).(c) with the values

a, =-1,b, =1,c=—-l,& = 0.5, = 0.5. It is interesting (See Fig) that before (¢ < 0) collision
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there are two waves (periodic rogue and bell shaped line soliton) interact at ¢ = 0 and then rogue
type soliton split into two part of rogue type waves. It means that the collision is completely
non-elastic. Actual shape of collision are clearly observed from its 3D plot Fig-2.11(a)
and contour plots Fig-2.11(b). On the other hand, when we take the parameter as purely
imaginary, then the solution Eq.(2.73) exhibits the interaction of a breather line solitons
with kinky waves provides kinky type breather waves. It portrayed in the Fig-

2.11(d).(e),(f) for the parametric values a, =0,b=—l,c=l,a=0=0.5.

81
o(gh)

|

SRR D

A ——
—

Fig-2.11(a).(b).(c) shows plot of interaction between a periodic rogue type soliton and bell-shaped line
soliton for the Eq. (2.73) in 3D with the parametric values ¢, = -1,b, = l,e = -1, = 0.5, =0.5.
and Fig-2.11(d),(e),(f) represents the interaction of a breather line solitons with kinky waves for the Eq.
(2.73) in 3D with the parametric values a, = 0,5, = ~l,c=l,a = f# =0.5.

Case-3: Here, Let us consider the four solitons solution by putting j=4 in the Eq.

(2.66), then
fOx,0)=1+e" +e™ +e® +e™ + a,e™™ +a,,e"™ +a,"" +

L+ I+, IR R it
a23e'h+"’ +a,e”™ +ae™ ™ tae Tae + (2.74)

Iy 1t
a] 34e + a1234e
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where 7, =lx~wt,n, =lLx—w,t,n, =l,x—w,t and 0, =L, x—w,t,
Let | =a,+ib,l,=a -ib,l,=a,+ib, and I, = a, —ib,,
o, =M +iN ,m,=M,-iN,,0, =M, +iN, and @, =M, —iN,,
where M, = a, + a(a,’ -3a,b) + a2 f(a,’ —10a,’b* +5a,b,"),
N, =b, +a(3a’b, -b’) +a’B(5a,'b, —10a,b] +b,°)
M, =a, +a(a,* -3a,b,”)+ a*f(a,’ —10a,’b,* +5a,b,")

N, =b, +a(3a,’b, - b,*) + &’ f(5a,*b, —10a,’b,’ +b,")

and the terms are:

__baB(al ~367) +3}
alsef(3al —br)+3}

12

__(a +ib —a,~ib,)* 5af(a, +ib,)* — (a, +ib)(a, +ib,)+ (a, +ib,)* +3}
(a, +ib, +a, +ib,)* 5B (a, +ib)* + (a, +ib,)(a, +ib,) + (a, +ib,)* +3]

a;

a,; =a,, = p, +ig, = p,expfd Ysay)
where p, =+/p{ +47, 6, =tan"'(¢;/p,),

b:{508(a> —3b2)+ 3]
a; {5aﬂ(3a§ -b)+ 3} ’

24 T

_(a +ib —a, +ib,) {5apa, +ib) ~(a, +ib)(a, ~iby) + (a, —ib,)} +3]
(@, +1b, +a, —ib,) (5af(a, +ib,)" +(a, +ib,)(a, —ib,) + (@, —ib,)* +3]

a,

Ay = a;3 = p, +ig, = p, expt0,)(say)
where p, =+/p; +4q;, 0, =tan"' (¢, /p,).
Simplifying the Eq. (2.74) by using the above terms
f(x,1)=1+2e" cos(&,) + a,e’” +2e” cos(&,) +a,e’” +

20,77 cos(&, + &, +6,)+2p,e " cos(, — &, + 6,) +

20,0, .77 cos(&, + 6, +6,) (2.75)

2 2 (20142
+2aa4plpze(m+2c&) COS({I +91 "02)4‘(1,2034/9, Pze( o1+20;)

Here o, =ax—Mt, & =bx-N¢t, o, =a,x—M,tand ¢, =b,x—N,t
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Inserting the Eq. (2.75) into the Eq. (2.65), we reach to

D(x,2) = 2In(l+ 2¢ cos(&,) +a,,e™ +2e cos(£,) +a,,e™ +
2P, cos(E, + &, +6,) + 20,6 cos(E, — £, +6,) +
2a,,p, p,e7 ") cos(g, +6,+6,)+ 2“34plpze(al+202) cos(G; +6, —6,)

2 2 _(201420,)
tayaup pye)

(2.76)

In the Eq. (2.76), solution comes from the combination of exponential and periodic
sinusoidal function exhibits collision of a pair of periodic rogue type solitons, as viewed
in the Fig-2.12 with the values 4, = -0.25,a, = 1,6, =b, =& = 0.5, F =1/200 . It is
interesting (See Fig) that before (# < 0) and after ({ > 0) collision each rogue remains their
same solitonic natures and interact at £ =  coming along opposite paradox. It is observed that the

some rogue waves are periodically got into each soliton, being at equal distance from each other.

Actual shape, direction and distance among rogues and their interaction wave are clearly
observed from its 3D plot Fig-2.12(a), contour plots Fig-2.12(b) and corresponding 2D
plot in Fig-2.12(c). On the other hand, when we consider one set of complex number as a
purely imaginary and other as imaginary (i.e. only 4, = 0), then the solution Eq. (2.76)
exhibits collision of rogue type breather waves and breather line soliton which is observe
Fig-2.12(d), (e), (" for the parametric values

a, =0,a, =-1,b, =0.5,b, = 0.5,a = 0.5, = 0.005.

—1—.713

oxt)

L
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(d)

Fig-2.12(a) shows plot of interaction of periodic lump and periodic line waves for the Eq. (2.76) in 3D with
the parametric valucsa, =~0.25,a, =-1,b, =b, =a = 0.5, =1/200 ; 3(b)(c) represents
corresponding contour and 2D plot. Fig-(d),(c), and () breather wave for the parametric values
a =0,a, =-1,b =0.5,b, =05, =0.5,8=0.005.

2.3. Conclusion

In this chapter, we have effectively apply the Hirota bilinear method to derive exact
multi-soliton solutions of the first and second negative order integrable Burgers, KdV-5,
the extended Sawada-Kotera equation and the extended Lax equations. Complex
conjugates of parameters have settled to get distinguish dynamical interactions solutions
from the multi soliton solutions of the nonlinear equations. By picking particular
parametric values, we have shown different dynamical features of the multi soliton
solutions (Fig-2.1-2.12). As a result, we obtained rogue type breather waves, breather line
waves, periodic rogue type soliton and bell-shaped line soliton, breather line solitons with
bell waves provides breather waves, a pair of X-shaped periodic rogue type solitons and a
pair of breather type line solitons and cnoidal wave. This technique has their individual
benefits: basic, concise, and it also can be used to other non-linear models. In this
research, we can also investigate innovative approach to get further wide and exact result

to the equations.
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Chapter-3

The unified method and its application

Acknowledgement

In this chapter, the space-time fractional nonlinear differential equations for pulse narrowing
transmission lines model is studied within the Jumarie’s modified Riemann-Liouville
derivative framework. By introducing the fractional complex transform, the effective unified
method is used to find the explicit analytical solutions of the model. Abundant new exact
solutions including the hyperbolic, trigonometric and rational functions are derived. These
solutions are new and significant to reveal the pertinent features of the physical phenomena.
3.1. Introduction

In soliton theory of the fields: mathematical physics, control theory, fluid mechanics, optical
fiber, plasma physics, biology and nonlinear transmission, the results of fractional nonlinear
wave models presented an innovative success [1-24]. In fractional models, the pulse
narrowing transmission lines differential model [11] is one of the model that extremely
significance due to the capacity of representing electrical dynamics. Many scientists have
exerted considerable efforts for det‘ermining various types of exact solutions of the fractional
nonlinear transmission lines model [11-13]. Deriving exact solitary wave phenomena to
fractional nonlinear models are an extremely vital task. In order to obtain the exact solitary
wave solutions to nonlinear evolution equations, a number of effective methods have
proposed, such as the unified method [26], The tanh method [33], homogenous balance
method [38], variational iteration method[42], Adomian’s decomposition method [42] the

homotopy perturbation method[43], the fractional sub-equation method[44], and many more.
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In this chapter, the unified method will be adopted to retrieve exact solutions of the
governing equation. The details are exhibited in the upcoming sections.

3.2. Jumarie’s modified Riemann-Liouville derivatives

We present the Jumarie’s modified Riemann-Liouville derivative with some properties [53-

54] for the continuous function f : R — R as follows;

DY f(x) = r(1~ - dxf(x-t)"’(f(t) SO)dt, 0<p<1

(f™ (x))("'”) n<n<n+l, nx1.
In this derivatives the well known Gamma function I'(x)is applied and The function is

defined as

T(x)=[e"t"dx.

0
Some properties

Ir'd+r)
T+r—mn)

¥,

(A). D'x" =
(ii). D (mé(x)+ny(x)) = mD]¢(x)+nD]y(x), where a and b are constants,

(i DI(E) ™ =52 D1E.

3.3. The Methodology of the unified method

We consider a nonlinear equation in general form in terms of x and ¢

H(2 2 s X s Koo Ko ) = 0,x € R, 2> 0, (3.1)
where y = y(x,¢)is unknown function and His a polynomial function, which carry
nonlinear terms and highest order derivatives of the unknown function. The algorithm of the

unified method is as [26]:
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Lhapter ihree =~~~ 00000 e ————

Step 1: Considering the transformation with traveling wave

= - e 7 '50 n 3.2
x(x,0)=2(),¢ 1_(Hn)x +I‘(1+n)t s (3.2)

By using the above transformation Eq, (3.2) the nonlinear partial differential equation Eq.

(3.1) is reduced to a nonlinear ordinary differential equation (ODE):
P(x.x .2 =0, (3.3)

where number of derivative of ywith respect to ¢ indicated by the prime and P is a

polynomial of x(¢).

Step 2: In this step, we have to consider the solution of Eq. (3.3) as bellow:
2&)=a,+2,a5()+ 2557, (3.4)
i=l =l

Where a,(i =0,1,2,3,.....n) and b,(i =0,1,2,3,...... ») are constant to be consider in such a way

that @, and b, cannot be zero at a time, and made its highest degree of Eq. (3.3) are

dzx
=) =0+ 2,0 ; 3.5)

O(x(£)) = n, 0(2—?) =n+l, O(,q,/—g*-’:f) =2"+1’0(d§

To solve Eq. (3.4) we taking an equation in ODE form, namely Riccati differential equation
§'=(SEN +4. (3.6)
Eq. (3.6) is satisfied by 7(¢) . The solution of the Eq. (3.6) are given below,

Case-01: Hyperbolic function when, 4 < 0:
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[~ (? + d*)A — 1= A cosh(2V= (¢ + E)

S =
©) Isinh(24/- A(¢ + E))+d
T~ V=7 +d¥)A — 1= 7 cosh(2V=A(¢ + E)
Isinh(2v— A({ + E)) +d (3.7)
P )N )
(©) e cosh(2v— A(¢ + E)) —sinh(2v— A(£ + E))’
() = T 20-2
©) "I cosh(2v— A (¢ + E)) - sinh(2V— A(¢ + E))
Case-02: Trigonometric function when A > 0:
o~ J@? —d*)A ~ 12 cos(2VA(£ + E))
Isin2VA(L +E)+d ’
SO =" J@ +dM)A = INA cos2VAL + E))
Isin2VA(¢ +E)) +d ’ (3.8)
~ 22
S(¢)=ivA
€)=ilz+ 1+ cos(2VA(S + E))—isin(2VA(¢ + E))
2iNA
S(¢) =-ir2
@ = e B -GG 7B
where [ # 0and d , E are real arbitrary constants.
Case-03: Rational function solution, when A =0 , then
S = §+ —. (3-9)

3.4. Implementation of the Unified method

In this portion, we apply the above effective method, in a realistic and efficient way, solve
the nonlinear the space-time fractional nonlinear differential equations for pulse narrowing

transmission lines models with time fractional derivatives.
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3.4.1 The space-time fractional nonlinear differential equations for pulse narrowing
transmission lines model
Picking the space-time fractional nonlinear differential equations for pulse narrowing

transmission lines model [11]

1 - |
D;}"O(x,1)—— D21 O(x,1) - %Dj"@z (x,0)— T%Dg;@(x, N=0,0<n<l. (3.10)
1

Lh
Where ©(x,?) is the voltage of the pulse and 4,B,Land d are not variables. The physical
detail of the Eq. (3.10) is elaborated in using the Kirchhoffs current law and Kirchhoffs
voltage - law.

Let us consider®(x,?) =0(S), ¢ = 4
(=0=06(), ¢ T+mn * rd+n)

t"+¢, where £, and ¢ are

constants. Convert the Eq.(7) to the integer order.

2 B : 8

— Y -—pet———¢'®" =0 3.11
% Lh) 25O 12Lk Gl )

By using the homogeneous balance theory in Eq. (3.11), which gives=>n=2.

By using the Riccati Eq. (3.6), the Eq. (3.11) reduced to
O(x,f) =a, +a,S()+a,S*({) + bSO +b,87(E) (3.12)
Inserting Eq. (3.12) along with Eq. (3.5) into Eq. (3.11), we attain a polynomial of
S¥(&),(k =0,1,2,...). Equating the coefficients of this polynomial of the same powers of
S(¢)to zero, we obtain a system of algebraic equations with the values for L,h,d,B,Zand
f. Solving the system of algebraic equation with the help of Maple, we get the following

solution set,

e, wer _ F

_ b= 32 PR
3Lk ’%—(4g2€2/1+3)3’a2 (AL PA+I)B

T 4B

Set-1: p= 5 =0,
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6724 37 IR

Ceiy _
S t-2: =+ |——< = = = = -—0,
e Th O g agti I g 3B 4
—(gFA-3) 3g*PA 3¢

S "‘3: =t— " — e == :0

ot h YT G e G 5=0,

Seeds sz(ngLz;a)aao_ FFA SEE o

1

_(FP1-3)
Set-5: o=t B2y
e aLn

T @B T (@eaedE

3gPA PR
Gy " g AT

g 3PER

(g A+3)
Set-6: == Z,
S TP

T @ T @ AT

Substitute the value of set-1 in Eq. (3.10) with Eq. (3.7), Eq. (3.8) and Eq. (3.11), the

solutions of Eq. (3.1) are follows,

If A <0. The hyperbolic function solution

28%0% 3% - +d})A—-IN=AcoshQV- AL +E)),,
G)l]('x!t): 202 - 252 { . }
(4g?0*A+3)B (4g*0*A+3)B IsinhQvV— A(C + E))+d
_3gF = (2 +d¥)A = IW=Z cosh@V=A(¢ +E)) N (3.13)
(4g20*A+3)B Isinh@V— A(¢ + E)) +d ’
o - 2ELE___ 6 =@+ d - Acoshel- A+ B)),
YT 4gtPA+3)B  (4gMPA+3)B Isith@V=A( + E))+d
3R [AFC AN Tcoshd=A(¢ + )| (3.14)
(4g’0*A+3)B IsinhQy—A(C+E)+d ’
2% A 3¢ AJ-2
® = H—F >
061) (4g**A+3)B (4g*0*A+3)B 1+cosheJ—_,l(g+E))—sinth—_A(g+E))}
_¥PE ) -4 N (3.15)
(4g*0*A+3)B I+ cosh@y—A(¢ + E)-sinh@y-A($ + )] ~
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(4g°FA+3)B (4P A+3)B " I+cosh—A(¢ +B))-sinh2V—A(C +E))
"7 {_ s A2 N (3.16)
(g A+3)B 1+ coshty—A({ +E))-sinh/-A(C+E)|

6 (x0)=

If A>0, we get the trigonometric function solution,

6. (x.1)= 28°0°A4  3g° @ =dHA — A cos@VAL + E))}2
ST 4g P A+ 3B (48P A+3)B Isin@JA( +E))+d
382 Y@ =d")a-Wacos@ A+ B)) N (3.17)
(4g**A+3)B IsinVA(¢ +E)+d ’
o (e ELh 3L {—J(ﬁ +d2)ﬂ—1ﬁcos(zﬁ(c+m)}z
8 (4g? P A+3)B  (4gPA+3)B IsinVA(C + E)+d
3R [T rdA-WTeos@ T+ B)| (3.18)
(4g*0*A+3)B IsinQVA(L + E))+d ’
262024 3gi? —2i4 5
O, (x,0)= A+
(1) (4g*0*A+3)B (4g222;b+3)3{’ z+cosaﬁ(g+E))—isinQJZ(g+E))}
308 | s ~2ilA N (3.19)
(4g°¢*A+3)B I+cosQA(C+E))—isingy A +E))
280 32 , 24 )
0.(x,H)= A+
151 (4g’£*A+3)B (4g2£2/1+3).3{_l 1+cos(zﬁ(g+5))—isi,n@ﬁ(gw))}
A 242 , (3.20)
(4g>6*A+3)B I+cosQd A +E))—isin@VA(L +E))

If A =0, we get the rational function solution,

20202, 3g2f? 1 3920 7 1)
(51 =—— g % —f - (3.21)

T @gPA+dB (4gPA3)B C+E  (4g'CA+3)B S+
Again substitute the value of set-3 in Eq. (3.10) with Eq. (3.7), Eq. (3.8) and Eq. (3.11), the
solutions of Eq. (3.1) are follows,
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If A <0. The hyperbolic function solution

3202, . 3g20 {Jm-l«/ZCOSh(Zﬂ({‘*E))

®3 )= 2, 322)
10582 (g’ A-)HB (g**A-3)B Isinh@V—A(¢ + E)+d B
0. ()= 23%232,1 . 38 {-,/—(12 +d))A-IN-2 coshQJ:I(4+E))}2, (3.23)
(g¥*A-3)B (g’0*A-3)B Isinh@v—A(¢ + E))+d
3g22 A 3g2¢? U-4 3
®33 ,t = 3 22 —A+ ] 324)
(1) (g4 /1-~3)B+(g ‘ ,1—3)3{‘/— I+cosh@y—A(C +E))—sinh@y/—A({ +E)) ‘
3g232/’t‘. 3g2£2 21\[——/1 2
= 3 ]~ ; 3.25
ult) (& A-3)B (g2€2/1—3)B{ V4 l+coshzﬁ(g+@)—simﬂ(;+ﬁj)} (@23}
If A >0, we get the trigonometric function solution,
0.0 3 8;25 A, ngzgz ; [0 —d*)A - A cos@V2 (§+E))}z (3:26)
(g22A-3)B (g**A—3)B Isin@VA(C +E)+d
2 p2 2 p2 - 2
o EEA_, 3 £ J* +d)A - WA cos@VA ¢ B, D
(g**A-3)B (g'4*A-3)B Isin@VA(C + E))+d
362024 3git ~2il2 ,
® = . A ) 3.28
sn(60)= (g2*A-3)B (g*0*A— 3)B{J—+l+cos(2ﬁ(§+E))—isin@«ﬁ(§+E))} (3.28)
_ 3g2£21 3g2£2 T 21[‘\-[I 2 3.29
G)“(x’t)_(g2£24—3)3+(g232/1—3)3{ ’J_Tz+cos(zﬁ(¢'+E))—isin(zﬁ(gwj)} - G2)
If A =0, then the rational function solution of Eq. (3.1) is,
2 p2 2 p2
o o= Elt_, BE 1y (3.30)

(12438 (g**A-3)B {+E
Replace with the value of set-6 in Eq. (3.10) with Eq. (3.7), Eq. (3.8) and Eq. (3.11), the the
solutions of Eq. (3.1) are follows,

If A< 0. The hyperbolic function solution
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w

0, (x,0)=— g A 3 3gi* A {,/_(12+d2)1~lﬂcosh@J—_/l—(g+E))}_2 (3.31)
ST (G A1 3B (g47A+3)B Isinh@y— (¢ +E))+d ’

5. Ea = gieA 3g PR ——1/—(12+d2)ﬁ—lﬂcoshef——2(g’+E))}_2, (3.32)

(§FPA+3)B (g42A+3)B Isinh@v—A(¢ + E))+d
g a 37 R g, ] 5
O (5, t)=——— -2+ , (3.33)
(1) (g*0*A+3)B (g2£2/1+3)B{ 1+cosh@ﬁ(§+E))—sinheJiZ(§+E))} :
gla 3G PR ) 3
@ — —al— A+ 5 334
50) (@FPA+3)B (FA+)B 1+cosh2J:1(;+E))—sin112J——i(§+E))} (-34)
If 4> 0, we get the trigonometric function solution,
P 362022 (P —d)A—-IWAcos@IA( +E))
O (x,1)= = = (3.35)
(g*0*°A+3)B (g*¢*A+3)B Isin@dA + E)+d
o (i ELA___EPE  ACHII A D) s (g5
ST (@22A+3)B  (g¥*A+3)B Isin@VA(L + E)) +d ’
g A 3PP ~0i{ 2 &
® = A 3.37
(1) (g202A+3)B (g*1*A+3)B ¢ z+cos(zﬁ(§+E))-isin(zJE(;+E))} (3.37)
g A 3R 24 4
® e 4 2+ 3.38
s(51) (2262 A+3)B (g**A-3)B t 1+cos(zﬁ(§+E))—isin(zJZ(§+E))} )
If A =0, we get the rational function solution,
292 2
WL i B Lo AR W (3.39)

(g2 A+3)B (g *A+3)B {+E
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3.5. Graphical representations

In this part, we will provide some graphical representation of the exact solutions of The
space-time fractional nonlinear differential equations for pulse narrowing transmission lines
model (Eq.(3.10)). Graphical representations are portrayed below using the selected exact

solutions of the considered model.

3.5.1. The space-time fractional nonlinear differential equations for pulse narrowing
transmission lines model

Six solutions set are derived in the study. Each and every one of the derived solutions is
analyzed and a few number of different types solution are illustrated here (Figs. 3.1-3.4). The
graphs show the variation of amplitude, direction of flow and characteristics of the voltage of
pulse for each derived solutions in space at time. Fig-(b) represents 2D plots of the voltage of

the pulse ®(x,7) for the values of inductance per unit length (L).

I..WOOT-]
1.00006
1.00005
1.00004 4
&)
1.00003 +

1.00002+

1.00091

1.00000

05 x'_ 18
[—Li-1——1L=* -L—L-lol
(a) 3D surface (b) 2D plot
Fig-3.1: Fig-(a) represent the solitary wave solution ®(x, ) of Eq.(3.13) for the physical parametric values
g=Ll1=1L,A=-1,B= 2,d=1,L=10,E=2h=05,7=0.8andfor L=1,L=5,L=10and

t =1 2D graph in Fig-(b)
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23499
23438
25457
23486
23495
Ox.1
2348
23483
2545
234804 - : :
0 05 1 1.5
1) [— L1 — L=t — L=9]
(a) 3D surface (b) 2D plot

Fig-3.2: Fig-(a) represent the solitary wave solution ©(x, ) of Eq.(3.15) for the physical parametric values
g=Ll=1,A=-1,B=2,d=1,L=9,E=2h=05n=02andfor L=1,L = 5,L=9and r =1
2D plot in Fig-(b).

e S

0 [F=1=1:r L=f —— L=9]
(a) 3D surface (b) 2D plot
Fig-3.3: Fig-(a) represent the periodic wave ®(x,1) of Eq.(3.17) for the physical parametric values
g=11=1,1=1,B=2,d=1,L=1,E=2h=05,7 =09 andfor L=1,L=5L=9and 1 =1
2D plot in Fig-(b).

-0.014

O(x.1) 5

~0.03

=00
|——L=) ——L=5 —— L=9]

(3.) 3D surface (b) 2D plot
Fig-3.4: Fig-(a) represent the rational solution ®(x,t) of Eq.(3.21) for the physical parametric values
g=1,1=1,,1=0,3=2,d=1,L=1,E=2.h=0.5,q =09 andfory =1,7 =5,L =9 and £ =1
2D plot in Fig-(b).
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3.6. Conclusion

We used the famous unified method for solve fractional differential equation and applied it to
derive exact solutions of the space-time fractional nonlinear differential equations for pulse
narrowing transmission lines model. With the help of Maple, we successfully gained some
new hyperbolic, trigonometric and rational solution for this equation. Here we find the actual
direction of the voltage of the pulse ©(x,?)for the change of inductance per unit length (L)
So this method is more effective and can also be applied to other fractional differential

equations.
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Chapter-4
Analytical solutions of two space-time fractional nonlinear models using

Jacobi elliptic expansion function method

Acknowledgement

In this chapter, the space-time fractional Equal-width(s-tfEW) and the space-time fractional
Wazwaz-Benjamin-Bona-Mahony (s-tfWBBM) models have been investigated which are
frequently arises in nonlinear optics, solid states, fluid mechanics and shallow water. Jacobi
elliptic function expansion integral technique has been used to build more innovative exact
solutions of the s-tfEW and s-tfWBBM nonlinear partial models. In this research fractional
beta-derivatives are applied to convert the partial models to ordinary models. Several types of
solutions have been derived for the models and performed some new solitary wave
phenomena. The derived solutions have been presented in the form of Jacobi elliptic
functions initially. Persevering different conditions on a parameter, we have achieved
hyperbolic and trigonometric functions solutions from the Jacobi elliptic function solutions.
Beside the scientific derivation of the analytical findings, the results have been illustrated
graphically for clear identification of the dynamical properties. It is noticeable that the
integral scheme is simplest, conventional and convenient in handling many nonlinear models
arising in applied mathematics and the applied physics to derive diverse structural precise
solutions.

4.1. Introduction

In current world, fractional derivatives have been applied to study the calculus of arbitrary
order for modelling of nonlinear happening in different fields like fluid mechanics, signal
processing, control theory, astrophysics, dynamical systems, plasma physics, non-lincar

biological systems, nanotechnology, and engineering [ |-24]. Many real-life problems of the
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above areas can be modelled by PDE relating to the fractional derivatives. The concept of
solitons, the top decisive way in applications to such models has played an important rule to
identify the complex incident in various fields of sciences. Up to days, many techniques have
introduced for deriving exact wave solutions of nonlinear models but the innovation reached
is deficient. The precise mathematical methods to derive different classes of exact solutions
namely; Jacobi elliptic function expansion [27], generalized Kudryashov [28], modified
simple equation method [30-31], Béicklund transformations [32], tanh method [33], tan(®/2)

-expansion [34], soliton ansatz [35-36], auxiliary equation [37], sine-cosine [37],
homogeneous balance [38], (G'/G) -expansion [39,40], Modified double sub-equation [41],
and so on [42-44] and as well. Moreover, it is very problematic to derive the exact solution of
nonlinear fractional PDE via the best possible method. So it is very top most significance to
arise the explicit solutions which are exact for advance study of these nonlinear fractional
models and have realizing the nonlinear phenomena. Many powerful and useful ways have
introduced to solve the exact solution of nonlinear fractional equations [44]. The Jacobi
elliptic method is an excellent way to integrate fractional nonlinear differential models.

In this research work, we start the research with s-tfEW [47] and sWBBM [55] models to
analyse the nonlinear phenomena Hosseini and Ayati [47] presented exact solutions of the s-
HfEW with the help of Kudrayshov method. Benjamin-Bona-Mohony introduces the BBM
equation [49]. Then Wazwaz modified this equation to WBBM [48]. This script considers the
Jacobi elliptic function expansion method to integrate the s-tfEW and s-tfWBBM models for
deriving exact solutions. This technique also bases on the homogeneous balance method
which is a influential procedure for achieving solutions of fractional PDE introduced by
Zhang and Zhang [56]. According to this method, fractional complex transform and some
useful formulas of fractional beta-derivative [57-58] are applied to transform the nonlinear s-

tfEW equation to ordinary differential equation.
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4.2. Beta-fractional derivative

Let us review the beta-derivative [57-38] as follows:

Definition-1.Let ¢ : [a,00) — R, then the fractional beta-derivative of ¢of order § is defined
as

Bx+ £Ce+ ——) ) - g(x)

D" (#)(x) =lim L(p) , for allx > a, B € (0,1].If the limit of the
&) £

above exists, then ¢ (x) is said to be beta-differentiable.

Some properties of the derivative for the functions ¢(x) and y(x)

(Q). D? (m@(x) + nw(x)) = mD? ¢(x) + nD?w(x), where a and b are constants.

(ii). D?x* = a(x+——1——)“'ﬂ. aeR.

1802

(iii). D” (gw) = gD’ (W) +uD’ (¢).

, where y #0.

iv). D* (%)= yD” (4) —2¢Dﬂ W)
v W

(v). D?(c)=0 where c is a constant.

Here D? (w(x)) = (x+——1—)1'ﬁ v

L)y dx

Definition-2. Let ¢:[0,00) > %R such that gis differentiable. Let y/(x)be another function
defined the same range of ¢(x)and also differentiable. Then the two functions satisfied the

following rule :

D* (goy) = (x +F(1—ﬁ3)"ﬂw(x)‘¢‘ (wx).
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4.3. The Jacobi elliptic function expansion method
Consider a given nonlinear wave equation

N(p,D/*@,D} ¢,D}p, D¥' .. )= 0. 4.5
The function @ = @(x,)is unknown wave surface and N is a function of ¢ = ¢(x,#) and its
highest order fractional derivatives.

We seek its wave transformation

k . c
p=0(8), &= X — e, (4.2)
I'(x) I'(y,)
The symbols k the wave number and ¢ wave speed.
By using the above Eq. (4.2), the fractional nonlinear Eq. (4.1) is converted to the following

ODE;

P(O,0 .0 0 woeene. ) . (4.3)

In [56], (&) is trail solution withsn(§),

o) =a,+ Y asn )+ 3 b ). (4.4)

sn(&) is Jacobi elliptic sine function.

is made and its highest degree is

Plp(E) =n. (4.5)
dep dop d’e d*p
S y=n+1,P(p—)=2n+1,P(—5)=n+2,and P Y=n+3. 4.6
P(dzf) n+ (p dé_,’) n+ (d.f‘) n n (dg"3) H (4.6)

Thus we can considerzin Eq. (4.3) to homogenous balance from the terms of the highest
order of derivative term and nonlinear.

Herecn(£)and dn(&) are the Jacobi elliptic cosine function and the Jacobi elliptic functions

respectively.

And

en?(£) =1 —sn*(£), dn* (&) = 1-m*sn®(&), where m(0<m<1). (4.7)
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d

;l—g(sn(é‘)) = C"(é’)dﬂ(f),gg(m(é)) = —sn(£)dn(£). (4.8)
9 (an(&) = -msn(

Z n(&E)) = —m sn(E)en(E). 4.9

We know that, when m — 1,and m — 0, then sn(&) — tanh(&) and sn(&) — sin($)
respectively. Thus, using Eq. (4.4) and its derivatives along with Eq. (4.7) and Eq. (4.8) into
the Eq. (4.3), we achieve a set of equation with unknown parameters. Solving for unknown
parameters. Using the parameters, series solution Eq. (4.4) is determined in-terms of Jacobi
elliptic functions.

We can convert the Jacobi elliptic sine function to solitonic and periodic function by selecting
the conditions m — 1, and m — Orespectively.

4.4, Application of the method

In this section, we apply Jacobi Elliptic Expansion function method to the s-tfEW [47] and
the s-tfWBBM models [55].

4.4.1: Solutions of s-tfEW equation
The space-time fractional EW(s-tfEW) equation [47] read as:
DPp(x,t)+ eD? ¢’ (x,0) - DL p(x,1) =0, >0, 0< <. (4.10)

Introducing a travelling wave transformation for s-tfEW model Eq. (4.10)

p(x,t) = 1(£), §=-1:(k—m~x”—r(;)t”- 4.11)

Eq. (4.11) converts nonlinear partial differential Eq. (4.10) to the following nonlinear ODE,
—of +ek(fP) &k ST =0, (4.12)

Integrating Eq. (4.12) with respectto &, then the equation converted to the nonlinear ODE
Eq. (4.13),

of +alf? k=0, @13)

Using the balance role (f* with ") in Eq. (4.13) givesn = 2. Now choose an auxiliary

solution for the balance number.

f(&)=a,+a;sn(&)+ a,sn’(&)+ bsn” (&) + bysn”* (&). (4.14)
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Inserting f (&) from Eq. (4.14) to the Eq. (4.13), then equating adjacent terms of sn' (&) to
zero and solve this terms for a,,a,,4,,b, and b,, we get

Case-1:
_ 1 eNd (m? +1=2,J(m* +14m* +1))
k—- " S ,ﬂu = 3
2Jdim® +14m? +1 eilm* +14m* +1
e dm? :
a2=—4 4CJ_-m7 ’b;’.:_ BLJJ ,a,=0,b, =0
Am* +14m° +1 eVm* +14m* +1
Case-2:
" 1 eNJd (m* +1=2,/(m* +14m* +1))
e a, =—

2«/—(7«./4 m* +14m? +1 T e\lm* +14m* +1 ’
0 = Zic\,/gm2 b. = BCJE
g e > =
P oAmt —m? +1

a, =0,b =0

Ym* +14m* +1

Case-3:

P 1 cJE(mZ +1-24/(m* - m* +1))
— ,a = 5
2Jdim* —m?* +1 ’ glm*—-m?+1
30«,/:17

b, =~ ,a,=0,a,=0,b=0

e¥m* —m* +1

' 1 c«/E(m2 +1=2J(m* =m* +1))
= - ,dy == s
2WJdim* —m?* +1 ’ e\m* —m* +1
3(;«/2

b, = ,a,=0,a,=0,b6 =0

s‘%}m4 —m?+1

Case:-5

_ed(m’ +1-2J0n* =m* +1))
eAlm* —=m? +1 ’

,a,=0,b,=0, b,=0

k

1
= ,a
2«/24\/1%" —m?+1 ’
— 3eafdm’
? eAlm* —m? +1

Case-6:
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F=_ 1 ed (m* +1=2J(m* —m* +1))
= o ’
Wdim* —m* 1 e\lm* —m? +1
3caldm?
a, = ,a, =0, b =0, b, =0
sim' —m* 41 : 2

Eq. (4.10) are reduced the following exact solutions by using (case-1-6)

cw/;(m2 +1=2vm* +14m* +1)
e¥m* +14m* +1
3cdm’ sn’( : : e
Ym* +14m* +1  24dd¥m* +14m* +1T7(F) TP
3eyd sn( ! ! R 17}
e¥m* +14m* +1 2Jdim* +14m? +1 T(8) (s

o t)=__cxfc?(m2 +1=24m* +14m’> +1)
] e\m* +14m* +1
2
o Seam sn’ (- : L o€ 5y | (4.16)
Ym* +14m* +1 ZJE*Vm" +14m?* +1T(D) I'(5)
+ 304;{ sn7 (- - 1 x? - s t
eAm* +14m* +1 2x/gijm4 +14m* +1 0(3) ()
s 2] = (:\/J(m2 +1-24m* —m? +1)
’ evmt —m* +1 _ @17)
. 3edd sn7( 1 lL_yo__£ 5y
eim' —m* +1 2Jdi¥m® =m* +11(B) r(B)
() = __c:x/-c_[_(m2 +1=24m' =m* +1)
o 2Alm* =m* +1 ' (4.18)
+ 3edd s (- ! I 5 %)
ellm* —m* +1 2\/5‘{/1724 —m*+1T(8) I'(f)

eNd(m? +1+4m* —m® +1)

o(x,t) =

%y . (4.15)

")

p(x,1) =
5%4 ~m’ +1 . (4.19)
_ 3edm® ey 1 1 W€ )
eAlm? —-m?+1 2\[;%14 —m*+1 (A ()
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cld (m® +1l+ym* —m® +
o(x,t)=— ( — )
eym* —m* +1
: (4.20)
3cfdm ) 1 1 4 &

+ 4 2 5 Sn (“‘ xt - tﬁ)
E‘Jm -m°+1 2«/(74\/m4—m2+l L(5) I'(8)
Eq. (4.15-4.20) represents the solutions in term of Jacobi elliptic function.

Whenm — 1, the solutions Eq. (4.15-4.20) convert in the form,

go(x,[) = 3C‘\/—- 3C'\[— h ( 1 ﬁ c tﬁ
& 2 4\/_ F(/9) L(A)
. 4.21)
-—Mta "2( 1 1 x? — € Zﬂ)
Wd TP~ T(h)
<o(x,t)~3"“r 3N Lo oy
- 2 4F(ﬂ) I'(5)
. (4.22)
+3C‘\/_ -z(_ 1 p c tﬁ)
2¢ 4«/_ r’(ﬁ) I'(5)
1) =~ 3edd ok Lyr__C . 4.23
olot) =2t e ) )
JE - 1 1 c
1) =29 anb 2 (- xf - ). 4.24
pnn=— Cratet e e
_dedd L E g 4.25
o)== tant ! ) b4
\/_ 1 1 c -
= tanl A 7y. 4.26
Pl Y ETe” T 2
Solitary wave solutions Eq. (4.21-4.26) come in terms of hyperbolic functions form.
Whenm — 0, the solutions Eq. (4.15-4.20) convert in the form,
__eVd _3ed Lo _c 27
P = T (2J_ SO el
c\/_' 3c\/_ 7 (= 1 P c .z o 38
Pl CsETE T (4.28)
*ucx/___:’mw/— 1 P c g 4.9
(p(x,t)— P (2-\[—]?-(/3) F(ﬂ)t ) ( C )
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C\/— 3Cw/_ (_ 1 LB c
«/_ r (ﬂ) (s

These are periodic wave solution of the nonlinear s-tfEW model and the other two solutions
(4.19), (4.20) give constants only.

x,0)=

"), (4.30)

4.4.2: Solutions of the WBBM model

The space-time fractional WBBM equation [49] read as:

D! ¢(x,7,2,0)+ DL p(x,,2,0)+ D p(x, 7, 2,0) ~ D o(x,y,28) = 0

(4.31)
t>0, 0< <1

Considering a travelling wave transformation for space-time fractional 3D WBBM model Eq.
(4.31)

plx,)=¢(), ¢ = (ex? + ppy? +czf —wit?). (4.32)
1‘(ﬁ)
Eq. (4.32) transform to the WBBM Eg. (4.31) to the following nonlinear ODE,
(—w+ 0@ + (8 +Lewg” =0, ' 4.33)

Integrating Eq. (4.33) with respect to ¢, then Eq. (4.31) converted to the nonlinear ODE Egq.
(4.34),

(~w+ 0+ p @ +Lewg =0, (4.34)

" Using the balance role (¢* with ¢") in Eq. (4.34) givesn = 1. Now choose an auxiliary
solution for the balance number.

$(O) = a, +a,sn($)+bsn™(4). (4.35)
Plugging ¢(¢) from Eq. (4.35) to the Eq. (4.34), then comparing the adjacent terms of

sn' (&) to zero and solve this algebraic equations for a,,a,,w and b, , we get four sets of

solutions.

= ¢ a, =0
lem? —6lem+ e+’ 0 ’

—Fim = b, =0 =6
= go(€cm2 —6lem+ fe+1) ol go(fcm2 —6fem+Le+))

¢
B lem® + 68cm+fe+1 ’

Case-1:

a, =0,

Case-2:

=+ = b, =%¢ —2c
@) = Gem’ + 6lem+ fe+ 1) © \ ollem’ +6Lem + fe+1)
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—2c
p(fem® +lc+1)

Case-3: w £ 0 0.b, =1¢
-3 =, = 5 =, = Tf
lem® + te+1"° “ :

-2¢

£
Case-4: w=————— . q,=0,b, =0,a, =+im
Lem® + be+1

@(lem® + Lc+1)
The exact solutions of Eq. (4.31) by using (casc-1-4)
(4.36)

1
ms—— (x” + py? +czf —wit”))
1 -y Tp e

E .
Abem® — ’
Vg.)(fcm 6cm+ fc+1) s 1 (" + py” +c2” —wt"))
T'B)

(Plz(xst) =

(4.37)

£
fem® —68cm+ Lo+ 1

In Eq. (4.36) and Eq. (4.37), w=

msH Fl (Exﬂ+goyﬂ+czﬂ—Wtﬂ))
(%(x,t):lf\/ Tent: —65C fo+1 ﬂi e s
§olbem” +6lcm+fe+1) +Sn_l(1“_(,b’) @x? +goy” +cz” —wi”))

5 [ms; I'l (ex? + v’ +cz2’ —wt?))
(/)H(x,[) =—_€\/ r— ;EC s . (439
g lem” + 6fem+ Lo+ )l_l_sn-l( (gxf" +§O)"ﬁ +cz? —Wfﬁ))
T'(B)
14
InBg, (1.28)a0d Eg. (435, w= fem® +6dem+ be+ 1
— 2 y g
=2 on (ex? + pyf +cz” —wt?)), (4.40
iskt) \[P(fcmz +fc+1) (r(ﬂ) ’ )
-2 - P B
Dt 0 TR 0
is(%:1) Jp(écm‘ +.€c+l) (B
~ g ), 8
= _ (6xP + py? +czf —wt?)) 4.42
Purli) Em\/;(ﬂcm“ +lc+1) (F(ﬁ) ) ( )
~2c 1 s B . P s
o (x? + py? +czf —wt?)) . 4.43
P50 Em\/;(fcm +c+1) (F(,B) ) )
4.42) and Eq. (4.43) w=—-£—
In Eq. (4.40), Eq. (4.41), Eq. (4.42) and Eq. (2.42), fem* +bc+1
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Eq. (4.36-4.43) represents the Jacobi elliptic function solutions of Eq. (4.31).

Whenm —> 1, the solutions Eq. (4.36-4.43) convert in the form,

r

—tanh(r : (x? +py? +czf —wt”))
P (1) = £ [— 2| ($) ,
o(l—40c) 1
_¢ -2c

+ coth( (IxP + py? +cz? —wtP))
(s

\

r

tanh(

;IQ(J") ( )

(£x? +g9y’s +cz? —wtﬁ))

r'(8)
¢
In Eq. (4.44) and Eq. (4.45), w= ’
nEq. (4:44) and Eq. (445), w=— s
I
tanh £x? + py”? + 2 —wt?))
=5 (1“(/3)( 0y
Py, )= b e e ,
(1 +8lcm)

1
+ coth(—— (&x? + py? +cz? —wt?))
I'(5)

tanh(r (x? + py? +czf —wt?))

!
P (x,8) = "61"—:26— ()B]) :
p+8Le) |, coth(ﬁ(éx” + gy +cz? —wi?y)

¢
(1+8c)

In Eq. (4.46) and Eq. (4.47) carry the value of w=

—-2c
L(x,0)=2¢ coth
P (1) \} o(l+2£0)
- 2c
co
—2c -

(
i
n

——(&x? + pyf +czf —wt?)),

1
T'(5)

(ex? +py” +czf —wi?)),

1
@y (x,1) = 14 T(5)
1

h(
: ¢ g £ Zﬂ— B .
oL+ 202) h(I‘(ﬁ)(x +py- +c wt?))

(025(3""') =—{

\} o1+ 26c)

In Eq. (4.48), Eq. (4.49), Eq. (4.50) and Eq. (4:51), w=mmrrs.

Solitary wave solutions Eq. (4.44-4.51) comes from the hyperbolic functions.

When m — 0, the solutions Eq. (4.36-4.43) convert to the form,
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(4.47)
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1
T'(f)

§0zo(x,¢)=f1/——-—p(zizc) {— cosec(r(lﬁ) (x? + py? +cz” —wtﬂ))}, (4.53)
=2 |
Y. =_g{___ SN By onf _yt? _
@7 (x,0) TS {cosec(r(ﬂ) (OxF + py? +czf —wt ))}. (4.54)

In Eq. (4.52), Eq. (4.53) and Eq. (4.54),w=

-2
Qs (x,8) =1 m{cosec( (ex? + py? +cz2” —wt? ))} , (4.52)

(1+2c)

Eq. (4.36)-Eq. (4.43) arc Jacobi functions solution of the nonlinear WBBM
model. Out of eight Jacobi elliptic functions, three of them are repeated and two results give
zero solution. So these five solutions are neglected.

4.5. Graphical reprcsentation

In this section, we will provide some graphical representation of the exact solutions of the
space-time fractional Equal Width (s-tfEW) equation (Eq. (4.10)) and the space-time
fractional Wazwaz-Benjamin-Bona-Mahony (s-tftWBBM) model (Eq.(4.31)). Graphical
representations are portrayed below using the selected exact solutions of EW and WBBM
model.

4.5.1: Graphics of the solutions of s-tfEW equation

Three types of results are achieved for EW equation. Each and every one of the derived
solutions is analyzed and a few number of different types solution are illustrated here Figs-
(4.1-4.3). All The graphs show the variation of amplitude, direction, shape of the derived
wave solution to identify intrinsic nature of the model. The solution ¢(x,?) in Eq. (4.15-4.20)
represent the Jacobi elliptic functions Eq. (4.21-4.26) shows the solitonic nature comes from

hyperbolic function and Eq. (4.27-4.30) are trigonometric function exhibit as periodic waves.
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e

E =i
T

b -

o(xt) -30]

- 1604
[ =05 — - — t=1 — t=15|

(a) 3D View of Eq.(4.21) (b) 2D View of Eq.(4.21)
Fig-4.1: Represent the function go(x,t) in Eq. (4.21) for the values; d = 0_5)/} =1/6,c=1,6=1:(a)3D
surface, (b) 2D graphs at ¢ = 0.5,1,1.5.

(a) 3D View of Eq.(4.23) (b) 2D View of Eq.(4.23)
Fig-4.2: Represent the function @(x,#)inEq. (4.23)for: d = 0.5, =3/4,c =5, = 2:(a) 3D surface

and (b) 2D graphsat ¢ = 0.5,1,1.5.

40 -

1"‘"‘ =0.5 _—"‘-l.=i ‘=1.5J
(a) 3D View of Eq.(4.25) (b)2D View of Eq.(4.25)
Fig-4.3: Represent the bell type wave (>, 1) in Eq. (4.25) for the parametric values,

d=1,8=3/5c=3,&=0.25:(a) 3D surface and (b) 2D graphs forand ¢=10.5,1,1.5.
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50
wn ']
2
194
’g 3 l't_'; 13 20
[=—ro5-- :-Ax—n-l.sl
(a) 3D View of Eq.(3.27) (b) 2D View of Eq.(3.27)

Fig-4.4: Represent the periodic wave of (x,#) in Eq. (4.27) for the physical parametric values,
d=05,8=3/4,c =-3,¢& =1:(a) 3D surface and (b) 2D graphs at #=0.5,1,1.5.

4.5.2: Graphics of the equation WBBM
The findings of the study on WBBM model are in the form of hyperbolic (Eq. (4.44-4.51))

and trigonometric (Eg. (4.52-4.55)) functions. Hyperbolic and trigonometric function
represent solitonic and periodic solutions. All the derived functions are analyzed and two

types function have shown graphically in the Fig-4.5 to Fig-4.6.

8324
(5]
Qx) 0

L)

Q T e

p te o3 1) 0.0%
=20 .
-0

-600-

-803-

0! va 02 -1000-

HECE S x [—1=0 — =03 — 1=05]

(2) 3D View of Eq.(4.48) (b) 2DView of Eq.(4.48)
Fig-4.5: Represent the solitary periodic wave @(x,t) in Eq. (4.48) for the physical parametric values,
B=14=2,c=-2,p=12=0,y=0:(2)3D suface, (b) 2D graphs at £ = 0,1.03,0.5.
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(a) 3D View of Eq.(4.52) (b) 3D View of Eq.(4.52)
Fig-4.6: Represent the periodic wave @(x,#) in Eq. (4.52) for the physical parametric values
£=05¢=2,c=-2,p=12z=0,x=0:(a)3D surface, (b) 2D graphs at = 0,1.2.

Remarks: More other Jacobi function solutions to the s-tfEW and WBBM equation are

derivable by keeping trial solution in terms of the Jacobi functions cn(¢) and dn(&) as below;

w(§)=ay+ 3 aen’ (§)+ 3 aen”™ (§) (4.55)

And

w(E)=a,+y., adn'(E)+Y, adn” (&) (4.56)

In view of Eq. (4.55) and Eq. (4.56), we can add soliton and non-solitonic solutions describe
via cnoidal, dnoidal waves and trigonometric functions.

4.6. Concluding remarks

In this chapter, the space-time fractional EW and WBBM equation has successfully
integrated via Jacobi elliptic function expansion technique with modified Riemann-Liouville
derivatives. By introducing a fractional transformation, the considered nonlinear partial
travelling wave equation reduced to ordinary differential model. Then we successfully used
Jacobi elliptic expansion method to integrate the model. At the end of our procedure, three
types solutions are achieved namely, Jacobi elliptic, hyperbolic and trigonometric function
with unknown parameters, which indicates that Jacobi elliptic expansion technique are very
fruitful as well as appropriate to ﬁnd_ the exact solutions of nonlinear fractional models. In

addition, graphical illustration of the solutions has plotted with unknown parameters.
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Rescarchers can undoubtedly use the technique to analyze the internal mechanism of

nonlinear physical systems.

59



@

W
Chapter-5

New exact solitary wave solutions for Couple of models through the

generalized Kudryshov method
Acknowledgement

Fractional derivatives are most important to accurate nonlinear modeling in the fields of
crystal, optics and quantum mechanics even in biological phenomena. We present the
generalized Kudryshov technique to integrate three nonlinear time fractional model namely;
complex Schrodinger and biological population models. As a result, we get some solitary
wave solutions in the form of hyperbolic and combo hyperbolic-trigonometric functions
including both stable and unstable cases. We obtain kink wave, bright bell wave, dark bell
wave, combo periodic-rogue waves, combo M-W shaped periodic-rogue waves in stable
cases, and singular kink type in unstable solitonic natures. We analyzed the achieved results

and illustrated graphically.

5.1. Introduction

The research of nonlinear partial differential equations has prepared huge effective work in
the field of applied physics, manufacturing science and applied mathematics. After few
decades ago most of the nonlinear research work based on the order of 1%, 2™ or any integer
order. But what would be happen, when this order is fraction. To analysis the fractional order
nonlinear problem, fractional calculus was developed. The new branch of calculus gives us
huge opportunity to solve the exact solution of nonlinear science. It has a vast scope to form
mathematical model by the new branch of mathematics in various fields such as, quantum
mechanics [1-3], optics [5], Biological dynamics [8], electro-magnetic waves [10],
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superconductivity and Bose-Einstein condensates [14], electrics signal processing [15], dust
acoustic and dense electron-positron-ion wave [19]control theory, astrophysics, dynamical
systems, plasma physics, nanotechnology, acoustics and so on [20-24].

Time fractional evolution is most effective since it gives a the past of the example [26] and
also, it takes care of the deliberate evolution. For example, if parametric values of the order
of the fractional derivatives can be externally controlled, the evolution of the soliton is
synthetically manifested. This is globally approved characteristics of the fractional
derivatives that are being applied in several related fields, The practical example of the
related filed is the temporal evolution of solitons in optical fibers which can be slowed to
address internet bottleneck, that is growing problem in the internet industry.

Two models of NLEEs that are considered the fractional form of time fractional complex
Schrodinger equation (FCSE) [2] and in population dynamics the time fractional biological
population (FBP) model [8].

The Schrodinger model has describe the quantum transport, energy conservation law in
quantum physics and identify the position of electron in its orbit. Schrodinger equation (SE)
model was first developed by Laskin [50] which occurs in many important areas as water
wave, fluid dynamics, bio-chemistry, optical pulses propagation into nonlinear fiber and
plasma physics. Few researchers deliberated much more effort in investigation of the
complex fractional Schrodinger model: Khater [2] studied by a supplementary equation and a
(G'/G)-schemes. Alam and Li [3] presented exact solutions via modified (G"/G)-expansion
method. The fractional biological population model describes the density of population in
presences of birth and death with diverse effect of diseases [8]. This fractional model studied

by many researchers for deriving exact solutions such as Bekir et. al. [59] by fractional
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complex transform and exp-function method. Also Lu [60] by Backlund transformation
method.
The purpose of this chapter is to find stable and unstable soliton solutions of the FCSE and

FBP models via the generalized Kudryashov method [28-29], which played a vital role in

mathematical physics.

5.2. Conformable fractional derivative and its properties
Let, ¢:(0,00)— 9, the conformable fractional derivative of ¢ for order « is defined [57-

58] as,

o lim t+ ™) —
e = % N )~ ¢() , 0<a <1 and time ¢ is positive.
ot &—>0 & '

Some mathematical postulate of the derivative is,

a aa 611
ap+bp)=a +b , Va,beR.
- (ap+bop) Y (#) P (p)
o o

—(t")=pt"*, VP eR and (L) =0, A=const

Ot or#

O (8o p)0) =1 (0D ®).

ot

5.3. Summary of the method
Consider a general nonlinear partial differential equation,

R X s X ) =050 (5.1)
where x is real and ¢ is positive
where y = y(x,f)is unknown surface and Nis a polynomial of the function y and its
derivatives. The generalized Kudryashov method [28-29] can be summarized as follows:
Step 1: Consider the following traveling wave transformation
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260 =B(),¢ =x- (5.2)

(04

where ¢ is the wave velocity. Eq. (5.1) converted to ODE with the wave transformation Eq.

(5.2). The reduced ODE form as bellow:
P(B:BnaBlnls"') = 0: (53)
where prime indicate the derivation of B is with respect to ¢ .

Step 2: Picking a trail solution of Eq. (5.3):

DB )
B()=-"4—0«, (5.4)
Z&O,W (9

Jj=

where £, and g are unknown real parameters and ¢(¢)satisfies the following Riccati type

[62] ordinary differential equation:

#'($) =9 () 9. (5.5)
Eq. (5.5) is carrying the solution in the following form:

1

MO =

(5.6)

where A4 is any unknown constant.
Step 3: By using the following homogenous balance role from the nonlinear and highest
order term of Eq. (5.3).

The degree of B(¢) as D(B({))=X-A, which gives the degree of other term as

7 B
d B) X - A+77,D(B’”(d -
d§” ac’

) ) =X-A)p+s(X-A+n),

where u,n,s are integer numbers.

Thus, we can evaluate the value of X and A in Eq. (5.3).
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Step 4: Plugging Eq. (5.4) with Eq. (5.5) to Eq. (5.3). after collecting the expressions ¢ then
setting each coefficients of ¢ to zero, we attain a arrangement of algebraic equations for
{,,$; and ¢ .Solving for £,,$; and c by Maple soft.

Step 5: Replacing gained parametric values into the Eq. (5.4), then the solutions of Eq. (5.1)

can be constructed.

5.4. Implementation of the generalized Kudryashov method

In this section, we implement the above reliable technique, in a realistic and efficient way, to
handle nonlinear time fractional complex Schrodinger and time fractional biological

population models with time fractional derivatives.

5.4.1. The Time fractional complex Schrodinger model

Consider the Time fractional complex Schrodinger model

v 2
op . ;00
ot? ox?

0 3
+—(¢[ @) =00<y<l, 5.7
ox

2 h .
Let us considerg(x,f) = @(&)exp(it), & =ik(x ——g.t") ,T= (gx—;.z”) and convert this
7

nonlinear complex FSE to the nonlinear integer order SE

b4

Z ED =i(gp+ 2hke Yexp(it)
[-
o’
ox?

L (o ) = ihg® + 3k¢¢ Y exp(i0)
ox

= —(h ¢+ 2hkg +k*¢ )exp(it)

We obtain the nonlinear complex PSE by using the above equations,

(g —h>)p—k*¢" +he® +3kp’$ =0 (5.
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Using the rule of homogenous balance on Eq. (5.8) (¢'and ¢°¢)=> (= n= m+—]2—. Apply

1
another transformation @(£) =u2(&)in Eq. (5.8), we get ordinary differential equations

4hu’ +4(g - Myu® + 6kuPu’ + k*u” — 2k%uu’ =0 (5.9)
Case-1: using the homogenous balance role from term wx’ with term «’x in Eq. (5.9) gives
=n=m+l.

Settingm =1, we have n = 2 . Therefore Eq. (5.9) reduces to

_4 +0,p+L0,4°

“) Py + 19

(5.10)

Inserting Eq. (5.10) along with Eq. (5.5) into Eq. (5.9), we have a polynomial of
#*,(k=0,1,2,...). Equating the coefficients of this polynomial of the same powers of ¢to

zero, we obtain a system of equations yields the values for g,4,£,,¢,and g@,.

I
Setl: g =%k2,h =—%k,£0 =0,8,=0,0, = ko1, f0, = 0,82 = 0

1 1
Set 2: g=%k2,h=%k,fo =0,¢, =—Ek€|:£g =5k59|:@1 = 0,4, =0

, The time fractional complex PSE equations hold the solution for set-1,

k 1 2 1 1kt
o == pEx 12 EXp{l(E/CH'E—}‘/—)} (5.11)

t
1+ Aexpfik(x— » )}

The time fractional complex PSE equations hold the solution for set-2,

@, ={—— e cxw(2 5 y)}, (5.12)

k=t
1+ Aexp{ik(x+ 7)}
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5.4.2. The time fractional biological population model

We consider a time fractional biological population model of the form [8]:

P
ot ox?

62
(P2)+5y;(P2)+x(P2—p), t>0,0<y<1, x,y€R, (5.13)

where P indicate the population density, x(P? — p) presents the population supply owing to
births and deaths, and «, p are unknown parameters.

wt”

Use the transformation 7 = vx + ivy — A (5.14)
I'(d+y)
In which wand vare free constants and i = \[-_-T g
Eq. (5.14) converted to the Eq. (5.13) to an ODE as follows:
wp'+xp’ —xp=0. ' (5.15)

Case-1: From the term p’ and p°® in Eq. (5.15), the homogenous balance number gives
=Dn=m+l.
Settingm =1, we have n = 2. Therefore Eq. (5.4) reduces to

£0+g|p+gzpl
£o TP

(5.16)

u(g) =

Inserting Eq. (5.16) along with Eq. (5.5) into Eq. (5.15), we have a polynomial of

pr(k=0]12,.). Equating the coefficients of this polynomial of the same powers of ¢1to

zero, we obtain a system of equations yields the values for w,k,£,,¢, and o, .
_ - | _ ¢
Cluster-1: w=22xp, £, =—(¢, Fp,/P)/2 £, =F2p.\p, 0, = 5 ®, +—\/—‘_—),«€,,go1
P

are constants.

66



e B
Chapter-Five i Solitary wave solutions for two models through the generalized Kudryshov method

Cluster-2:  w=txy/p, £, :;50“/;/2,5] =+p./p, £, =¢@1\/—, 0, =—§,/2. p,is

constant.

For cluster-1, the time fractional biological population model holds the solution as:

Py, y.1) = — i&f’]\/;)(l + A4 Tap, p |
(82, $_\[‘=)(1+ Ae™) +2p,(1+ de) (5.17)
p

ZK‘\/EZ ¥

where, 7 =vx+ivyF .
L(l+y)

For cluster-2, the time fractional biological population model holds the solution as:

Plx,y.0) = Fp(l+4e") +2/p(1+ de)F 2./p
- —(1+ de™)? +2(1 + Ae”)

rc\/;ty

I(l+y)

. (5.18)

where 7 =vx+ivy F

5.5. Graphical representations

In this section, we will provide some graphical representation of the exact solutions of time
fractional complex Schrodinger equation (FCSE) (Eq. (5.7)) and in population dynamics the
time fractional biological population (FBP) model (Eq. (5.13)).Graphical representations are

portrayed below using the selected exact solutions of FCSE and FBP equations.

5.5.1. Graphs the Time fractional complex Schrodinger model
Two exact solutions are derived in this study. Both of them are analyzed and illustrate them
in the Figs. 5.1-5.4. The grid indicates the change of all physical properties for each gained

wave solutions. The solution ¢(x,?) of Eq. (5.11) for solution set-1, Eq. (5.12) for solution

set-2 represented in Fig-5.1-5.2 and Fig-5.3-5.4 respectively
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(b) Real contour shape

(a) Real 3D surface (c) Real 2D shape

Fig-5.1: Represent the real part of the wave solution @(x,t)of Eq. (5.11) with 1 =0.5, y=0.5, k=0.8
and £ =—1 for 2D graph.
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(b) Complex contour shape (c) Complex 2D shape
Fig-5.2: Represent the imaginary part of the wave solution (/)(x,t) of Bq. (5.11) with 4 = 0.5, = 0.5,

k=0.8 and ¢=-1 for 2D graph.

(a) Complex 3D surface

e(g)

/ A f

(a) Real 3D.surface (b) Real contour shape (¢) Real 2D shape
Fig-5.3: Represent the real part of the wave solution @(X,#) of Eq. (5.12) with 2 =0.5, y = 0.5, k =1 and

¢t = 0 for 2D graph.
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(a) Complex 3D surface

(b) Complex contour shape (c) Complex 2D shape
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Fig-5.4: Represent the imaginary part of the wave solution @(x,#) of Eq. (512) with A = 0.5, = 0.5,

k=1 and ¢=-1 for2D graph.
5.5.2: Graphs the time fractional biological population model

Fig-5.5: Represent the imaginary part of the solution p(x, y,¢) of Eq. (5.17) for the physical parametric values

A=1,y=3/4, k=20, =l,v=-2,p=1, =1,y=0and ¢=1 for 2D graph.

(b)

05
plex) "]
-0."1
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Fig-5.6: Represent the imaginary part of p(x,y,t) of Eq. (5.18) for parametric values,
A=ly=T/4k=2,(, =Lv=2,p=Lp ==Ly=0and =1 for2D graph

69



: @
Chapter-Five S Solitary wave solutions for two models through the generalized Kudryshov method
M

5.6. Conclusion

We have effectively applied mathematical tools named the generalized Kudryashov
technique to find the exact solutions to the considered Schrodinger and biological population
models. The derived solitary wave solutions are in the form of exponential. The gained
solutions will give out as an awfully in the study a crystal wave and quantum wave
phenomena. Also we have plotted the derived results and analyzed the graph in Fig-(5.1-5.6).
The determined characteristics of the solutions are bright bell, dark bell, kink solitary wave,
M- shape solitary wave, W- shape solitary wave. In the concluding remarks, finally we
commented that this mathematical technique can also be used to solve many other fractional

non-linear partial differential equations in applied mathematics and material science.
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Chapter-6

Apply the Modified simple equation method for two non-linear time

fractional models,

Acknowledgement

‘We establish new and exact travelling wave solutions of the complex time fractional
Schrodinger equation (FSE) and low-pass electrical transmission lines equation (ETLE)
with the help of modified simple equation (MSE) method. The approach provides us
rational exponential function solutions with some free parameters. Few well-known
solitary wave solutions are derived from the rational solutions choosing particular values
of the free parameters. The exact solution obtained by the method indicate that the
scheme is comparatively easier to implement and attractive on the view of results. Also
we observed that the numerical results are very encouraging for the researchers for the
further study on space-time fractional nonlinear partial evolution equations in

mathematical physics.

6.1. Introduction

The technique of fractional differentiation is helpful in expressing the recollection and
heritable character of materials and process. The Riemann-Liouville derivative or
Grunwald-Letnokob derivative or Caputo derivative are the three way to defined the
fractional derivative. In recent times, fractional nonlinear differential equations have
played a vital rule to the modelling of internal mechanism of particles. This mathematical
tools have been highlighted many research due to their numerous form in diverse
applications in biological modelling, physical science, engineering, networking system,
fractional dynamics, system detection, signal processing and finance [1-24]. Exact or

numerical solutions for nonlinear fractional models are very essential to observe the
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physical character to the real-world physical problem. Recent five decades, dynamical
researchers faced many complexities to finding the exact solutions for such models.
Recently some effective new techniques have been proposed and improved the old
methods for scarching the exact solutions to the fractional nonlinear models. The
proposed and improved techniques are: Jacobi elliptic function method [27], modified
simple equation method [30-31], Bécklund transformations [32], tanh method [33],
tan(®/2) -expansion [34], soliton ansatz [35-36], auxiliary equation [37], sine-cosine
[38], homogeneous balance [39], (G'/ G) -expansion [40], Modified double sub-equation
[41], and so on [41-43]. Among the techniques, MSE scheme [30-31] is more effective
and concise for deriving solitonic nature of fractional and non-fractional nonlinear
differential models. Besides this, Jumarie [54] proposed modified Riemann-Liouville
fractional derivative to transform the fractional order partial differential equation (FPDE)
to integer order ordinary differential equations (ODE), Many dynamical researchers have
used the technique of conformable fractional derivative [57-38] as an accurate conversion
way from FPDE to ODE for searching exact solutions of nonlinear fractional models.

The goal of this chapter is derive the exact solutions of the complex time fractional
Schrodinger equation (FSE) [3] & low-pass electrical transmission lines equation (ETLE)
[12] using the MSE method.

The complex time fractional Schrodinger equation (FSE) proposed by Nick Laskin [50]

of the form;
e D¢ 0, p
LY =z =00<y<l. (6.1)
ot’ ! ox?  ox (!(/)l ?)

The above fractional model of nonlinear Schrodinger equation (FSE) is the most efficient
universal model in quantum mechanics which describe various physical nonlinear

systérns. For example, nonlinear Schrodinger equation is used to explain the progress of
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low motion changing packets of quasi monochromatic waves in weakly nonlinear media
with dispersion. The nonlinear Schrodinger equation never describes the time evolution of
a quantum state. Nonlinear Schrodinger equation (NLSE) has found its various
applications in wave transmission in dispersive and inhomogenecous media such as:
dynamics in particle accelerators, non-uniform dielectric media, solitary waves in
piezoelectric semiconductors, mean field theory of Bose-Einstein condensates
hydrodynamics and plasma waves, nonlincar optical waves, quantum condensates and
heat pulse in solids [59-68].

We also shed light on a fractional partial differential equation with the property of
nonlinearity describing the wave propagation in nonlinear low—pass electrical

transmission lines [12]:

6201(0 a’la 5 aZa . , alaw p4 a4a¢
- +B T—p© - =00<a<l, 6.2
() +B—5(p) - p* —-- 5 — (6.2)

ot ar
Solitary wave solutions and analysis of the nonlinear electrical transmission lines
equation is very essential for diverse application of the areas like as linking wireless
transmitters and receivers with their antennas, satellite signals processing, mobile
networking system, computer networking and high-speed computer data buses. This
model is describes the data carry and codify it in telecommunication system.
Furthermore, a ETL is a main path or other structure designed to carry alternating current
of radio frequency in electronic engineering. NL'TLs are also ensuring an effective path to
verify how the nonlinear excitations behave inside the nonlinear medium and to model
the exotic properties of new systems.
6.2. Conformable fractional derivative and its properties

Now we want to go over the conformable fractional derivatives [57-58]:

73



Chapter-six @ M

odified simple equation method for fractional model

Definition: Let the function ¢: (0, w) — ® , the conformable fractional derivative of ¢ for

order y is defined as 1 (g)(r) = lim gz + &) - g(1)
6—0"

S >0 and 0<y <[, where 1,

is fractional differential operator.

Some important properties:
@) A,(ag+bp)=al (4) +b4,(p), Va,beR.
() A,0"y= "7, VheR
(i) A,(v) =0, v = const.
(V) A, (¢° p)() =7 ¢'(0(1))'(2).

(i) 2,(L) < 2 D=4, @)
¢ ¢

6.3. The fractional complex transformation

In this portion, we have discussed the fractional transformation for the fractional-order

PDE,
Plp,—= .__-—-—-,—-—-)—OI>00<}’SI (6.3)

where P is a polynomial of ¢(x,y,f) and its partial fractional derivative where in the

maximum number of derivatives and the nonlinear term are drawn in. For the equation let

t)’
p=p(f)= qo(x,y.z,t),§’=x+y+z—k7 and

2y 2y
Find i:._k_i’.?_:i,i:i, agy =k* 0 5 --where  k indicates the
o’ 0L ox 9L oy o0f or” os
op ¢ . _
travelling wave speed. The Eq. (6.3) becomes R(p,— YA T )=0 (6.4)
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6.4. Outline of the Modified Simple equation method
Let us picking a general nonlinear partial fractional evolution cquation in x and fas

N(u,D/u,Dlu,D*u,D¥y....) = 0, o)
where the function u = u(x,r) is unknown and N is a polynomial of the function uand its

derivatives. To find the solution of Eq. (6.5) by modified simple equation (MSE) method
[15]. We have exccuted some key steps of the MSE method. The steps are as follows,
Step 1: Assuming the bellows wave transformation for complex time fractional non-
linear model,

u(x,t) = u(¢)exp(ir) with travelling wave variables

2gt” ht”
Yy and 7= (gx——) (6.6)
}/ v

,

§ =ik(x—

And without complex model u(x,t)=u({)and travelling wave variable for space-time

fractional model,

kl v kZ

= 1+ X7, (6.7)
Ird+y) I'(l+y)

¢

We can convert the nonlincar partial differential Eq. (6.5) to a nonlinear ordinary
differential equation (ODE) by applying the above transformation:

GQu,u ,u ,.)=0, (6.8)
where u' and u are the 1 and 2™ time derivatives of u with respect to ¢ and G is a

polynomial of u(¢).

Step 2: The solution of Eq. (6.8) can be considcred by the following:

s s'@)}"
uQ)=ya| =2, 6.9)
Zo L(é )
where a,(0,1,2,3....N)are unknown constants to be evaluated, such thata, = 0and "

is an unknown function to be estimated. Whereas the solutions are expre
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some well-known differential equation in(G'/G)-expansion method [39-40], Ricatti

equation method [23]. But in MSE method $(¢) is neither pre-defined nor a solution of
pre-defined differential equation. These are the special characteristics of the MSE
method. For that the solution is more useful and realistic by this method.

Step 3: The positive integers N in Eq. (6.9) can be determined by balancing the highest

order derivative term and highest order nonlinear terms of u(¢)in Eq. (6.9).

Step 4: Inserting Eq. (6.9) along with Eq. (6.7) and simplifying for the function s(£).
- . 1 . y
After simplify we get a polynomial of (_(C—)) .Equating the adjacent terms of s(¢) to
hY

zero. Then form a system of algebraic equations for a;(0,1,2,...N) and the other
necessary parameters. Eq. (6.5) can solve by using this values.
Step 5: From these above algebraic relations, 4, can be determined and u(¢)into the Eq.

(6.5), then the solutions of Eq. (6.5) can be constructed.

6.5. Applications

In this section, we will apply the MSE method [30-31] to obtain the new exact solution to
the complex time fractional Schrodinger equation (FSE) [59] and the space-time
fi'actional differential equation governing wave propagation in low-pass electrical
transmission lines equation (ETLE) [12].

6.5.1. The complex time fractional Schrodinger equation (FSE)

Consider the complex time fractional Schrodinger equation which is defined Eq. (6.1),
Let us consider the transformation for complex FSE@(x,f)=s({)exp(ir), and

t’ ht? )
), T=(gx+—) and convert this
Y

corresponding travelling variables are ¢ = ik(x +

nonlinear complex FSE to the nonlinear integer order SE

76



. o [
(A7
ot
o 2 ; 2
pe =—(h"s +2hks + ks )exp(i7). (6.10)

v _. p
= i(gs + 2hks Yexp(it)

8 n
= el ) =105+ 365"y expin)

We obtain the nonlinear complex PSE by using the above Eq. (6.10),

(g—h*)s—k>s" +hs® +3ks’s =0 (6.11)

Using the rule of homogenous balance on Eq. (6.11) (s'and s’s)= n=—;—. Apply

1
another transformation s(£) =u2(¢) in Eq. (6.11), we get ordinary differential equations

4hu® +4(g = M’ + 6ku’u + ku® =2k’ =0 (6.12)

Casel: By balancing the highest order derivative term uu with the nonlinear termu’u in
Eq. (6.12) gives=>n=1.

Therefore Eq. (6.9) reduces to

u()=1 +xz[ ((g))] (6.13)

Where £ and £, # 0.
Differentiating Eg. (6.13) two times and putting Eq. (6.13) and its derivatives into the Eq.
(6.12), we have a polynomial of s*,(k =0,,2,..). Considering the coefficients of s*to

zero, and some of algebraic equations yields the values for £yand £,.

—402h* +ARLy + 4L =0, (6.14)
_ggoelhzs‘(g)-f12hz§)£,s‘(é)+GkEé'?lS"(f)—2k’fu€,s“(§), (6.15)
+80,¢,85(£)=0

42 (s () +12he, (s (£)) —6ke3L, (s () +6k¢ LS (s (&) + . 6.16)

12k620,5'($)s" (§)—2k 2035 (£)s” () + R (7€) +4£1g(5 ()Y =0
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4hE3 (s (Q)) —4k*2,8, (s () — 12k 07 (s () + 4k 435" (NS () +

6kl1s (£)(s'(£))* =0
=3k} (5" () ~ 6ke} (s (£))* =0,
From Eq. (6.14) implics

h-g
h

2, =0,

and from Eq. (6.18) , we attain

‘Phase-1:£, =0,¢, = —i;-

Eq. (6.17) together with phase-1, we obtain
Q)=o)
20 '
Eqg. (6.15) gives by using Eq. (6.19) then,

") _g
NG

Integrating Eq. (6.20) implies .
§ = cxp(%é’ ), where ¢, is arbitrary constant.
From Eq. (6.19) by putting the value of s™ from Eq. (6.21)

LIPS
= —C, CXPpl— 5
¥ S g edi

Again integrating Eq. (6.22), then

2

s(Q)=¢c, + E—Cl—exp(—g: ), wherec, and c, is arbitrary constants.
k

2gh

Thus the solution is
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(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)
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k : . kttv 1/2
576 expligh(x——))
o, =|-K_2h y ht®
) 5 . P exp| i(gx+—)|. (6.24)
¢, +— fok (x — —— Y
g PG = )

2

: ke
For the particular value ¢, = 20/; , then the solution of Eq. (6.24) reduces to soliton
[~

solution

o(x,t) = l:— %(l + tanh([—é;-li(x +ﬂ)))} exp[i(gx+ he” )i]. (6.25)
2 I 4

.2

. . ke
For the particular value ¢, =— 22 Ii , then the solution of Eq. (6.24) reduces to soliton

solution

. 172 %5
o(x,1) = l:‘zi{l + coth(l—g-k— (x+ ﬂ))}:| exp[i(gx + o )} : (6.26)
4 I

2 —
Phase-2: £ = th,fl = —lk,

Eq. (6.17) together with phase-2 gives

kh

26h —2g) ©)- (627

s'(¢) =

Eq. (6.15) gives by using Eq. (6.27) then,

wa 4 1 _qgp?
s.... () - 104 +6g; l6h*g (6.28)
s (£) kh(3h" - 2g)

Integrating Eq. (6.28) implics

10h* +6g° —16i1zg)

, where ¢, is arbitrary constant. (6.29
kh(3h? —2g) } ' i

s  =¢, exp[(

From Egq. (6.27) and Eq. (6.29) implies the following,

10A* +6g2 —16h°g
[Cl exp{( WGk —2g) )H ; (6.30)

&)= 2n —29)
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Again integrating Eq. (6.30), then

k*h’c 104 +6g? — 161
s(¢)=c¢,+ 1 +6g° —16Nh"g
* 2000 v 627 —16h7g) N meh —2g) | (531)

where ¢, and ¢, is arbitrary constants.

Thus the solution is

k* hc, xp{R}
A~ 43h% -2
p(x,t) = P g e g) exp(it), (6.32)

k*h’c,
ey exp{R}
2(10h* +6g° —16h°g)

107" +6g% —16h%g ht®
where R = ik dz=
{ kh(3h* —2g) (et ¥ ) and 7 =i(gr + Y )-

k*hic,
2(10h" +6g* ~16N*g)

For the particular valuec, = , then the solution of Eq. (6.32)

reduces to soliton solution

oel) = W' —g (10k'+6g" -16h°g)
P h 4317 -2g)

1/2 &
(1+tauh(§))] exl{i(gx+h; )}. (6.33)

kZhie,
2(10h* +6g° —16h%g)

For the particular valuec, =— , then the solution of Eq. (6.32)

reduces to soliton solution

¢( = [h —g+(10/1 +6g —16h g){]_‘_coth(R)}} exp{:i(gx+—l’:i—r)i|. (6.34)
I

4(3h* -2g)
6.5.2. The space-time fractional differential equation governing wave propagation in
low-pass electrical transmission lines equation
Let us consider the following space-time fractional differential equation governing wave
propagation in low-pass electrical transmission lines equation, which is given in Eq. (6.2)
wherev, p, B are unknown constants and ¢(x,r) is the voltage in the transmission 1in

The variable x is interpreted as the propagation distance and ¢is the slow time.
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physical details of the derivation of Eq. (6.2) using the Kirchhoffs laws are given in.
Let us consider

kl a k':

¢( 71): g = % =
*H=ule).e Tl+a) Tata)”

“ (6.35)

Convert this nonlinear complex ETL Eq. (6.2) to the nonlinear order ordinary differential

ETL by using the above Eq. (6.35)

Then ETL Eq. (6.2) reduced to the following ordinary differential equations

4
(K} = pk?yu—ktvu® + Bk?u® =L k2™ = 0. (6.36)
1 12 2

By balancing the highest order derivative term u" (£) with the nonlinear termu*(£) in
Eq. (6.36) gives=> n=1.

We assumed the auxiliary solution of Eq. (6.36);

u($)=aqa, +a1[i‘((§))} (6.37)

where a,andaq, # 0 are constants.
Differentiating Eq. (6.37) two times and putting Eq. (6.37) and its derivatives into the
Eq.(6.36). We.have a polynomial of s*,(k =0,1,2,...). Comparing the coefficients of s*
of the equal powers of s to zero, we get a some of equations yields the values for a,and
a,.

Bklal —klva, — a,Ak; + askl =0, (6.38)

—a, Ak (&) +klas () —2vkla,a,s’ (£)+3Bklagas (£)
1 45 (6.39)
—]—z—aIA ky.8 & =0,

" I BT "
a2 (s (£)) + 3Bk agal (8 () +7 4 Kas” (£ (§)=0, (6.40)
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Bklal (s (&)} —-:;A“kfa, (s"(&)* =0. (6.41)

From Eq. (6.41) implies

A*k
a =0, g == 2
1 ' " JeBr,
Again from Eq. (6.38),
a_oa_vkli-\/f " s . 5
o — Y, Uy = 2_“—Bkl W GTCL=4AB.’C2 +v kl —'4Bk1 i
Atk
Phase-1:a, =0,a 2
’ '~ J6Bk

Eq. (6.40) together with phase-1 gives

S(¢)= “/—A b gney. (6.42)

From Egq. (6.39) with phase-1 by using the Eq. (6.42),

(§) 3./6B
> (g) o (k? - 4%k,). (6.43)

Integrating Eq. (6.43) implies

Ll 3 6B
s =c exp( AL (k}— A*ky). (6.44)
From Egq. (6.42)
N6B Ak 3W6B .2 2
:___.__-.—2- b4 k —Ahk ) 645)
o YU : (643

Again integrating Eq. (6.45), then
452 /
b exp( 2 (ki — A%k,).

_ . 6.46
S(ﬁ)—czﬂ.lz(k “ A%k, vAkk, (6.46)

Thus the solution is
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3W68 |,
A'k? explE—s; (k' = A%k;)
p(x,t) = 2 C vA“kk, ,
- vk i3 (6.47)
VK Ak, W6B .,

¢, t¢ ——ﬁ-—exp(i - (k, —A’k,)
12(/{1 ——A“kz) vA k,kz 2
¢, Ak?

For the particular value ¢, = , then the solution of Eq. (6.47) reduces to

12(k} — A%k,)

soliton solution

3k — A7k}) 3,68
x)=|-———3-""2741 2 _ 42
$(x,1) [ E + tanh( AP (k2 — A%k, b . (6.48)
. i ke, . B . )
For the particular value ¢, = —Z—g-;, then the solution of Eq. (6.47) reduces to soliton
solution
3(kf - A°k7) 368
1) =| = —— 2714 coth(————(k} — 4%k
$5,1) { 20E, Gl Ol )
: (6.49)
Phase-2:
L kAL L Ak,
° 2BE 4/53/(
Eq. (6.40) together with phase-2 gives
N6B Ak,
s'(¢)=———7=5"(). (6.50
©= 2(—vk, +3«/_ L) )
From Eq. (6.40) with phase-3, then applying the Eq. (6.50),
s (&) _ 3W6BAk {AB(Ak'—k )+ (vk, £ L)k, +3J_)} 651)
s (&) 2BA* K (vk, £34/L)
Integrating Eq. (6.51) implies
s" =c exp(x0&)  where
3J6B Ak {4B(Ak2-k y+ vk, £ VI)(vk, T VI 652

0= 2BA K (vh, £3L)
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From Eq. (6.50)

~+6B Ak,

(vk & 3‘\/—) ¢ exp(£Qs). (6.53)

Again integrating Eq. (6.53), then

s(&)=c, —c,Hexp(Q&). (6.54)

A*BE?
3UB(Ak, — k) + (vk, £ VL )(vk, F 34L))

Thus the solution is

where H =

o= EEVD) | Ak [ xpEEDe) } (6.55)

2Bk, 2k, (vk, +3JL)| ¢, — e, H exp(x0¢) |
For the particular value c, =—¢, H , then the solution of Eq. (6.55) reduces to soliton

solution

_ vk £4L Ly, A'k? [ _gg}
o(x,0) 25k 4k]H(vkli3 T I+ tanh(<2) |. (6.56)

And for the particular value ¢, =¢,H , then the solution of Eq. (6.55) reduces to soliton

solution
sk + 4r2
p(x,0) = (vk, JZ) - Ak [l + c:oth(Q‘f ] (6.57)
2Bk, 4k H(vk £3JL)
4 2
where H = A Bk,

3YB(A2k, — kD) + vk, =LYk, ¥ WLy

2
EB Ak 4B — k) + 0l ANDOR TN 4ABK? +vk? — 4BK2,
2BA* K (vk, £3VL)

0=

6.6. Graphical representations

Here, we will represent some graphical illustration of the exact solutions of the complex

time fractional Schrodinger equation (Eq. (6.1)) and the space-time fractional differential
equation governing wave propagation in low-pass electrical transmission lines equation
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(Eq-(6.2)). Graphical representations are portrayed below using the selected exact

solutions of FSE and ETLE model.

6.6.1: The complex time fractional Schrodinger equation

In this subsection, we will illustrate one of results out of two. Derived results are
examined and selected results are illustrated the real and complex part in Figs. 6.1-6.2 for
the samc unknown parametric values of k = 0.5, y=0.5,h=1,g = —2,t = 2respectively.
The illustration of the result signify the variation of amplitude, direction, shape of flow
and character of the solitary waves for each acquired wave solutions in space x at time t.
The solution ¢(x,?) of Eq.(6.25) for solution set-1. For set-2, we get similar type of

solution for that which is not illustrated below.

—

! » 3
(a) Real 3D surface (b) Real contour shape (c) Real 2D shape
Fig-6.1: (2) Represent the real part of @(x,t) of Cq. (6.25) for the physical parametric values

k=05 y=05h=1,g=-2and =2 for2D graph.

/ -' [%// f "P '
: I " \-!
[

v
|

|

¥

% g o SN =
(a) Complex 3D surface (b) Complex contour shape (c) Complex 2D shape

Fig-6.2: (a) Represent the imaginary part of @(x,1) of Eq. (6.25) for the physical parametric values
k=05 ry=05h=1g =-2,t=2.
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6.6.2: The space-time fractional differential e

A : quation governing wave propagation in
low-pass electrical transmission lines equatio & propag

n

Two set of outcome are derived in this study. Each and every results are examined and
selected results are illustrated in the Fig-6.3 of Eq. (6.48).The illustration indicate the
alteration of amplitude, direction, shape of wave and nature of the solitary waves for each

acquired wave solutions in space X at time t. The solitary wave solution @(x,1) of Eq.

(6.48) for solution set-1.Eq. (6.57) for solution set-2 represented in Fig-6.4.

T 23 1 15
x

& 05— 08—y

(b) ()

Fig-6.3: (a) Represent the solitary wave solution ¢(x,7) of Eq. (6.48) for the physical parametric values
a=05k =05k =1,v=2,A=1,B=08,and £=0.5,0.8,1 for 2D graph.

230 o

e

(@
Fig-6.4: (a) Represent the imaginary part of the solitary wave solution ¢(x, ) of Eq. (6.57) for the
icvaluesx = 0.67, k, =0.5, k, =L,v= 2,A=1,B=2and t=0.5,0.8,1 for2D

graph.

physical parametr

6.7. Concluding Remarks

We have applied the modified simple equation method on the complex time fractional

Schrodinger equation and the space-time fractional differential equation governing wave

propagation in low-pass electrical transmission lines equation to construct solitary wave
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solutions. We have retrieved rational exponential function solutions of the fractional order
models including some arbitrary parameters. The obtained solutions with free parameters
may be important to explain some physical phenomena including special solitonic
behaviours. Finally, we conclude that the method can be implemented to various others
nonlinear fractional evolution equations that occur in mathematical physics and
engineering. We shall bring up it in our future investigations on various nonlinear

fractional models.

87



Chapter-7

New soliton solutions of three nonlinear fractional models through an

Improved Kudryashov method

Acknowledgement

Here inside this script, we introduce a new integral scheme namely Improved Kudryashov
method for solving any nonlinear fractional differential models. We apply the approach to the
nonlinear space-time fractional model leading wave spread in electrical transmission lines (s-
tfETL), the space-time M-fractional Schrédinger -Hirota (s-tM-fSH) and the time fractional
complex Schrodinger (tfcS) models to verify the effectiveness of the propose approach. The
implementations of the introduced new technique on the models provide us periodic
envelope, exponentially changeable soliton envelope, rational rogue wave, periodic rogue
wave, combo periodic-soliton and combo rational-soliton solutions, which are much
interesting phenomena in the nonlinear sciences. Thus the results disclose that the proposed
technique is awfully effective, straight-forward, and such solutions of the models are much

more fruitful than the generaliged Kudryashov and the Modified Kudryashov methods.

7.1. Introduction
The accurate modeling of nonlinear phenomena related to natural happening is really
impossible without fractional derivatives. Now a day, fractional calculus has been frequently

used to modeling of nonlinear systems in various fields such as quantum mechanics [2-3],

kN

\\

optical communications [4-5], plasma physics [6], fluid dynamics [7-8], eic asmissi

line [9-13], superconductivity and Bose-Einstein condensates [14], electrics
‘!"\
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[15], Biological dynamics [16], electro-magnetic waves [17], dust acoustic and dense
electron-positron-ion wave [19], and in many aspect [20-24].

Various types of exact solutions including periodic and solitons are essential to realize
intrinsic dynamical structure of such models even universe. Up to now, huge improvements
have been done in the development of techniques to evaluate such exact solutions of the
nonlinear models. Several powerful methods are as: generalized Kudryashov [28-29],
modified simple equation method [30-31], Bicklund transformations [32],tan(®/2)-
expansion [34], soliton ansatz [35-36], auxiliary equation [37], sine-cosine [38], (G'/G)-
expansion [39-40], Modified double sub-equation [41], variational iteration method [42],and
so on [43-44]. It is obstruction that all the mentioned approaches have few advantages and
disadvantages to integrate complex nonlinear systems. As we have known, no one approach
is suitable for all equations. Thus, we willing to propose a new and active approach namely
improved Kudryashov method (IKM) on the basis of the generalized Kudryashov method

[28-29] changing its auxiliary equation.

Now, we shed light on the nonlinear space-time fractional electrical transmission lines (s-
tfETL) [11], the time fractional complex Schrodinger (tcFSE) [2] and space-time M-
fractional Schrodinger -Hirota (s-tM-fSH) [51] models via the proposed IKM. These models
have been widely studied in many aspects for non-fractional differential case. Abdou and
Soliman [11] only solved the fractional transmission lines equation thru the generalized
exp(—¢(&)) -expansion  and generalized Kudryashov methods. But non-fractional

fransmission lines equation has been studied by Zayed and Alurrfi [63] using new Jacobi

function expansion method; Kumar [64] using three schemes as modified Kudryashaov

Sine-Gordon- and extended Sinh-Gordon- expansion methods; Shahoot et. al. usi
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(G'/ G)-expansion scheme. Beside this, the time fractional complex Schrodinger equation

(FSE) is vital nonlinear model in solitonic field. The model describes collision of adjacent
particles of identical mass to a lattice structure through a crystal and demonstrated
fundamental properties of string dynamics with fixed curvature space [59]. This model was
first developed by Laskin [50] which occurs in many important areas as water wave, fluid
dynamics, bio-chemistry, optical pulses propagation int'o nonlinear fiber and plasma physics.
Few rescarchers deliberated much more effort in investigation of the complex fractional
Schrodinger model: Khater [2] studied by a supplementary equation as well as (G”/G)-
schemes, Alam and Li [3] presented wave solutions through modified (G'/G)-expansion
technique. Recent years, Sousa and Oliveira invented a M-fractional order derivative [65].
So, we also consider another model namely the space-time truncated M-fractional
Schrodinger-Hirota model [51] which frequently arises in quantum hall-effect, optical fibers,
heat pulses in solids and more areas. Sulaiman et. al. [51] investigated the M-~fractional SH
model to present optical solitons solutions with the help of a sinh-Gordon technique. But
non-fractional SHE is investigated by many authors [66-68].

The intention of this research is to execute improved Kudryashov technique [69] to
determine abundant exact solitonic solutions as periodic envelope, exponentially changeable
soliton envelope, rational, combo periodic-soliton and combo rational-solitonic solutions of

the s-tfETL [11], the tfcSE [50] and the s-tM-fSH [51] models, which take an essential part

in nonlinear complex phenomena of physical sciences.

7.2. Conformable M-fractional and fractional derivatives with properties

The new M-fractional derivatives are given [51 ]:

Let o :[0,00) > R then M-fractional derivative g with order & can be written
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DA (@) O)= T PUE, (@)~ p(r)
>0 £

, Vi>0,0<a<l, >0,
whereE ; is a truncated Mittag-Leffler function [52].

Propertics of new M-fractional derivatives: When ¢ > 0,0<a<l, >0, mneMR,

¥ and Qare & — differentiable, then
i), Dy {(m¥ + nQ)(£)} = m DAY (1) + n,DEPQ), YmneR.
i), D" (¥ - Q)(1) = P (£), DEP Q) + Q(t), DEP (1), VS e R,
iii), D" (¥ / Q)(t) = {Q(f), DEP ¥ (1) - ¥ (¢), DEPQe)} Q1)) .

iv) ,DE*(c) = 0, where W(¢) = cis a constant.

1 AY(r)

v) (Chain rule) If is differentiable, then , D& ¥ (t) =
rd+p) 4t

If a function defined by, ¢: (0, ©) = R, the conformable fractional derivative with order v is

v li -uy
defined [57-58] as M= m gt ) ¢(t),t>0 and O<v<1.

ot &0 £
Properties:

5 B 0" 0"

1). (m¥ +nQd)=m (P)+n—(Q), YVmneR.
ot*® o ot

. 0 - 0" _

it). (t)=a"",vBeR and —(v)=0, v = const.
ot” ot

i), Z— (¥ 0 Q)(1) = £ (Q)Q ().

ot°

This properties are also satisfies the all types of M-fractional derivatives.

7.3. Algorithm of the proposed method
The fundamental phases of the technique as follows:
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Step-1: At first, bearing the subsequent fractional equation with the variables x and ¢,

N(Y,D/Y,DIY,D}Y,D¥*Y..)=0, (7.1)

where the function Y =Y (x,r)is unknown wave surface and N is a function of Y (x,) and

its highest order fractional derivatives.

Step-2: For complex nonlinear model, take the transformation, Y (x,t) = Y(¢)exp(it) with

travelling wave variables for space-time fractional model

a

. gt" _ o & ht"
C =My ey TTay T Cire) T {4

and for without complex model Y(x,?) = Y({)and travelling wave variable for space-time

k
UL S (7.3)

fractional model ¢ = ) '
I'(l+n) r'l+ea)

Plugging the above Eq. (7.2) or Eq. (7.3) into the Eq. (7.1), it would be abridged to a ODE

with the help of fractional complex transformation produce

n A2y aZr]
LA N T . . (7.4)
ot? o ox 0¢ o og ™"
then Eq. (7.1) turned to the following form,
x(X,Y,Y,.)=0. (7.5)
The prime of Y indicates the usual meaning of derivative.
Step-3: Picking a trial solution for Eq. (7.5)1s
D L)
Y(¢) == : (7.6)
>4 (C)
j=0
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where{;, ;are real fixed values, and n> 0 , m>0are integers with the restriction

e,.n@m #-0

Here, we just need to take a different auxiliary equation which satisfies by ¢(¢)as

¢'()=k-¢*(), (7.7)
where £ is an arbitrary constant. Some special solutions of the Riccati cquation Eq. (7.7) are
given by

[k tanh(Jk¢), k>0,
Jk coth(vko), k>0
' 1
¢(s’)=ﬁz, k=0;. (7.8)
—~—k tan(v— k&), k<0
(V=k cot(v=k¢), k<0.

Step-4; Combining Eq. (7.5), Eq. (7.6) and Eq. (7.7) through computational software, we can
get polynomial in ¢(¢£) . Taking zero of each coefficients of ¢*({)(x =0,1,2,3......) , and form
some equations in-terms of unknown constants £ _, ¢ . . Solving this unknown constants then
put into trial solution together with the solutions Eq. (7.8) completed the exact solution of
Eq.(7.1).

Remark-1: It is noted that the auxiliary equation in the Generalized Kudryashov [11, 26] and
the modified Kudryashov schemes [31] each are capable to provide only one solution in
terms of exponential function. Consequently, the auxiliary Eq.(7.7) in the proposed IK
scheme degenerate five different solutions involving hyperbolic, rational and trigonometric
functions. In the concluding remark, we can say that the introduced scheme will be more

useful than the other exiting schemes for its different types of solutions [26-31].
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Remark-2: The propose technique is easier as it takes less calculations than the modified
(G'/ G) -expansion technique [28]. It is noticed that modified (G'/ G) -expansion method

takes double auxiliary equations while we consider only Riccati equation as auxiliary

equation.

7.4. Applications

In this section, we check the validity of the proposed improved Kudryashov technique [69]

by applying on the s-tfETL, the tfcSE and the s-tM-fSH models.

7.4.1. The space-time fractional electrical transmission lines equation (s-tfETLE)
General form of s-tfETLE can be written as follows [11]:

" _ a’ i

28 4 A4p
o (- T o< pal (19)

axt 12 &t

The s-tfETL Eq. (7.9) is one of the important equations in fractional electrical physics. The
equation are describes data communication and codify it in telecommunication system.

.
T(+ ﬁ) T(+A)

x?and convert this nonlinear s-

Let us considerd(x,t)=@(<{),¢ =

tfETL partial evolution model to the nonlinear integer order ordinary differential ETL as

follows:

Ak B? B
T+ B = (719

(k2 = AEDp(£) ~ kv (§) + Bl 9 ()=

It is well known that delicate balance between the height derivative and height nonlinear

terms givesn =m+1. Consider a trial solution Egq. (7.6) in the following form

(m=1,=>n=2)

2, +0,0(8)+2,0°6) (7.11)
0, + 219(&)

p(l) =
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Where use the auxiliary equation,

0 Q) =k-0*()
Inserting Eq. (7.11) with Eq. (7.7) into the reduced non-linear ordinary differential Eq.
(7.11), we have a polynomial ofp’,(i=0,1,2,...). All the adjacent terms of ¢’ are equating to
zero, and form some equations in-terms of unknown constants / 0s 2158 4,600, 801, K and &, .

Solving the equations via maple soft; we get the five sets of solution.

Set-1
g 2Tk Y0, VO g o MIN-3B 3L
0 LA sy =T —, =0, = , —
328 35 3BY-2k7" 7T 9B-2)Bk T a2k 9Bk
and g, 1s const.
Set-2
fOZVQIJE,El:v@I E _ 'VSQI k 3VL’\}3B k -\/EVL

3 ——:Sg =03 = > 5 =
377 6BET T T 9B-2)BN2kTT pa18Bk 4k

6B

and ,is const.

Set-3:
) VP, GBI VE) 3Bk, V6B 6L
Y R agJk U ©B-2)8VE T paN9Bk - 210

£,and g, are const.

Set-4:
2 ALK 0,[24>BA*k2k + 6B
'eﬂ :"kfz’el =0H{gﬂ = — 3132A2k§ » §21 ﬁAkZ g
b 4B Kk 430

I ﬁL

and ¢,and g, are const.
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M

The general solutions of s-tfETL equations for solution set-

B

B2

Gy =

By =

s =

1 are:

I v/-2 tanh(x/E{) + Vtanhz(\/zé’)

_—vtv ‘2C0th(\[/;§)+vcoth2(w/—l€§)

3BJ-2 tanh(+/k¢) -k >0;

3B-2 coth(vk¢) >0

—vk¢? +vJ?-Tk§+v N

3B=2k¢ S
v =2 tan(v= k¢) + v tan® W-ko)

~3B+2 tan(/- k<) 20
v+ 42 cot(v—k¢) +veot? (W= k<)

3B+/2 cot(v— k&) sl

.)VLV -3B ﬁ

where £ =

vlAa/3 5
(OB —2v) VAT (1 + B) 1/(:ZJWZ—9za‘k)ﬁt4r(1+,5’)x

The general solutions of s-tfETL equations for solution set-2 are:

B =

¢22 —

By =

G =

Bos =

v+ 2vtanh(vk¢&) +vtanh? (Vk&)

k>0;
6Btanh(«/— kg)- g

v+2vcoth(«[_§')+l’00th Wkd) k>0;
6B coth(vk()

vd¢? + vk +v
6Bk¢ &

y =2y~ tan(v— k&) — vtan "=k k<0;
6B+/—1 tan(v— k)

v— 2vcot(ﬂ§)\/_- veot’ (V= k¢) k<0;
6B cot(+— kO W-1
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0 LA DO —

3VL'\/§§ VL-\/-?:

where & = £

(9B - 2\;2)ﬁ\/—2_/;r(1 s ﬁ)t +

x?,

V(8B —2kv?) AT (1 + B)

The general solutions of s-tfETL, equations for solution set-3 are:

2
b = Vg, +B3BVkE, +vp )y tanh(ﬁg) +3Bf vk tanh (-\/ZQ’)
3Bvgp, +9B*£ k tanh(«,/E{)

k>0;  (7.22)

¢32 — V:g()o + (3B\’kéz + v((oo)vcoth('\/zé‘) +3B/ ka Cchz(‘\/}C_;)
3Bvg@, +9BL kcoth(Wkl)

k>0, (7.23)

V2, VS + (3BRE, +v 9, W + 3Bkl
3BVkS (v o6 +3B2,k)

Py = 2 k=0; (7.24)

V2, — 3BV, +v g, )vW—1 tan(v— k&) — 3BE vk tan® (N— k)
3Bvg, —9B L k-1 tan(/— k&)

Py = k<0; (125

V2, + (3Bvk, +v g )vW-1 cot— k) — 3B€2vkcot W=k0)
3By, + 9B £, kv—1 cot/—k{)

3vL«./6—B. /4 vL-\/—6_ 3
©B-2v*)BVk T+ ) Ba9Bk —2kv’T(1+ )

k<0;  (7.26)

hs =

where § =

The general solutions of s-fETL equations for solution set-4 are:

352 A2 (ke + 0 etank (i)

P = —— 5 k>0; (7.27)
20 A A K +312)+ 3B 24° BFKE +6BL kk tanh(k)

38 A2 (b, + £ kot (kS))
g™ — 2 WA KK +317)+3BAL, 24 BEKE +6BL kK cothfkd)

k>0, (7.28)

g 35 A (KL,L 7 +E5) il (2
ol (AR + 3L +3BAL, 247 BE K +6BL ()

3B AN (it —Cetar -KO)

,k<0;
™ ot BB +3L)-3BA N 2A BFKE +6BL, J=ktang/~k¢)
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3B AT (Kt~ kcol (W=k))
204 BkIG +3L)+ 384 24 BEEZ + 6BE |k cottd—k2)

where ¢ = 2ANA™Bkky +3L° /B k,

V3LT(1+ B) ! +r(1+/3)x

k<0;  (7.31)

i

7.4.2. The time fractional complex Schridinger equation (tfcSE)

The section starts with the tfcSE in the form [50];

a7 2
0 (0+l_6 0

ot’

(7.32)

For the purpose of mathematical conversion, bring the transformations: (x, 1) = ¢(£) exp(i 7)
s o ZE Ly h, : : : .

,E =ik (x+7.t ), = (g:x+;.t )and it convert this tfcSE to the without fractional order

nonlinear SE:

ai‘
a?’

=i(h¢ + 2gke")exp(it),

6249 2 ' 2 4n .
5?=_(g ¢+ 2gkd' + k¢ ) exp(it),

5 - 2 qm .
(ol ) =i(gs” +3kp*¢") expli0)
We obtain the nonlinear complex PSE by using the above expression,
(h-g*)p— k¢’ + g4’ +3kg’¢'=0. (7.33)

. : 1
Using the rule of homogenous balance on Eq. (7.33) (g and ¢’¢)=> (= n=m +—£- Apply

1
another transformation (&) =u2(&)in Eq. (7.33), we get ordinary differential equations

4ou’ +4(h— ghyu* +6ku'u' + k*u' = 2k uu" =0. (7.34)
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in using the "
Again using the rule of homogenous balance on Eq. (7.34)(uw’and w?u), we haven=m+1.

Therefore, the new form of Eq. (7.6) is by using the auxiliary equationu (¢) =d —u*(£),

é’U +.f?|u+€2u:
L

wz)= (7.35)

Inserting Eq. (7.35) with Eq. (7) into the reduced non-linear ordinary differential Eq. (34), we
have a polynomial ofu’,(i=0,1,2,...). All the adjacent terms of u' are equating to zero, and
form some equations in-terms of unknown constants g.,h,?,,¢ and o, and its solutions are

follows;

Set1: =24k’ g =FkVd £, =%sook«/2,el ~ ko VT - P, L, =g

ko,

5 ,§9,=0.

Set 2: h=8dk* g =F2kd ¢, = -——;—dgolk,él —thpd 0, =

For set 1, the solution sets of the considered equation hold as:

-

) =\:i S‘Jok‘/g + k(£ g, Jd - @0)(\/2 tanh(w/gf))“ kpld(tanh(\/gf))z expl7); (7.36)

240, + o, d tanh@/d &)}

[N]]

exp(7); (7.37)

[+ ok + kFp,d - p)d coth@d ) — kg, d(cothe/d)* |
. 22, + o,V oot d2)}

!

_| —kpof -k ]2 N =0 7.38

O, = = exp(zr),d—O, ( )
! [2{soo§‘+p,§}

. E pokd —k(x ga,\/?i-—goo)(\/:g tam(«/———c?é’))+ksﬂlal(tan(wfjf))z}2 expiz);  (7.39)
4 249, _gglJ—_dta11(J—_tJi—§)}

"+ ook + e o — o) d ot =) + ko d(cott=d))’ T expr); (740)

s 2, + plﬁcot(ﬁf)}
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Nd ,
Yandz = (Fhfdx + 2dk ).
Y

. — 2k
where & =ik(x+

For set 2, the tfcSE holds the solutions;

o= :dka’o, +2kd g, :zt:,ﬂ:/(EJi i)h; jg ?)1 (tanh(/d £))* T SRIE ) 2D (7.41)
o = :dkgo, + 2kd5012c:;}\1/(;«/§§t)h -(~ jggl(coth(«/ﬁﬁ))’ T I (7.42)
L;‘T’l} exp(iz),d =0 (7.43)
[ dkp, +2kdsol{; tja(_\: ri?_kfig:(ta“(r & ] expe),d<0;  (744)
l:dkgo] +2kd o, 2 ;li/c%«/; 3:“_!»2’)50. (cott/~d&))’ } exp(r),d<0;  (745)

where, & = ik(x ¥ 4k‘/_ )7 =F2kdx+ },7 L

7.4.3 The M-Fractional Schrodinger-Hirota equation (s-tM-fSH)

This subsection start with the Schrodinger-Hirota equation [52] with the form

iDEPy + ADXPy +EDIDg v + plw | w+i(ADy y +Bly | Diw)

, (7.46)
= iCDE"y + @D (w [ w)+IDL (v I W, 0<a<l,B>0,i=+-1

where y(x,1)is complex function, coefficients ®,4,Z, 4,and C are the self-steepening,

group velocity, spatiotemporal, 3™ dispersion and inter-modal dispersion terms respectively.
?

Parameters B,Q) are nonlinear dispersions.

Plugging the complex wave transformation
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n(x® —vt*y ¢

w(x,t)=X(g) exp(it),¢ = rd+p) = M(ﬁma +wt” + E)
a 104 ’

into the Eq. (7.46), we attain to ODE with two conditions:

nZ(/?,"'EV""3AK)X"._(1V+ AKZ —:KW+AK3 +CK)X+(p+KB"‘K®)X3 =0’ (747)

with Q= B73OA—1E)-340K0 + p)
2(3AK + A4 — Ev) »all

o = Alw+ K(8RA +v(=3+ 6KE) + 28w)) ~ 84K - (4~ vE)(v + 2KA —vK A — Ew)
24K + 1 —Ey '

The homogenous balance provide us, n=m+1. Form=1, we haven=2. So Eq. (7.6)

reduces to the following by using X' (¢) =d - X?(¢),

2, +4,X+0,X>

Te= 20+, X

(7.48)

Inserting Eq. (7.48) with Eq. (7.7) into the reduced non-linear ordinary differential Eq.

(7.47), we have a polynomial of X*,(k = 0,1,2,...). All the adjacent terms of X* are equating
to zero, and form some equations with unknown constants £,,£,,£,,§,,§,,7. Solving the

equations with maple software and we get three sets of solution:

Setds ¢ = o |WKE-AK? -K*A-CK-w) , _ \/wKE-AK3—K2/1~CK—'w’)
ST d(®K — BK ~ p) S d(OK - BK - p) ’

wK=E - AK? -K?*A-CK -w
£,=0,n= — .
2d(3AK —vE + A)

d(wK:—szl—CK—W—AK3) wKE-K?1-CK —w- 4K’
Set2: £, =—L £2 = ’
Py == oK _BK—» 4d(®K - BK — p)

/ WKE-K?A—CK-w=4K"
1 =0,y =0, 1= 8d(3AK —VE+4)
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2d 8 D 2 =
Get3: £, =20 [28AKT ~wWKE+ K22+ CK+w) | [AK’ —wKE+KA+CK+w
2 OK — BK — €y = 5
p 2d(OK - BK - p)

¢, =0,60,=0, ’1=\/AK3 —WKEAK A+ CK +w
4d(3AK —vE + 1) )

For set-1, the space-time M-fractional SH equation holds the solutions

WKE - 4K? —-K?1 - CK - w)
x’t = ir
s \/ d(®K - BK - p) Jd tanh(Jdg)e",d >0, (7.49)
WKE - AK® - K*1 - CK - w)
4 x’t = : / ir
Wil \/ d(®K - BK - p) d coth(vdg)e” ,d > 0, (7.50)
YVKE—AKJ—Kzl_CK_W) eir
w1 = d=0 7.51
il \/ d(BK - BK - p) ¢’ ’ (7.51)
wK=— AK? —K?*1-CK —w) .
x,t == -y -d ”,d<0, 752
e \/ d(@K - BK - p) v=d Bl e (7.52)
- _ 3 _w2q_ _ .
w(x,1)= WKE-AR K AR W cot(v—dg)e”,d <0, (7.53)
d(®K - BK - p)

where

(x* —vt%),z =—M(—Kx“ +wt* + E).
a

a 2d(3AK —vE + )

g_r(1+ﬁ)J;zKE—AK3—K2A—m—w

For set-2, the space-time M-fractional SH model holds the solutions

WKE —KA- CK —w—AK’ | —p,d +d tanh® (d )
w(x,1)=

" d>0, (754
4d(@K - BK - p) p,Jd tanh(N'd{) ]e (7.54)

2 3| _ 2 )
o [PREZKPA-CK —n—AK ,d +d coth («/dg)}?.,,bo, .
w0 = 4d(@K - BK - p) ,d coth(vd¢)

wKZ= —KZ/?,——CK—w—AK3 p.d+d tan2(\/—dg)
w(x,t)= K _3K=p) e T
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wK= _Kzl'—CK—~w—AK3

w(x,t)= —p,d—dcot* (\-d¢) |
_ it d<0, (1.57
4d(OK - BK - p) pddeoiag I° %< (7.57)
where

F(1+ﬂ) WK:—Kz/?,—CK_.w_AKS
== = a o F l+ a «
5 a \/ 8d(34AK —vE + 1) (x* —vt?),z =%(-K}C +wt“ +E).

For set-3, the space-time M-fractional SH equation holds the solutions

3 . — ) , -
W(§)=JAK —~WKE+K*21+ CK +w| —,d +d tanh> (Wd ¢)

"d>0, (7.58
2d(OK - BK - p) i pled_tanh(ﬁg) ) \ )

AK® -~ wKE+K24+ CK +w| — p,d +d coth® (Vd¢) |

y(5)=
2d@K-BK-p) | g,d coth(vdc)

et d>0, (1.59)

e’,d <0, 7.60)
2d(®K - BK - p) | oV—d tan(~/-dg) } (

AK? —wKE+ K24+ CK +w| —p,d —d cot*(\-dg)

w(&)=

()= \/AK3 ~wKE+K2A+CK +w| p,d + d tan* (V= dg)

i d<0, (7.6
2d(@K -BK-p) | p,+—d cot(v-dg) :|e d<f 6D

where

3 N7&= 2
g=F(1+ﬂ) AR —WES bR A+CK+W(x"—vt“),r=—~—~—r(1+’8)(—Kx“+wl“+E).
a 4d(3AK —vE + A) a

7.5. Graphical representations
In this part, we will plotted some graph of the exact solutions the nonlinear space-time
fractional electrical transmission lines (s-tfETL) (Eq. (7.9)), the time fractional complex

Schrodinger (tcFSE) (Eq. (7.32)) and space-time M-fractional Schrédinger -Hirota (s-tM-

fSH) (Eq. (7.46)).
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7.5.1 Graphical representation of the solutions for stFETL model

e findings of the re 1
Th g search are in the types of hyperbolic, rational and trigonometric

functions. All the results are analyzed and some of them have shown graphically in the Fig-

7.1 to Fig-7.3.

-5 -10 - ' 1 1)
: - [—r=0s-: = =1 — t=1.5]
(b) Real contour plot (c) Real 2D view

7
/

mg)

e e

(a) Complex 3D veiw (b) Complex contour plot (c) Complex 2D view

Fig-7.1. (), (b) Real and complex 3D surface and contour plot of solution @(x,f) of Eq.(7.12) for
k=2,8=01,v=0.5 A=1andB=—land(c) 2D plot for ¢=0.5,1,andl.5 with parametric values
above

T a0+

[ =os—— =128
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(a) Real 3D view b
(b) Real contour plot (c) Real 2D view
: e o e
| i ool b it
i !'1 [} i b
: Lis o ool i
8 A ALAA
-1 -5 -—_%_‘ T F— -itg 5t X ) 10
\ i i i} . -
2 fi b s f i
H i : i !
Ui SRS
i P f i
4 o ! == =08 — =125 — (=2.25]
(a) Complex 3D view (b) Complex contour plot (c) Complex 2D view

Fig-7.2. (a), (b) Periodic rogue waves from real and complex 3D surface and contour plot of solution @(x, 1)
of Eq.(7.15)for k =2, 8 =1,v=0.5, A = |,andB = — 1 and Fig-(c) illustrates the 2D plot for
t=0.5,1.25,and2.25 Wwith parametric values above

Re($) 002

-0.14

-016

[—r=os—r=07s =25]

(c) Real 2D view

044

Im(s)

t=0.75 t=2.5]|

™ [—=t=0z=

(b) Complex contour plot (c) Complex 2D view

(a) Complex 3D view

surface and contour plot of solution @(x,t) of Eq.(30) for

Fig-3. (a), (b) Real and complex 3D s |
dk, = 2 and Fig-(c) illustrates the 2D plot for

K3 3 (0Tl () i A = 2N S e
t=0.5,0.75and2.5 parametric values above.
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75.2 Graphical representations of solutions for the tfcSE

Two sets of outcome are found in study of the tfcSE. We analyzed the all results .Five results

are graphically represented Figs.-7.4 to Fig-7.7. The 3D, contour and 2D plots are showed

the change of amplitudes, directions, shapes of wave as well as the nature of the solitary

waves of gained solutions in space x with time ¢

as bellow.

[_,__ ;0.’5""' (:"1 — l=£|
(c) Real 2D view

(a) Complex 3D view (b) Complex contour shape (c) Complex 2D view
Fig-7.4: Represent the solitonic solution ¢(x,1) of Eq. (7.36) for d =25 =050 = 158=1058
k=08 and t=0.5,1,1.5 for 2D graph
|

=
"
P
=

~

(a) Real 3D view (b) Real contour shape (c) Real 2D view
a €a

L
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05 T -10 -5 9 s 10

. =
VI (b) Imaginary contour shape (c) Imaginary 2D view
Fig-.7.5: Plot of the solitonic solution ¢(x,¢) of Eq. (7.38) ford = 0,0, = 2,40, =1, y =2/3, k= 0.8

and ¢ =1 for 2D graph.

(a) Imaginary 3D view

0
@
Rd9)
:‘J-
-2
\n
-104 )
B
-6 !
)
== [ 01— = =08 — =L3]
(2) Real 3D view (b) Real contour shape (¢) Real 2D view
1

__.2% 24

Q(xt) 0

?ln1)

' =1 @w = t=0.l-::- TV =

(a) Complex 3D view (b) Complex contour shape (c) Complex 2D view

Fig-7.6: Represent the solitonic solution @(x,¢) of Eq. (7.39) for d =—2,40, = 2,69, =1, y =4/5,
k=1and t=0.1,0.81.5 for2D graph.
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= — el =1

(c) Real 2D view

Im(g)

B T

e

I
i
1

1
}
¥ C ’ & !

[ == =1 — =]

(a) Complex 3D view (b) Complex contour plot (c) Complex 2D view

Fig-7.7: Represent the solitonic solution ¢(x,) of Eq. (7.42) for d = 2,40, =0.5,00, =1, y =0.5,
k=08 and t=0.1,1,2 for2D graph.

7.5.3 Graphical representations of solutions for the s-tM-fSH.
The derived results are in variety of hyperbolic, rational and trigonometric function. All of
the results are analyzed and some of them have shown graphically in the Fig-7.8 to Fig-7.13.

Patterns and natures of the wave surfaces are cleared with 3D, 2D and contour plots as

follows:
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t.‘.. t=0.8 =+ = ta] —— l=l.5|

(c) Real 2D veiw

T

|
h
L
St
!
aat]
s
A
4
(4]

.
P2 e s A &
S a o|..=
R e i e ] o7 Lk L SR Al

& l' i > z i
i = = I!
7 L
W' ; - 10 12 P .50342 E
gk [ eas—e1—- =13
(a) Complex 3D veiw (b) Complex contour plot (c) Complex 2D veiw

Fig-7.8: Illustrate the solitary wave solution y/(x,1) of Eq. (7.49) ford =2, = f# = 0.25,
A=K=1=0=0c=1lLw=-1,,p=2,E=2,v=3, E=6,and t=0.5,1, 1.5 for 2D graph.

THHE ALY L
Y oG 7 ) -’ i e 2
A \/ \J/ i ET I
W |

R
\:: 2

il e
: '. R RRS

H e

x

(a) Re;ﬂ 3]‘_")- view (b) Real contour plot (QReal 2Divein
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Im(y) -

[EEETNs
e

i
, i
; : T |

(a) Complex 3D veiw (b) Complex contour Plot S

Fig-7.9: Represent the solitonic solution W (x,t) of Eq. (7.52) ford = 2.t = 0.5 e
= Z,K = S,W: —1,@ = 3,P = I,E = 4,V = ],/1 = ],E = 6,0‘ =3 ,and (= 1515‘2 for 2D graph.

AN

N
o

Re{y)

. ] (1 \
\ / ¥ hea 5\ 12
\ =19 5 4 ‘.. : 22
i A
\ / f.’ .m}
-2 [—t=05 - =l == t=15]
(2) Real 3D veiw (c) Real 2D veiw
144
Im ()
s r\\ (ot o TR T —
10 3 [ A
g1 ¥
-
G
:'m-
2l
a5
'i.”.
. . Erer— e
(b) Complex contour Plot (c) Complex 2D veiw

(a) Complex 3D veiw

of Eq. (7.54) for a=0/3,=B=05, 4=1,

Fig-7.10: Represent the solitonic solution w(X,1)
=1, E= 6 and for 2D graph ¢ =10.5,1, 1.5.

K=15M"=_1,®=1,‘D=2’E:‘2,V:0,;{
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=10 X

¢4

(a) Complex 3D veiw (b) Complex contour Plot (c) Complcx. 2D veiw

Fig-7.11: Represent the wave solution w(x,t) of Eq. (7.56) for & = p=B=05 4=1K= 1,
w=-1,0=1,p=1E=2,v=1A=LE= 6, and for 2D graph 1 =0.51,10.5 .

= — =l == =1

(c) Real 2D veiw

X

(a) Real 3D veiw

(b) Real contour plot
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16. Concluding Remark

the s-tFETL (Fig-7.1 to Fig-7.3);
&-7.3); the eSE, (Figs.-7.4 to Fig-7.7) and the s.tM
7) and the s-tM-fSH (Fig-7.8

to Fig-7.13) models. As an iodi
effect, periodic envelope, exponentially ch
| | ) y changeable solit
envelope, rational, combo periodic-solj g o
. -soliton and comb i
0 rational-soliton soluti
derived of the models. Th i ons are formally
¢ achieved results emphasized the power of th
| ¢ proposed technique
are dreadfully effect ' q
y Ive, concise and robust mathematical tools than th G
) e Generalized
Kudryashov and the Modi y
lodified Kudryashov methods for solving other fractional nonli
al nonlinear

models.
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Chapter-s
Conclusiong
We have successfully used Hirota bilinear method to derjve exact multi-soliton solutions of the

first and second negative order integrable Burgers, the KdV-5, the extended Sawada-Kotera

dynamical features of the multi soliton solutions, As a result, we obtained rogue type breather

waves, breather line waves, periodic rogue type soliton and bell-shaped line soliton, breather line
solitons with bell waves provides breather waves, a pair of X-shaped periodic rogue type solitons

and a pair of breather type line solitons and cnoidal wave,

In chapter three, we used the famous unified method to solve fractional differential equation and

~ applied it to derive exact solutions of the space-time fractional nonlinear differential equations

for pulse narrowing transmission lines model. Here we find the actual direction of the voltage of
the pulse ®(x,?)for the change of inductance per unit length(L). So this method is more
effective and can also be applied to other fractional differential equations.

The space-time fractional EW and WBBM equation has successfully integrated via Jacobi
elliptic function expansion technique with modified Riemann-Liouville derivatives in chapter
four. At the end of the procedure, three types of solutions are achieved namely, Jacob: elliptic,
h)’perbolic and trigonometric function with unknown parameters, which indicates that Jacobi

elliptic expansion technique are very fruitful as well as appropriate to find the exact solutions of

Ronlinear fractjonal models.
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The gained solutions will give out as an awfully in the study a crystal wave and quantum wave
phenomena. The determined characteristics of the solutions are bright bell, dark bell, kink

solitary wave, M- shape solitary wave, W- shape solitary wave,

The modified simple equation method is applied on the complex time fractional Schrodinger
low-pass electrical transmission lines equation to construct solitary wave solutions in chapter six.

We have retrieved rational exponential function solutions of the fractional order models

including some arbitrary parameters.

Lastly in chapter seven, we have invented an integral technique as IKM to solve fractional
nonlinear differential models. To test validity of the procedure, we have applied it on three
nonlinear fractional models such as the s-tFETL; the tfcSE and the s-tM-fSH models. As an
effect, periodic envelope, exponentially changeable soliton envelope, rational, combo periodic-
soliton and combo rational-soliton solutions are formally derived of the models. The achieved
results emphasized the power of the proposed technique are dreadfully effective, concise and
robust mathematical tools than the Generalized Kudryashov and the Modified Kudryashov
methods for solving other fractional nonlinear models.

In addition, graphical illustration of the solutions has plotted with unknown parameters in each
chapter. Researchers can undoubtedly use the above techniques to analyze the internal

techanism of nonlinear fractional evolution systems in mathematical physics and engineering.
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We introduce a new integral sch : i
extial model. Specifically, wcgapply &TZSS:}:K‘::F:;?:SIEMf’yashov method for_ solving any nonlinear (ractional differ-
n E]?dfical tmx.]smission lim?s (s-LfETL), the time fractional c‘;‘q‘;;::‘g‘;—h‘;gﬁnfzilg}légl)H;O((ljﬂtlhlﬁﬂdi(ﬂg lh'c Wﬂ;‘: 1’m slf“"ﬁ
schridinger-Hirota (_s-tM—sz) models to verify the effecliveness of the proposed a ’ro:ch c'II‘qIFd(':c—hImc t-' r?“mfo ?l:
inrroduc:f:d new technique base.d o.n the models provides us with perioadic envelope cx;olzlemiail chcmllmp ;lmc“]‘_':g e,
lope, r'auonal _rogue wave, pex:mdjc Togue wave, combo periodic-soliton, and com,bo faﬁ(,l]a].sgumn Sg(;if ensso : (;,n ;nvc-
much interesting phenomena in nonlinear sciences. Thus the results disclose that the proposed technique ilsovc;ywcflfc;ct?\l;z

wnd straight-forward, and such solutions of the models are much more i
i i ruitful than th . as
and the madified Kudryashovy methods. ose from the generalized Kudryashov

Keywords: improved Kudryashov method, fractional electrical tansmission line equation. fractional nonlin-

ear complex Schridinger equation, M-fractional Schrbdinger~Hirota (s-tM-[SH)

PACS: 02.30.Jr, 02.30.1k, 04.20.Jb, 05.45.Yv

1. Introduction

The accurate modeling of nonlinear phenomena related
to natural happening is really impossible without fractional
derivatives. Nowadays, the fractional calculus has been
frequently used to model the nonlincar systems in various
fields such as neuron networks,!!] dust acoustic and dense
electron-positron—ion wave, 2! plasma physics,*l quantim
mechanics,¥) nonlinear optical fiber communication,® su-
perconductivity and Bose~Einstein condensates,[% electrics
signal processing,(”) biological dynamics,®! water wave
dynamics,! electro-magnetic waves,['”) nonlinear eléetric-
transmission line,!!!] and many other areas. Various types of
exact solutions including periodic wave and solitons are es-
seutial to realize intrinsic dynamical structure of such:mod-
¢ls even universe, Up to now, huge improvements have been
achieved in the development of techniques to evaluate such
¢kact solutions of the nonlincar madels. Several powerful
Methods are as follows. The exp (u(D(n))-EXPﬂUSiO“’[]Z] Hi-
"ota bilinear, %) Biiklund transformations,!"*] modified simple
tquation, 3! tanh method, 9! tan(@/Z)—expansion.”” soli-
on ansatz,[18:191 guxiliary cquation,*! sine-cosine,*! ho-
Mogeneous balance,?2! Jacobi elliptic function cxPaﬂSion’[ZJ]
@'/ G)-expansion,[2324] modified double sub—cquaﬁon’[zsl
Xp-function, 26! generalized Kudryashov!?é! methods, and
many others, Tt should be pointed out that all the mentioned
deantagcs and also a few disadvan-

1 .
@C(lrrcspo nding author. E-mail: harunorroshidind @gmail.com
M1 Chinese Physical Society and IOP Publishing Ltd

DOI: 10.1088/1674-1056/ubd 1 65

tages to integrate complex nonlincar systems. As is well
known, no approach is suilable for all equations. Thus, we
are willing to propose a new and active approach namely im-
proved Kudryashov method (TKM) on the basis of the gener-
alized Kudryashov method(?9! by changing its auxiliary equa-
tions.

Now. we come to shed light on the nonlinear space—time
fractional electrical lransmission lines (s-tfETL),[''27) (he
time fractional complex Schrodinger (tcFSE),!*®! and space-
time M-fractional Schrédinger—Hirota (s-tM-fSH)??! mod-
els via the proposed TRM. These models have been widely
studied in many aspects for the non-fractional differential
case. Abdou and Soliman!') only solved the fractional
transmission line equation thru the generalized exp(—@(§))-
expansion and generalized Kudryashov methods. But non-
fractional (ransmission line equation has been studied by Za-
yed and Alurrfi?% thru using new Jacobi function expansion
method, by Kumar ez al. B! thru using three schemes as modi-
fied Kudryashaov, Sine—Gordon-, and extended Sinh—Gordon-
expansion methods, and by Shahoot et al.l*! thru using the
(G’ /G)-expansion scheme. Besides, the time fractional com-
plex Schrodinger equation (FSE) is a vital nonlinear model in
solitonic field. The model describes the collision of the adja-
cent particles of identical mass on a lattice structure through
a crystal and demonstrate the fundamental properties of string
dynamics with fixed curvature space.['3) This model was first

http:/fiopscience.iop.org/epb  http://cpb.iphy.ac.cn
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dcvelopcd by Laskin!?3 Whi(':h oceurs in many important areas
55 water wave, fluid d.ynarrucs, bio-chemistry, optical pulses
ropagntiOﬂ into nonlinear ﬂbcrt and piasma phySiCS. Few
esearchers made much more effort (o investigate the com-
- fractional Schrodinger model: Khater® giugieq it by
; supplementary equation as well as (G'/G)-schemes, Alam
i Lil?¥ presented wave solutions through modified (G’ /G)-
expansion technique. In recent years, Sousa and Oliveira
vented an M-fractional order derivative.’) So. we also
considered another model namely the space~time truncated
M-fractional Schrédinger-Hirota model ! which frequently
arises in guantum Hall cffect, optical fibers, heat pulses in
lids, and more arcas. Sulaiman e al. 2] jnvestigated the M-
fractional SH model to present optical soliton solutions with
the help of a sinh-Gordon technique. But non-fractional SHE
(s investigated, [3647]

This research is intended to execute the improved
Kudryashov technique to determine abundant exact solitonic
solutions as periodic envelope, exponentially changeable soli-
won cnvelope, rational. combo periodic-soliton, and combo
rational-solitonic solutions of the s-tfETL,!'127! the tfcSE, 2%
and the s-IM-fSH™! models, which take an essential part in
nonlinear complex phenomena of physical sciences.

2. Conformable M-fractional and fractional
derivatives with properties

The new M-fractional derivatives are given below. 33!

Let 2: [0,00) — R, then M-fractional derivative £ with
order f can be written as follows:

o 3 iE -y “.fo(t)
D5 ()0} = tim EEESETD B0

V>0 O<a<l, >0,

where Ej is a truncated Mittag—Leffler function.D

1, Properties of new M-fractional derivatives

When:>0, 0<a<!1, B > 0, m,n € R, W and 2 are
o-differentiable, then

(@) D" {(m® +n2) (1)} = mDEP @ () + Dy 2(0),
Ymne R,

i) D%P (. 2)(r) = W ()DL (1) + 2Dy 1),
BegR,

(iii) DB (¥ /2 (1) = {_Q () D&"‘P(z)——?’(t)ingﬁﬂ(f)}
e,

V) 1Dy (c) = 0, where ¥(r) = c is a constanl.

By =
) (Chain rule) If s differentiable, then Dy w(1)
AN 40)
r(1+ﬁ) dt

B Vol.30,Ng. 5 (2021) 050202

If a function defined by @ : (0,00) — R, the conformable
fractional derivative with order v is defined!3¥ as

% t+ g0y~
—aW":bh—}g& (P( . ) (p(’)’

>0, 0<v<l.

2.2. Propertics of conformable fractional derivative

(I oY v av au
) -a-’;_im V+nQ) = msﬁ-('}‘) +'I;9F;('Q)’ Vm,n € R.
v
) =5(¢*)=u™" VB R and g—ﬁ(v) =0, v=
const. v
(I W(Woﬂ)(;) - tl—vqﬂ(ﬂ(l))ﬂl(t)l

3. Algorithm of proposed method

The fundamental phases of the technique are as follows.
Step 1 Atfirst, let the subsequent fractional equation with
the variables x and 1 be

N (r,o}'r,pgr,p?”r,piar,...) =0, m

where the function T = Y'(x,7) is an unknown wave surface,
and N is a function of ¥'(x,r) and its highest order fractional
derivatives.

Step 2 For complex nonlinear model, take the transfor-
mation T (x,2) = T ({)exp(it) with travelling wave variables
for space—time fractional model

- x% atm
§=ik (F(l+a)+l‘(l+n))’

_(_&° all 2
= (r(1+a)""r(s+n) ’ )
and for no complex model, adopt the transformation Y (x,1) =
T({) and wravelling wave variable for space—time fractional

model ‘
ky ka e
= " X7
‘=raamt T+
Substituting the above Eq. (2) or Eq. (3) into Eq. (1). the re-
sulting equation is reduced to an ordinary differential equation
(ODE) with the help of fractional complex transformation pro-

(3)

ducing
a" Jd 0 0 L , 021
-0 =—03% —=—'l—'l_zo Ay et 4)
5 =930 - ac am -0 agme ¢
then equation (1) turned into the following form,
2(r, Y, Y",..)=0. (5)
The prime of Yindicates the usual meaning of derivative.
Step 3 Picking a trial solution for Eq. (5). that is,
LR
_gnfiq’ (8)
L (6)
_.‘:'.U,fJJ‘P" (€)
J=
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shere bi and g; are the real fixed values, and n > 0 apqg m>0
e intogers with the restraint £,,, g3, # 0.

Here, we just need to take a different auxiliary equation
Jhich is satisfied by @(£) and expressed as

(P'(C)=k‘“(P2(€)= )

where k is an arbitrary constant. Some special solutions of the
i cquation, i.e., Eq. (7), are given by

Riccat
vktanh(VkS), k> 0;
ﬁcoth(\/ECL k>0;
p(C) = 1/¢€; k=0; (8)

—V=klan(v=k¢{), k <0;
V—keol(vV=k¢), k<o,

Step 4 Combining Egs. (5), (6), and (7) through compu-
iional software, we can get polynomial in ¢(¢). Taking each
of coefficients of *(£)(x =10,1,2,3...) to be zero and thus
some equations are formed in-terms of unknown constants £,
and . Solving these unknown constants then putting them
into a trial solution together with the solutions Eq. (8), the ex-
act solution of Eq. (1) is obtained.

Remark 1 It is noted that the auxiliary equation in the
generalized Kudryashov!!!-] and the modified Kudryashov
schemes3! each are capable to provide only one solution in
terms of exponential function. Consequently, the auxiliary
Eq. (7) in the proposed IK scheme degenerates five differ-
ent solutions involving hyperbolic, rational, and trigonomet-
ric functions. Tn the concluding remark, we can say that the
introduced scheme will be more useful than the other exiting
schemes for different types of solutions, 126-3!]

Remark 2 The proposed technique is easier as it
takes less calculations than the modified (G'/G)-expansion
technique, (28! It is noticed that the modified (G’ /G)-expunsion
method takes double auxiliary equations while we consider
only Riceati equation as an auxiliary equation.

4. Applications
4.. Spatiotemporal fractional electrical transmission line
equation (s-tfETLE)

General form of s-tfETLE can be written as follows: 111

am(p 2B , 728
T gE O B (O A e T e T
o<p<l. O

The s-(rETL equation (9) is one of the important equations 1n
fractiona] electrical physics. The equation describes data com-

Munication and is modified in a telecommunication system.
Considering @(x,r) = ¢(£) and

_ ko __k_z__ﬁ,
S=razp” Tra+R

No. 5 (2021) 050202

thi : .
18 nonlinear s-tfETL, partial evolution model can be con-

verted into a nonlinear integer order ordinary differential ETL
as follows:

(KT = 4%13)0 (£) — ive*(£) + BIF9°(§)
Akl B2 "
2+ pp? ¢ =0 =
As is well known, the delicate balance between the height
derivative and height nonlinear terms gives n =m+ 1. Con-

sider a trial solution Eqg. (6) in the following form (m = |,=
n=2):

_ bt 09(8) +6:¢%(8)
#e) 2+ @2 9(8)
where the auxiliary equation is used

¢'(8) =k—¢*(¢).

Inserting Eq. (11) with Eq. (7) into the reduced nonlinear ordi-
nary differential Eq. (10), we have a polynomial of o (i =
0,1,2,...). All the adjacent terms of ¢’ are equal to zero,

) an

and form some equations in terms of unknown constants
£o,81, 82, g, 01, k1, and ky. Solving the equations via Maple
software, we obtain the five sets of solutions for L =I"(1+f3).

ViV -k Vi, v
Set 1 =._,..—=,.__’£ =m’e=w, :0,
el =375 4= 4= o
3vLv-3B V3vL .
k= , by = d ¢ is const.
l (9B -2v2)BVk 2 BAV2Jev? — 9Bk ANL# 156
viavk v Vo
= = g b= e =0,
Set 2 'ZD 6B A £] Y] . b 63\/1? (fdb
k _ 3VL\/3B k _ ____"/-_BL____, and m is
T (0B-22)BVEK T BAVISBk—4ky?
const.
; 3Bkfs + 3Bf vk
Seu3 fy= Y g o OB TYR) O 3BEVE

. £
1B \/E Fl -
\/Evl,

38"’
SvL\/ﬁ'LE

= , k= {5 and g are
i OB—2)BVE © PAVOBKk—2k7 2 W0
const. g .
2(7‘\V(A2 'k7k+ 314
= —Kta = 0 = — = =
Setd 4 kg_, 4 , &b 3,82.42]{%
£1/2A2BBk3k+ 6BL? . kA /A2 B3k + 317
= ﬁAkz » K1 = \/§L

and (a, #» are const.

The general solutions of s-tfETL equations for solution

Set 1 are
; 20/
o = ~v+v\/—:2;\;1ﬁ_(2£i)(f/;;“h VE) ks 0; a2
- 2
Pz = —v+V\F?BC\‘;‘_}_‘_(2\£§3($;’m (\/H)’ piela ()
P13 = ‘ng;;\;\—/—;—kz—gCJrv, k=0; (14)
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o= —3Bv2tan(v/—k¢) : k<0 (15) g, = YH2veoth(VRL) +veoth?(VEL) - (18)
o+ vZeot(vV=RE) + veot (+V=F¢) ) . 6?0&1(@4:) ’
ms = 3B+v/2cot(vV—k& 2 K<O (16) @y = WS F VKLY
) G k=0 (19)
ahere on = Y2V -Ttan(V=k{) - vtan® (V=F¢) k< 0: (20)
3ylr/—3B oy VI3 6B\/—-_,ltan(\/——kC) ’
Fopa)BVAT(14B) PR BAT(17p) e = L 2CMV=RE) VT - veol(vERL) 21
(98-2v")B )B +B) 5 Bl VR , k<0; (21)
) where
The general solutions of s-tfETL equations for solution (= 3vL\3B B, vLV3 B

Set 2 arc

v+ 2vtanh( \/—C)+vtanh2(\/_(;)

(9B-2v2)BV2UT(14B) /(18Bk—2kv?) BAT(1+f)

= 6B tanh (Vk()

I Set 3 are

where

@31

V2 4 -+ (3Bvkly 4 vga)v tanh(vk$) + 3Bk tanh?(v/k{)

3Bvgay + 9Bk tanh (/&) 0
v 4 + (3Bvkly + vg)veoth (V) + 3Bavkcoth?(VEL) k> 0;
3Bva + 9Bk coth(vkE) , ,
v VR + (BKE + vVl +3BvkE
3BV (vl +3B6VE) o

— (3Bvkly + vgy)vy/— Utan(v/—k&) — 3BEyvktan?(v/=kE)
3Bvay — 9B ky/— 1 tan(v/— k()

v2 gy + (3Bvkls + vz v/ — 1 cot(V/—k¢) — 3BEyvkcot® (V—k{) k< 0:

3By + 982 k/= 1 cot{\V/—k{)

3vL/6B By vLA/6
(9B—22)BVAT(1+8)  BAVOBk—2k2T(1+ ;3)

£=

The general solutions of s-tfETL equations for solution Set 4 are

P41

P42

D43

Paq

P45

Where

3ﬁ-A2L (—kts kﬂnltanh \/Eé')

—20,(A*BHIE + 3LT) + 3BALy [ 24287 242 + 6BLA ks v/ tanh(Vk iy

ﬁ2A2A2 __kg,+.?-,l‘coth \/_g) , k>0

—20,v(A2B2kk3 +-3L?) + 3BA(p \[2A2BB2KIE + 6BL?ksvkcoth(VE )

3[3'A2k§(*k£2§2+82) , k=0;

_20,v(A2B2KIE + 3L7) 62 + 3BAL /2A2BB2kk: + 6BL*L)
3B2AYUS(— —kby — baktan®(V=kE)) k<:

—20,v(A2B2KkE + 3L7) — 3BAL
3ﬁ2A2k (- ks —Echot \/—C)) , k<0

—M:v(Aﬁﬂlkkz+3L2)+3BA£2,/ DAZBBE + 6BLMer v/ —kcot(v=k{) 79)

szrtan (V=R

AJABHEHIL 5 k2
P iy

J3LT(1+B) i+
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@2
23)
(24)
25)

(26)

(27)
(28)
29)
(30)
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" pime fractional complex Schrtidinger equation
” (tfcSE)
he scction starts with the tfeSE in the form[31.321

a'/ I-Q_zf_ ._a_ 2 =
;,;?*‘a.rl+3x(l¢l $)=0, 0<y<1. (@

carthe purpose of mathematical conversion, bring the trans-
o

fom]a{iOHS:

$(x,1) = p(&)explit),

5 = lk(X'i‘Efy),
Y
h .
% = gx+~r’),
(o4

and it converts this tfcSE to the one without fractional-order
uoﬂ]iﬂw SE’

Y

oY = i(hep +2gk@") exp(it),

at?

32¢__F(2 _i_,)k I_|_k2 " .
=2 = Tl&o+2ske ¢")exp(it),

g;(lfﬂg 9) = i(g0 +3k@>¢") exp(it).

We obtain the nonlinear complex PSE by using the above ex-
pression,

Using the rule of 1
(p'l (PH) S s

PE) =u'r2(g

omogenous balance of Eq. (33) (¢” and
m+1/2 and applying another transformation
) in Eq. (33), we obtain the ODEs:

L3
g1’ +4(h— & + 6kitud + 12 — 22 md” = 0. (34)

Againzusing the rule of homogenous balance on Eq. (34) (uu”
and 1*w), we have n = m+ 1. Therefore, the new form
of Eq. (6) is given below by using the auxiliary equation

W) =d-i2(g):
u(E) = fgf£1u+ﬂzzdz.
0+ ou
Inserting Eqs. (40) and (7) into the reduced nonlinear ordi-
nary differential Eq. (39). we have a polynomial of u', (i =
0,1,2,...). All the adjacent terms of «' are equal to zero, and

form some equations in terms of unknown constants &,h 0,6,
and @, and its solutions arc as follows:

Set 1 h=2dk? g=Fkvd, £ = i%fﬁ)k‘/fj’
{ = %k(iﬁl\/f_l"ﬁx)- b= —%ﬂ-

Set 2 h = 8dk%, g = F2vVd, & = —ldpik,
0 = tkpVd, b=~ =0

For Set 1, the solution sets of the considered equation

(35)

(h—g2)o— k2" + g0 + 3k’ = 0. (33)  hold: ford > 0, we have
|
] 1V
6 = + goke/d -+ k(2 v/d — a0) (v/dranh(V/3E)) — kg d(anh(VaE))? || 2exp(iz), (36)
I 2{ 0+ g1 /dtanh(VdE)}
= 1/2
& = :i:ﬁok\/(j—t-k(:]:{@] \/C_f—d’ﬂ))(\/‘_lcom(\/‘—ié))"kmd(com(ﬁg))z] exp(it), 37
' 2{ o0+ g1 Vd coth(Vd§ )}
[ =kgnméE =k b ; s
= ﬁ%]%%} exp(it), d=0; &
ford < 0, we have ;
im)k\/{i—k(:tmﬁ—Jan)(\f—_dlan(ﬂi))+k501"(‘3“(\/“—"‘5))']-” * exp(i), (39)
b= | T gV dan(V=dE)}
+kv/d + k(£ V/d - ) (V=d cot(v=dE)) + kmd(wt(\/——d&))-] 7 expli), (40)
0s = [ 2{M+;g1\/-_-_acot(\/:‘?‘§)}
Where
2dK?
£ = v (s 2000 o= (e 250
forSet 2, the solutions of tfcSE hold as follows: "
[ dk oy -+ 20d o xmh(ﬁé%kd!ﬂ(tm(ﬁg))'] exp(it), d>0; th
96 = zpl\/ztanh(\/aé)
| 1172
[ gk oy + 2kd g coth(VAE) —kd 2 (°°‘h(‘/‘?€))"] exp(i7), d>0; =
¢ = L gplﬁcoth(\/f‘lé)
e e (43)
o =[] vt 4=
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bo = [dkm F 2kd o/~ dtan(v/=d&) + kd gy (tan(v/=d£))2 ] /2

~24nv/~dtan(v/—dE) ] explin); 4 £0; “4)
o = {dkmidem\/—dcm(\/hdé)-i-kdm(cot(\/—d(';)):’ /2

242,V —dcot(\/—dE) ] exp(iz), d <0: “3)

where

E = ik|x¥ M 14 ,
Y
4.3. M-fractional Schridinger—Hirota equation (s-tM-
fSH)

This subsection starts with the Schridinger—Hirota
equation3%) with the form

iDgly+AD Py + ZDEEDER

+p Wy +i(ADY v+ Blw 2 DEE )

= icDy Ay + DA (1w Py) +i QD% (lwP)y

O<a<l, B>0, i=v-1, 46)

where w(x,z) is a complex function, coefficients @, A, =, A
and C are the self-steepening, group velocity, spatiolemporal,

3rd dispersion, and inter-modal dispersion terms respectively.

A(w+K(—8KA +v(—

3+6KE)+25w)) —8AZK3 —

T= (q:Zk\/c_lx-Jr- &%ﬂ’)

IParamctcrs B and £ are nonlinear dispersions.

Substituting the complex wave transformation

W(x1) = X(g)exp(it),
= TUD) ey
g = L1;ﬂ(—‘k'x"‘ +wi® +E)

into Eq. (46), we attain to the ODE with two conditions:
n*(A — Ev+3AK)X" — (w+AK? — EKw+ AK> + CK)X
+(p+KB-KO)X? =0, (47)
with
_ (B-30)(1 —vE)~34A(2K@ +p)
N 2(3AK + 4 — Ev)

(A —vE)(v+2KA —vKA — ~w)

C=

24K+ A - Ev

The homogenous balance provides n =m+ 1. Form =1,

we have n = 2. So equation (6) reduces to the following equa-

uonbyusmg)( (§)=d-X?(L),
Oy + 01X 4+ £,X7?
pE)= 222 2 48
(5) 2+ X “

Inserting Eq. (48) and Eq. (7) into the reduced nonlinear or-
dinary differential equation (47), we have a polynomial of
X* (k=0,1,2,...). All the adjacent terms of X are equal to
zero, and form some equations with unknown constants £, /1,
&, . 21, and n. Solving the equations with Maple software.

we get three sets of solutions:

Set 1

_ wKE —AK3 — K?A —CK —w)

= d©K_BK-p)
o wKE —AK3 — K2A — CK —w)
2= d(@K—BK-p)

2

b =0,

_ wKE —AK3—K?A—-CK—w
"= 2d(AK —vE+A)

[
Set 2

£q

@ [dwKE — K2A —CK —w—AK?3)
2 ®K—-BK—p a

" — \/wKE—KZA—CK—w-—AK-‘
4d(@K—BK—p)
£ =0,
2 =0,
wKE - KA —CK —w—AK3
"= \/ Sd(3AK —vE+A)

Set 3
¢ = 1 24K~ wKE + K2+ CK +w)
°T T @K—BK—p
ly = AK3 —wKE+K*A+CK+w
2= 2d(@K—BK—p)
¢ =0,
@ = 0,

_ AKY—wKE+K2A+CK+w
"= 4d(3AK —vE+A)

For Set 1, the solutions of spatiotemporal M-{ractional SH

050202-6
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Cqua[i()ﬂ hOld:
o) = WKE —AK3 — K2 — CK —w
d(0K—BK—p)
xx/c?tanh(_\/c_lg)e”, d>0; (49)

- 3_ 2
w(x, 1) = \/wKu AK’ KA —CK—w
d(OK - BK — p)

xVdcoth(Vdg)e'®, 4> 0; (50)
KR 3_ K
wln,f) = wKE —AK3—K2A —-CK—w
d(@K — BK — p)
E:i‘r
X—, d=0;
= SD

KR — 3_Rg2 s
et = WwKE —-AK? —K?A -CK—w
d(@K —-BK-p)

xvV—dtan(v/—d¢)e'®, d <0; (52)

KT AR K23 _
wix) = wKE AK’ K,A. CK—-w
d(OK —BK —p)

xv/=dcot(v—d¢)e'”, d <0; (53)

where
e {1+ 8) wKE—AR’3-—K’QA.—CK-—w(xa_ @)
o 2d(3AK — vE + A) Wk
(1
= (i:—m(—K.ra—l—wta+E).

For Set 2, the solutions of spatiotemporal M-fractional SH
model hold:

V0] = wKE = K24 —CK —w—AK?
’ 1d(@K—BK—p)

o |l + dtanh?(v/d¢)
@1Vdtanh(vd&)

WKE — K24 —CK — w—AK?
Jd) =
v \/ 4d(OK —BK — p)

y [—md—}-dcothz(\/ﬁg)

]e“, d>0; (54)

#1V/dcoth(Vdg)
wKE = KA = CK - w—AK?
Vixt) =

] ', d>0; (55)

4d(OK — BK —p)
i [,{ald—{—dtanz(\/——dg)
fv/—dtan(v/—d{)

B wKE - K2\ —CK —w—-AK3
V(o) = 4d(OK —BK—p)
_J’{"ld'_d“)tz(v_‘dg)] it d<0:
\ ; (57)
[ fo1v/—dcot(v—dg) ©

}e“’, d<0; (56)

where

KT — K2A - CK —w—AK3
o T08) [oKE KK w A e
o 8d(3AK —vE + )

. _TU+p)
o

For Set 3, the solutions of spatiotemporal M-fractional SH
equation hold:

(~Kx®+w®+E).

AK3 —wKE 2 5
w(E) = WKE+K2AL+CK +w
2d(@K—-BK -p)

” —fnd+ dmnhz(\/z?g)
1V danh(+v/dg)

_ JAK3 —wKE+ K A+ CK+w
v(€) =
2d(@K ~ BK — p)

e'", d>0; (58)

¢t d>0; (59)

f1Vdcoth(Vdg)
w(E) = AK? —wKZ +K2A4+CK+w
2d(@K —BK —p)

md-kdmnz(\/—dg)] it
X td<; 60
[plv—dlan(\/—dg) © o)

) = AK3 —wKE +K2A+CK+w
24(0K —BK — p)
" [—fald—dcotz(w/—(lg)

[—Jald+dcothz(\/3g)

v(

]e“, d<0; (61)

o1V —dceot(+v/—dg)
where
_ CU+B) [AK—wKE+KA+CKAW (o ay
¢ - 4d(3AK —vE + 1) g 7
(1

5. Graphical representations

5.1. Graphical representation of solutions for stFETL
model

The research findings are in the types of hyperbolic, ratio-
nal, and trigonometric functions. All the results are analyzed
and some of them have shown graphically in Figs. 1-3.

5.2. Graphical representations of solutions for tfcSE

Two sets of results are found in the study of the tfeSE. We
analyze all results. Five results are graphically shown Figs. 4~
7. The three-dimensional (3D) contour, and two-dimensional
(2D) plots show the changes of amplitudes. directions, shapes
of wave as well as the nature of the solitary waves of gained
solutions in space x with time 7 below.

5.3. Graphical representations of solutions for s-tM-fSH

The derived results are in a varicty of hyperbolic, rational,
and trigonometric functions. All of the results are analyzed
and soine of them are shown graphically in Figs. 813, where
the patterns and natures of the wave surfaces are shown clearly
with 3D, 2D, and contour plots.
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Re(w)

' t=05 =--~t=1.0 — t=1.5

(b1) real contour plot (c1) real 2D view
1 ;
e
= /
g i . R - m S )
E ; @® «
2y /i y
T - x / / -1 ;: .
t 5 o, b i
Wi //////// -19 \ ke
(a2) complex 3D view (b2) complex contour plot (c2) complex 2D view
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t=20.5,1,and 1.5.

6. Conclusions

In this work, we present an integral technique to solve
fractional nonlinear differential models. To test the validity of
the procedure, we solve three nonlinear fractional models: the
s-tFETL (Figs. 1-3), the t{cSE (Figs. 4-7), and the s-tM-fSH
(Figs. 8-13) models. The periodic envelope, exponentially
changeable soliton envelope, rational rogue waves, periodic
rogue waves, combo periodic-soliton, and combo rational-
soliton solutions are formally derived {rom the models. The
achieved results show that the proposed technique is a very
effective, concise. and robust mathematical tool in compari-
son with the generalized Kudryashov method and the modi-
fied Kudryashov method of solving other fractional nonlinear
models.
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Abstract: In this manuscript, the space-time fractional Equal-width (s-tfEW) and the space-time fractional Wazwaz-
Benjamin-Bona-Mahony (s-tfWBBM) models have been investigated which frequently arises in nonlinear optics, solid
states, fluid mechanics and shallow water, Jacobi elliptic function expansion integral technique has been used to build
more innovative exact solutions of the s-tfEW and s-tfWBBM nonlinear partial models. In this research, fractional beta-
derivatives are applied to convert the partial models to ordinary models. Several types of solutions have been derived
for the models and performed some new solitary wave phenomena. The derived solutions have been presented in the
form of Jacobi elliptic tunctions initially, Persevering different conditions on a parameter, we have achieved hyperbolic
and trigonometric functions solutions from the Jacobi elliptic function solutions. Besides the scientific derivation of the
analytical findings, the results have been illustrated graphically for clear identification of the dynamical properties. It is
noticeable that the integral scheme is simplest, most conventional and convenient in handling many nonlinear models
arising in applied mathematics and the applied physics to derive diverse structural precise solutions.

Keywords: space-time fractional equal width equation, space~time fractional Wazwaz-Benjamin-Bona-Mahony, balance
number, fractional beta-derivative, Jacobi elliptic function expansion method, analytical solutions

1. Introduction

In the current world, fractional derivatives have been applied to study the calculus of arbitrary order for modelling
of nonlinear happening in different fields like fluid mechanics, signal processing, control theory, astrophysics, dynamical
systems, plasma physics, non-lincar biological systems, nanotechnology, and engineering. Many real-life problems
of the above areas can be modelled by Partial Differential Equation (PDE) relating to the fractional derivatives. The
concept of solitons, the top decisive way in applications to such models has played an important role to identify the
complex incident in various fields of sciences. Up to days, many techniques have been introduced for deriving exact
wave solutions of nonlinear models but the innovation reached is deficient. The precise mathematical methods ta
derive different classes of exact solutions namely; the inverse variational methods [1], the Darboux Transformation [2],
the Exp-function technique [3], tanh method [4], the exp(—(®)n)-expansion method [5], first integral scheme [6], the
tan(®/2)-expansion approach [7], the Hirota bilinear method [8-9], the sine-cosine analysis [10], the new extended (G
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¢)-expansion method [11], the modified double sub-cquation method [12],
jacobi clliptic function expansion method [15-16] as well.

MOFCOVC_'E -“’ if very problematic to derive the exact solution of nonlincar fractional PDE via the best possible
method. So, it is significant to arise the explicit solutions which are exact for advanced study of these nonlinear
fractional models and have to realize the nonlinear phenomena, Many powerful and useful ways havc; béen inn'aduced
to solve the exact solution of nonlinear fractional equations [17-18]. The Jacobi elliptic function expansion method [15-
16] is an excellent way to integrate fractional nonfinear di fferential models.

In this rescarch work, we start the research with s-tfEW (18] and s-WBBM [19-21] models to analysc the nonlincar
phenemena Hosseini and Ayati [18] presented exact solutions of the s-tFEW with the help of Kudrayshov method.
Benjumin-Bonu-Mohony introduces the BBM equation [19]. Then Wazwuz modified this equation to WBBM [20].
This script considers the Jacobi elliptic function expansion method 1o integrate the s-t{EW and s-tfTWBBM models
for deriving exact solutions. This technique also bases on the homogeneous balance method which is an influential
procedure for achieving solutions of fractional PDE introduced by Zhang and Zhang [17]. According to this method,
fractional complex transtorm and some useful formulas of fractional beta-derivative [21-25] are applied to transform the
nonlinear s-tfEW equation to ordinary differential equation.

the mapping and ansatz methods [13-14], the

2. Beta-fractional derivative

Let us review the beta-derivative [21-25] as follows:
Definition 1 Let ¢ : [a, o0) — R, then the fractional beta-derivative of ¢ of ordéer § is defined as

1 4
#(x+ 6'(1*'%)] By—g(x)
D" ($)(x) = lim ,for all x> a, B & (0, 1]. If the limit of the above exists, then $(x) is
-0 £

said to be beta-differentiable.
Some properties of the derivative for the functions ¢(x) and wix)

(0. D’ (mp(x)+ nmy (x)) = mD# #(x)+ nD# w(x), where a and b are constants.
1
I'(p)

(iii). D? (py) = ¢DP (v) +y D (9).

B — sDP
Gv). DA % ) = w D" (4) 2¢D W)
4
). D*# {c) =0, where c is a constant.

(ii). DPx® = a(x + VP ae®R.

, Where w = 0.

i = ()AL
Here D7 (y(x)) (x+1"(,6)) =

Definition 2 Let 4 : [0, o) — R such that ¢ is diffcrentiable. Let y(x) be another function defined the same range
of ¢(x) and also ditferentiable. Then, the two functions satistied the following rule [19]:

|

ot il
T ﬂ)) y(x) ¢ (w(x).

DP (goy) = (x+

3. The Jacobi elliptic function expansion method
Consider a given nonlinear wave equation

1
N(p,DI?p,Dl\p, D729, Dp...) =0. (1)

174 ' Harun-0 hidl, er al,
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The function ¢ = p(x, 1) is unknown wave surface and N is a function of
derivatives.
We seek its wave transformation

© = ¢(x, ) and its highest order fractional

p= (p(éz)’ é: =

k n__¢ »n
o). Ty @

The symbols k the wave number and ¢ wave speed.

By using the above transformation Eq. (2), the fractional nonlinear Fq. (1) is converled to the following ordinary
differential equation;

P(p, w', qo", rpm ......... ). 3

In [17], p(¢) is a trail selution in the form of Jacobi elliptic sine function sn(¢)

>

P& =ag+ Y asn (&) +S b (&), )

i=] =l

sn(¢) is Jacobi clliptic sine function, and its highest degree is

P(p(E)) =n. ()

2 3
P2y = n+1, P(@4?) = 2n+1, PE ?y=n+2, and P 43, )
dg dg d&* dg ‘

Thus, we can consider n in Eq. (4) to homogenous balance from the terms of the highest order of derivative term
and nonlinear.

Here, cn($) and dn(¢) are the Jacobi elliptic cosine function and the Jacobi elliptic functions respectively.

And

en (&)= 1=sn2(&), dn® (&) =1-m2sn® (&), where m(0 < m < ). @)
A (sn&) = en(Odn(E), L (cn(EN) = —sn(E)dn(£) ®)
dé&ﬂ' =an f:;d.é.'. ) g o b .
;?(drr(f))=-mzsn(nf)cn(ff)- ©)

We know that, when m — 1, and m — 0, then sn() — tanh(¢) and sn(l) — sin(¢) respectively. Thus, using Eq. (4)
and its derivatives along with Eq. (7) and Eq. (8) into Eq. (3), we achieve a set of equations with unknown parameters.
Solve the system for the unknowin parameters. Using the parameters, the series solution of Eq. (4) is determined in terms

of Jacobi elliptic functions. . N
We can convert the Jacobi elliptic sine function to solitonic and periodic function by selecting the conditions m — 1,

and m — 0 respectively.

» ' e
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4. Application of the method
In this section, we apply Jacobi Elliptic Expansion function method to the s-tfEW and the s-tfWBBM models.
4.1 Solutions of s-tfEW equation
The space-time fractional EW(s-tfEW) equation [18] read as:
DF p(x,0)+ £DPp? (x,1)~ 503 p(x,1) =0, 150, 0 < A<l (10)

Imroducing a travelling wave transformation for s-tfEW model Eq. (10)

" = =._k_ ﬂ._. ¢ ﬂ
p(x,0)=f($), & TN I_(ﬁ)r. (1n

Eq. (11) converts nonlinear partial differential Eq, (10) to the following nonlinear ordinary differential equation
(ODE),

~cf +ek(f2) +8ck* " =0. (12)
Integrating Eq. (12) with respect to &, then the equation converted to the nonlinear ODE Eq. (13),
—¢f +ekf? +5ckf =0. (13)

Using the balancing role (f* with f*) in Eq. (13) gives n = 2. Now, choosc an auxiliary solution for the balance
number.

(&) = ag +aysu(&) + aysn® (£) + bysn™ (&) + bysu 2 (£). (14)

Inserting f(&) from Eq. (14) to the Eq. (13), then equating adjacent terms ofsni(f) to zero and solve these terms for
ay, a,. a,, b, and b,, we get

Case-1:
1 eNd (m? +1=2,/(m” +14m* +1))
= ? GO = ]
2 m* +14m2 41 efm® +14m® +1
3c\/c?mz 3c«/§ _ B
ay :—4———‘,——J bZ =—-—4—4———1-—-~, (] =0, bl =0.
art +14m% +1 eNm” +14m~ +1
Case-2:
1 ed(m? +1=2(m* +14m? + 1))
k=- y Qg = 5
2\/(7%714 + l4m2 +1 24 nu4 + I4m2 +1

Contemporary Mathematics 176 | Harun-Or-Roshid, ef al.



3eJdm? 7 3cd
Sm— b= a; =0, b =0,
U s 14m? 11 O 1

Case-3;
= 1 ao:cJJ(_mlﬂ—z (n* —m? +1))
2a{m® —m? 41 et —m? 11 ’
3c\/:1—
by == 1 =0, a; =0, b, =0.
£\}4 m'l —m2 +1
Case-4:
. 1 o ed (n® +1=2y(m* = m® +1))
- ] P y = 2
Zﬁx‘/nz"'—mzﬂ 5\}4 m* —m? +1
3
b2 ='—4—€—\/E—, ) =0, ay =0, b] =0.
edm® —m? +1
Case:-5:
1 c\/(7(m?‘ +1 —Z\f(m"t —m+ 1)
- ¥, s dp = p 5
Zx/lemd’ —m?+1 s\/m4 —-m®+1
2
g, =~ 3edn , =0, by =0, by =0.
2 4 4 2 !
eNm —m” +1
Case-6:
1 c\/E(m2 +1-2 (m4 —m? +1))
- , 5 0 = — : »
2\/c74 m? —m® +1 5‘\‘/1}14 —m? +1

3c-~/§ m?

= NEH 4 =0, 5 =0,b,=0.

a2 =
54\Jm4 —m?+1

Eq. (10) are reduced the following exact solutions by using (case-1-6)
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eJd (m® +1-24m* +14m? +1) 3cdm?

o(x,0) = sn*( 1 L 5 ¢
A
y =X = !
5‘/'" +14m” +1 \/!iz4+i4n12+l 2J(7ﬂ:n4+14mz+]r(ﬂ) '(B) )
— 30\[; s —2( 1 1 5 c J]
4 n X7 ———17),
‘9‘/’”4 +14m* +1 2\/11—2/1714 +14m? +1T(B) 1905)) )
alt)== C\/—(nl +1=2¢m* +14m> +1) 3eJdm? 2( 1 1 g c
s SH(— X" - !
L‘\/m +1dm? +1 \/m4+]4m2+1 2\/;7%/"14 +1dmt 1 TR r'(p
3cd - 1 1 5 ¢ g
T i (- 7 xF - 7).
E\/m +14m”“ +1 2\[67‘\/"14—1-14!1!24—1 ) 5
o(x,0) = cJ_(nz +1=24m* - m? +1) 3¢Jd _2( 1 1 g c ﬂ)
sn X = {7 ).
sYm* =m® +1 st —m? 1 2Wdim* = m* 1 T(H) r(p)
q’D(x”)=___cx[_(m +1=2vm* —m +l) 3cd _2 1 1 B__E tﬁ)
4\Jm4—m +1 .94\lm4—m +1 2\/24\/":4—mz+] (B F(p)
- c\fz-i’(mz sl+vym® —m® +1) 3c\/{?mz S"g( 1 L g ¢ 1[3)
2 - - , x5 = .
5%4 -m?+1 E‘\‘/mJ' —m® +1 2«,/3%/»:4 —m? +1 A T(5)
s — c\/_(m +l+Am* —m? +l) 3efdm? snz(— 1 l Fo_C tﬁ)
g\/m —m?+1 g\/m4—m2+1 2\/—J<'[m4-m?‘+lr(ﬁ) I'(5)

Eq. (15-20) represent the solutions in term of Jacobi elliptic function.
When m — 1, the solutions Eq. (15-20) convert in the form,

(=20, B L . Lt P

v g 2 4J‘ e T 4J‘ iT(A TH
3:;'\/_ 3edd, 2, 1 1 g ¢ g dedd o L 1 5 ¢ p

o) = e e e e T
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(15)

(16)

(7

(18)

(19)

(20

20

(22)
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3(“/‘1_ --2( 1 1 ﬁ

o(x,1) = ——E—tanh 5_\/71"_(13_) F(B) . 23)
o(x,1) = # tanh™2(~ 2\1/3 F(lﬂ) B - r(c;;) 8. (24)
p(x,1) = -ﬁ;f—gmnhz(ZJE ]_('ﬂ) X - F(‘jﬂ) ), (25)
o(x,1) = 3cf tanh? (- 2\1/[7 = (‘ﬁ) o - (Cﬂ) ). (26)
Solitary wave solutions Eq, (21-26) come in terms of hyperbolic functions form.
When m — 0, the solutions Eq. (15-20) convert in the form,
== L‘/_ 36\/— v F(lﬁ) S @7
PRt = 0\5/47 " 302:/3 St 2\}@ I"(lfi)xq T (L';r) ) &
= CI 3c£f e T ‘ )
ptxy= S84 2 T T o0

These are periodic wave solutions of the nonlincar-tfEW model and the other two solutions (19), (20) give
constants only.

4.2 Solutions of the WBBM model

The space-time fractional WBBM equation [21] read as:
D,ﬂga(x, ¥, 7,0+ ngn(x,y, 2,0+ nga(x,y, z,t)— Digqo(x, y,20)=0,1>0, 0< g1, 3D

Considering a travelling wave transformation for space-time fractional 3D WBBM model Eq. (31)

o(x,0 =), §=r(—ﬁg(exﬂ +yP +c2P —wiP). (32)
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Eq. (32) transform the WBBM Eq. (31) to the following nonlinear ODE

(—w+ £)¢‘ + 54)(¢3)' + fcw¢m =0. (33)
Integrating Eq. (33) with respect to ¢, then Eq. (31) converted to the nonlinear ODE Eq. (34)
(~w+Od+pd + tewd =0. (34)
Using the balancing role (¢* with ¢ in Eq. (34) gives n = 1. Now, choose an auxiliary solution for the balance
numnber.
&) =g+ asn($)+bysn™' (£). G4

Ph'lgging gz.i(c,’) from Eq. (35) to the Eq. (34), then comparing the adjacent terms of sn"((;‘) to zero and solving these
algebraic equations for ay, a, w and b,, we get four sets of solutions.

Case-1:

£ -2c [ -2

bz =i€

» g =0, ay =+xlm l

w=

867;12 —-6lecm+fe+1

Case-2;

Vgo(&'mz —6{cm+ e +1) ,

\j_ga(écmz —6lcm+éc+ 1).

=2c -2¢

¢ I
by =%

w=

Case-3:

Case-4:

fem® + 6em + bc+1

, 2y =0, gy =%fm I

Y S Y S "I
fem” + fc+1 @(fem” +lc+1)

-2
w=———-£———, ay=0, b =0, a=tlm ——25——~
fem® + fe+1 fa(lem”™ + €c+1)

The exact solutions of Eq. (31) by using (case-1-4)

(éxﬁ +goyﬁ +ezf - wtﬁ))

—msn( !

T )

\ leem® —6tem+ e +1) | ) (r(lﬁ) (0B + oy + 2P —wiBY)

goil(xi“)=e
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\V(tem® +6tem+ec+1)” © \ @(fem® +6lcm+Ee+1)

(36)



o1
nisn( (exP + oyP 4 czP — P
Palxy=t |— =2 r(8) =)
‘J,ga(écm"~6€cm+!ﬁc+l) ccuri g 1 (1 + oy 4 oo sl (37)
) LXE + py” + ezl —wiPy)
In Eq. (36) and Eg. (37), w=—0* ,
£em™ = 6Lem + Lo+ 1
L xP 1 opf 2P '
msn( (exF + py” +cz —wlﬂ))
(x,0)=¢ -2c (B
B3t T e i . (38)
(Lem” +6fem+ fe+1) +snl( (fxﬂ+goyﬂ+cz'3-wlﬂ))
()
1
msn( (@.xﬁ+50yﬂ +czﬂ—wtﬁ))
-] 2 r(8) |
P4 (x,1) [\I = ; X (39)
o(fem”™ + 6fcm+ fc+1) +sn_]( (Cx"}+5ayﬁ+czﬂ—wtﬂ))
T'(g)
Tn Eq. (38) and Eq. (39), w = ¢ :
Lem® + 6fcm+ bc+1
o5(x,0) =1 l 2 sn—i( d (ﬂrﬂ +g:)yﬂ+czﬂ——wtﬁ)). (40)

V,@J(fcmz +lc+1) 1905)]

} ~2¢ L 0B B v ezB — i
Pext)=-L sH ( (tx” + oy +cz¥ —wt")). 4n
w go(fcmz +éc+1) I(B)
~2¢ b e il gl P
x,0)=£tm s (P + py” +czf —wth)). (42)
Fvial) \Jp(fcm%ecn) T'(B)

:Zc s ] (fx‘lﬂ +pyﬂ +ezf —wtP ). (43)
Volbem? +tc+1y  T(H)

pg(x,1)=—fm

In Eq. (40), Eq. (41), Eq. (42) and Eq. (43), w=—F5—"
n Eq. (40), Eq. (41), Eq. (42) q. ( PRI

Eq. (36-43) represent the Jacobi elliptic function solutions of Eq. (31).
When m — 1, the solutions Eq. (36-43) convert to the following form,
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1
—tanh( (l’xﬁ +g.9yﬂ 2P P
Po(x,t)={ = 2: i LA )
- 1 ’
+coth(r(ﬂ)(£’xﬁ +§Jyﬁ +czf -wt?y)
1
tanh( (Ex/}+goy'g + czﬂ—w!ﬂ))
Pro(xt) =1 '1;2:@ o
3 = 1 ‘
‘7( C) "Colh(r(ﬂ) (fxﬂ b Lf;_‘)yﬂ b Czﬁ --WIF))
In Eq. (44) and Eq. (45), w= - .
& @) and Bo. 3% w= g
—— |t (06 +@y? + ez —wiPy)

Papln=£ }——— ,
o +8lcm) , 1 8 8 8 B
+coth(——(&x” + +ezP —wi

(r(ﬂ)( y" +cz” —wi”))

~ anh((—ﬁ)(o:xf" + 38 + ez —wify)

Y ) W
P21 (50) P(L+86c) |,

th(——(fxﬁ + go_yﬂ +ezf —wif b))
(A

In Eq. (46) and Eq. (47) carry the value of w= (1+'8€c_)‘

P (x,0)=¢€ e coth ((’.1,"j +5oyﬁ +cz —-wtﬁ)).

p(+260) F(ﬂ)

-2c¢

el co
\ o(1+20c) l"([i')

(20X (xs Z) =i

—2 U (0xB 4 oyP 4 2P —wif
X, t)=- tanh x” + pyr + ezl —wit”)).
P25 (1) FJgo(HZEc) ash( o (7 + 0y

£
In Eq. (48), Eq. (49) and Eq. (50), w= a+20c)

Solitary wave solutions come fiom the hyperbolic functions Eq. (44-50).
When m — 0, the solutions Eq. (36-43) convert to the form,
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th( (&xf +5.)yﬁ +czf —wiPy).

(44)

(45)

(46)

“4n

(48)

(49

(50)
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P5(x,t)=¢ ’g e { cos c( (E.x +5oy +cz -\vtﬂ))} (5D
V(X )=¢ ’p(l-ﬁ-é(_){ ec( ([x +g)yﬂ +c2ﬂ-—wlﬂ))} (52)

= !
Pr7(x,1)=—( o+ o) [CDSEC( )

In Eq. (51), Eq. (52) and Eq. (53), w=

(ex? +gayﬂ +c2P —wtﬂ))}. (53)

(i+ L’c)
Eq. (36)-Eq. (43) are Jacobi functions solution of the nonlinear WBBM model. Out of the eight Jacobi elliptic
functions, three of them are repeated and two results give zero solution. So, these five solutions are neglected.

5. Graphical representation

In this section, we will provide some graphical representations of the exact solutions of the space-time fractional
Equal Width(s-tfEW) equation (Eq. (10)) and the space-time fractional Wazwaz-Benjamin-Bona-Mahony (s-tfWBBM)
model (Eq. (31)). Graphical representations are portrayed below using the selected exact soluiions of EW and WBBM
model.

5.1 Graphics of the solutions of s-tfEW equution

X
0 10 20 30 40 50
e e OPPOPY PP n
Ny ~ \ *‘_'—M_.__
4261 o
N
N
-4,28 4 \
plx) \\
wlx, 1) .30
\
\
4,32
\
\
-4.34 4 \
[._ — =05 et =1 e vvut= 15 |

(b) 2D View of Eg. (21)

(a) 3D View of Eq. (21)

Figure 1. Represent the solitary wave @(x, £} in Eq. (21) for the physical parumetsic values, d= 0.5, f = 1/6, ¢ = 1, £ = I: (4) 3D surlace, (b) 2D graphs

atr=05, 1, LS,
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10 20 30 40 50
x
-100
olx, ) : .
200 Py
-300 :

(=05 +eeent=] =15 |

(a) 3D View of'Eq. (23) (b) 2D View of Eq. (23)

Figure 2. Represent the solitary wave ¢(x, 1) in Eq. (23) for the physical parametric values, d = 0.5, # = 3/4, c = 5, £ = 2: (a) 3D surface and (b) 2D
graphs al1=0.5,1, 1.5 ,

Three types of results are achieved for EW equation. All of the results are analysed and some of them are depicted
in Figurcs (1-4). The graphs signity the change of amplitude, direction, shape of the derived wave solutions to identify
the intrinsic nature of the model. The solution @(x, 1) in Eq. (15-20) represents the Jacobi clliptic functions Eq. (21-

26) shows the solitonic nature comes from hyperbolic function and Eq. (27-30) are trigonometric function exhibit as
periodic waves.

60 40  -20

o 1)
[?—l=0.5—-\= | ERRE
(b) 2D View of Eq. (25)
() 3D View of Eq. (25)

i s 3 +c valucs. @ = 1, 1= 3/5, ¢ = 3, = 0.25: (a) 3D surfacc and (b)
Figure 3. R , 4 A in Eq. (25) for the physical parametric valucs, .
epresent the bell type solitary wave @(x, £} 2 graph for and (= 05,1, 15.
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60

ol )

4011
@(x)

0 3 JI() ]'S :;0
X
1.___4:0_5....(: | —t= 1,5]

(2) 3D View of Eq. (27) (b) 2D View of Eq. (27)

Figure 4. Represent the periodic wave of p(x, 1) in Eq. (27) for the physical parametric values, d = 0.5, = 3/4, ¢ = =3, £= 1: () 3D surlace and (b)
2D graphsat1=0.5, 1, L.5.

5.2 Graphics of the equation WBBM

The findings of the research on WBBM model are in the types of hyperbolic (Eq. (44-51)) and trigonometric (Eq.
(52-55)) functions. Hyperbolic and trigonometric functions represent solitonic and periodic solutions. All the results are
analysed and two types of function have been shown graphically in Figure 5 to Figure 6.

800 1
600
400 1

olx, 1) 200 1

o) 0 : == )
-2004

-400 1

=600 1

-800 1

-1000
[—i=0—1=03——1=035]

(a) 3D View of Eq. (48) (b) 2DView of Eq. (48)

Figure 5. Represent the solitary periodic wave g(x, /) in Eq. (48) for the physical parametric values, f= 099, /=2, c=-2, p=1,2=0,y=0:(a) 3D
4 surface, (h) 2D graphs at £ = 0, 1.03, 0.5.
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204

L T s

10

1Y)

o0 1)

Lort=0 == —t=2 |
(b) 3D View of Eq. (52)

(a) 3D View of Eq. (52)

Figure 6. Represent the periodic wave p(x, £) in Eq. (52) for the physical parametric values, B=05,1=2,c=-2, ¢ =1,z=0,x=0:(a) 3D surface,
(b) 2D graphs at7=0, 1,2,

Remarks More other Jacobi function solutions to the s-tfEW and WBBM cquation are derivable by keeping the
tral solution in terms of the Jacobi functions cn(&) and dn(&) as below;

u(€)=ag+ y, aen' (£)+ Y, ajen” (§). (54)
i—l1 i-1
And
w(@)=ag+ Z adn () + Y a_jdn™ (&), (55)
-l i—1

In view of Eq. (54) and Eq. (55), we can add soliton and non-solitonic solutions describe via cnoidal, dnoidal
waves and trigonometric functions.

6. Concluding remarks

time fractional EW and WBBM equation has successfully ?megraled vif1 Jacobi ell_ipr.ic
derivatives. By introducing a fractional transformation, the considered n_onlx.nee-u'
Partial travelling wave equation was reduced to ordinary differential model. Then Wefsuc}cets.sﬁllly us:ci];a\(jg::nzl:ls?c
expansion method to integrate the model. At the cnd of our procedure, three types (;,- S[? u ;9n5t:: cth:t ;‘;c:)bi elli )t?(;
Jacobi elliptic, hyperbolic and trigonometric function with unknown parametf:;'s;.w :c fmo if;le;r fractional mndiclﬂ
&Xpansion technique is very fruitful as well as apptopriate to ﬁn.d the exact ;o ‘u'_;"m"! (:n :d' c:Is Whicﬁ _Wérc_,ﬁ“)[ f'ound
Here we, successfully derived cnoidal and dnoidal waves solutions Lo th}: , r?cuona { solutions has been plotted
in the previous literature. In addition, the graphical illustration of some dl(‘(‘:e\lqulgr;iSr:s S:czve] Réacarcher can
With unknown parameters in Figures (1-4) and Figures (5-6) for s-tfEW an p y. Res

In this portion, the space-
function expansion technique with beta-
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use the technique to analyse the i .
andoubtedly use yse the mternal mechanism of non;
nonlinear physical s
ystems.
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Abstract: In this manuscript, the space-time fractional Equal-width (s-tfEW) and the space-time fractional Wazwaz-
Benjamin-Bona-Mahony (s-tfWBBM) models have been investigated which frequently arises in nonlinear optics, solid
states, fluid mechanics and shallow waler. Jacobi elliptic function expansion integral technique has been used to build
more innovative exact solutions of the s-LfEW and s-ifWBBM nonlinear partial models. In this research, fractional beta-
derivatives are applied to convert the partial models to ordinary models. Several types of solutions have been derived
for the models and performed some new solitary wave phenomena. The derived solutions have been presented in the
form of Jacobi elliptic functions initially. Persevering different conditions on a parameter, we have achieved hyperbolic
and trigonometric functions solutions from the Jacobi elliptic function solutions. Besides the scientific derivation of the
analytical findings, the results have been illustrated graphically for clear identification of the dynamical properties. It is
noticeable that the integral scheme is simplest, most conventional and convenient in handling many nonlinear models
arising in applied mathematics and the applied physics to derive diverse structural precise solutions.

Keywords: space-time fractional equal width equation, space-time fractional Wazwaz-Benjamin-Bona-Mahony, balance
number, fractional beta-derivative, Jacobi elliptic function expansion method, analytical solutions

1. Introduction

In the current world, fractional derivatives have been applied to study the calculus of arbitrary order for modelling
of nonlinear happening in different ficlds like fluid mechanics, signal processing, control theory, astrophysics, dynamical
systems, plasma physics, non-linear biological systems, nanotechnology, and enginecring. Many real-life problems
of the above areas can be modelled by Partial Differential Equation (PDE) relating to the fractional derivatives. The
concept of solitons, the top decisive way in applications to such models has played an important role to identify the
complex incident in various fields of sciences. Up to days, many techniques have been introduced for deriving exact
wave solutions of nonlinear models but the innovation reached is deficient. The precise mathematical methods to
derive different classes of exact solutions namely; the inverse variational methods [1], the Darboux Transformation [2],
the Exp-function technique [3], tanh method [4], the exp(—(®)y)-expansion method [5], first integral scheme [6], the
tan(®/2)-expansion approach [7], the Hirota bilinear method [8-9], the sine-cosine analysis [10], the new extended (G

Copyright ©2021 Harun-Or-Roshid, et al.
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_expansion method [11], the modified d o ;
JGa)cobip elliptic function expansion method ‘E?;’}‘;g}“::::;tmn method [12], the mapping and ansatz methods [13-14], the
Morcover, it is very problematic to derive the exact solu
method. So, it is significant to arise the explicit solutions w
fractional models and have to realize the nonlinear phenomena
to solve the exact solution of nonlinear fractional equat; 5 o e ot . .
16] is an excellent way to integrate fractional nonli:::::l;iril“;c[ritilaii]r.nrl;}:izli‘.lmbl e
In this rescarc!l }vork, we start the rescarch with s-tfEW [18] and s-WBBM [19-21] models to analyse the nonlincar
phenomena Hosseini and Ayati [18] presented exact solutions of the s-tfEW with the hel of Kud:’a shov method
Benjamin-Bona-Mohony introduces the BBM equation [19]. Then Wazwaz modified lhispc uation lc?WBBM [20].
This script considers the Jacobi elliptic function expansion method to integrate the s-t(Eannd s-tfWBBM models;
for deriving exact solutions. This technique also bases on the homogeneous balance method which is an influential
procedure for achieving solutions of fractional PDE introduced by Zhang and Zhang [17]. According to this method,

fractional complex transform and some useful formulas of fractional beta-derivative [21-25] are applied to transform the
nonlincar s-tfEW equation to ordinary differential cquation.

U.On of nonlinear fractional PDE via the best possible
hich are exact for advanced study of these nonlinear
. Many powerful and useful ways have been introduced

2. Beta-fractional derivative

Let us review the beta-derivative [21-25] as follows:
Definition 1 Let ¢ : [a, @) — R, then the fractional beta-derivative of ¢ of order £ is defined as

Px + £(x+-f(l—ﬁ))i"ﬁ)- B(x)

£

DY ($)(x) = limo , for all x> a, B € (0, 1]. If the limit of the above exists, then ¢(x) is
£

said to be beta-differentiable.
Some properties of the derivative for the functions $(x) and y/(x)
(@). DF (mg(x)+ ny (x)) = mD# P(x)+ nD” w(x), where a and b are constants.

N B L af
(il). DPx* = (x4 I‘([)’)) .0eR,
(iii). D? (gy) = pDP () + ¥ D’ (9).
Bem_anf
(i\r). Dﬂ(ﬂ) - VII‘) (¢) 2¢D (V/) , Whel'c u/ 20,
4 7
(). D?(¢) =0, where c is a constant.

1 =g dy
Here DA X)) = (x 4 — f Uy
) =( 1‘(/3)) v |
Definition 2 Let ¢ : [0, c0) — R such that ¢ is differentiable. Let w(x) be another function defined the same range

of ¢(x) and also ditferentiable. Then, the two functions satistied the following rule [19]:

L 3By ¢ ).
T

DP (oy) = (x+

3. The Jacobi elliptic function expansion method
Consider a given nonlinear wave equation

2 2 _ |
N(p,D]*¢. DY 0. D; 720,DMe....)=0. (1)
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Tl?c function p = ¢(x, 1) is unknown wave surface and N is a function of ¢ = ¢(x, ¢) and its highest order fractional
derivatives.

We seek its wave transformation

n__t _.n
T~ Top @

p=p(), &=

The symbols k the wave number and ¢ wave speed.

By using the above transformation Rq. (2), the fractional nonlinear Eq. (1) is converted to the following ordinary
differential equation;

P(p, ?7’: 47”, 90", ......... ). 3)

In [17], () is a trail solution in the form of Jacobi elliptic sine function sn(¢)

&) =ag+ Yy asn (E)+ bsn™ (&), (4)

=1 i=l

sn(<)y is Jacobi clliptic sine function, and its highest degrec is

P(p(£)) =n. %)
PEL) = nal, P22y = 2n 41, P("Z‘f) =n+2, and P(d—Bﬂ) =n+3. (6)
de& T de Coast d&

Thus, we can consider n in Eq. (4) to homogenous balance from the terms of the highest order of derivative term
and nonlinear.

Here, cn(&) and dn(&) are the Jacobi elliptic cosine function and the Jacobi elliptic functions respectively.

And

en? (&) =1-sn*(&), an* () =1- mZsn® (&), where m(0 < m < 1). @)
A (on(E)) = en(©)dn(E), = (en(E)) =-sn(E)dn(). (®)
dé dé ’

;‘;—(dr:@)=—m2sn(c:)cn(¢). ©)

We know that, when m — 1, and m — 9, then sn() — tanh(&) and sn() — sin(d) respectively. Thus, using Eq. (4)
and its derivatives along with Eq. (7) and Eq. (8) into Eq. (3), we achieve a set of equations with unknown pal'z.lmeters.
Solve the system for the unknown parameters. Using the parameters, the series solution of Eq. (4) is determined in terms

of Jacobi elliptic functions. o o . - N
We can convert the Jacobi elliptic sine function to solitonic and periodic function by selecting the conditions m — 1,

and m — 0 respectively.
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4. Application of the method

In this section, we apply Jacobi Elliptic Expansion function method to the s-tfEW and the s-tfWBBM models.
4.1 Solutions of s-tfEW equation

The space-time fractional EW(s-tfEW) cquation [18] read as:

D p(x,0)+ DL o (x,0)- 5D P pix,) = 0, 1> 0, 0< B <1, (10)

Introducing a travelling wave transformation for s-tfEW model Eq. (10)

. fYiem Kk p__c g
px,0)=f(&), & I“(ﬂ)x I“(,B)I' (1

Eq. (11) converts nonlinear partial differential Eq. (10) to the following nonlinear ordinary differential equation
(ODE),

"

~¢f +ek(f*) +6ck>f" =0. (12)
Integrating Eq. (12) with respect to &, then the equation converted to the nonlinear ODE Eq. (13),
—cf +ekf+ 6k =0. (13)

Using the balancing role (f* with /") in Eq. (13) gives n = 2. Now, choose an auxiliary solution for the balance
number.

S(&) = ag+aysn(&)+apsn® () + bysn™ (&) + bysn ™2 (&), (14)

Inserting f(¢) from Eq. (14) to the Eq. {13), then equating adjacent terms of si'(¢) to zero and solve these terms for
ay, a,. a,, b, and b,, we get

Case-1:
p 1 c\/lj(mz +1-2 (m‘1 +14m* + 1)
= I ) » Ap = SR 7 3
2\/d‘\7’m“ +14m*“ +1 eNm® +14m* +1
Jedd : Sc\f;
a, =—- ‘c\/—m y by =—— = = ya =0, 5 =0.
Ym® +14n7 +1 eym’ +14m™ +1
Case-2:
1 c«,/g(mz +1-2 (.m4+14m2 +1))
k = 3 ﬂo = 3

Tl 2 IR
Zx/'dilm’+l4m"+l edm™ +14m* +1

-Or-Roshid, ef al.
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2
= 3C\/Em b, = 3edd .
41—7*"'*_’ ""T/——\.'—?‘_—-’al:o’ bl=0'

B2 N
Nur it

ENTT =Tt 41

Case-3:
Jo = ! " =C\/E(m2+1—2 (1114—:n2+l))
ZVJ'IE-—"'Z"’ 0 a4 o ’
v T evmt =’ +1
3(.'\/;!; :
bz:—‘ ’alzojazzo,blzo.
Evm =T+
Casc-4:
r=— 1 o cﬁ(n12+1-2 (m4—mz+1))
; 7 3 0 _—— 3
S v —i %1 st i +1
Ievd
by =___‘/——, a;=0,a;=0, b =0
Al 4 2
s =" +1
Case:-5:
. 1 eNd (m* +1-2 (" = m” +1))
- 5 "0 — H
zvqﬂm“_,’,ﬁ.;.i é'!{fﬁtd —ii® +1
2
gy = 36’\/;i-m ay =0, by =0, by =0.
eVt —m? +1
Case-6:
: eJd (mE +1=2y(m* =m* +1))
b= g !"0=- 4. 4 .2 :
2ﬁ4 7')14-7'712 did .z-,\/; e ]

2
3C-J—d_’n , 1 = 0, bl = 0; bZ =0.

-::f:‘:.':4 —m? 4]

asy =

Eq. (10) are reduced the following exact solutions by using (case-1-6)
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cJJd (m® +l—°m) 3cddm?

p(x,0) = —"—ﬁ-*___mz( 1 [ ¢ g
4 4 xP = t7)
E\/nz +14m> +1 m 2\/3%14+14m2+1 0 T
3 3Lw.[— m—z( 1 1 P ¢ 5
x -—
4])! +l4m +1 2\/3‘\1/,"44_14'”2*_1 r(ﬁ) r(ﬂ)t ) (15)
——
Q’(x,{):_c\/d(m +1=-2m™ +14m* +1) 3edm? 3,12 . . {ﬁ)
\/m +14m? +1 4,,,44_14]”2_}_] 2\/Em I"(ﬂ) F(,B)
el ! Lot sy a6
edm? +14m? +1 2\/31\%114 +14m? +1 T(B) T(B)
(x,1) CJE(NI2+I—2 m4—mz+1) ed snhz( ! : e tﬁ) (7
PLx,i) = - - .
edm* —m? 41 st —m? 41 wWallmt -m2 1 T T
(x.1) CJ_(m +1=2vm? —mi? +l) 3ed sn=2(— 1 1 B zﬂ) (18)
olx,1)=- .
£\/m -m? +1 g\/n:" —m*+1 ZJEQ/m.“ —m?+1 T(A) B
P(%,0) ed(m? +14vm? =’ +1) _ 3cdns® sn( . L Y a9
)= - T r
.E:‘Q/m"t -m*+1 5%4 —m? +1 2‘/?‘1/'”'4 —n?+1T0F) (#)
o(x,1) ed (in* +1 +m* —m® + l) 3efdm® sn2(- - I - I'(lﬂ) xF - F(C,B) #)y. (20)
)= 4_ 2
edm® —m? +1 S\ﬁﬂ —m? +1 2\/3\/;’ —m” +1

Eq. (15-20) represent the solutions in term of Jacobi clliptic function.
When m — 1, the solutions Eq. (15-20) convert in the form,

1 ¢
1 ¢ g _3(.‘\[4 2 ;. P, 2D
Plx,1) =~ 3“/_ 3“F e ) e CCTTE e

; 3 J?i_ L S S S S )
ol t)_3c\/— 3cJ— 3ed o 4r(ﬂ)xﬁ‘1"(ﬁl3) (#y+ 25 anh 4J—1‘( T
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alx, r)_-&_g@m-z(z \1/3 %ﬂ)‘_ o I‘(ﬁ) Ly (23)
R 302-/; tanh ™~ 2\1/3 T(]ﬂ,) v &9
Plx,1) =~ 3‘:/‘7 mnhz(z:/a. 1"(],6) xP - I_(Cﬁ) #y. (25)
“’(x’”ﬁ;/_—d"m"hz(" z\l/E r(lﬂ) * 5" 0

Solitary wave solutions Eq. (21-26) come in terms of hyperbolic functions form.
When m — 0, the solutions Eq. (15-20) convert in the form,

5= c\/E__ 3(:\/_ . 1 B__C 8
L (2J‘ RN o

__c\/g 3C\/;l'— ) 1 1 5 ¢ p
p(x,t) = it (- i F(r])x —F('n)t ). (28)
° =_C\[_ 36\/— i ﬁ c B . 29
oo s T e
eyd 3edd o ) 1 5 _c 5y (30)

p(x,t)= " . sin”“( 2J(7F(ﬂ)x _I“(ﬂ)l

These are periodic wave solutions of the nonlincar-tfEW model and the other two solutions (19), (20) give
constants only.

4.2 Solutions of the WBBM model

The space-time fractional WBBM equation [21] read as:
DPo(x, y,2,0)+ DY o(x, y,2,0) + DY olx, p,20) =D 0p(x,y,20)=0,1>0, 0< f <. G1)

Considering a travelling wave transformation for space-time fractional 3D WBBM model Eq. (31)

o) =0&). & —Fw)ﬂ(exﬂ + P +e2P —wiP). (32)
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Eq. (32) transform the WBBM Eq. (3D to the following nonlincar ODE

(—w+ )¢ +50(¢3 )‘ + ecw¢"' =0. (33)
Integrating Eq. (33) with respect to G then Eq. (3 1) converted to the nonlinear ODE Eq. (34)
(=w+ D¢+ g0 ¢3 + fcw¢" =0. (34)

Using the balancing role (4* with ¢" in Eq. (34) g _
mber. ) q. (34) gives n = 1. Now, choose an auxiliary solution for the balance

$(&) = ay +aysn(S) +Bysn™L (). @5)

Ph.sgging #(O from Eq. (35) to the Eq. (34), then comparing the adjacent terms of sn'(?) to zero and solving these
algebraic equations for ay, a,, w and b, we get four sets of solutions.

Case-1:
{ 2
— - - —ZC -2c
" Pom® =6hem =+ fp 4 » =0 By —i@m‘[[ (Oepl o0 yiog =l f[ 2 X
enr” = 6fem = fo 4 \ to(bem” =6fcm + e +1) \ ol bom®™ = 60em + be +1)
Case-2:
£ =2c —2¢
w=——o7F ,qg =0, qy =xfm l’ = 4 ;
[P Ry Al gl fwss® s £ 0pas s iz 1) Al el oses? ac G lemmy e Dot 1Y
03” wt BP0 = St 1 ¥ goilent™ + Blom et det ] b il Glamn lewl)
Case-3
Case-4:
2 0, by =0, a = £t s
W= ————— ao =4, =, ﬂ'! =xi{m "—_"2—_'—‘
demt + o+ N \ so(fem”™ + e+ 1)

The exact solutions of Eq. (31) by using (case-1-4)

—msn( 1 (ﬂxﬂ +S"J’ﬁ +czf —wi?))
Ny 2 1A . (36)
el = ga(c’cmz-bt’cm+£’c+1) Hn_l(f:(l,—ﬁs(hﬂ +\;’ay'[’,+cz.’fi —Wlﬂ))
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1
B
m(x,n:f-'\j = " O oy vt i)

©(Ecm? —6fem + Po + 1) i1 . 37
) —SH ™ (0B
" ey vedl b
In Eq. (36) and Eq. (37), w=—v ¢
Lem™ —6lem + o+ 1
3 msn( L (ex? + pyf + 2P )
9713(_):,{):@\/ . —<C r'(g) (38)
lem™ +6Lem+be+1) [, 1, ] : "
+sh B+ ovP vz — vt
(r(ﬂ)(é’x +py" +ez’ —wi?))
1
I o5 mSH(r(ﬂ) (b“6+gf)yﬂ+czﬂ—wzﬂ))
P4 (x,8)=—~{ 2 ' (39)
\]p(ﬂcrxz‘+6€cn:+€c+1) +m-l( 1

P b B 4 exP By |
T‘ﬁ)(a\ + o +c wt?))

¢

Cem> +6fcm + fe+1

’ —~24 L B s ovP v P
@s(x,t)="{ sn (ExF + py” +czP’ —wt?)). (40)
> ©(fcm® + be+1) (A

28 sn_l( ! (.ﬂxﬁ +54)yﬁ +ezf —wlﬂ)). @n
@(tem® + e +1) r'(s)

f —2¢ T N 42)
=/ an(; (#x? + goyF 4 czf =wit?)). (
i =i p(ecm® +te+1)  T(B)

~ sn( ! (L’,\'ﬂ +5.9yﬁ +ezf —wi? ). (43)
\’ pleem® +¢c+1)  T(B)

In Eq. (38) and Eq. (39), w=

¢16(x.l) ==f

@g(x, 1) =—tm

.(@43),w= )
InEq. (40), Eq. (41), Eq. (42) and Eq. (43), w= 577

Eq. (36-43) represent the Jacobi elliptic function solutions of.Eq. f(31).
When m — 1, the solutions Eq. (36-43) convert to the following form,
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(anﬁ+py‘8+czﬂ—wtﬂ))

— tanh( !
Polx,t)=¢ ’;26_ LA
p(l-4L¢) 1

+coth(
I'(p)

(P + pyP + 2P — Py

1

tanh( (Cxp +goyﬂ +ezf —wif
(/»lg(x,t)= ¢ __i' F(ﬂ) ))
V $(l1—4¢c) 1

—colh(r(ﬁ)(/lxﬂ -l—goyﬂ +czP —-w!ﬁ)) .

In Eq. (44) and Eq. (45), w=—0"0W .
(1-4¢c)

1
tanh P B oyorB _ P
(F(ﬁ)(l + oyt +czf —wi?))

—2¢

0y0(x,0) = 5\/—-—-——
o1+ 8Ccm) +coth l

IRV

(.éxﬁ +§ yﬁ +ezP —witf )]

funiees
—2c IN05)!

1+ 8€c) ot 1
IN05))

(Exﬂ+ge)yﬂ+czﬂ~wtﬂ))

¢21(xlt) =—(

(€xﬁ+goyﬁ+cz'8—wtﬁ))

¢
(1+8¢éc)’

—2¢ L
x,t)y==~ coth ox? + _ﬁ+c2ﬂ—wtﬁ .
@22 (x,1) 1’54){1+2€c) (r(ﬂ)( x” + oy )
2c
coll
2, .
tan

; ’ =
(l+2Lc)
4

In Eq. (46) and Eq. (47) carry the value of w=

(/723()?,[): l'(ﬁ)

{ -2c 1 8 BB _..B
e (X, ) = - L ay? +cz” ~ ;
Pa5(%,1) o+ 200 T ) (Lx” + pyP +cz” —wt?))

(1+26¢)
Solitary wave solutions come from the hyperbolic functions Eq. (44-50).
When m — 0, the solutions Eq. (36-43) convert to the form,

In Eg. (48), Eq. (49) and Eq. (50), w=

Contemporary Mathematics

h( 1 (Exﬁ+5z)yﬂ+czﬂ-—wtﬂ)).
h(

(44)

(45)

(46)

(47)

(48)

(49)

(50)
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_ ’ ~2c I

?r5(x,)=¢ m{cos eC(I'(ﬂ) (é’xﬂ +gayﬁ +c2f —w!ﬁ))}. (51)
_ -2¢ 1

Prp(x,0) =1 /m {—cosec(r(m (ExP + o3P + 2P — P ))}. (52)

) = 2 el (0P + 0 0B 4 ogP B
©y7(x,1) prTE {coscc(r(ﬂ)(ﬂt +gop? +czf —wi ))}. (53)
In Eq. (51), Eq. (52) and Eq. (53), w= £ :

(1+£c)

Eq. (36)-Eq. (43) are Jacobi functions solution of the nonlinear WBBM model. Out of the eight Jacobi elliptic
functions, three of them are repeated and two results give zero solution. So, these five solutions are neglected.

S. Graphical representation

In this section, we will provide some graphical representations of the exact solutions of the space-time fractional
Equal Width(s-tfEW) equation (Eq. (10)) and the space-time fractional Wazwaz-Benjamin-Bona-Mahony (s-tfWBBM)
model (Eq. (31)). Graphical representations are portrayed below using the selected exact solutions of EW and WBBM
model.

5.1 Graphics of the solutions of s-tfE Wequatiari

0 10 20 30 40 50

424 e oY — ey '
N ——ﬁ-—._._‘q-h
<
S
4.261 ~
~
N
428 \
@) \\
p(x, 1) 4304
\
432 \
\

4344 \

[— —t=05 b=1 mwens L=1i]

(a) 3D View of Eq. (21) {b) 2D View of Eq. (21)

Figure 1. Represent the solitary wave o(x, 1) in Eq. (21) for the physical parametric values, d= 0.5, = 1/6, ¢ = 1, £ = I: (a) 3D surface, (b) 2D graphs
gure 1.
atr=05, 1, L.5
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0 . ' v .
10 20 30 40 50
X
-100 ¥
o, 1) .
olx, 1) :
-200 v s
-300 .t
[ ——t=05..... 1=] ——t=15

{a) 3D View of Eq. (23) (b) 2D View of Eq. (23)

Figure 2. Represent the solitary wave p(x, ¢) in Eq. (23) for the physical parumetric values, d = 0.5, f=3/4, c =5, ¢ = 2: (a} 3D surface and (b) 2D
praphs at¢=0.5, 1, 1.5,

Three types of results are achieved for EW equation. All of the results are analysed and some of them are depicted
in Figures (1-4). The graphs-signify the change of amplitude, direction, shape of the derived wave solutions to identify
the intrinsic nature of the model. The solution ¢(x, 1) in Eq. (15-20) represents the Jacobi elliptic functions Eq. (21-
26) shows the solitonic nature comes from hyperbolic function and Eq. (27-30) are trigonometric function exhibit as
periodic waves.

60 40 -20

-104 -

olx, 1) f
204

-304.

[--—1=05—1=1--1=15]

(b) 2D View of Eq. (25)

(a) 3D View of Eq. (25)

in Eq. (25) for the physical parametric values, d= 1, f= 3/5, ¢ = 3,2=0.25: (2) 3D surface and (b)

Fi A i e plx, [
igure 3. Represent the bell type solitary wave o(x. ) o> graphs for and (= 0.5, , 5.
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e e e T

o(x)

0 5 10 15 20

[—-—l=b.5----w1——-tvl.ﬂ

(b) 2D View of Eq. (27)

(a) 3D View of Eq. (27)

Figure 4. Represent the periodic wave of p(x, 1) in Eq. (27) for the physical parametric values, d = 0.5, B =3/4, ¢ = -3, ¢ = 1: (a) 3D surface and (b)
2D graphs at (= 0.5, 1, 1.5.

5.2 Graphics of the equation WBBM

The findings of the research on WBBM model are in the types of hyperbolic (Eq. (44-51)) and trigonometric (Eq.
(52-55)) functions. Hyperbolic and trigonometric functions represent solitonic and periodic solutions. All the results are
analysed and two types of function have been shown graphically in Figure 5 to Figure 6.

8007
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400 1

olx, ) 2004

B -4 o m T = S—— Ty e |
el 0 - Do 003 004 005

-200 1

-400 1

-600 A

-800 1

06 -1000
0 0.8 x [—i=0—i=03—1=05]

(a) 3D View of Eq. (48) (b) 2DView of Eq. (48)
£) in Eq. (48) for the physical parametric values, = 0.99, /=2, c= =2,  =1,2=0,y=0: (2) 3D

Figure 5. R ; i iodic wa X,
gu epresent the solitary periodic wave ¢ T B e e YIlGE 0.5.
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(a) 3D View of Eq. (52) {b) 3D View of Eq. (52)

Figure 6. Represent the periodic wave g(x, ¢) in Eq. (52) for the physical parametric values, #= 0.5, / = 2,c=-2, @p=1,z=0,x=0: (a) 3D surlace,
(b) 2D graphs ai1=0, 1.2.

Remarks More other Jacobi function solutions to the s-tfEW and WBBM equation are derivable by keeping the
trial solution in terms of the Jacobi functions cn(¢) and dn(¢) as below;

u(E)=ayg+ Yy aen' (£)+ Y a_jen (&), ' (54)
-1 -l
And
u(&)=ap + i a,»dn" &)+ i a_;dn”™ (). (55)
-1 i—1

In view of Eq. (54) and Eq. (55), we can add soliton and non-solitonic solutions describe via cnoidal, dnoidal
Wwaves and trigonometric functions.

6. Concluding remarks

In this portion, the space-time fractional EW and WBBM equation has successfully iutegrated \’ifi Jacobi e”.l'pl.ic
function expansion technique with beta-derivatives. By introducing a fractional transformation, the considered n-onh'nefu-
partial travelling wave equation was reduced to ordinary differential model. Then we succes'sfu[ly used .Jacobx elhplnc
expansion method to integrate the model. At the end of our procedure, three types of_' sol}ltl?ns are achlcvcd.nallinjxc ¥s
Jacobi elliptic, hyperbolic and trigonometric function with unknown parametcrs,‘whlch mdlc.ates that J.acobl e dptllc
expansion technique is very fruitful as well as apprapriate to find the exact solut‘mns of nnnlmcat f;lracuona| m:: cz
Here we, successfully derived cnoidal and dnoidal waves solutions to th‘c fractional models v«fhtc wcr; not !u:md
in the previous literature. In addition, the graphical illustration of some different types of sollfimns has f:er;1 plotie
with unknown parameters in Figures (1-4) and Figures (5-6) for s-tfEW and WBBM respectively. Researchers can
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undoubtedly use the technique to analysc the internal mechanism of nonlincar physical systems.
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