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PREFACE

The thesis entitled "A Study on Turbulent and Magneto-hydrodynamic turbulent
Flow in Incompressible Fluid" is being presented for the award of the degree of
Master of Philosophy in Applied Mathematics. It is the outcome of my research works
conducted in the Department of Applied Mathematics, Rajshahi University, Rajshahi,
Bangladesh under the supervision of Dr. Abul Kalam Azad, Associate Professor,
Department of Applied Mathematics, Rajshahi University, Rajshahi-6205,
Bangladesh.

The thesis has been divided into five chapters.

The first chapter is a general introductory chapter and gives the general idea of
turbulence, distribution functions and their principal concepts. Some results and
theories which are needed in the subsequent chapters have been included in this
chapter. Types and examples of turbulence, different stages of Reynolds number,
Reynolds equation, averaging rules, Coriolis effect etc have been briefly discussed.
Distribution functions, Joint distribution functions, equation of motion of dust
particles, spectral representation of turbulence and Fourier Transformation of the
Navier-Stockes equation have also been discussed. Lastly, a brief review of the past
researchers related to this thesis have also been studied in this chapter. Throughout the
work we have considered the flow of fluids to be isotropic and homogeneous. The
notions generally adopted are those used by Taylor, Vonkarman, Hinze, Reynolds,

Deissler, Sarker, Kisore, Batchelor, Coriolis and Lundgren.

The Second chapter consist of two parts. In part A, we have studied the decay of
temperature fluctuations in dusty fluid homogeneous turbulence prior to the final
period considering correlations between fluctuating quantities at two- and three-
point. In this part we have tried to solve the correlation equations by converting it to
spectral form by taking their Fourier transform. Lastly, by integrating the energy
spectrum over all wave numbers, the energy decay law of temperature fluctuations in
homogeneous turbulence before the final period in presence of dust particle is

obtained.



In part B, we have studied the decay of temperature fluctuations in dusty fluid
homogeneous turbulence before the final period in presence of Coriolis force and
have considered correlations between fluctuating quantities at two- and three- points
by neglecting the fourth order correlation in comparison to the second and third order
correlations. The correlation equations for two- and three- point in a rotating system
in presence of dust particles are obtained and these equations are converted to spectral
form by taking their Fourier transforms. Finally by integrating the energy spectrum
over all wave numbers, the energy decay law of temperature fluctuations in
homogeneous dusty fluid turbulence before the final period in presence of Coriolis

force is obtained.

The Third chapter consists of two parts. In part A, we have studied the joint
distribution functions for simultaneous velocity, temperature, concentration fields in
turbulent flow undergoing a first order reaction in presence of Coriolis force. The
various properties of the constructed joint distribution functions have been discussed.
In this chapter we have tried to derive the transport equations for one and two point
joint distribution functions of velocity, temperature, concentration in convective

turbulent flow due to first order reaction in presence of coriolis force.

In part B, we have an attempt to derive the transport equation for the joint
distribution function of certain variables in convective turbulent flow undergoing a
first order reaction in a rotating system in presence of dust particles. Equations for the
evolution of one- point and two- point joint distribution function for velocity,
temperature and concentration in convective turbulent flow field undergoing first-
order reaction in a rotating system in presence of dust particles have been derived.
Finally we have made a result with comparison of the equation for one- point
distribution function in the case of zero coriolis force in the absence of the dust

particles and negligible diffusivity.

In Chapter four, we have studied the statistical theory of certain variables for three-
point distribution functions in MHD turbulent flow in a rotating system in presence of
dust particles. In this chapter we have made an attempt to derive the transport
equations for evolution of distribution functions for simultaneous velocity, magnetic,

temperature and concentration fields in MHD turbulent flow due to Coriolis force in

1



presence of dust particles and various properties of the distribution function have been

discussed.

In Chapter five, we have made an attempt to discuss the summary about the whole

thesis.

The following research papers are extracted from this research work. No. 1 and 2 have

been published, and other three communicated for publication in different national

and international journals:

1.

Azad M.A.K. and Mumtahinah Mst. Decay of Temperature Fluctuations in
Dusty Fluid Homogeneous Turbulence Prior to the Final Period. Res. J. Appl.
Sci. Engng. Tech., 6(8), 1490-6, 2013

Azad M.A.K. and Mumtahinah Mst. Decay Of Temperature Fluctuations In
Dusty Fluid Homogeneous Turbulence Prior To The Ultimate Period In
Presence Of Coriolis Force. . Res. J. Appl. Sci. Engng. Tech., 7(10), 1932-
39,2013

Azad M.AK. and Mumtahinah Mst. Transport Equation for the Joint
Distribution Functions of Certain Variables in Convective Turbulent Flow in
Presence of Coriolis Force Under Going a First Order Reaction.
(Communicated for publication)

Mumtahinah Mst and Azad M.A.K.. Transport Equation for the Joint
Distribution Functions of Certain Variables in Convective Dusty Fluid
Turbulent Flow in a Rotating System Under Going a First Order Reaction.
(Communicated for publication)

Mumtahinah Mst and Azad M.A.K.. Statistical Theory of Certain Variables
for Three- Point Distribution Functions in MHD Turbulent Flow in a Rotating

System in Presence of Dust Particles. (Communicated for publication)
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CHAPTER-I

GENERAL INTRODUCTION

1.1 Basic Concept of Turbulence

Fluids are anything that flow conventionally classified as either liquids or gases,
treated as continuous media, and their motion and state can be specified in terms of
the velocity u, pressure p, density p, etc evaluated at every point in space x and time t.
Fluid dynamics is the natural science of fluids that deals with fluid flow. It is a
subdiscipline of fluid mechanics. Fluid dynamics is one of the most important area of

Physics.

Our life would not exist without fluids, and without the behaviour that fluids exhibit,
the air we breathe and the water we drink are fluids and it makes most of our body
mass. Fluid phenomena often studied by physicists, astronomers, biologists and others
who do not necessarily deal in the design and analysis of devices. Atmospheric
scientists study global circulation for long-range weather prediction and analysis of
climate change; mesoscale weather patterns for short-range weather prediction,
tornado and hurricane warnings and pollutant transport. Ocean circulation patterns are
studied in Oceanography to find out causes of El Ni™no, effects of ocean currents on
weather and climate, and effects of pollution on living organisms. Convection in the
Earth’s mantle is studied in Geophysics to understand plate tectonics, earthquakes,
volcanoes and Production of the magnetic field. In biological sciences circulatory and
respiratory systems in animals, and cellular processes are under the study area of

Fluid Dynamics.

It is easily recognized that a complete listing of fluid applications would be nearly
impossible simply because the presence of fluids in technological devices is
ubiquitous. Internal combustion engines in all types of transportation systems
(Turbojet, scramjet, rocket engines), Waste disposal (chemical treatment, incineration,

sewage transport and treatment), Steam, gas and wind turbines, and hydroelectric
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facilities for electric power generation, Pipelines (crude oil and natural gas transferral,
irrigation facilities and office building and household plumbing), Fluid/structure
interaction (design of tall buildings, continental shelf oil-drilling rigs, aircraft and
launch vehicle airframes and control systems, dams, bridges, etc.), Heating,
ventilating and air-conditioning (HVAC) systems, Cooling systems for high-density
electronic devices, Solar heat and geothermal heat utilization, Artificial hearts, kidney
dialysis machines, insulin pumps - these all are just few examples of application of

fluid dynamics in technologies.

Fluid dynamics offers a systematic structure that embraces empirical and semi-
empirical laws derived from flow measurement and used to solve practical problems.
The solution to a fluid dynamics problem typically involves calculating various
properties of the fluid, such as velocity, pressure, density, and temperature, as

functions of space and time.

The flow of fluids can be qualitatively characterized as laminar or turbulent. Laminar
flow 1is typically either a very slow motion or involves a level of viscosity. Fluid
particles move evenly and slide across each other in layers (lamina is Latin for layer,
plate), and are therefore laminar. However, turbulent flows (turbulentus is Latin for
uneven) are characterized by quick motion or a low effect of viscosity, when even
minor perturbations in stream grow uncontrollably and cause unpredictable local

behaviour of fluid and intensive eddy mixing in the whole area.

Nearly all macroscopic flows encountered in the natural world and in engineering
practice are turbulent. Winds and currents in the atmosphere and ocean; flows through
residential, commercial, and municipal water (and air) delivery systems; flows past
transportation devices (cars, trains, aircraft, ships, etc.); and flows through turbines,

engines, and reactors used for power generation and conversion are all turbulent.

Turbulence is an enigmatic state of fluid flow that may be simultaneously beneficial
and problematic. For example, in airbreathing combustion systems, it is exploited for

mixing reactants but, within the same device, it also leads to noise and efficiency
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losses. Within the earth’s ocean and atmosphere, turbulence sets the mass,
momentum, and heat transfer rates involved in pollutant dispersion and climate
regulation.

Defining turbulence is a very critical job. As stated in Oxford dictionary Turbulence is
violent or unsteady movement of air or water, or of some other fluid. Turbulent flow
is flow that is “irregular” in time and space. However this is not exact mathematical
definition. In Turbulence or turbulent flow is a flow regime characterized by chaotic
property changes that includes low momentum diffusion, high momentum convection,
and rapid variation of pressure and velocity in space and time. According to Webster's
"New International Dictionary", turbulence means agitation, commotion and
disturbance. This definition however, is too general and not sufficient to characterize
turbulent fluid motion in the modern sense. Lesieur [62] with some humour stated,
"Turbulence is a dangerous topic which is at the origin of serious fights in scientific
meetings since it represents extremely different points of view, all of which have in
common their complexity, as well as an inability to solve the problem. It is even

difficult to agree on what exactly is the problem to be solved."

In 1937 Taylor and Vonkarman [106] gave the definition: "Turbulence is an irregular
motion which in general makes its appearances in fluids, gaseous or liquid, when they
flow past solid surfaces or even when neighbouring streams of the same fluid flow
past or over one another". As per the definition the flow has to satisfy the condition
of irregularity. Irregularity is a very important feature of turbulence and because of it,
describing the motion in all details as a function of time and space coordinates is
impossible. However, using laws of probability the irregularity of turbulent can be
described. It appears possible to indicate distinct average values of various important
quantities, such as velocity, pressure, temperature etc. If turbulent motion were
entirely irregular, it would be inaccessible to any mathematical treatment. Therefore,

it is not sufficient just to say that turbulence is an irregular motion.

Hinze [42] suggested that, "Turbulent fluid motion is an irregular condition of flow in
which various quantities show a random variation with time and space co-ordinates,

so that, statistically distinct average values can be discerned". This definition
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incorporated both time and space co-ordinates and justified that turbulent motion is

not only irregular in time.

Oertel et al [74] said that Turbulence is the swirling motion of fluids that occurs

irregularly in space and time.

Reynolds [83] made the first systematic experimental investigation of turbulent flow.
Taylor and Vonkarman [106], Stanisic [103], Deissler [32] developed the idea of
turbulent flow. According to Stanisic the study of interaction between a magnetic
field and turbulent motion of an electrically conducting fluid is called magneto-
hydrodynamics. Deissler [32, 33] developed a theory for homogeneous turbulence,
which was valid for times before the final period. Sarker and Kisore [96] studied the

decay of MHD turbulence before the final period.

But a universally accepted definition of a turbulent flow is given as the flow in which
variables like velocity, density, pressure etc. are random variables having some mean
values. The ratio of the random part of the motion to the mean motion in a turbulent

flow is called the intensity of the turbulence.

Actually Turbulence is better to express as a list of properties and attributes that can

help to identify turbulent flows:

Randomness: Turbulent flow is unpredictable in the sense that small random
perturbations during a particular period of time are amplified to that level, and after a
certain period of time deterministic prediction of further development becomes

impossible.

Diffusitivity: Mixing of transported scalar quantities occurs relatively more quickly
than during molecular diffusion. The intensity of this mixing can be several orders of

magnitude greater than mixing occurring as a result of molecular diffusion.
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Vorticity: Turbulent flows are characterized by high local values of vorticity related
to the presence of vortex structures. The field of vorticity is generally non-
homogeneous and changes dynamically in time. Vortex structures tend to be referred
to as coherent vortices or more generally coherent structures.

Scale spectrum: Vortex structures, which occur spontaneously in a turbulent flow
field, are characterized by a wide scale of length measuring units. The structures size
is characterized by dense spectrum typical for fractals. Turbulent flow field can be
characterized as a dynamical system with a “very high” number of degrees of

freedom.

3D structure: Vortex structures occur in the space of a turbulent flow field in random
locations and with random orientation. The 3D structure of the vector field of velocity
fluctuations originates from this situation. During certain boundary conditions, the
structures greater than the certain limit size can be spatially arranged; for example,

they can have a planar character.

Dissipation: Turbulence is a dissipative process, which means that the kinetic energy
of the motion of a fluid is dissipated at the level of small vortices and changes to heat.
Therefore, in order for turbulent flows to be conserved over the long term, it is
necessary to supply energy to the system from outside. This is done in the area of
large scales; energy is collected from the main stream. The energy is then transferred

towards smaller scales with the help of cascade transfer.

Non-linearity: Turbulent flows are basically non-linear, and their occurrence is
conditioned on the application of non-linearities, when a growth of small
perturbations occurs. The development as well as the interaction of individual
structures in the turbulent flow field can be described only with a non-linear

mathematical model.

The flow of water in the river, clouds in the sky, burning flames, the starry universe —
these are some examples of phenomena that we can label as turbulent. Ever since

ancient times Turbulence has always been a fascinating phenomenon for people.
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Though thinkers are continuously trying, the process of recognizing the laws of

turbulence has not been finished due to its variability and complexity.

The fascinating complexity of turbulence has attracted the attention of scientists for
centuries. One of the first known findings about the structure of turbulence in modern
times was the observation of fluid flows by Leonardo da Vinci. Leonardo illustrated
the flow of water as a moment when the turbulent flow field is comprised of various

structures of various sizes. Figure 1.a.

Figure 1.a Painting by Leonardo da Vinci showing turbulence in flow of water.

Another historical example of a regular structure in turbulent flow is the known red
spot on Jupiter. It is basically an enormous storm — turbulent vortex (anti-cyclone) and
has lasted at least 350 years (in 1655 it was first observed by French astronomer

Cassini). Figure 1.b

Figure 1.b: Turbulent vortex in Jupiter
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The word turbulence is employed to label many different physical phenomena, which
exhibit the common characteristics of disorder and complexity. It is the ubiquitous
presence of spontaneous (intrinsic) fluctuations, distributed over a wide range of
length and time scales makes the very nature of the turbulent fluctuations extremely
peculiar. Turbulence has to do with non-linearity; there is no hint of the non-linear
solutions in the linearized approximations, and strong departure from absolute

statistical equilibrium.

Everyday experiences enable us to recognize turbulence. The smoke that rises from a
cigarette or fire shows the irregular behavior of the moving air that carries it. Wind is
subject to sharp local changes in direction and speed, which can have dramatic results
for sailors and pilots. During transport by passenger aircraft, the term “turbulence” is
often associated with buckling seatbelts. The term is also used when describing free
streams and streaks. When water flows in a river, its presence has an important effect
for the settling of sediment on the bottom. Quick flow of fluid around an obstacle or
around an aviation profile creates turbulence in the between layer and creates a
turbulent jolt causing increased resistance strength, which causes the flow fluid to
affect the obstacle. The behavior of most oceanic and atmospheric flows cannot be
exactly predicted, because they fall into the category of turbulent flows, and the same
applies to flows of planetary scales. Small-scale turbulence in the Earth atmosphere
represents a serious problem during astronomical observations conducted from the
Earth surface, and it is a decisive factor to take into consideration when selecting an
observatory. The atmospheres of planets such as Jupiter and Saturn, the solar
atmosphere and the Earth outer atmosphere are turbulent. Galaxies typically have the
shape of vortices similar to those that occur in turbulent streams, such as flows in a
mixing layer of two streams of different velocity. These are formed as a result of
turbulent phenomena. We can name a lot of other similar examples from
aerodynamics, hydraulics, nuclear and chemical engineering, oceanology,
meteorology, astrophysics, cosmology or geophysics. On the opposite field of the
spectrum there are quantum vortices occurring in a superfluid fluid, which have

dimensions expressible in multiples of the average size of an atom. The realm of
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turbulence therefore includes our observed universe, and turbulence is a typical kind

of behavior of that universe in all of its degrees.

1.2 Example of Turbulence:

Turbulent motion is the most common motion in nature. Laminar flow is rather an
exception and is limited to flow that can be characterized by very low velocity and
thus Reynolds number (Re) values. In view of the definition of Re, this means that
either the flow speeds are very low (such as melting of glaciers) or the typical
dimension of the area is very small (such as motion of microorganisms in fluid) or the
fluid shows extremely high viscosity (such as the motion of lubricant in bearings). Of

course, a combination of these situations can also be considered.

Grid turbulence: A classic example of turbulent flow is flow behind a grid made
from rods, which have regular square eyes. Behind individual rods, wakes are formed,
which interact with each other and very quickly cause flow of a homogeneous
structure (at a distance of about 20 spaces from the grid). The resulting flow, which is
usually referred to as “grid turbulence”, has certain beneficial properties. Mainly it is
to a great extent homogeneous in a statistical sense in a level parallel to the grid
generator of turbulence. The fluctuations also show a high level of isotropy, and

deviations are in order of percentages.

For its beneficial properties as well as for its relatively easy achievability in

laboratory conditions, grid turbulence has been considered an etalon of turbulent flow.

Free shear layers: The occurrence of free shear layers is unusually common, such as
during surrounding of bodies or during flows through curved or non-prismatic
(expansion) channels or at the boundary of an area of flow fluid in an unlimited space
(jet). A free shear layer is nearly always unstable and results in the creation of vortex
structures. In practice, we encounter free shear layers everywhere where a jet of fluid
blown into a calm environment occurs or in connection with separation of a boundary

layer.
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Boundary layers: During flow in the boundary layer on the surrounded surface, the
decisive parameter is the Reynolds number, where the length parameter can be
thickness of the layer or the distance of the particular location from the beginning of
the boundary layer, meaning for example from the leading edge. At a certain value of
this parameter, a transition occurs of the boundary layer to turbulence. The boundary

layer also has a turbulent structure.

Wakes: Wakes behind bluff bodies have a turbulent character with a dominant quasi-
periodic low-frequency component. In relation to bluff bodies, the Reynolds number
is decisive, where the length parameter is the transverse dimension of the bluff body.
A typical situation is transverse surrounding of a cylinder, when a quasi-periodic von

Karman-Bénard vortex street occurs in the wake.

Heat transfer: Also during flow combined with heat transfer, we can often observe
behaviour of fluid that can be described as turbulent. If fluid flow occurs as a result of
heat transfer, it is referred to as natural convection. Thermal energy then causes fluid
flow, which under certain conditions can be turbulent. An example is the surface of
the sun, in which turbulent convective flow in the solar atmosphere is very apparent.
This is caused by differences in temperatures between the surface of the sun and
higher layers of its atmosphere and the lower temperatures on the surface in areas of
sun spots. The photograph shows obvious turbulent sections and a cell structure in the

background, which is related to Rayleigh-Bénard convection.

Chemical turbulence: Chemical reactions are processes with various non-linear
dynamic characteristics. Non-linearities have their origin in the interaction of various
particles between each other and in the behaviour of individual particles. An example
is a Belousov-Zhabotinsky reaction, during which an oscillating reaction occurs
without any variable external influences. It has been shown that for achievement of a
homogeneous structure of a mixture (reactants are citric acid, potassium bromide,
sulfuric acid and cerium ions), very intensive mixing is necessary, or otherwise the
result is non-homogeneousness of both a stationary character (Turing structures) and a

non-stationary character. Through intensive mixing, a structure can be maintained
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more or less homogeneous. Of course if we do not apply mixing, certain unstable
frequencies occur in flows, which can culminate into quasi-stationary structures,
which differ from each other based on their chemical contents. During a Belousov-
Zhabotinsky reaction, when regular spiral structures are created as a result of periodic
oscillations, which are related to global Hopf bifurcation. The chemical particles
participating in the reaction differ by color. This is a very stable process also known
as a “chemical clock”. If we breach the equilibrium of the particles entering into the
reaction, then the reaction will either be stopped or will transit to a stormy turbulent

regime.

Burning: Burning is another area with the occurrence of a whole range of turbulent
conditions. It basically involves a combination of the two previously mentioned cases;
it is a chemical reaction which is strongly exothermal and under normal circumstances

irreversible.

1.3 Different Types of Turbulence

Taylor and Vonkarman [106] have stated that turbulence can be generated by the
friction forces at fixed walls (fluid flow through conduits, fluid flow past solid
surfaces) or by the flow of layers of fluids with different velocities past or over one

another.

This definition indicates that there are two distinct types of turbulence.

(1) Wall turbulence: Turbulence is generated by the viscous effect due to presence of
a solid wall 1s designated as wall turbulence.

(i1) Free turbulence: Turbulence in the absence of wall generated by the flow of layers

of fluids at different velocities is called free turbulence.

1.4 Isotropic Turbulence

Batchelor [22] and Hinze [42] discussed homogenous isotropic turbulence in greater
detail in their study. Isotropic turbulence is the simplest type of turbulence, because
statistical features of it have no preferred direction or orientation. No average shear

stress can occur and consequently, no velocity gradient is found in the mean velocity.
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This mean velocity, if it occurs, remains constant throughout the field. A minimum
number of quantities and relations are required to describe structure and behavior of
Isotropic turbulence because of its simplicity and not having preference of any
specific direction. However, actual turbulent flow showing true isotropy cannot be
found - that indicates this type of turbulence has only hypothetical existence - though

conditions may be made such that isotropy is more or less closely approached.

In isotropic turbulence the mean value of any function of the velocity components and

their derivatives is unaltered by any rotation or reflection of the axes of references.

. . —2 =2 _ =2
Thus in particular, %" =u, =u; and U, =uu; =uzu, =0,

So, if the turbulent fluctuations are completely isotropic, that is, if they do not have
any directional preference, then the off-diagonal components of u,u; vanish, and the

normal stresses are equal. This is illustrated in Figure 1.C

Isotropic Anisotropic

Figure 1.c: Isotropic Turbulence

Isotropy introduces a great simplicity into the calculations. The study of isotropic

turbulence may also be of practical importance, since far from solid boundaries it has
—2 —2 —2 )
been observed that u; ,Uu,,uU; tend to become equal to one another, e.g. in the

natural winds at a sufficient height above the ground and in a pipe flow near the axis.
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1.5 Homogeneous Turbulence

Turbulence which has quantitatively the same structure in all parts of the flow field is
called homogeneous turbulence. In a homogeneous turbulent flow field, the statistical
characteristic are invariant for any translation in the space occupied by the fluid. The
conception of homogeneous turbulence is also idealized, in that there is no known

method of realizing such a motion exactly.

However, the idealization of turbulence as being homogeneous or spatially stationary
and isotropic allows some significant simplifications. Turbulence behind a grid towed
through a nominally quiescent fluid bath is approximately homogeneous and
isotropic, and turbulence in the interior of a real inhomogeneous turbulent flow is

commonly assumed to be homogeneous and isotropic.

1.6 Convective Turbulent Flow

Convection is an important turbulent process. Turbulent convection or Rayleigh-
Bénard convection in a fluid heated from below and cooled from above is found to
play a major role in a great deal of natural and industrial processes, e.g., in the sun,
planetary atmospheres, industrial manufacturing, and many other places. When the
temperature difference exceeds a particular level, the heated fluid rises and the cooled
fluid falls, thereby forms one or more convection cells. Increasing the difference
causes the well-defined cells to become turbulent. Turbulent convection occurs in
earth’s outer core, atmosphere, and oceans, and is found in the outer layer of the sun
and in giant planets. A very common example is found in the photosphere of the sun,
where an irregular and continuously changing polygonal pattern of bright areas

surrounded by darker boundaries is a dominant feature.

1.7 Laminar Flow and Turbulent Flow:

Viscous flows generically fall into two categories though the boundary between them
is imperfectly defined - laminar and turbulent. The basic difference between the two
categories is phenomenological. Reynolds [83] demonstrated it in a dramatic way by
injecting a thin stream of dye into the flow of water through a tube (Figure 1.D). At

low flow rates, the dye stream was observed to follow a well-defined straight path,
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indicating that the fluid moved in parallel layers (laminae) with no unsteady
macroscopic mixing or overturning motion of the layers. Such smooth orderly flow is
called laminar. However, if the flow rate was increased beyond a certain critical
value, the dye streak broke up into irregular filaments and spread throughout the cross
section of the tube, indicating the presence of unsteady, apparently chaotic three-
dimensional macroscopic mixing motions. Such irregular disorderly flow is called a

turbulent.

laminar

N

C ol urbulent

Figure 1.d: Reynold's experiment to distinguish between lamina and turbulent flows. At
low flow rates (the upper drawing), the pipe flow was laminar and the dye filament
moved smoothly through the pipe. At high flow rates (the lower drawing), the flow
became turbulent and the dye filament was mixed throughout the cross section of the

pipe.

Laminar flow or streamline flow occurs when a fluid flows in parallel layers, with no
disruption between the layers [85]. At low velocities the fluid tends to flow without
lateral mixing, and adjacent layers slide past one another like playing cards. There are
no cross currents perpendicular to the direction of flow, nor eddies or swirls of fluids
[38]. In laminar flow the motion of the particles of fluid is very orderly with all
particles moving in straight lines parallel to the pipe walls [72]. Laminar flow tends to
occur at lower velocities, below the onset of turbulent flow. Figure 1.e is showing

Laminar Flow.
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Turbulent flow is a less orderly flow regime that is characterized by eddies or small
packets of fluid particles which result in lateral mixing. Turbulent flows can often be
observed to arise from laminar flows as the Reynolds number is increased. The
transition to turbulence happens because small disturbances to the flow are no longer
damped by the flow, but begin to grow by taking energy from the original laminar

flow. Figure 1.f shows Turbulent flow.

Laminar Flow —_—

Figure 1.e

Turbulent Flow —_—

Figure 1.f

Reynolds demonstrated that the transition from laminar to turbulent flow always

occurred at a fixed value of the ratio that bears his name, the Reynolds number, Re =

Vv—d ~ 2000 to 3000 where V is the velocity averaged over the tube’s cross section, d is

the tube diameter, and v is the kinematic viscosity.

1.8 Reynolds Number and its Effect on Turbulent Flow
In the year 1883 a British physicist Osborne Reynolds [84] demonstrated that the

transition from laminar to turbulent flow in a pipe depends upon the value of a
mathematical quantity equal to the average velocity of flow times the diameter of the
tube times the mass density of the fluid divided by its absolute viscosity.

Mathematically,

intertia force v? vd Vd
Reynolds no. = —f = pm, =2
viscous force £2 i v

Where V = mean velocity of liquid
d — diameter of pipe

v = kinematics viscosity of liquid



http://en.wikipedia.org/wiki/Eddies
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This mathematical quantity is a pure number without dimensions that represents the
type of flow, i.e., either the flow is laminar or turbulent. The number is called
Reynolds number after the name of its inventor. Reynolds [84] found that to be
laminar flow the number should remain less than 2000. For the Reynolds number
between 2000 to 2300, the flow is neither laminar nor turbulent. However, when the

Reynolds number for a flow exceeds 2300, it becomes turbulent.

1.9 Critical Reynolds Number:

Reynolds conducted in a series of experiments in which water at rest in a tank was
allowed to flow through a glass pipe. Reynolds argued that it was likely to exist a
critical value of a certain non-dimensional quantity beyond which a laminar flow
gives rise to a "sinuous" motion. It was found from Reynolds observations of the
flow for tubes with different diameter, different velocities, with altered kinetic
viscosity through changes in temperature that as the velocity of the fluid exceeds
some critical value, the stationary and the regularity of the flow break off. Small
(velocity) disturbances are no longer damped by the laminar flow, but grow by
extracting kinetic energy from the mean flow. Disordered swirling motions, in which
fluid particles follow complicated (non-brownian) trajectories, take place. The flow is
then called turbulent. In this situation, velocity gradients are much larger and the
Reynolds number at which there is a transition from laminar to turbulent flow is

called Critical Reynolds Number.

The approximate value of the critical Reynolds number Rec at which the laminar
regime breaks down was established to be order of 2x10°. Later with Reynolds
apparatus, Ekman [37] was able to maintain laminar flow up to a critical Reynolds
number of 4x10* when the testing conditions were made extremely free from
disturbances. Therefore, critical Reynolds number are classified into two

(1) Upper critical Reynolds number

(i1) Lower critical Reynolds number
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1.10 Upper Critical Reynolds Number

The upper critical Reynolds number is a number at which the flow enters from
transition to turbulent flow. However, several more recent investigators [40, 81] have
repeatedly demonstrated that there is no definite upper critical Reynolds number
rather the numerical value depends largely on the test conditions affecting the initial

turbulence of flow.

Obviously, the upper critical Reynolds number is a function of initial disturbances; its
numerical values always increase with a decrease in disturbances. For engineering
purposes, high numerical values of the upper critical Reynolds number are of limited
practical significance; the transition from laminar to turbulent flow in a tube may be

assumed to take place at 2100-4000.

1.11 Lower Critical Reynolds Number

The lower critical Reynolds number is a number which defines the below limit of
laminar flow. In other words the critical Reynolds number at which the flow enters
from laminar to transition period is known as a lower critical Reynolds number. At

lower critical Reynolds number is taken to be approximately 2000.

In brief status of flow can be can be changed at various phases of Reynolds number.
When it is smaller than the critical Reynolds number i.e. R < Recr, the flow is
laminar. If the Reynolds number is greater than the critical Reynolds number i.e. R >
Recr, the flow is turbulent. Transition normally takes place at Reynolds number 2000-

4000.

1.12 Averaging Procedure:

Averaging method is unavoidable for the statistical formulation of the theory of
turbulence. In turbulent flow the instantaneous velocity u is the sum of the time
average part U and fluctuating velocity u’ i.e.

u=u+u'. (1.12.1)

Where, U — mean velocity
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u’— fluctuating velocity and

u — velocity of motion

In taking the average of a turbulent quantity, the result depends not only on the scale
used but also on the demand of averaging. Pai [75] introduced four different kinds of
averaging procedure to study turbulent flows. These are time average, space average,

space-time average and ensemble average.

Time average can be used for quasi-steady turbulent flow field. For a homogeneous
turbulence flow field, space average can be considered. If the flow field is steady and
homogeneous, space-time average is used. Lastly, if the flow field is neither steady
nor homogeneous, we assume that averaging is taken over a large number of
experiments that have initial and boundary conditions. This type of average is called
ensemble average or statistical average. Ensemble average is more general than the
time and space averages and very useful for the study in homogeneous, non-stationary
turbulent flow. This type of averaging can be applied to any flow. However, like the
time and space averages, the physical interpretation of the ensemble average is not so
simple. In general the hierarchy of correlations completely determine any turbulent

field. According to Leslie's [61] the assemble average is defined as-

(uii (7", t) )r (ui (7", t)u] (7"’, t) ); (ui (7", t)u] (7"’, t)umi (7"”, t))

where ( ) denote the ensemble average.

In homogeneous isotropic turbulence the first correlation represents the mean
velocity, and is simply zero, the pair correlation (u;(r)u;(r')) is often considered to be
a sufficient description of turbulent flow. The higher order correlations are assumed to
give less and less information so that only a finite number of correlations are required

to determine the statistical properties of turbulence.

The double correlation tensor Rj;(F, X, t) for two-points separated by the space vector f

is defined by

N =
-
ot

N——
£

/-~
>
+

N =
gt
ot

N————
~N~—

Rij (f, )’Z, t) = (ui ()’Z -
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Similarly, the triple correction tensor T or higher correlation tensors can be

introduced.

The Fourier transform of R;; with respect to T defined by

R 1 ..

represents the energy spectrum function E(R, t) in the sense that it describes the
distribution of kinetic energy over the various wave number component of turbulent
flows. The Fourier transform defined above can be treated as generalized functions or
distributions in the sense o Lighthill [63]. It follows from the inverse Fourier

transform that

[oe)

1 1 1 - -
~{u?) = 5 @ @) = 5 Ry(0,2,0) = f E(R,¢)dF.
0

So that E(f{, t) represents the density of contributions to the kinetic energy in the wave

number of space k, thus the investigation of the energy spectrum function E(f(, t) is

the central problem of the dynamics of turbulence.

The mathematical form of the four methods of averaging procedure are given below

(i) Time average for stationary turbulence
+T

t 1
;(x, t) = ’11"1—I>Ioloﬁ f u(x, t)ds.

-T

The scale used in the averaging process determines the value of the period 2T.

(i1) Space average in which we take the average over all the spaces at a given time, i.e.

S 1
—(x,t) = lim — f u(s, t)ds.
u Vp—00 Vb

Vb

The scale used in the averaging process determines the volume of space V.
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(ii1) Space time average in which we take the average over a long period of time and

over the space. i.e.,

+T
o= li L dsd
0= din ey | [ ey

—TVb
The scale used determines both the values of T and V.
(iv) Statistical average in which we take the average over the whole collection of

sample turbulent functions for a fixed time, i.e.

2(x,t,w) = j u(x, t, w)du(w)
4 Q

over the whole Q space of w, the random parameter, where | Q du(w) = 1.

The essential characteristic of the turbulent motion is that the turbulent fluctuations
are random in nature. A turbulent velocity field can be regarded as a random vector
field of a set of vectors in space and time. Any random vector field can be regarded as
a field consisting of three random scalar fields as its components. A random scalar
function u(x, t, ) is a function of the spatial co-ordinates x and time t, which depends
on a parameter w. The parameter w is chosen at random according to some

probability law in a space.

In the experimental investigation we use time averages almost exclusively, space
averages seldom and never statistical averages. In theory, we use almost exclusively

the statistical averages.

For stationary homogeneous turbulence we may expect and assumed that the three

averaging lead to the same result

t S w

u u u

which is Ergodic hypothesis.

1.13 Reynolds Rules of Averages

Osborne Reynolds [83] introduces elementary statistical motion into the consideration

of turbulent flow. In the theoretical investigation of turbulence, he assumed that a
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turbulent flow instantaneously satisfies the Navier-Stokes equations and that the
instantaneous velocity may be separated into a mean velocity and a turbulent
fluctuating velocity. However, it is virtually impossible to predict the flow in detail at
high Reynolds numbers, as there is an enormous range of length and time scales to be

resolved.

If u, P, T and p be respectively the instantaneous velocity, pressure time and density,
then the process of averaging are written as
u=u+u,P=P+P,p=p+p,T=T+T etc.

Here the quantities with bar denote mean values and the quantities with prime denote
fluctuating values.

Furthermore, i’ = P’ =T’ = 0.

In the study of turbulence we often have to carry out an averaging procedure not only

on single quantities but also on products of quantities.

In order to develop the rule of averaging, three arbitrary statistically dependent
physical quantities e.g., A, B, C can be considered, each consisting of a mean and
fluctuating part, i.e.

A=A+aB=B+bandC=C+c (1.13.1)

+a=A whena=0 (1.13.2)

>l

thenA=A+a=

In the above relations we used the properties that the average of the sum is equal to
the sum of the averages and the average of a constant times B is equal to the constant

times the average of B.

Then,
AB = AB = AB (1.13.3)
Ab=Ab=Ab= ~b=0 (1.13.4)

Ba=Ba=Ba=0 -3a=0 (1.13.5)
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Similarly,

AB=(A+a)(B+b)=AB+Ab+

UOI|
+
8
Il
)
oo]]
+
g

(1.13.6)

Note that the average of a product is not equal to the product of the averages terms

such as ab are called correlations.

1.14 Reynolds Equations and Reynolds Stresses

We usually assume that in turbulent flow, instantaneous velocity components satisfy

the Navier-Stockes equation

Z—Itj+(U.V)U=F—%Vp+VV2U. (1.14.1)
The tensor form the equation (1.14.1) can be written as
6u1 duj _ . 1dp 9%y

+ u; o . + V—au]- o0 (1.14.2)

Substituting the expression for the instantaneous velocity components u; = ; + uj,
into the Navier-Stockes equation (1.14.2) for an incompressible fluid after neglecting
the body force and taking the mean values of these equations according to Reynolds
rule of averaging (1.13.1) - (1.13.6), we have the following Reynolds equation of

motion for the turbulent flow of an incompressible fluid.

ou; , _ 0w\ _ _ 0P %w |, 9
P <E Ty an) T ox T Mok ox ; 0% + (pu ul) (1.14.3)

here i and j run from 1 to 3 and Einstein's summation convection is used. The bar
represents the mean value and the prime represents the turbulent fluctuation.
Additional terms over the Navier-Stockes equations are due to Reynolds stress are
—pii2 and the eddy stresses are —puyy pulu! (i # j), where p is the density of the fluid.
These stresses represent the rate of transfer of momentum across the corresponding

surfaces because of turbulent velocity fluctuations.

The solutions of Reynolds equation represent the turbulent flow, but as in the case of
Navier-Stockes equation it is not possible to solve Reynolds equations for many

practical purposes. In general the Reynolds equations are not sufficient to determine
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the unknown variable u;, U; (i,j = 1,2,3), p and Reynolds stresses. This is one of the

main difficulties in theoretical investigation of turbulent flow. In similar way,
Reynolds equation of motion for the turbulent flow of a compressible fluid may be
obtained. But the expressions for the eddy stresses (Reynolds stresses) of
compressible fluid are much more complicated because the fluctuations of density

should be considered.

1.15 Coriolis Force

In a rotating coordinate system there is an apparent force which deflects an object in
internal motion from a straight line path, the resulting path is curve in the direction
opposite to the direction of coordinate rotation, then the deflection force is called
Coriolis (1792-1843), has traditionally been derived as a matter of coordinate
transformation by essentially kinematical technique. This has the consequence that it's
physical significance for processes in the atmosphere, as well for simple mechanical
systems. It also helps to clarify the relation between angular momentum and rotational
kinetic energy and how an inertial force can have a significant effect on the movement

of a body and still without doing any work.

The mathematical expression of the Coriolis acceleration is a, = —20 X v, where a,
is the acceleration of the particle in the rotating system, v is the velocity of the particle
in the rotating system, and Q is the angular velocity vector which has magnitude equal
to the rotation rate w and is directed along the axis of rotation of the rotating reference

frame, and X symbol represents the cross product operator.

Hence mathematically the Coriois force is F. = —2mQ X v, where m is the mass of

the relevant object.

1.16 Coriolis Effect
The Coriolis effect is a deflection of moving objects when they are viewed in a
rotating reference frame. In a reference frame with clockwise rotation, the deflection

is to the left of the motion of the object; in one with counter-clockwise rotation, the
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deflection is to the right. The Rotation of the earth and the inertia of the mass
experiencing the effect create Coriolis effect. When Newton's laws of motion govern
the motion of an object in a (non accelerating) inertial frame of reference are
transformed to a rotating frame of reference, the Coriolis and centrifugal forces
appear. Both the forces are proportional to the mass of the object. The Coriolis force
is proportional to the rotation rate and centrifugal force is proportional to its square.
The Coriolis force acts in a direction perpendicular to the rotation axis and to the
velocity of the body in the rotating frame and is proportional to object's speed in
rotating frame. The centrifugal force acts outwards in the radial direction and is
proportional to the distance of the body from the axis of the rotating frame. This effect
is responsible for the rotation of large cyclones. The practical impact of the Coriolis
effect is mostly caused by the horizontal acceleration component produced by

horizontal motion.

There are other components of the Coriolis effect. Eastward-travelling objects will be
deflected upwards (feel lighter), while westward-travelling objects will be deflected
downwards (feel heavier). This is known as the Coriolis effect. This aspect of the
Coriolis effect is greatest near the equator. The force produced by this effect is similar
to the horizontal component but the much larger vertical forces due to gravity and
pressure mean that it is generally unimportant dynamically. Coriolis effect is an
inertial force described by the 19th century French engineer and mathematician
Gustave-Gaspard Coriolis in 1835. Coriolis showed that if the ordinary Newtonian
laws of motion of bodies are to be used in a rotating frame of reference, an inertial
force acting to the right of the direction of body motion for counter clockwise rotation
of the reference frame or to the left for clockwise rotation must be included in the

equations of motion.

The effect of the Coriolis force is an apparent deflection of the path of an object that
moves within a rotating coordinate system. The object does not actually deviate from
its path but it appears to do so because of the motion of the coordinate system. The
Coriolis deflection is therefore related to the motion of the object, the motion of the

earth and the latitude (Figure 1.g). The coriolis effect has great significance in
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astrophysics and stellar dynamics in which it is a controlling factor in the directions of
rotation of sunspots. It is also significant in the earth sciences especially meteorology,
physical geology, and oceanography, in that the earth is a rotating frame of reference,
and motions over the surface of the earth are subject to acceleration from the force
indicated. Thus the Coriolis force figures prominently in studies of the dynamics of
the atmosphere in which it affects prevailing winds, the rotation of storms and in the

hydrosphere in which it affects the rotation of the oceanic currents.

<HE CORIOLIS EFFECr

EARTH'S ROTATION

e —

Figure 1.g: Coriolis Effect

1.17 Correlation Function
In 1935, Taylor [105] introduced new notions into the study of the statistical theory of
turbulence. He successfully developed a statistical theory of turbulence which is

applicable to continuous movements and which satisfies the equation of motion.

The first important new notion was that of studying the correlation or coefficient of
correlation between two fluctuating quantities in turbulent flow. In his theory, Taylor
makes much use of the correlation between the components of the fluctuating at

neighbouring points. Denoting the components of the fluctuating velocity at one point
! o/

p by ul, u2, u3 and another point p/by uj, up, us.
The correction function between any of the u; and uj/ where 1. j =1, 2 or 3 are defined
as pjj = wu, (1.17.1)

where the bar denotes the average by certain process.




Chapter-1 25

Sometimes it is convenient to use the correlation coefficient such as

u,uy

2 |12
/ui ,uj

By Cauchy inequality, we have

wu —/u? /u]fz <0 (1.17.3)

hence —1 < Rj; < 1.

Rij S

(1.17.2)

If we consider u; and ulf as the velocity components is a flow field, the correlation of
equation (1.17.1) as a tensor of second rank. By a different process of averaging we
obtain different kinds of correlation functions. If we consider u; and u; are the velocity
components at a given point in space, u; and ulf are functions of time; hence; we should

take the time average in equation (1.17.1) to get the correlation function pj;.

If we consider u; and u]f as the velocity components at a given time, u; and ulf are
functions of space co-ordinates x(X4, X5, X3); hence we should take the space average
in equation to get the correlation function. More generally if we consider u; and ulf as
functions of both time t and spatial co-ordinates x(Xq,X,,X3); we should take a
space-time average in equation (1.17.1) to get the correlation function. The correlation
function between the components of the fluctuating velocity at the same time two
different points of the fluid, first introduce by Taylor [105] has been investigated

extensively in the isotropic turbulence.

The correlation function between two fluctuating velocity components at the same
point and at the same time gives the Reynolds stress. The correlation function

between two fluctuating quantities may also be defined in a manner similar to above.

1.18 Distribution Function
In molecular kinetic theory in physics, a particle's distribution function is a function
of seven variables, f(x, ¥, Z,t, Vy, Vy, VZ), which gives the number of particles per unit

volume in phase space. It is the number of particles per unit volume having
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approximately the velocity (VX, Vy, VZ) near the place (x, y, z) ant time (t). The usual

normalization of the distribution function is

n(x,y,zt) = f fdvydvydv,,

N(t) = fndx dy dz

Here, N is the total number of particles and n is the number density of particles - the
number of particles per unit volume or the density divided by the mass of individual

particles.

A distribution function may be specialized with respect to a particular set of
dimensions, e.g., take the quantum mechanical six dimensional phase spaces
f(x, ¥,Z,t, Px, Py pZ) and multiply by the total space volume to give the momentum
distribution i.e. the number of particles in the momentum phase space having

approximately the momentum (px, Py, pz).

Particle distribution function are often used in plasma physics to describe wave
particle interactions and velocity-space instabilities. Distribution function are also

used in fluid mechanics, statistical mechanics and nuclear physics.

The basic distribution function uses the Boltzmann constant k and temperature T with

the number density to modify the normal distribution,

_ m(vy? +vy2+vzz))

e
f= (2mkT)3 €xp 2KT

Related distribution function may allow bulk fluid flow, in which case the velocity

C . 2
origin is shifted, so that the exponent's numerator is m ((VX —uy)? + (Vy — uy) +

(v, — uz)z); (uy, Uy, u,) is the bulk velocity of the fluid. Distribution function may

also feature non isotropic temperatures, in which each term in the exponent is divided

by a different temperature.
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The mathematical analogy of a distribution is a measure; the time evolution of a

measure on a phase space is the topic of study in dynamical systems.

1.19 Joint Distribution Function

A joint distribution function is a function Dyy (X, y)in two random variables X and Y
defined by

Dxy(x,y) =PX<xY<y),

where x and y are arbitrary real numbers.

Dx(X) = P(X < X) = P(X < X,Y < OO) = lim ny(X,y),
n—-oo

DY(Y) = P(Y S Y) = P(X < OO’Y S Y): 1111_1;1;10 DXY(Xr Y);

here Dx(x) is termed as the marginal distribution function of X corresponding to the
joint distribution function Dyxy(X,y) and Dy(y) is termed as the marginal distribution

function of Y corresponding to the joint distribution function Dyy (X, y).

So that the joint probability function satisfies

Dxy[(x,y) € C] = P(X,Y) dXdY
J.

Dyy[x €Ay € B] = j f P(X, Y) dXdY
YeB X€eA

Dxy(x,y) = P{X € (—=00,%),Y € (—c0,y)}
X y

= f f P(X,Y) dXdY

and

Dyy(@asx<a+dab<ys<b+db) =" [P Y)dXdY ~

b
P(a,b)dadb

Two random variables X and Y are independent if
Dxy(%,y) = Dx(x)Dy(y) for all x and y

and joint probability density function by differentiation as follows
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_9*D(xy) . PX<X<x+8xy<Y<y+8y)

p = -
(xy) ox dy 5x-0,5y—0 8x8y

A multiple distribution function is of the form

Dy, ..x, (X1, e, Xn) = P(Xq S X4, 00w, , X < Xp).

1.20 Distribution Function in Turbulence and its Properties

The dynamical equations describing the time evolution of the finite dimensional
probability distributions in turbulence were first proposed by Lundgren [66] and
Monin [70, 71], Lundgren [66] considered a large ensemble of identical fluid system
in turbulent state. In his consideration each number of the ensemble is an
incompressible fluid in an infinite space with velocity G (T, t) satisfying the continuity
and Navier-Stockes equations. The only difference in the members of ensemble is the
initial conditions that vary from member to member. He considered a function
F((f, t), G(T,,t) — — —) whose ensemble is given as (F((ry,t), (ry,t) — — —)) and
defined one-point distribution function f; (¥; - v4,t) such that f; (f; - 9;,t)dV, is the
probability that the velocity at a point T; at time t is in element dV,about V;and is
given by f; (Fy, 93, 1) = (8(0(F1, 1) — 9;)

and two-points distribution function is given by

f,(F1, 91,2, V2, 1) = (8(0(ry, 1) — 91)8(0(r2, ) — 95))

In short one and two-point distribution function are denoted as fl(l) and f2(1,2). Here &

is the dirac-delta function, which is defined as

f 5 (l_l _ 1_))d\_) _ {(1) at the point U=0

elsewhere

and ( ) denote the ensemble average.

1.21 Dust Particles

Dust means dry fine powdery material. As stated in Oxford Dictionary, dust is Fine,
dry powder consisting of tiny particles of earth or waste matter lying on the ground or
on surfaces or carried in the air. Dust consists of particles in the atmosphere that
comes from various sources such as soil dust lifted by wind, volcanic eruptions and

pollution. Dust in homes, offices, and other human environments contains small
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amounts of plant pollen, human and animal hairs, textile fibres, paper fibres, minerals
from outdoor soil, human skin cells, burnt meteorite, particles and many other
materials which may be found in the local environment. Homogenous and passive
dust particles in the boundary layers are entrained and adverted under the influence of

a turbulent flow.

1.22 Equation of Motion of Dust Particles

Knowledge of the behaviour of discrete particles in a turbulent flow is of great interest
to many branches of technology, particularly if there is a substantial difference
between particles and the fluid. Saffman [86] derived an equation that described the
motion of a fluid containing small dust particles, which is applicable to laminar flows

as well as turbulent flow.

A more plausible explanation seems to be that the dust damps the turbulence. A dust
particle in air or in any other gas has a much larger inertia than the equivalent volume
of air will not therefore participate readily in turbulent fluctuations. The relative
motion of dust particles and the air will dissipate energy because of the drag between
dust and air and extract energy from turbulent fluctuations. If as certainly seems
possible, the turbulent intensity is reduced than the Reynolds stresses will be
decreased and the force required to maintain a given flow rate will likewise be

reduced.

In order to formulate the problem in a reasonably simple manner and to bring out the
essential features, we shall make simplifying assumption about the motion of dust
particles. It will be supposed that their velocity and number density can be described
by fields u(%Xt) and N(X,t). We also assume that the bulk concentration (i.e.
concentration of volume) of dust is very small so that the effect of dust particles on
the gas is equivalent to an extra force KN(U — U) per unit volume, where u(X, t) the
velocity of the gas and K is constant. It is also supposed that the Reynolds number of
the relative motion of dust and gas is small compared with unity, so that the force

between the dust and gas is proportional to the velocity. Then with small bulk
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concentration and the neglect of the compressibility of the gas, the equations of

motion and continuity of the gas are:

ot (u V)ii| = —Vp + vW?d + KNG — ). (1.22.1)

divii = 0, (1.22.2)

where p, p and p are the pressure, density and viscosity of the clean gas respectively.
If dust particles are spheres of radius €, then by Stocke's drag formula, K = 6mpe.

As will be seen below, the effect of the dust is measured by the mass concentration,

say f. The bulk concentration if f pﬁ where p; is the density of the material in the dust
1

particles. For common materials pﬂ will be of the order of several thousand or more,
1

so that the mass concentration may be significant fraction of unity, while the bulk
concentration is small. It is to be noted that for suspension in liquids, the bulk and
mass concentration will roughly be the same. So that the qualitative differences in the

motion of dusty gases and the suspensions in the liquids may be expected. For
spherical, the Einstein increase in the viscosity is guf i, which is negligible for a
dusty gas but may be significant for a liquid suspension. The force exerted on the dust
by the gas is equal and opposite to the force exerted on the gas by dust, so that the
equation of motion of the dust is,

mN [Z—f + (V- V)V] = mNg + KNG - @), (1.22.3)
where mN the mass of the dust per unit volume and g is the acceleration due to

gravity. The buoyancy force is neglected since pﬁ is small.
1

The equation of continuity of the dust is,
25+ div(NY) = 0 (1.22.4)
Here, v = E is kinetic viscosity of the clean gas and t = % is called the relaxation

time of the dust particles. It is measure of the time for the dust to adjust to changes in

the gas velocity. For spherical particles of radius g,

4.3
SHEP1 2 g2
=3 ort=-=84 (1.22.5)
9v p

6TTEU
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where §u£3p, mass of single spherical dust particle of radius €; p;, density of the

material in the dust particles.

The effect of dust is described in two parameters f and t. The former describes how
much dust is present and the latter is determined by the size of individual particles.
Making the dust fine, will decrease T, and making coarse, will increase T in a manner

proportional to the surface area of the particles.

1.23 Order of Reaction and Rate of Reaction

The rate of a chemical reaction is the amount of substance reacted or produced per
unit time. The rate law is an expression indicating how the rate depends on the
concentrations of the reactants. The power of the concentration in the rate law
expression is called the order with respect to the reactant. The rate of change of
concentration as a function of time and may be expressed either in the form of
disappearance of reactants or the appearance of new products. According to Bansal
[21] the general reaction equation in which A and B are transformed to P give

aA + bB - cP, (1.23.1)

. . 1d[A 1d[B 1d[P
The reaction rate can be written as — —ﬁ, _1diBl ], + 4Pl
a dt b dt c dt

and the rate law may be written in the form of equation

_i% = k[A]"[B]™, (1.23.2)
where [A], [B] and [P] denote the active concentrations in moles/litre species. A, B
and P, t represent the time, n and m are integers, k is the proportionality constant
referred to as the reaction rate constant or specific rate constant, and a, b, ¢ are the

stoichiometric coefficients.

. . e 1d[A 1d[B .
Since the concentrations of A and B are diminishing, —;%, _E%’ are negative

. 1d[P] . o o
number while %% is positive, any of these derivatives may be used to express the

rate of the reaction.
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The order of a reaction is the algebraic sum of the exponents of all the concentration
terms, which appear in the rate law (1.23.2). For the reaction given in equation
(1.23.1)

1Al
EPUrTE k[A]"[B]

where n is the order of the reaction with respect to A and m is the order of the reaction

with respect to B. The overall order of the reaction is given by the sum (n + m).

A reaction is said to be of the first order if the rate of the reaction is proportional to
the concentration of only one of the reacting substances. Let us consider a reaction in
which A is being transformed to product P, (A — P). If C is the concentration of A,

then the differential rate law can be written as
dC
dt

where Kk is the first order rate constant and t the time.

kq[C]

This can be rearranged to

dC

Integrate both sides of the above equation to obtain

—InC = k; + 6, where 0 is a constant of integration.

1.24 Spectral Representation of the Turbulence

The solution of the Navier-Stockes equation is merely related to theoretical treatment
of the turbulence. An alternative approach is based on the spectral form of the
dynamical Navier-Stockes equation. The spectral form of the turbulence is still under-
determined but it has a simple physical interpretation and is more convenient. The
spectral approach is almost exclusively used for the description of homogeneous
turbulence [56, 57]. The principal concepts of spectral representation in the study of

turbulence are described below:

If we neglect the body forces from the Navier-Stockes equation (1.14.2) and multiply

the xij-component of Navier-Stockes equation written for the point P by u]f and
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multiply the x]-’ component of the equation written for the point P’ by u; adding and

taking ensemble averages

d — au Jou 1 62 0%y
W Wy + u]ula -+ ulula_x,’ = lu] ox) +ula J +vlu] -+ u (1.24.1)

Since in homogeneous turbulence the statistical quantities are independent of position
in space and considering the point P and P’. Separated by a distance vector T and
applying the laws of spatial covariance, a simplified form of equation (1.24.1) is
obtained as:

62u1u]'

2
orj

6pu ap'y,
an; ory

]
—uu = —a—rl(ulu]’ul u u]ul) +- [ ] + 2v (1.24.2)
The covariance u,uy is not suitable for direct analysis of quantitative estimate of the

turbulent flows and it is better to use the three-dimensional Fourier transforms of u,u;

with respect to r. The variable that corresponds to r in the three dimensional wave-
number space is a vector K = (K;,K,,K3). We define the wave number spectral

density as:
74 1 — T o=\ 31— 1 )
byj(K) = Zm)3 Juuj exp(—iK. D)dr = G’ JIT viujexp{=i(Kyr; +Kpr, +

Ks3r;)}dr;dr,drs (1.24.3)

It can be shown that u,u; has a continuous range of wavelength, cl)i]-(K) has a
continuous distribution in wave number space. We can rigorously regard

bjj (ﬁ)dKl dK,dKj; as the contribution of elementary volume dK;dK,dKj3, centred at
wave number K and therefore representing a wave number of length %, in the

direction of vector K to the value of u,u; hence the name "Spectral density". This is
consistent with the behaviour of the inverse transform

wu(r) = [ o (K)exp(iK.r)dK (1.24.4)
The one dimensional wave number spectrum of u,u; for a wave number component in

the x, direction is

by (Kp) = 5= [, w] (rp)exp(—iKy. 1) dry (1.24.5)
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whose inverse is
uui(r) = f_oooo @;;(Kpexp(ik), ry). dK; (1.24.6)
The equation (1.24.2) for unstrained homogeneous turbulence becomes on Fourier
transforming as

o = Ij(K) + I (K) — 2vKF. ¢y(K) (1.24.7)
where I' and Il are the transforms of the triple product and pressure terms

respectively.

1.25 Fourier Transformation of the Navier-Stockes Equation:

The main reason for using Fourier transformation is that they convert differential
operators into multipliers. The equations are so complicated in configuration (or
coordinate) space that very little can be done with them and the transformation to

wave number (or Fourier) space simplifies them very considerably.

Another and more mathematical argument shows that these transforms are right
method of treating a homogeneous problem, associated with any correlation function,
¢(X,X") is a sequence of Eigen functions ¢(X,X’) and their associated Eigen-values

A(1). These quantities satisfy the equation.

[ dE 3 Y@ DT =A@ Y, %) (1.25.1)
and the orthonormalization relation

fu@ )Y (M, n)d3k =1, ifm=n (1.25.2)
= (0, otherwise.

These equations imply that ¢ is a scalar. Actually it is a tensor of order two, but this
complicates the argument without introducing anything essentially new. The index n
is in general a complex variable and y* denotes the complex conjugate of {r (strictly,
Y™ is the adjoint of s, but since ¢ is real and symmetric the adjoint is simply the
complex conjugate). The integrations in equations (1.25.1) and (1.25.2) are overall
space, which may be finite or infinite. If the space is finite Tl is usually an infinite but
countable sequence, while if space is infinite i will be a continuous variable, Here all

the Eigen functions have real Eigen-values. If follows from (1.25.1) and (1.25.2) that,
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dE-X) = Z AM). p(@.X) g* (M, X") (1.25.3)

alln

and this is the diagonal representation of the correlation function in terms of its Eigen
functions. Evidently these functions are only defined 'within a phase' that is, a factor
exp(iy) can be added to Y(n,X) without altering ¢(X,X") provided y is real and
independent of x. For a homogeneous field, ¢ is a function of (X,X") only and the
problem is to find the Eigen functions which are also homogeneous within a phase in
the sense that,

Y(@,X) = exp(iy) (i, X + a),

This equation is satisfied by the Fourier equation

PY(M,X) = exp(in.X) = exp(iﬁjij)

with y = —n.4d. In this situation (instance), therefore, "the index", n is a wave

number. Equation (1.25.3) becomes
$EF) = ) A@exp(inG — 1))
so that A(n) may be identified with ¢ (1), the Fourier transform of the correlation

function.

Since we are considering homogeneous isotropic turbulence, the turbulent field must
be infinite in extent. This produces, mathematical difficulties, which can only be
resolved by using functional calculus. This difficulty is avoided by supposing that the
turbulence is confined to the inside of a large box with sides (a;,a,, a3) and that it
obeys cyclic boundary conditions on the sides of this box. The a; is allowed to tend to
infinity at an appropriate point in the analysis. Thus the Fourier transform is defined
by

U,®) = (2m)%(ay, 2y, a3) " Z ui(K) exp(iK. %) (1.25.4)

K

Here K is limited to wave vectors of the form

2nqT 2Nn,T 2n3T

) )
aq az as

where n; are integers while the a; are the sides of the elementary box. As these sides

become infinitely large equation (1.25.4) goes over into standard form,

U;® = [ u(K). exp(iK %)d3K. (1.25.5)
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The inverse (1.25.5) is

ui(ﬁ) =(2n)3 f ui(i)exp(—iﬁ.i’) d3x (1.25.6)

box

The Fourier transform of Navier-Stockes equation may be written as

A
d —> —> —
[& + VKZ] u; (K) = Mjjm (K). z yi(P).Up(@® (1.25.7)

A

where, Z is a short notation for the integral operator in

JJU;(K) Upy@®). 8(K — P = 7). (d*p) (d°P) (1.25.8)
where, 8K, p + r is the Kronecker delta symbol which is zero unless

K=p+¢

Here, Mi]-m(ﬁ) is a simple algebraic multiplier and not a differential operator. We

have
Mijm(K) = —2i. Py (K) (1.25.9)

where, Pi]-m(ﬁ) = KnP; (ﬁ) + KjPim (ﬁ)

KiKj
and Pl] = 81] - ?

P; (K) is the Fourier transform of P;(V) but Pi]-m(ﬁ) is not the transform of By, (V).

As it is stands, equation (1.25.7) cannot describe stationary turbulence since it
contains no input of energy to balance the dissipative effect of viscosity. In real life
this input is provided by effects, such as the interaction of mean velocity gradient with
the Reynolds stress, which are incompatible with the ideas of homogeneity and

isotropy.

To avoid this difficulty we introduce in to the right hand side of equation (1.25.7) a

hypothetical homogeneous isotropic stirring force f;. Then the equation becomes

|5+ VK2 |0 (K) = Myja (K) 22 0)(F) um () + 05(K) (1.25.10)
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1.26 A Brief Description of Past Researches Relevant to this Thesis
Work

Turbulence is a leading topic in modern fluid dynamics research, and some of the best
known physicists have worked in this area during the last century. Among them are G.
I. Taylor, Kolmogorov, Reynolds, Prandtl, Vonkarman, Heisenberg, Landau,

Millikan, and Onsagar.

The first systematic work on turbulence was carried out by British physicist Osborne
Reynolds [83] in 1883. His experiments in pipe flows showed that the flow becomes
turbulent or irregular when the dimensionless ratio, later named the Reynolds number
by Sommerfeld, exceeds a certain critical value. This dimensionless number
subsequently proved to be the parameter that determines the dynamic similarity of
viscous flows. Reynolds also separated turbulent flow-dependent variables into mean

and fluctuating components, and arrived at the concept of turbulent stress.

In 1921 Taylor [105], in a simple and elegant study of turbulent diffusion, introduced
the idea of a correlation function. He showed that the root-mean-square distance of a
particle from its source point initially increases with time as t, and subsequently as
t'2 as in a random walk. Taylor continued his outstanding work in a series of papers
during 1935-1936 in which he laid down the foundation of the statistical theory of

turbulence.

Among the concepts he introduced were those of homogeneous and isotropic
turbulence

and of a turbulence spectrum. Although real turbulent flows are not isotropic
(turbulent shear stresses, in fact, vanish for isotropic flows), the mathematical
techniques involved have proved valuable for describing the small scales of
turbulence, which are isotropic or nearly so. In 1915 Taylor also introduced the

mixing length concept, although credit goes to Prandtl for making full use of the idea.

During the 1920s Prandtl [80] and his student Vonkarman, working in Gottingen,

Germany, developed semi-empirical theories of turbulence. The most successful of
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these was the mixing length theory, which is based on an analogy with the concept of
mean free path in the kinetic theory of gases. By guessing at the correct form for the
mixing length, Prandtl was able to deduce that the average turbulent velocity profile
near a solid wall is logarithmic, one of the most reliable results for turbulent flows. It
is for this reason that subsequent textbooks on fluid mechanics have for a long time
glorified the mixing length theory. Recently, however, it has become clear that the
mixing length theory is not helpful since there is really no rational way of predicting
the form of the mixing length. In fact, the logarithmic law can be justified from

dimensional considerations alone.

Some very important work was done by the British meteorologist Lewis Richardson
[85]. In 1922 he wrote the very first book on numerical weather prediction named
"Weather Prediction by Numerical Process". In this book he proposed that the
turbulent kinetic energy is transferred from large to small eddies, until it is destroyed
by viscous dissipation. This idea of a spectral energy cascade is at the heart of our
present understanding of turbulence. However, Richardson’s work was largely
ignored at the time, and it was not until some 20 years later that the idea of a spectral
cascade took a quantitative shape in the hands of Kolmogorov [57] and Obukhov [73]
in Russia. Richardson also did another important piece of work that displayed his
amazing physical intuition. On the basis of experimental data for the movement of
balloons in the atmosphere, he proposed that the effective diffusion coefficient of a

patch of turbulence is proportional to /*?

, where [/ is the scale of the patch. This is
called Richardson’s four-third law, which has been subsequently found to be in

agreement with Kolmogorov’s famous five-third law for the energy spectrum.

The Russian mathematician Kolmogorov, generally regarded as the greatest
probabilist of the twentieth century, followed up on Richardson’s idea of a spectral
energy cascade. He hypothesized that the statistics of small scales are isotropic and
depend on only two parameters - the kinematic viscosity and the average rate of
kinetic energy dissipation per unit mass of fluid. Using this idea, in 1941 Kolmogorov

[57] and Obukhov [73] independently derived that the spectrum in the inertial

) -5 . )
subrange must be proportional to ek 3, where k is the wave number. This law
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name as five-thirds law is one of the most important results of turbulence theory and

is in agreement with high Reynolds number observations.

Recent decades have seen much progress in theory, calculations, and measurements.
Among these may be mentioned the work on the modeling, coherent structures, direct
numerical simulations, and multidimensional diagnostics. Observations in the ocean
and the atmosphere (which Vonkarman called “a giant laboratory for turbulence
research”), in which the Reynolds numbers are very large, are shedding new light on

the structure of stratified turbulence.

Recently, Azad and Sarker [2] derived the statistical theory of certain distribution
function in MHD turbulence in a rotating system in presence of dust particles. Sarker
and Azad [94] studied the decay of temperature fluctuations in homogeneous
turbulence before the final period for the case of multi-point and multi-time
considering rotating system and dust particle. Azad et al. [11], Azad et al. [12] and
Azad and Sarker [5] also studied the decay of temperature fluctuations in dusty fluid
MHD turbulence before the final period with taking rotating system. Kishore and
Dixit [51], Kishore and Singh [49], Dixit and Upadhaya [34], Kishore and Golsefield
[52] discussed the effect of coriolis force on acceleration covariance in ordinary and
MHD turbulent flow. Kishore and Sarker [48] studied the rate of change of vorticity
covariance in MHD turbulence in a rotating system. Sarker [90] studied the Thermal
decay process of MHD turbulence in a rotating system. Sarker [89], Sarker and

Rahman [95] considered dust particles on their own works.

The essential characteristic of turbulent flows is that turbulent fluctuations are random
in nature and therefore by the application of statistical laws, it has been possible to
give the idea of turbulent fluctuations. The turbulent flows in the absence of external
agencies always decay. Batchelor and Townsend [23], Deissler [32, 33], Ghosh [39,
40] had given various analytical theories for the decay process of turbulence so far.
Further Monin and Yaglom [70] gave the spectral approach for the decay process of
turbulence. Also Sarker and Kishore [97] discussed the decay of MHD turbulence

before the final period. The approach is phenomenological in the sense that they
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considered the region where the variation of the mean temperature and mean velocity
may be neglected because of the transportation of the thermal energy from place to
place is very rapid.

Deissler [32, 33] developed a theory for homogeneous turbulence which was valid for
times before the final period. Using Deissler's theory Loeffler and Deissler [64]
studied the temperature fluctuations in homogeneous turbulence before the final
period. Sarker and Rahman [88] studied the decay of temperature fluctuations in
MHD turbulence before the final period. Sarker and Islam [92] considered the decay

of dusty fluid turbulence before the final period in a rotating system.

Sarker and Rahman [95] discussed the decay of turbulence before the final period in
presence of dust particles. Sarker and Islam [93] studied the effect of very strong
magnetic field on acceleration covariance in MHD turbulence of dusty fluid
turbulence in a rotating system. Further using Deissler's theory Kumar and Patel [59]
studied the first order reactants in homogeneous turbulence before the final period for
the case of multi-point and single time. The problem [59] also extended to the case of
multi-point and multi-time concentration correlation in homogeneous turbulence by
Kumar and Patel [60]. The numerical result of Kumar and Patel [60] carried out by

Patel [76].

Following Deissler's approach Sarker and Islam [91] studied the decay of MHD
turbulence before the final period for the case of multi-point and multi-time. Islam
and Sarker [44] discussed the first order reactant in MHD turbulence before the final
period of decay for the case of multi-point and multi-time. Sarker and Islam [92] also

studied the decal of dusty fluid turbulence before the final period in a rotating system.

But at first Lundgren [65] derived the dynamical equations, which are describing the
time evolution of the finite dimensional probability distribution of turbulent
quantities. Lundgren [65] derived a hierarchy of coupled equations for multi-point
turbulence velocity distribution function. Further Lundgren [66] considered a similar
problem for non-homogeneous turbulence. Bigler [25] gave the hypothesis that in

turbulent flow the thermo-chemical quantities can be related locally a few scalars.
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Further Janicka, Kolbe and Kollmann [46] and Pope [78] have a more suitable model
for the probability density function of scalars in turbulent reacting flows. Also
Kishore [47] studied the distribution function in the statistical theory of MHD
turbulence of an incompressible fluid. Pope [79] derived the transport equation for the
joint probability density function of velocity and scalars in turbulent flow. Kishore
and Singh [49] derived the transport equation for the bivariate joint distribution
function of velocity and temperature in turbulent flow. Kishore and Singh [50] have
been derived the transport equation for the joint distribution function of velocity,
temperature and concentration in convective turbulent flow. Dixit and Upadhyay [35]
considered the distribution function in the statistical theory of MHD turbulence of an
incompressible fluid in the presence of the coriolis force. Kollmann and Janicka [56]
derived the transport equation for the probability density function of a scalar in

turbulent shear flow and considered a closure model based on gradient flux model.

But at this stage, one is met with the difficulty that the N-point distribution function
depends upon the N+1-point distribution function and thus result is an unclosed
system. This so-called "closer problem" is encountered in turbulence, kinetic theory
and other non-linear system. Sarker and Kishore [96] discussed the distribution
function in the statistical theory of convective MHD turbulence of an incompressible
fluid. Further Sarker and Kishore [98] discussed the distribution function in the
statistical theory of convective MHD turbulence of  mixture of miscible
incompressible fluid. Azad et al. [7,8,9] studied the first order reactant in MHD
turbulence before the final period of decay considering rotating system and dust
particles. Sarker et al. [99] studied the first order reactant in MHD turbulence before
the final period of decay for the case of multi-point and multi-time in presence of dust
particles. Aziz et al. [17, 18] extended their problem for the case of multi-point and
multi-time for a rotating system. Aziz et al. [19, 20] studied the statistical theory of
distribution function in magneto-hydrodynamic turbulence in a rotating system with
dust particles undergoing a first order reaction. Azad et al. [10] premeditated the
statistical theory of certain distribution function in MHD turbulent flow for velocity
and concentration undergoing a first order reaction in a rotating system. Recently

Azad et al. [15] studied the transport equation for the joint distribution function of
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velocity, temperature and concentration in convective turbulent flow in presence of

dust particle.

By analyzing the above theories we have extracted the following chapters.

In part A of Chapter-II , we have studied the decay of temperature fluctuations in
dusty fluid homogeneous turbulence prior to the final period considering correlations
between fluctuating quantities at two- and three- point. We have obtained the energy
decay law of temperature fluctuations in homogeneous turbulence before the final

period in presence of dust particle.

In part B of Chapter-II, we have studied the decay of temperature fluctuations in dusty
fluid homogeneous turbulence before the final period in presence of Coriolis force
and have considered correlations between fluctuating quantities at two- and three-
points by neglecting the fourth order correlation in comparison to the second and third
order correlations. For solving the correlation equations are converted to spectral form
by taking their Fourier transform. Finally we have put an effort to integrate the energy
spectrum over all wave numbers, the energy decay law of temperature fluctuations in
homogeneous dusty fluid turbulence before the final period in presence of Coriolis

force is obtained.

In part A of Chapter-1II, the joint distribution functions for simultaneous velocity,
temperature, concentration fields in turbulent flow undergoing a first order reaction in
presence of Coriolis force have been studied. The wvarious properties of the
constructed joint distribution functions have been discussed. In this chapter we have
to derive transport equations for one and two point joint distribution functions of
velocity, temperature, concentration in convective turbulent flow due to first order

reaction in presence of Coriolis force.

In part B of chapter-III, we have studied the joint distribution functions for
simultaneous velocity, temperature, concentration fields in turbulent flow undergoing

a first order reaction in a rotating system in presence of dust particles. In this chapter,
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we have made an attempt to derive the transport equations for the joint distribution
function of certain variables in convective turbulent flow undergoing a first order

reaction in a rotating system in presence of dust particles.

In chapter-1V, we have studies the statistical theory of certain variables for three-point
distribution functions in MHD turbulent flow in a rotating system in presence of dust
particles. In this chapter we have derived the transport equations for evolution of
three- point distribution function for simultaneous velocity magnetic, temperature and

concentration field.

In Chapter-V, we have made an attempt to discuss the summary about the whole

thesis.
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CHAPTER-II
PART-A

DECAY OF TEMPERATURE FLUCTUATIONS IN DUSTY
FLUID HOMOGENEOUS TURBULENCE PRIOR TO THE
FINAL PERIOD

2.1 Introduction:
Interest in motion of dusty viscous fluid has developed rapidly in recent years. Such
situations occur in movement of dust-laden air, in problems of fluidization, in the use

of dust in gas cooling system and in sedimentation problem in tidal rivers.

Taylor [105] has been pointed out that the equation of motion of turbulence relates the
pressure gradient and the acceleration of the fluid particles and the mean—square
acceleration can be determined from the observation of the diffusion of marked fluid
particles. The behavior of dust particles in a turbulent flow depends on the
concentration of the particles and the size of the particles with respect to the scale of

turbulent fluid.

Corrsin [31] had made an analytical attack on the problem of turbulent temperature
fluctuations using the approaches employed in the statistical theory of turbulence. His
results pertain to the final period of decay and for the case of appreciable convective

effects, to the “energy” spectral from in specific wave- number ranges.

Deissler [32, 33] developed a theory for homogeneous turbulence, which was valid
for times before the final period. Following Deissler’s theory Loeffler and Deissler
[64] studied the decay of temperature fluctuations in homogeneous turbulence before
the final period. Sarker and Azad [94]; Azad and Sarker [3]; Azad and Sarker [4];
Azad et al [11]; Azad and Sarker [5]; Azad et al. [12] also studied the decay of
temperature fluctuations in homogeneous and MHD dusty fluid turbulence. Azad et al

[15] studied transport equation for the joint distribution function of velocity,




Chapter-11 45

temperature and concentration in convective turbulent flow in presence of dust
particles. Bkar Pk et al [30] considered first-order reactant in homogeneous dusty
fluid turbulence prior to the ultimate phase of decay for four-point correlation in a
rotating system. Molla et al [68] studied the decay of temperature fluctuation in
homogeneous turbulence before the final period in a Rotating System. Sarker et al
[101] measured Homogeneous dusty fluid turbulence in a first order reactant for the

case of multi Point and multi time prior to the final period of decay.

Saffman [86] derived an equation that describes the motion of a fluid containing small
dust particle, which is applicable to laminar flows as well as turbulent flow. Kishore
and Sarker [53] studied the rate of change of vorticity covariance in MHD turbulent
flow of dusty incompressible fluid. Rahman [82] also studied the Rate of change of
vorticity covariance in MHD turbulent flow of dusty fluid in a rotating system.
Kishore and Sinha [54] also studied the rate of change of vorticity covariance of dusty

fluid turbulence.

They had considered dust particles and Coriolis force in their won works. In their
study, they considered two and three point correlations and neglecting fourth- and
higher-order correlation terms compared to the second- and third-order correlation
terms. Sinha [103] had considered the effect of dust particles on the acceleration of
ordinary turbulence. Kishore and Singh [55] had studied the statistical theory of
decay process of homogeneous hydro- magnetic turbulence. Dixit and Upadhyay [34]
also had deliberated the effect of Coriolis force on acceleration covariance in MHD
turbulent dusty flow with rotational symmetry. Kishore and Golsefied [52] considered
the effect of Coriolis force on acceleration covariance in MHD turbulent flow of a

dusty incompressible fluid. They had also considered dust particle in their own work.

In this chapter, by analyzing the above theories we have studied the decay of
temperature fluctuations in homogeneous turbulence prior to the final period in
presence of dust particle considering the correlations between fluctuating quantities at
two- and three- point and single time. In solving the problem, it seems logical to use
the approach which has already been employed with success for studying turbulence.

In this work, Deissler’s method is used to solving the problem. Through the study we
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have obtained the energy decay law of temperature fluctuations in homogeneous
dusty fluid turbulence prior to the final period. In the result, it is shown that the

energy decays more rapidly than clean fluid.

METHODOLOGY

2.2 Correlation and Spectral equations:
For an incompressible fluid with constant properties and for negligible frictional

heating, the energy equation may be written at the point P

Lo l|- LT 22
ot ox; | pc, Ox;0x,
Where,
T = Instantaneous values of temperature.
u, = Instantaneous velocity,
p =Fluid density,
¢, =Heat capacity at constant pressure,
k = Thermal conductivity,
x; = Space co-ordinate,
t = Time,
Separate these instantaneous values into time average and fluctuating components as

T =T +T and %, =u, +u, equation (2.2.1) may be written

or oTr _oT _or or  or o’T 0T
—+t—tu,—+u,—+u,—+u,— |=y + (2.2.2)
ot ot Oox, Oox, Ox, Ox, Ox,0x, Ox,0x,
where, y = k ,
PC,

From the case of homogeneity it follows that Z—Tzo and in addition the usual
X .

assumption is made that T is independent of time and that u#, = 0; Thus equation
(2.2.2) simplifies to

2
{8T+ a—T}zi{ oT } (22.3)

o i ox, | P.|oxox,

r 1
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|4 . . . .
where P, = —, Prandtl number, v =Kinematic Viscosity.
/4

Equation (2.2.3) holds at the arbitrary point P. For the point P’ the corresponding
equation can be written as

{8T’ o 8T’} v { o1 } (2.2.4)

U — | =—
ot 'ox; | P.|oxox

Multiplying equation (2.2.3) by 7', equation (2.2.4) by 7" and taking time average

and adding the two equations gives

oTT'  OTT' ,0TT'| v |&*TT' &°*TT'
+u, +u! =— + (2.2.5)
ot Ox, Ox] P | Ox,0x, Ox|Ox]
The continuity equation is
Qu, _ou; (2.2.6)
ox, Ox]

Substitution of equation (2.2.6) into (2.2.5) yields

, — + (2.2.7)
Ot Ox, ox; P | Ox,0x, Ox]Ox]

oTT’  ouTT’ ouTT v {azﬁ azﬁ}

+u, + =

By use of a new independent variable 7, = x; —x, ie 9. —i, o_9
ox, or,  0Ox, o

1 1 l 1

OTT' _OuTT' ouTT' _2v O*TT’
ot or. or. P oror,

1 1

This equation is converted into spectral form by use of the following three
dimensional Fourier transforms

T7() = [7e(k) expli(i7)) ak (2.2.9)

—00

aTTG) = [377(K) o )] ak (22.10)

—00

And by interchanging PandP’,

wTT'(7)=u,TT'(~7)

A

uTT'(F)= T g0/ R )expli(& 7)) ak (2.2.11)

uT'(P) = [ R )expli(& #)| ak (2.2.11a)




Chapter-11 48

A

uT ) = [el&)expliR 7)] ak (2.2.11b)

Substitution of equations (2.2.9) - (2.2.11b) into equation (2.2.8) leads to the spectral

equation

orr'|K
ot

vik|gro (- R)-gre(R )= - 222 7o(R) (2.2.12)

r

Equation (2.2.12) is analogous to the two point spectral equation governing the decay

of velocity fluctuations and therefore the quantity TT'(k) may be interpreted as a
temperature fluctuation “energy” contribution of thermal eddies of size%. Equation

(2.2.12) expresses the time derivative of this “energy” as a function of the convective
transfer to other wave numbers and the “dissipation” due to the action of thermal
conductivity. The second term on the left hand side of equation (2.2.12) is the so

called transfer to term while the term on the right hand side is “dissipation” term.
2.3 Three points correlation and spectral equations:

In order to obtain single time and three point correlation and spectral equation we

consider three points P, P’ and P” with position vectors 7 and 7’are considered.

P n

For the two points P’ and P” we can write a relation according to equation (2.2.7),
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(2.3.1)

a(TrTu) a(uer!Tn) . a(ulrrTrTN) L|:82(TrTn) .\ aZ(TrTﬂ):|

+ u; ' " ALt nAan
ot Ox; Ox; P | Ox/ox Ox;0x;

1 1

Equation (2.3.1) multiplied through by u, the j-th velocity fluctuation component at

point. Then the equation at the pointP can be written as

a(ujT'T")+u 8(ujui'T'T”)+ 8(ujul.'T'T”):L 82(ujT'T")+ 82(uA,.T'T") +T'T”% (232)
ot - ox! P| oxox Ox/0x! o

1 1

The momentum equation at pointP, in presence of dust particles

ou a(ujui) _15}) o 62uj

+ — + -V,
ot ox, pox;  oxox, =)
ou . o\u u, o’u,
— J_ (j l)_ 1 opP Y J +f(u.—V-) (233)
ot 8)(?1» ,Daxj 6xiaxi ’ ’
Here,
u

j
v, =turbulent velocity component

=dust velocity component

_ kN (Dimension of frequency)
P

s

N, constant number density of dust particle

Substituted equation (2.3.3) into equation (2.3.2) the result on taking time averages is

T ) i) [T 8 TT)
ot i Ox; ’ o' P_r Ox]0x] Ox]Ox!

e tT) 1ofpTT) | 20 TT)

ox, P Ox; Y Ox,0x,

1

+f(u,TT" —v,T'T") (2.3.4)

Making use of the relations 7, =x] —x, and r'=x]—x, allows equation (2.3.4)

can be written as

o, T") v { ( +P,)62(MJT,T") 82(MJ.T’T”)+ ( +Pr)52(ujT'T")}

+2P,
ot or,or, or.or/ or/ or/

a(ujul.'T'T”) 8(ujulf'T”T') a(ujul.T'T") ﬁ(ujuiT'T")
T a  a o

1 ofTT) 1 offTT) ’ |
p o p

+fu,TT"—v,T'T" (2.3.5)
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Six-dimensional Fourier transforms for quantities this equation may be defined as

W TT = [ [BO0 expli(R -7+ K7k ak (2.3.6)
T = [ [B R0 expli(& -7+ K- ak ak (2.3.7)
P77~ [ [a0@ex bl -7+ &7k ok (2338)

VT = [ [ 100 expli (& 7+ K- Jak ai (23.80)

—00—00

Interchanging the points P’ and P” shows that

T T =TT = [ [ B0 expli( -7+ &7 |k ai (2.3.8b)

—00—00

Using equation (2.3.6) — (2.3.8.b) into equation (2.3.5) then the transformed equation

can be written as

i?(ﬂszé’hi{ (1+P > + 2P ki + (1+P )k —&f}ﬂﬂ’é’” =
; 9
i+ KB RO + ik kB RO+ ik +k)alT ~ f7 06 (23.9)

o)

If the derivative with respect to x; is taken of the momentum equation (2.3.4) for

pointP, and taking time average the resulting equation is

82(uju,.T'T")_ _l az(W) (2 3 10)
Ox ; Ox, B P Ox;0x, o

~!

In terms of the displacement vectors 7/ and #' this becomes

2 2 2
0 +2 0 + 0 uul'T"
orior;  orlor, or;on |’

2 2 2
S ? —+2 ? T (2.3.11)
p| oOr;or] Or;Or, Or,0or;
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Taking the Fourier transform of equation (2.3.11) and then solving for af'0" we get

T~ plk k! + 2k k, +k &, |
k'K + 2k ke, + Kk |

B,B.00" (2.3.12)

Equation (2.3.12) can be used to eliminate a#'6" from equation (2.3.9).

2.4 Solution for times before the final period:

To obtain the equation for final period of decay the third-order fluctuation terms are
neglected compared to the second-order terms. Analogously, it would be anticipated
that for times before but sufficiently near to the final period the fourth-order

fluctuation terms should be negligible in comparison with the third-order terms. If this

assumption is made then equation (2.3.12) shows that the term a6'0" associated
with the pressure fluctuations, should also be neglected. Thus equation (2.3.9)

simplifies to

_a(ﬂ_g 0 )+ Pl{ (14 P )k* + 2P k! + (1+P e - Lo f} B0 =0 (2.4.1)
AL

r

Where, R 3,00" =y 00"
and 1-R=S, R and S are arbitrary constant.
Inner multiplication of equation (2.4.1) by & ; and integrating between ¢, and t gives
k. B,0'0"

— [, po7| eXp{— Pi[(l FP 4 2P kA cosE+ (14D e -2 fs} (-1, )} (2.4.2)
r U

Now, letting 7' =0 in equation (2.2.6) and comparing the result with the equation

(2.1.10) shows that
k doo(K)= [k BOORK dR’ (2.43)

Substituting of equation (2.4.2) and (2.4.3) into equation (2.1.12), we obtain

arra’tk +i—vk2 F(K): Tikl. [ B.06" - ﬂig’(_ ,g)gn(_ K)L

r —00

X exp{— @[(1 +P, )(k2 + k"7 )+ 2Pk k' cos& - L7 fs} } dK' (2.4.4)
v

Iz
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Now, dK' (= dk|dk), dk!) can be expressed in terms of k' and & as

dK' =27 k™ d(cos &)dk’ (2.4.5)
Substituting equation (2.4.4) into (2.4.3) yields

oK) 2 (k) [k [B 00K K)- BoP( kK]
x Uexp{— vl - tO)[@ +P, )(k2 +k" )+ 2P,k k' cosé —&fs} }d(cosf)} dk’'
° P, v (2.4.6)

In order to find the solutions completely and following Loeffler and Deissler [64], we
assume that

ik [ 500 &) 300" (- k—K')] =20 (k" — k) (2.4.7)

(27)

where ¢, constant depending on the initial condition. The negative sign is placed in

front of §,in order to make the transfer of energy from small to large wave no. for

positive value of 0, . Substituting equation (2.4.7) into equation (2.4.6)

af_;'tlé +f)—v- 27k 7r'(K)= —250I(k2k'4 —k'k?)

><|:.l[exp{‘:(tp—rt0)[(l+Pr Nk + &)+ 2P k k' cosg—% fs} }d(cos 5)} k' (2.4.8)

Multiplying both sides of equation (2.4.8) by k* and defining the spectral energy

function

E =27k ' (R) (2.4.8.0)

and the resulting equation is
CE 2v

E+P—k2 E=w (2.4.9)

r

where

w= —2507(1(21{’4 KKk
0

x{i.exp{_@[(l_kpr )(kz +k!2)+ 2P kK’ cosf—%ﬁ:l }d(cosé)} dk'  (2.4.9.q)




Chapter-11 53

Integrating equation (2.4.9.a) w.r.to ¢, we have

5 0
— k k!S kskr3
(- t)-([ ( )
L r 1 0
V(t_t)— 2 2 , P 1 ,
| expy === (14P Y%+ K2)+ 2Pk === £ | || dk (2.4.9)
r L 19) |

Again integrating equation (2.4.9.b) w.r.to k' we have

o B fE )
v

202 (1—1, 11+ P e

Xemﬁ—ku@+2RXﬁ—%?

P(1+P)
5P K 5B 3|k P’ P |
{40 (=0 <1+P,.>{<1+P,)2 _E}U(t—to){(npj —(1+pr)}k } (24.10)

The equation (2.4.10) indicates that w must begin as k* for smallk. The condition of

w is fulfilled by the equation (2.4.10). It can be shown, using equation (2.4.10) that

[wdk=0 (2.4.11)
0

It is be expected physically since w is a measure of the transfer of “energy” and the

total energy transferred to all wave numbers must be zero.

The necessity for equation (2.4.11) to hold can be shown as follows if equation

(2.2.10) 1is written for both k and — k , and resulting equations differentiated with

respect to 7, and added, the result is, for 7 =0 [i = —i]

or, ox,

1

—2aiuTT jzk[¢n ¢z‘r( )] dK (2.4.11.a)

l
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Since according to the equations (2.4.8), (2.4.9) and (2.2.12),

w=2rxr ikzki l ¢iTT’(— I%)_ ¢iTT,(]%)J

o0

So the equation (2.4.11.a) can be written as —2—u 7’
dK =4rxk’dk  for w:w(k,t) then the equation (2.4.11) becomes
dek = —iu 7'=0

Ox;

The linear equation (2.4.9) can be solved for w as

E= exp[— M} [w exp{%} dt + J (k) exp{— %} (2.4.12)

PI‘ r r

Where, J(k) is an arbitrary function of k.

For large times, Corrsin [31] has shown the correct form of the expression for E to be

2
g=op exp[— M} (2.4.13)

V4 P

where N, 1s an constant which depends on the initial conditions. Using equation

(2.4.13) to evaluate J (k) in equation (2.4.12) yields

N,K®
T

J(k)= (2.4.14)

Now, substituting the values of w and J (k) as given by the equation (2.4.10) and

(2.4.14) into equation (2.4.12) gives the equation.

E(k,t)=Nokzexp[—zukz(t_t‘))}+ O B} exp{ 5(1-1,) }

d L 20?2 (1+P)

r

2
xexp{—k U(1+2Pr)(t—t0)}
P(1+P)
K R(IP-6K _4(R-2p, +3y( 8o (3> -2p, +3y(

27—, 30(+P)Ni—1)  3(1+P(i—1,) 314 ) P2

X
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5

X M coxplfli— t)}Xexp{—kzv(HZP,)(t—to)}

P.(1+P,)

Pk P(TR -6}’ _4(3P,?—2Pr+3)k8 8 /v (3> —2P, +3)k

X
203 (=1, ) 30(14P Yi-,):  3(+P P(i-1,)2 3(14p)s P2
(2.4.15)
where
—r]zjll.exdx
F(n)=e ° (2.4.16)
olt—t
=k 0 2.4.17
" \p(ivr) 2417)

Putting 7 =0 in equation (2.2.9) and we use the definition of E given by the equation
(2.4.15), the result is

ke all 2 0
e 2( (2.4.18)
0
Substituting equation (2.4.15) into (2.4.18) gives
— 3
T? N, (P. )2 5 R
B O(Sr) 3 +U6(t0—t )5 exp[ﬁ]
8.(27)v2(t—1,) 0
T 2= A -1, 2 + Bexp[fi]x (i~ 1,)" (2.4.19)
3
where 4= M, B= 2i°6R and
4,/(27)v2
7 (P)

R=

{ 9 5P (7P,—6) 35P,(3P>-2P +3)

+ —
2(1+P Yi+2p ) (16 16(1+2P) 8(1+2P, )

| 1.5422 P, (367 2P, +3)(1+2P i ------ ll+2(n—1)]}
\/(_5(1+P) = Q2n+1)n!2)"(1+P.)

(2.4.20)

R is a function of Prandtl no.

Equation (2.4.19) is the decay law of temperature fluctuation in homogeneous
turbulence in presence of dust particle prior to the ultimate period. The first term of

the right side of equation (2.4.19) corresponds to the temperature energy for two point
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correlation and the second terms represents the energy for the three point correlation.
This second term becomes negligible at large times leaving the final period decay law
previously found by Corrsin [31]. T %is the total “energy” (the mean square of the

temperature fluctuations).

2.5 Results and Discussion
Equation (2.4.19) is the decay law of temperature fluctuation in homogeneous
turbulence before the final period in presence of the dust particle. In the absence of

the dust particle, i.e. /' =0, then the equation (2.4.19) becomes

2 i i
72 N, (P.)2v 2 LG R

2 81/127ri(t—t0)% 0ot =ty )

3
=4 (t ~1, )_5 +B (t — 1, )_5 ,which was obtained earlier by Loeffler and Deissler [64].

3 3
5y 2
Here, A:M and B = 5°6R
8.(27) v

Due to the effect of dust particle in homogeneous turbulence, the temperature energy
decays more rapidly than the energy for clean fluid prior to the ultimate period. For

large times, the second term in the equation (2.4.19) becomes negligible leaving the

3 : .
=3 power decay law for the ultimate period.
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CHAPTER-II
PART-B

DECAY OF TEMPERATURE FLUCTUATIONS IN DUSTY
FLUID HOMOGENEOUS TURBULENCE PRIOR TO THE
ULTIMATE PERIOD IN PRESENCE OF CORIOLIS FORCE

2.6 Introduction

In geophysical flows, the system is usually rotating with a constant angular velocity.
Such large-scale flows are generally turbulent. When the motion is referred to axes,
which rotate steadily with the bulk of the fluid, the Coriolis and centrifugal force must
be supposed to act on the fluid. On a rotating earth the Coriolis force acts to change
the direction of a moving body to the right in the Northern Hemisphere and to the left
in the Southern Hemisphere. This force plays an important role in a rotating system of
turbulent flow, while centrifugal force with the potential is incorporated in to the

pressure.

In a turbulent flow the behaviour of the dust particles depends on the concentration of
the particles and the size of the particles with respect to the scale of turbulent fluid.
Saffman [86] derived an equation that describe the motion of a fluid containing small

dust particle, which is applicable to laminar flows as well as turbulent flow.

Kishore, and Sarker [53] studied the rate of change of vorticity covariance in MHD
turbulent flow of dusty incompressible fluid. Also Rahman [82] studied the Rate of
change of vorticity covariance in MHD turbulent flow of dusty fluid in a rotating
system. Kishore and Sinha [54] also studied the rate of change of vorticity covariance
of dusty fluid turbulence. Corrsin [31] had made an analytical attack on the problem
of turbulent temperature fluctuations using the approaches employed in the statistical
theory of turbulence. His results pertain to the final period of decay and for the case of
appreciable convective effects, to the “energy” spectral from in specific wave-

number ranges. Deissler [32, 33] developed a theory for homogeneous turbulence,
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which was valid for times before the final period. Following Deissler’s theory
Loeffler and Deissler [64] studied the decay of temperature fluctuations in
homogeneous turbulence before the final period. Sarker and Azad [94]; Azad and
Sarker [3]; Azad and Sarker [4]; Azad etal [11]; Azad and Sarker [5]; Azad et al.
[12] also studied the decay of temperature fluctuations in homogeneous and MHD
dusty fluid turbulence. Azad et al [15] studied the transport equatoin for the joint
distribution function of velocity, temperature and concentration in convective tubulent
flow in presence of dust particles. Molla et al [69] also studied decay of temperature
fluctuations in homogeneous turbulenc before the final period in a rotating system.
Bkar Pk. et al [30] studied first-order reactant in homogeneou dusty fluid turbulence

prior to the ultimate phase of decay for four-point correlation in a rotating system.

They considered dust particles and Coriolis force on their won works. In their study,
they considered two- and three- point correlations and neglecting fourth- and higher-
order correlation terms compared to the second- and third-order correlation terms.
Sinha [103] had considered the effect of dust particles on the acceleration of ordinary
turbulence. Kishore and Singh [55] had studied the statistical theory of decay process
of homogeneous hydro- magnetic turbulence. Dixit and Upadhyay [34] also had
deliberated the effect of coriolis force on acceleration covariance in MHD turbulent
dusty flow with rotational symmetry. Kishore and Golsefied [52] considered the effect
of Coriolis force on acceleration covariance in MHD turbulent flow of a dusty
incompressible fluid. Shimomura and Yoshizawa [102], discussed the statistical

analysis of an isotropic turbulent viscosity in a rotating system.

In the present work, following the above theories we have studied the decay of
temperature fluctuations in dusty fluid homogeneous turbulence prior to the final
period in presence of Coriolis force considering the correlations between fluctuating
quantities at two- and three- point and single time. In this work, Deissler’s method is
used to solving the problem. Through out the study we have obtained the energy
decay law of temperature fluctuations in homogeneous dusty fluid turbulence prior to
the final period due to Corilis force. In result, it has been shown that the energy
decays more rapidly than non rotating clean fluid. It is the extension work of chapter

two.
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2.7 Three points correlation and spectral equations:
In order to obtain single time and three points correlation and spectral equation we

consider three points P, P’ and P” with position vectors 7 and 7' are considered.

P n

7 P

For the two points P’ and P” we can write a relation according to equation (2.2.7),

orr), , owrt) o) LFZ(T’T") s 52(”")} @7.1)

ot Y " P | axox | ox'ox"

i

Equation (2.7.1) multiplied through by u, the j-th velocity fluctuation component at

point P. Then the equation can be written in a rotating system at the pointP.

6(ujT’T”)+ui a(uju;T’T”)+ o) v az(ujT'T”)+ o*(u,T'T") 272
ot Ox; ox! P | oOx/ox] Ox]'Ox! ot

i i

The momentum equation at pointP in presence of dust particles and Corolis force

both together

ou,; 8(ujul.)__ 1 6P quj

+ = +v -2 Q + f(u,—v,

Ot ox, pox,  0Ox0x, A

ou o\u .u. 0’u.,
Lou ) vae o, “2e Q.+ fu, -v)) 2.7.3)

ot ox, pox,  Ox,0x, g s
Here,
u;
v, =turbulent velocity component

=dust velocity component

_ kN (Dimension of frequency)
P

f

€, » alternating tensor, Q2 , angular velocity of a uniform rotation.
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N, constant number density of dust particle

Substituted equation (2.7.2) into equation (2.7.3) the result on taking time averages is

ot L ox] ox! P.| Ox/ox] ox!'ox;

i i r

8(ujT’T”)+u ﬁ(ujul.'T'T”)_i_ a(ujui”T”T’) L{y(ﬁ) GZ(W)

(2.7.4)

) 15(W)+V62(W) Q[ 1T)
m J

ox, p 0, Ox,0x,

+f@,IT -V TT" -2¢

mij

Making use of the relations », =x/ —x, and r/=x-x/ allows equation (2.7.4) can

be written as

6(ujT'T”) L{(HP \az(w)up 82(W)+(1+P )62(ujT)}:
% P S e

at r i i i arx’ 6}”1'

a(ul/‘u[’T'T”) 6(uju,."T"T')+ 8(uju,.T’T”)+ 8(uju,.T’T")+ 1 O(W)+ 1 6<W)
- or, - or/ or/ or, p or p o

+f@,TT" -v.T'T")-2¢,Q, (ujT'T")

mij

(2.7.5)

Six-dimensional Fourier transforms for quantities this equation may be defined as

T = [ [0 expli(& -7+ &7 )|k ak (2.7.6)
uuTT" = T Tﬁjﬁi’e'e" expli (K -7+ R 7 )|ak ak (2.7.7)
PTT = j Tmexp[i (R -7+ & 7)|ak ak (2.7.8)

—00—00

Interchanging the points P’ and P" shows that

T T = [ 7,00 expli(R -7+ & 7)ak ak (2.7.8a)
wu!T"T =uu/T'T" = T Tﬂ/ﬂi’e’e”exp[i (K -7+ & #)|ak ak (2.7.8b)

—00—00

Using equation (2.7.6) — (2.7.8b) into equation (2.7.5) then the transformed equation
can be written as

1%

r

i+ K)BBOT +i(k kB BOT + ik, + K )l &~ 17,00  (2.7.9)
- | |

If the derivative with respect to x, is taken of the momentum equation (2.7.4) for

point P, and taking time average the resulting equation is
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Gz(u‘/uiT’T") _ 1 GZ(W)

Ox ; Ox, p Ox,0x;

(2.7.10)

In terms of the displacement vectors 7 and 7' this becomes

2 2 2 2 2 2
0 +2 0 + 0 u.uiT'T"z—l 0 +2 9 + 0 PT'T" (2.7.11)
or/or/  orjor, oror |’ p|orior]  oror, or or,

Taking the Fourier transform of equation (2.7.11) and then solving for «8'0" we get
i plk' k! + 2k k, +k &, |
[k k! + 2k, + & k|

B,Bo0" (2.7.12)

Equation (2.7.12) can be used to eliminate «6'6" from equation (2.7.9).

2.8 Solution for times prior to the ultimate period

To obtain the equation for final period of decay the third-order fluctuation terms are
neglected compared to the second-order terms. Analogously, it would be anticipated
that for times before but sufficiently near to the final period the fourth-order
fluctuation terms should be negligible in comparison with the third-order terms. If this
assumption is made then equation (2.7.12) shows that the term «6'6" associated
with the pressure fluctuations, should also be neglected. Thus equation (2.7.9)

simplifies to

a .6!0” .

(ﬁ-’a—t)+Pi{(1+Pr)k2 +2P k! +(1+P k" +&(25mj9m —fs)}ﬂ]ﬂ'ﬁ":O (2.8.1)
r U .

RB,00 =y,00 """

and 1-R=S, R and S are arbitrary constant.

Inner multiplication of equation (2.8.1) by k, and integrating between ¢, and t gives
k.pB;00"

= [kj ﬂje'e"]o exp{—PL[(l +P ) + 2P kk! cos& +(1+P, k" +P—U’(2emiij - fs)} (¢, )}

r

(2.8.2)
Now, letting ' =0 in equation (2.7.6) and comparing the result with the equation

(2.2.10) shows that

k gr(R )= Tk,. BOGRR' dR' (2.8.3)




Chapter-11 62

Substituting of equation (2.8.2) and (2.8.3) into equation (2.2.12), we obtain
a”atK + i—vkz (k)= [ix, (00 -pol-R)or(-&7)]
' - (2.8.4)

x exp{—@{u 4P Yk + A7) 4 2P KK cosé + 0 (26,0, - fs)} } R’
: v

Now, dK' (= dk!dk! dk!) can be expressed in terms of k' and & as

dK' =27 k' d(cos &)dk' (2.8.5)

Substituting equation (2.8.5) into (2.8.4) yields

@ﬁ_wﬂ (k)=2 T2i7rk,. [poe(k.i)-poe(-k-i))]

7

(2.8.6)

X !j exP{_ V(tP—_tO){(l +P, )(k2 +k"” )+ 2P kk'cosé+ %(gm.ij - fs)} }d(cos f)} dk'

In order to find the solutions completely and following Loeffler and Deissler [64], we

assume that

ik| B ok &)- B 00~ K-k, —(25—°)z(k2k’4 k) (2.8.7)
T

where &, constant depending on the initial condition. The negative sign is placed in

front of §,in order to make the transfer of energy from small to large wave no. for

positive value of 5, . Substituting equation (2.8.7) into equation (2.8.6)

afgtK + i—v- 22k 7r'(R )= —250]:(k2k’4 k)

I

xﬁexl){_@{(l +P )(k2 +k’2)+ 2P k k' cosé +%(28miij —fs)} }d(cosé)} dk'

-1

(2.8.8)
Multiplying both sides of equation (2.8.8) by &’ and defining the spectral energy
function
E=27k 7r'(K) (2.8.82)

and the resulting equation is

aa—f+f)—vk2 E=w (2.8.9)

I3
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where

w= —2507(1«21('4 — KKKk
0

x Uexp{_ @{(1 +P Yk + &)+ 2P k k' cos & + %(zgijm - fs} }d(cos 5)} dk’

7 (2.8.92)

Integrating equation (2.8.9a) w.r.to £, we have

Tk K -k k'3

0

x[exp{—@[@ +P k> + k2 )-2P kK +5(25m,.j9m - ﬁ)} H dk' + t5° [(x - k%=
g v v 0

{exP{_@{mg Yk + &%)+ 2P k k’+%(25miij - fs)} H dk’ (2.8.9b)

Again integrating equation (2.8.9b) w.r.to £'we have

5
2
w=——oy 50\/;1)" exp{—P’ it o — (t—lo)}
) v

202 (t—1,)2(1+P,)>

—ko(l+2P, Yt —1¢,)
xexp{ P(+P) } (2.8.10)

S s pa [ e oot ey R Y

The equation (2.8.9) indicates that w must begin as k* for small £ . The condition of w

is fulfilled by the equation (2.8.10). It can be shown, using equation (2.8.10) that

jwdk=o (2.8.11)
0

It was to be expected physically since w is a measure of the transfer of “energy” and

the total energy transferred to all wave numbers must be zero.

The necessity for equation (2.8.11) to hold can be shown as follows if equation

(2.2.10) is written for both K and — K , and resulting equations differentiated with

respect to 7, and added, the result is, for 7 =0 (i = —iJ

or, ox,

1
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- 26ﬁm= jlk[ p.20(K)- 9,00 12)] dk (2.8.11a)

X

i

Since according to the equations (2.8.8), (2.8.9) and (2.2.12),

w= 27Z'ik2kl.|: ¢iﬂ’(— [%)— ¢,.n'(1%)}

dk as

So the equation (2.8.11a) can be written as — 2iulﬂ" = .[

2
Ox,

—o0

dK =4rk*dk for w=w(k,t) then the equation (2.8.11a)

becomes Iw dk = —iuin" =0
0 ox,

1

The linear equation (2.8.9) can be solved for w as

E= exp{— W} I w exp{%} dt + J(k) exp{— W} (2.8.12)

r r

where, J(k) is an arbitrary function of k.

For large times, Corrsin [31] has shown the correct form of the expression for E to be

2 —
E:ﬂyexp[_M} (2.8.13)
V4 P

r

where, N, is an constant which depends on the initial conditions. Using equation

(2.8.13) to evaluate J(k) in equation (2.812) yields

_ NK®
y/a

J(k) (2.8.14)

Now, substituting the values of w and J(k) as given by the equation (2.8.10) and

(2.8.14) into equation (2.8.12) gives the equation.

5
2 2(, 2
N, k exp{_Zuk (t ro)}+ 5?/” P;

VA

E(k,t)= 7 eXp{_ (zgmngm —fS‘)(t—tO) }

202(1+P.):

r

2
Xexp{—k U(l+2P,,)(t—t0)}

P.(1+P)

BK . P(R-6k 43> - 2P + 3" B (3p? 2P, +3)°F(n)
1

5

Wwi-g) 3w(+P Y-t 30+P V(-1 A1+ )i P2

X
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2
+ 5\/_P xexp{ (2¢,,9Q, fs)}xex { k 1)8622)51—%)}
40?2 (1+P)’ TR
3Pk P(7P -6 _43p2 2P, +3)* L8 (3p? = 2P, +3)°F(n) (2.8.15)
2uz(t—t0)§ 30(1+P,)(t—z0)§ 3(1+P,,)2(z—t0)§ 30 +Pr)§ P,%
where,
—ryzjll.e"'zdx
F(p)=e * (2.8.16)
ol —¢
o A VS 2.8.17
"k (vp) —

Putting 7 =0 in equation (2.2.9) and we use the definition of E given by the equation
(2.8.15), the result is

TTI 2

TE (k)dk (2.8.18)

Substituting equation (2.8.15) into (2.8.18) gives

L LI eI N B)
8. J2r)v2(t-1,): o'(e-1,) (2.8.19)

=T = At -1, )_% + Bexp[— (2¢,,9Q, - ﬁv]x (t-1,)°
N, (P, )3

32 6

4 J(2x)v?

where, 4=

R=

() { 9 _5P(7P,-6) 35P, (3p? 2P +3)
2(14+p Yi+2p ) 16 16(1+2P) 8(1+2P,)’

(2.8.20)
, 1:5422P, (37 ~ 2P, +3)(1+2P) {1 = (1) [11+2(n1)]:|}

\/U(HP) 2

= (2n+1)n!2)"(1+P,)
R is a function of Prandtl no.

Equation (2.8.19) is the decay law of temperature fluctuation in homogeneous dusty
fluid turbulence prior to the ultimate period in presence of Coriolis force. The first
term of the right side of equation (2.8.19) corresponds to the temperature energy for

two- point correlation and the second terms represents the energy for the three point
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correlation. This second term becomes negligible at large times leaving the final
period decay law previously found by Corrsin [31]. 72 is the total “energy” (the

mean square of the temperature fluctuations).

2.9 Result and Discussion
Equation (2.8.19) is the decay law of temperature fluctuation in homogeneous dusty
fluid turbulence before the final period in presence of Coriolis force. In the absence of

the dust particle and Coriolis force, i.e. f =0 then the equation (2.8.19) becomes

=, %
TT Ny (P:’) -t % R ; exp[— 2gmi/'Qm]
81/i27ziz)5(t—t0)5 v'(t-1,) (2.9.1)

T=A(t—t,)z +B exp[— 2¢,,Q, ]x (t—1,)°

J

which was obtained earlier by Molla et al [68]. In this work, they had studied the
decay of temperature fluctuation in homogeneous turbulenc before the final period in
a Rotating System. They considered two - and three - point correlations and
neglecting fourth- and higher-order correlation terms compared to the second- and

third-order correlation terms.and derivrd the above equation.

If Q, =0, then the equation (2.8.19) becomes

3

T2 MR &R
2

3 6(s _
8 272')02(t—t0)% 0'(e=ty

i exp|fs]= 4(t -1, )% +Bexp[fs]x(t—-1,)"  (2.9.2)

which was obtained earlier by Azad and Mumtahinah [13].
In the absence of the dust particle and the Coriolis force i.e. f=0 and Q =0, the

equation (2.8.19) becomes

_ 3 3
2 2y 2
T N(P)vr [ 4R (2.9.3)

2 g on)i-1,): v-t)

3

=A(t—t,)2 +B(t—t,)” which was obtained earlier by Loeffler and Deissler [64].

3

N,(P)2v ?
Here, A:M and B =
8427 v

S, R

6
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Due to the effect of Coriolis force in homogeneous dusty fluid turbulence, the
temperature energy fluctuations decays more rapidly then the energy for non rotating

clean fluid prior to the ultimate period. For large times, the second term in the

equation (2.9.3) becomes negligible leaving the —% power decay law for the ultimate

period.

In their study, they considered two and three point correlations and neglecting fourth-
and higher-order correlation terms compared to the second- and third-order

correlation terms.

Through the study we have obtained the equation (2.8.20) for energy decay law of
temperature fluctuations in homogeneous dusty fluid turbulence prior to the final
period in a rotating system. In this result, it has been shown that the energy decays

more rapidly than clean fluid and non rotating system.
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CHAPTER-III
PART-A

TRANSPORT EQUATION FOR THE JOINT DISTRIBUTION
FUNCTIONS OF CERTAIN VARIABLES IN CONVECTIVE
TURBULENT FLOW IN PRESENCE OF CORIOLIS FORCE
UNDER GOING A FIRST ORDER REACTION

3.1 Introduction
In molecular kinetic theory in physics a particle's distribution function is a function of

seven variables, f(x,y,z,v,,v,,v,) which gives the number of particles per unit

volume in phase space. It is the number of particles per unit volume having

approximately the velocity (v,,v,,v,) near the place (x,y,z)and timer. Particle

distribution functions are often used in plasma physics to describe wave-particle
interactions and velocity-space instabilities. Distribution functions are also used in
fluid mechanics, statistical mechanics, fluid and nuclear physics. In the past, several
researchers discussed the distribution functions in the statistical theory of turbulence.
G. K. Batchelor [24] studied the theory of homogeneous turbulence. Lundgren [66]
derived the transport equation for the distribution of velocity in turbulent flow. Bigler
[25] gave the hypothesis that in turbulent flames, the thermo chemical quantities can
be related locally to few scalars and considered the probability density function of
these scalars. Kishore [47] studied the distributions functions in the statistical theory
of MHD turbulence of an incompressible fluid. S. B. Pope [78] studied the statistical
theory of turbulence flames. Also, Pope [79] derived the transport equation for the
joint probability density function of velocity and scalars in turbulent flow. Kollman
and Janica [56] derived the transport equation for the probability density function of a
scalar in turbulent shear flow and considered a closure model based on gradient flux
model. Kishore and Singh [49] derived the transport equation for the bivariate joint
distribution function of velocity and temperature in turbulent flow. Also Kishore and
Singh [50] have been derived the transport equation for the joint distribution function

of velocity, temperature and concentration in convective turbulent flow. The Coriolis
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force helps to clarify the relation between angular momentum and rotational kinetic
energy and how an inertial force can have a significant affect on the movement of a
body and still without doing any work. On a rotating earth the Coriolis force acts to
change the direction of a moving body to the right in the Northern Hemisphere and to
the left in the Southern Hemisphere. This deflection is not only instrumental in the
large-scale atmospheric circulation, the development of storms, and the sea-breeze
circulation - Atkinson [1], it can even affect the outcome of baseball tournaments.
Also a first-order reaction is defined a reaction that proceeds at a rate that depends
linearly only on one reactant concentration. Later, some researchers extended their
works including coriolis force. In the continuation, Azad and Sarker [2] studied the
Statistical theory of certain distribution functions in MHD turbulence in a rotating
system in presence of dust particles. Sarker and Azad [87] studied the decay of MHD
turbulence before the final period for the case of multi-point and multi-time in a
rotating system. Sarker and Azad[87], Azad and Sarker[5] deliberated the decay of
temperature fluctuations in homogeneous turbulence before the final period for the
case of multi- point and multi- time in a rotating system and dust particles. Azad and
Sarker [8] discussed the decay of temperature fluctuations in MHD turbulence before
the final period in a rotating system. Also, Azad et al[8], Sarker et al [99], Azad et al
[6], Aziz et al[17], Azad et al[9] discussed the First Order Reactant in MHD
turbulence before the final period of decay for the case of multi-point multi-time and
multi -point single time considering rotating system and dust particles. Following the
above researchers, Aziz et al [18,20], Azad et al [10] had further studied the
statistical theory of certain distribution functions in MHD turbulent flow for velocity
and concentration considering first order reaction with a rotating system and dust
particles. Aziz et al [19] extended their study for the first order reactant in MHD
turbulence before the final period of decay for the case of multi-point and multi-time
in a rotating system in presence of dust particle. Sarker, Bkar Pk and Azad [101]
studied the homogeneous dusty fluid turbulence in a first order reactant for the case
of multi -point and multi -time prior to the final period of decay. Azad, Molla and Z.
Rahman [15] studied the transport equatoin for the joint distribution function of
velocity, temperature and concentration in convective tubulent flow in presence of
dust particles. Molla, Azad and Z. Rahman [68] discussed the decay of temperature

fluctuations in homogeneous turbulenc before the final period in a rotating system.




Chapter-111 70

Bkar et al [29], Bkar et al [26, 29] premeditated the first-order reactant in
homogeneou dusty fluid turbulence prior to the ultimate phase of decay for four-point
correlation considering rotating system. Bkar PK, et al [28, 27] had studied the decay
of MHD turbulence before the final period for four- point correlation among dust
particle and rotating system. M. H. U. Molla et al [68] studied the transport equation
for the joint distribution function of velocity, temperature and concentration in

convective turbulent flow in presence of Coriolis force.

But at this stage, one is met with the difficulty that the N-point distribution function
depends upon the N+I-point distribution function and thus result is an unclosed
system. This so-called closer problem is encountered in turbulence, Kinetic theory

and other non-linear system.

In this chapter, we have studied the joint distribution function for simultaneous
velocity, temperature, concentration fields in turbulent flow in presence of Coriolis
force undergoing a first order reaction. Finally, the transport equations for evolution
of distribution functions have been derived and various properties of the distribution

function have been discussed.

METHODOLOGY

3.2 Basic equations

The equation of motion and field equations of temperature and concentration in

presence of Coriolis force are shown by

ou, ou, 0 rl 0 {
ot a@xﬂ Ox

« ¢ — ua(x',t)i-ua(x',t) di%—viiua -2€,,,Qu,
0 4 Ox) ' ‘

Gl Xy —x}g‘ Ox, 0x, map
3B.2.1)
00 o0 .0 0

—tu, =f 0 (3.2.2)
ot axﬂ Gxﬁ 8xﬁ

oc oc 0 0
—+u, =D c
ot Gxﬁ ﬁxﬂ 8xﬂ

~Re (3.2.3)
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here u and x are vector quantities in the whole process. ua (X, t) = Fluctuating velocity
component,d (x, t) =Temperature fluctuation,c = Concentration of contaminants,v =
Kinematics viscosity, f= Coefficient of thermal conductivity, D= Diffusive

coefficient for contaminants, €,,,= Alternating tensor, 2, = Angular velocity of a

uniform rotation, R=constant reaction rate.

3.3 Formulation of the problem

We consider the turbulence and the concentration fields are homogeneous, also
consider a large ensemble of mixture of miscible fluids in which each member is an
infinite incompressible heat conducting fluid in turbulent state. The fluid velocity u,
temperature 6 and concentration ¢ are randomly distributed functions of position and
time and satisfy their field equations. Different members of ensemble are subjected to
different initial conditions and the aim is to find out a way by which we can determine
the ensemble averages at the initial time. The present aim is to construct a joint
distribution functions, study its properties and derive an equation for its evolution of
this joint distribution functions in presence of Coriolis force undergoing a first order

reaction.

3.4 Joint distribution function in convective turbulence and their
properties

It may be considered that the fluid velocity u, temperature 0, concentration c at each

point of the flow field in turbulence. Lundgren [65] and Sarker and Kishore [97, 98]

has studied the flow field on the basis of one variable character only (namely the fluid

u) but we can study it for two or more variable characters as well. For the

corresponding each point of the flow field, we have three measurable characteristics.

We represent the three variables by v, ¢ and y and denote the pairs of these variables
at the points !, 1)~~~ -~ —— ) as (0,90, 0), (2,62 ) - - oo ,
(v(”),(zﬁ("),y/(”)) at a fixed instant of time. It is possible that the same pair may be

occurring more than once; therefore, we simplify the problem by an assumption that
the distribution is discrete (in the sense that no pairs occur more than once). Instead of

considering discrete points in the flow field if we consider the continuous distribution
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of the variables and y over the entire flow field, statistically behavior of the fluid may
be described by the distribution function F(v,#, ) which is normalized so that
[F(v,p,w )dvdpdy =1,

where the integration ranges over all the possible values of v, ¢ and y. We shall make

use of the same normalization condition for the discrete distributions also. The joint
distribution functions of the above quantities can be defined in terms of Dirac Delta-

functions.

The one-point joint distribution function F’l(l)(v(l),qﬁ(l),y/(l)) is defined in such a way
that  FOWY, 40,50 v0dgdy ) is the probability that the fluid velocity,
temperature and concentration field at a time t are in the element dv") about v, d¢(1)
about ¢ and dy" about " respectively and is given as

FOW, 60,5 0) = (5{u® —v0)5(0 = 60) () 0, (G.41)
where, 0 is the Dirac delta-function defined as:

“-5(” - V)dv = {1 at the point u=v

0 otherwise

Two-point joint distribution function is given by

FZ(LZ) _ <5(u(1) _ v(l))é‘(g(l) _ ¢(1))§(C(1) _ W(l)) §(u(2) _ v(2))5(9(2) _ ¢(2)) 5(0(2) _ l/,(2))> (3.4.2)

And three point distribution functions is shown by
1:3(1,2,3) — <5(u(l) _ v(l))5(9(1) _ ¢(l))5(c(1) _ W(l)) 5(u(2) _ V(Z))(g(g(Z) _ ¢(2))

X 5(0(2) _ l//(”) 5(u(3) _ v(3)) 5(9(3) _ ¢(3)) 5(6(3) B w(3))> (3.4.3)

Similarly, we can define an infinite numbers of multi-point joint distribution

functions F>3% | F12343) and so on. The joint distribution functions so constructed

have the following properties:

(A) Reduction properties
Integration with respect to pair of variables at one-point, lowers the order of

distribution function by one.
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For example:

J (l)dv(l) d¢(1) dl//(l) _

J (1,2) dv d¢ Fi(l)
I (1.2.3) dv d¢ Fz(l’z)
and so on.

Also the integration with respect to any one of the variables reduces the number of

Delta-functions from the distribution function by one as:

JEDaW = ¢ 5(9(1) _ ¢(1)) 5(0(1) _ W(l)»
IFl(l)d¢(1) _ (5(u(1) _ v(l))5(c(1) _ l//(l))>

and

JEMav? = (5(0" - g0) (e -y )5(01) - @) 5(c® @)}y and 50 on.

(B) Separation properties
The pairs of variables at the two points are statistically independent of each other if

these points are far apart from each other in the flow field i.e.,

Lim  F" =FVE
L0 e 2 b

—>0

And similarly,

‘ UL)m ‘ F3(1,2,3) :Fz(l,z)E(s) etc.
(C) Coincidence property
When two points coincide in the flow field, the components at these points should be

obviously the same that is F2('*? must be zero. Thus:

N P1C) BPIC) R I B )

But also F2? must have the property
[FMay) gp2) =r

And hence it follows that:
Lim F2(1»2) - Fl(l) 5(\/(2) —v(l))5(¢(2) —¢(1))5(l//(2) _W(l))

A2 )] S0
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Similarly
2 = FP2 (0 - 0)s(g0) -0 sy -y ) et

Lim
x(3)_x(2)‘ —50

3.5 Continuity equation in terms of distribution functions

An infinite number of continuity equations can be derived for the convective turbulent
flow and the continuity equations can be easily expressed in terms of distribution
functions and are obtained directly by div u = 0.

ouV d d

<—> = <ax(1) uS)IE(l)dv(l)d¢(l)dW(l)> - =0 <ug)jE(l)dv(l)d¢(l)dl//(l)>

a

= il)j<uf;>><E<l)>dv<l>d¢<l>d,,,(l> __9 [VOR gy

8)(;((1 axs)
)
_ ja W Vdg0dy ) = 0 (3.5.1)
ox,,
And similarly
0)
IaaFl(]) S0 d g0y = 0 (3.5.2)
X

a

Which are the first order continuity equations in which only one point distribution
function is involved. For second-order continuity equations, if we multiply the

continuity equation by

5(u(2) _ V(Z))é‘(g(Z) _ ¢(2)) 5(0(2) B l//(z))

And if we take the ensemble average, we obtain:

0o < 5 —v@)5(p0) — @) 5(c@) w(z))zu—%il))>
X

a
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0

"o [VOE Vgt dy ") (3.5.3)
8
0=—"77 8V Vdgdy (3.5.4)

And similarly, the Nth-order continuity equations are

0

0=—1 [vOE> MgV dy ") (3.5.5)
And
0= aj(“ [8VE>Vaag dy (3.5.6)

The continuity equations are symmetric in their arguments i.e.

afﬁ(r) j(v((zr)FA(ll,Z,———s———r———N)dv(r)d¢(r)d‘//(r))
xa
O [( )l 2mmr s === N) 1 (5) 1 4(s) 7 (5)
=ax<S>I (VOF " dgdy ") (3.5.7)

Since, the divergence property is an important property and it is easily verified by the

use of the property of distribution function as:

O [ ) )40, ) 0 g _[oud\
mj.val‘:i dV d¢ dV/ —m<ua>— m —0 (358)

And all the properties of the distribution function obtained in section (3.4.1) can also

be easily verified.

3.6 Equations for the evolution of joint distribution functions

This, in fact is done by making use of the definitions of the constructed distribution

functions, the transport equation for F (V’ AR ) is obtained from the definition of

F and from the transport equations (3.2.1), (3.2.2), (3.2.3). Differentiating equation
(3.4.1) we get,
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% . % < ( M _ (1))5(9(1)_¢(1))5(c<1)_,/,(1))>:< 5(9(1)_ ¢(1))5(C(1)_ W“)) % ( 1) _ (1>)>
+< 5(u(1) _v(l))5(c(1) _y/(l))§5(9(l) _¢(l))>+<§(u(l) _v(1))5(9(1) _ ¢(1))§5(c(1) —W(l))>
= =5(0" - 4")s(c _W<1>)‘9”_53)i Sl =) (3.61)
ot 8\12) -
(1)
‘|‘<—5(u(1)_v(l))é‘(c(l)_W(l))%%é‘(e(l)_¢(1))>
+<_ 5(u(1) _v(l))(g( o _ ¢(1))ag_f)%5(c(1) _ l//(l))>

Using equation (3.2.1), (3.2.2) and (3.2.3) in the equation (3.6.1) we get

aul) 9 1 0 0 ]

_ ) Ma L (2) )

5 e 6xﬂl) 6x2)'[ 4r 6x£,2) e 6x£32) te P

_Fl(l): _5(9(1)_¢(1))5(C(1)_‘//(1) N —1)5(u(l)—v(l))
dx ; 0 0 ov

1) (1) @
X +v u, =2€,,, Q,u,
‘xfgl) —x(ﬂz)‘ ax(ﬂl) 6x(ﬂl) 4

1)
sl sl ), 1) 90 0 0 L0090 (ot _40)
+< ool )1[ SAPY IR PR YD o -4")

B BB

o) 8 0
+<5(u(1) _v(l))g(g(l) _¢(1)g_ Y D ) c(l)} P §(c(1) _'//(1))_ RC(1)>

¢ Gxg) axg) axg W
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—_

+<—5(¢9<1) —g)s(c -y )2e,,, 0 u il 5 —v(l))>

“ o
0 0 0
5l =0 s(o® — 0 019 _s(g0) _ 40
< (” v ) (C 4 )f 6x2) 6x,(;) 040 ( ¢ )
0 0 0
sl —v0)s(eW — M) D 0 _9 _ s(.0_,0 362
< (“ v ) ( ¢ ) axg) 8x2) ¢ al//(l) (C 4 ) ( )

<_ 5 =56 — g0)re % 5 - ,/,(1))> —0

Various terms in the above equation can be simplified as that they may be expressed
in terms of one point and two point distribution functions. The 2nd, 3rd and 4th terms
on the left hand side of the above equation are simplified in a similar fashion and take

the forms as follows

Ox,' OV
d oulV
- < 5(0" = g)5(c" -y V)l ax_g)a(um _ v(1>)>, { = _1} (3.6.3)

"
- < S = v0)s(c? - gu(l))uygiﬁa(e(‘) - ¢<1))>, (3.6.4)
and

8
ol -y ) > (3.6.5)

Adding equation (3.6.3), (3.6.4) and (3.6.5) we get,

< 5(60 — §0)5(c0 — ) %}) Sl - V<1>)> . < Sl =)o) =y ) 2 5{p0) ¢<1>)>

. <5(u<1> {0l 20 >

(1
Ox 7
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_ % () (5 =)s(0" - ) 5(c =)
i) a‘) F( ) [Applying the properties of distribution function]

A
ﬁ
i 6Fi(l)
(0]
axﬁ

<

N

(3.6.6)

We reduce the 5th and 6th terms on left hand side of equation (3.6.2),

<5(9(1)_¢(l))5(c(l)_w(l)){_%7{ﬁj 8;3(2) 582) Uy (z)| (ldx/, |}afl) 5( (1)_v(1))}>

2
0 1 0 0 @ 0 | 202 ,.0) () 1 42) 1 ()
=—|—— —— ||V E 2 dxe " dvy deg' d 3.6.7
avfj) 4r [axﬁf) ‘xg)—x(ﬂz)d ( “ éx(ﬂz) ? ¢ dv ( )
And
M _ 40 s(.0) _ 0 0 90 (-
<5(9 ¢ )5(0 )V(ax(ﬁl) ax(ﬁl) a Ja\/’ 0] )>
& o8 0
:< Vm@@ug)g(g(l) ¢(1))5(C(1) 1)>
o/ o o
VD < x o) ullo(0" - ¢")(c -y ]>
8 o8 0
:VWW@ ug)[5(g<l>_ #)5() = W) - (1)
v 2 g 00 [0 =)ol w<2>)5(u<2>—v<2>)
8vfj) OB Gxg) ax(Z) 5(6’(1) _¢(1))5( 0] _l//(l))é(u(l)_v(l))dv(z)d¢(z)dl//(z)
0 d

; VO E2) 7,27 40)
PRGNS ) ax(z_[ £y mdvtdegTd (3.6.8)

We reduce the 7™ term on left hand side of equation (3.6.2),

<_5(9(u>_¢<u))5(c y)2e,, Qu()ava()g(u(u)_v(u))>

a

- < 2e,., Qmug)ﬁﬁ[ﬁ(u“) —v0)s(0" = g)5 (e — ) ]> (3.6.9)
=2e,., Q”’avi“< 05— 0)5(00 - 6)5(c) -y )
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Similarly, 8th, 9th and 10th terms of left hand side of (3.6.2) can be simplified as

follows:

o 0 0
< 5 =) =) J{ PROIPW0 Jg(l) EY 0 50" - ¢(l))>

B B

_ 0 . 0 0 [ p2) 5 (2) 1402 1 (2)
—a¢(1)x(%iﬁjl)f$(ﬁz)y(ﬁz)_[¢ Fy>ldviidg dy (3.6.10)

<§(u(l)—v(l))5(9(1)—¢(1))D( 0 5)}(0650) 5(c(1)—(//(1))>

ax) oxl

B Xp 4
0 .. 0 0 [, @)@ 0 @)
= 5,0 g%)DWij F v dgPdy (3.6.11)
and<— 5(u(1) —v(l))5(¢9(l) _ ¢(l))Rc(1) %5(0(1) _ V,(l))> — _Ry® a_alFl(l) (3.6.12)
v w

Substituting the results (3.6.6)-(3.6.12) in equation (3.6.2), we get the transport
equation for one point distribution function F ( , 9, y/) in turbulent flow in a rotating

system undergoing a first order reaction

(1) (1) :
61; + i)aaF(l +86(1) _4L.[ 58(2) (1)a ) [vf)aa(z)] PP av? dg
t X v, T xﬂ ‘xﬂ —xﬁ ‘ xﬂ

a0
avgn Xési%v_a 0T

<lj_>v f TTJ‘¢ 2)F (1,2) (2)d¢(2)dl//(2)

1) Lim D Z)J‘ ORI 0dy @ +2e, , O FD—Ry®

+ jv(z)ﬂ(l’z)dv(z)d(ﬁ(z)dl//(z) (3.6.13)

0 FY =0

1

Similarly, a transport equation for two-point distribution function Fz(l’z) in turbulent

flow in rotating system undergoing a first order reaction can be derived by
differentiating equation (3.4.2) and using equation (3.2.1),(3.2.2),(3.2.3) and

simplifying in the same manner which is
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1 o 0 0
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x| ox \xﬂ —xﬂ\ x
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e o Ll 0 0O 029000 gy ) (3.6.14)
4z | ox; ‘x(ﬁz)—x;)‘

+v(i Lim + o Lim] 0__0 Iv(3)F3(1’2’3)dv(3)d¢(3)dw(3)

a"z(;f) LG5

0
a¢ i’ﬁ' - og\? «

0 0 o 9
D(— Lim +—¢ Lim j w O FE0230,0)40) 4, 0)
1) 6 1 (2) G 2 3
ay/ *3) i) av/ L35 ,(2) p I

(%im(z)j 0 O [y

/—\
Q)

O 2 _ R,/,(z>

+2¢€ —
maf m* 2 8 2
7

1,2,3,4)

Continuing this way, we can derive the equations for evolution of F*), F and

so on. Logically, it is possible to have an equation for every F, (n is an integer) but

the system of equations so obtained is not closed. It seems that certain approximations

will be required thus obtained.

3.7 Results and Discussion
If the reaction rate R=0, the transport equation (3.6.13) for one point joint distribution

function F")(v,#,)in turbulent flow undergoing a first order reaction becomes

2

YL AN B O LR | (VNI P EFRCPYE PP e
o " axy ol | drd o x| axf
2 Lim v d [VOFavdg Py (3.7.1)
a0 0 oyl 2 4 -

o . 00 [ 4050270742 7,0
+a¢(l)x(z[)’inz(l)fax(2) ax(2).[¢ By dvidgTdy
+%ﬁi jyf FM v DdgPdy® +2¢,., 0, FY =0

which was obtalned earher by M.H.U.Molla [67].
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In the absence of the Coriolis force,Q2, =0, then the transport equation for one point

joint distribution function Fl(l)(v, 0, 1//) in turbulent flow equation (3.6.12) becomes

) ) ?
oK 0 aFl(l) N 5(1) _1 [ %ﬁ Vf)i(z) FO0 a0 44 gy ©)
ot ox, ov,’| 4r Ox; ‘xﬁ —X; ‘ Ox;

jv(z)Fz(l’z)dv(z)d¢(2)dl//(2) (3.7.2)

o 0
Lim @) 0.2 7,2) 142 71, ?)
a¢(1) x(z)%x(l)fgx(ﬂz) 8x(ﬁ2) I¢ 2 ordy

0 . 0 0 Q) (12) 72) 142) 70 (2) _
+aw(1)x(%ljf(l)Dax(ﬂz) axg_)jl// F,"2dv?dgPdy'? =0

which was obtained earlier by N. Kishore and S.R. Singh [55].

To close the system of equations for the joint distribution functions some approximations
are required. If we consider the collection of ionized particles i.e., in plasma turbulence
case, it can be provided closure form easily by decomposing F2"*? as F1V F1®. But such
type of approximations can be possible if there is no interaction or correlation between
two particles. If we decompose F2? as

EM =(1+&)FVE® (3.7.3)
F3(1’2’3) — (1 n E)ZF;(I)E(Z)F;(S) (3'7‘4)
where ¢ is the correlation coefficient between the particles. If there is no correlation
between the particles, € will be zero and joint distribution function can be decomposed in
usual way. Here, we are considering such type of approximation only to provide closed
form of the equation i.e., to approximate two-point equation as one point equation. The
transport equation for the joint distribution function of velocity, temperature, and
concentration has been shown here to provide an advantageous basis for modeling the

turbulent flows in presence of Coriolis force undergoing a first order reaction.

In this chapter, we have made an attempt for the modeling of various terms such as
fluctuating pressure, viscosity and diffusivity in order to close the equation for joint
distribution function of wvelocity, temperature and concentration. Since F (v, ¢,l//)
contains all the statistical information about the velocity at each point, a turbulence model
to determine the Reynolds stresses is not needed. However, since F (v, ¢,l//) is one point

statistics, the length scale information is also not needed.
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CHAPTER-III
PART-B

TRANSPORT EQUATION FOR THE JOINT DISTRIBUTION
FUNCTIONS OF CERTAIN VARIABLES IN CONVECTIVE
DUSTY FLUID TURBULENT FLOW IN A ROTATING
SYSTEM UNDER GOING A FIRST ORDER REACTION

3.8 Introduction

Now a day the two major and distinct areas of investigations in statistical mechanics
are the kinetic theory of gases and the statistical theory of fluid mechanics. In the past
several researchers discussed the distribution functions in the statistical theory of
turbulence. A distribution function may be specialized with respect to a particular set
of dimensions. Distribution functions may also feature non-isotropic temperatures, in
which each term in the exponent is divided by a different temperature. Particle
distribution functions are often used in plasma physics to describe wave-particle
interactions and velocity-space instabilities. Distribution functions are also used in
fluid mechanics, statistical mechanics and nuclear physics. The mathematical analog
of a distribution is a measure; the time evolution of a measure on a phase space is the
topic of study in dynamical systems. G. K. Batchelor [24] studied the theory of
homogeneous turbulence. Lundgren [65] derived the transport equation for the
distribution of velocity in turbulent flow. Bigler [25] gave the hypothesis that in
turbulent flames, the thermo chemical quantities can be related locally to few scalars
and considered the probability density function of these scalars. Kishore [47] studied
the distributions functions in the statistical theory of MHD turbulence of an
incompressible fluid. S. B. Pope [78] studied the statistical theory of turbulence
flames. Also, Pope [79] derived the transport equation for the joint probability density
function of velocity and scalars in turbulent flow. Kollman and Janica [56] derived the
transport equation for the probability density function of a scalar in turbulent shear
flow and considered a closure model based on gradient flux model. Kishore and Singh
[55] derived the transport equation for the bivariate joint distribution function of

velocity and temperature in turbulent flow. Also Kishore and Singh [50] have been
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derived the transport equation for the joint distribution function of velocity,
temperature and concentration in convective turbulent flow. The Coriolis force helps
to clarify the relation between angular momentum and rotational kinetic energy and
how an inertial force can have a significant affect on the movement of a body and still
without doing any work. On a rotating earth the Coriolis force acts to change the
direction of a moving body to the right in the Northern Hemisphere and to the left in
the Southern Hemisphere. Later, some researchers extended their works including
Coriolis force. In the continuation, Azad and Sarker [2] studied the Statistical theory
of certain distribution functions in MHD turbulence in a rotating system in presence
of dust particles. Sarker and Azad [87] studied the decay of MHD turbulence before
the final period for the case of multi-point and multi-time in a rotating system. Sarker
and Azad[94], Azad and Sarker[4] deliberated the decay of temperature fluctuations
in homogeneous turbulence before the final period for the case of multi- point and
multi- time in a rotating system and dust particles. Azad and Sarker [5] discussed the
decay of temperature fluctuations in MHD turbulence before the final period in a
rotating system. Also, Azad et al [8], Sarker et al [99], Azad et al [6], Aziz et al [17],
Azad et al [9] discussed the First Order Reactant in MHD turbulence before the final
period of decay for the case of multi-point multi-time and multi- point single time
considering rotating system and dust particles. Following the above researchers, Aziz
et al [18, 20], Azad et al [10] had further studied the statistical theory of certain
distribution functions in MHD turbulent flow for velocity and concentration
considering first order reaction with a rotating system and dust particles. Aziz et al
[19] extended their study for the first order reactant in MHD turbulence before the
final period of decay for the case of multi-point and multi-time in a rotating system in
presence of dust particle. Sarker, Bkar Pk. and Azad [101] studied the homogeneous
dusty fluid turbulence in a first order reactant for the case of multi- point and multi-
time prior to the final period of decay. Azad, Molla and Z. Rahman [15] studied the
transport equatoin for the joint distribution function of velocity, temperature and
concentration in convective tubulent flow in presence of dust particles. Molla, Azad
and Z. Rahman [15] discussed the decay of temperature fluctuations in homogeneous
turbulence before the final period in a rotating system. Bkar et al [30], Bkar et al [26,
29] premeditated the first-order reactant in homogeneous dusty fluid turbulence prior

to the ultimate phase of decay for four-point correlation considering rotating system.
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Bkar PK, et al [28, 27] had studied the decay of MHD turbulence before the final
period for four- point correlation among dust particle and rotating system. M. H. U.
Molla et al [67] studied the transport equation for the joint distribution function of
velocity, temperature and concentration in convective turbulent flow in presence of

Coriolis force.

In this chapter, we have been the derived transport equation for the joint distribution
function of velocity temperature and concentration in convective turbulent flow in
presence of dust particles undergoing a first order reaction in a rotating system.
Various properties of the distribution function for velocity, temperature, concentration

in convective turbulent flow in presence of dust particles have been discussed.
METHODOLOGY

3.9 Basic equations

The equation of motion and field equations of temperature and concentration in a

rotating system in presence of dust particles under going a first order reaction are

shown by
ou, ou,,
+u,
ot 6xﬁ
” dx’
__0 Li({ua(x',t)i(~ua(x',t)} % (3.9.1)
8xﬁ 0 47 8xﬁ Xy ‘xﬁ—xﬂ‘
+Viiua _2 emaﬂ Qmua +f(ua _va)
8xﬂ 8xﬂ
%+ua 00 =y 0 0 0 (3.9.2)
ot ﬁxﬁ 8xﬂ 6xﬂ

u2-p 2 % Re (3.9.3)
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where, u,, (x, t)= Component of turbulent velocity, 9(x,t) = Temperature fluctuation,
. . . . . KN . .
¢ = Concentration of contaminants,v = Kinematics viscosity, f=—— = Dimension of

frequency, N = Constant number of density of the dust particle, p = Fluid density,

kT
pe,

D= Diffusive coefficient for contaminants, 7 = = Thermal

diffusivity, ¢, =Specific heat at constant pressure, v, = Dust particle velocity, k, =
Thermal conductivity, €, ., =Alternating tensor, Q2, =Angular velocity of a uniform

rotation, R=Constant reaction rate. Here u and x are vector quantities in the whole

process.

3.10 Formulation of the problem

We consider the turbulence and the concentration fields are homogeneous. The fluid
velocity u, temperature 0 and concentration ¢ are randomly distributed functions of
position and time and satisfy their field equations. Different members of ensemble are
subjected to different initial conditions and the aim is to find out a way by which we
can determine the ensemble averages at the initial time. The present aim is to
construct a joint distribution functions, study its properties and derive an equation for
the transport equation for the joint distribution function of velocity, temperature and
concentration in convective turbulent flow in a rotating system in presence of dust

particles due to a first order reaction.

3.11 Continuity equation in terms of distribution functions

An infinite number of continuity equations can be derived for the convective turbulent
flow and the continuity equations can be easily expressed in terms of distribution

functions and are obtained directly by div u = 0.

ou!! O [ ) 1007 ,0) 7 ()
)= mug]ﬁ adg"dy
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B
- o) J‘V;)F}(l)dv(l d¢(l)d§y(')
0)
= | aﬂ(l) VO VdgVdyV =0 (3.11.1)
ox,,
(1)
and similarly j %qﬁg”dv(”dqﬁ(l)dw(l) —0 (3.11.2)
xa

which are the first order continuity equations in which only one point distribution

function is involved.

For second-order continuity equations, if we multiply the continuity equation by
5(u(2) _ V(Z))é‘(g(z) _ ¢(2)) 5(0(2) _ l//(Z))

and if we take the ensemble average, we obtain

< 5(u® —v?)5(0%) = ) 5(c V,(z))gu_% >
X

a

0

a

_ i)< 5u® —v)5(0% - ¢) () -y @ )l

[VOE gy (3.11.3)

and similarly

0= _aj(l) I¢£1)F2("2)dv(l)d¢(])dt//(1) (3.11.4)

The Nth-order continuity equations are

0= j [V a0y (3.11.5)
and
0= _ajm [BOFL g0y (3.11.6)

The continuity equations are symmetric in their arguments i.e.

%j(‘}g)}i\(]ll,srN)dv(r)d¢(r)d‘//(r)):%j(v((j)};}gll,rsN)dv(s)d¢(x)dt//(s)) (3.11.7)

a
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Since, the divergence property is an important property and it is easily verified by the

use of the property of distribution function as

O [ 0 0 0 sy [oul\
ax(l)jvaFl d"dgVdy _ax<‘><”“>‘ 7 =0 (3.11.8)

and all the properties of the distribution function obtained in section (3.4.1) can also

be easily verified.

3.12 Equations for the evolution of joint distribution functions
This, in fact is done by making use of the definitions of the constructed distribution
functions, the transport equation for F (v, ¢,w,x,t) is obtained from the definition of

F and from the transport equations (3.9.1), (3.9.2), (3.9.3). Differentiating equation
(3.4.1) we get,

% Fl :%(5@(1) —1)apt) - el - W<n)> _ < 5ot - g0)s(c0) - 0 ; Sl - v(1>)>

N < ofu) =0 ,,,(1))55(9@) . ¢<1>)>+ <5(u<1

_ < g g0l - Wm)@g,;‘i)a% sl Vu>)> . < )l ,,,(1))%?% ot~ ¢u>)>

. <_ sl 1)t - ¢(1>)52_i‘)6_5® sl - v/('))>
4

|
S
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=2
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|
S
—_
|
<,
o
|
SA
—
-

(3.12.1)
Using equation (3.9.1), (3.9.2) and (3.9.3) in the equation (3.12.1) we get,

_umauﬁ?)_ 0 IL 0 o 0 0

(2)
A A A L ) IO 1) _ )]0 _s(,0_,0
ot F 5(0 ¢ )5(C X ‘xg) ~ x%)‘ +V57ﬁ176xﬂ1 Uy’ =2 Cmap Qg 67)(?5(” v )
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()
sl 0 s ) 090 0 0 40)[_9 o) 40)
+< o -0l -y ){ TRy a¢(‘>5(9 o)
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" o) oy
o[ 8l6" - gl -y ) -2 LJ 00w 4y | ofu )
v axg) 4r 6x£,2) 8fo) ‘e xg)—x(;)‘ 8\)2)

+[ =86 - gl - 0)2e, , 0. af(‘) 5(um_vm)>

(3.12.2)

Various terms in the above equation can be simplified as that they may be expressed
in terms of one point and two point distribution functions. The 2nd, 3rd and 4th terms
on the left hand side of the above equation are simplified in a similar fashion and take

the forms as follows

(3.12.3)

(3.12.4)
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(3.12.5)
:<5(u<1)_v<1>)5(9(1>_ )l %2) 5(c<1>_,/,<1))>

Adding equation (3.12.3), (3.12.4) and (3.12.5) we get,

< (00— 0ol - "’(I))“g)ﬂ% o - (1))> N < ) -0 - ‘”(l))”g)a_ng 5o - ¢<1))>

v
14
+<5(u<l>_vm)5(gm_ ¢(1>)u;)£§5(cm_v,m)>

=

(3.12.6)

We reduce the 5th term on left hand side of equation (3.12.2),

5(9<1>¢<1))5(c<1>,/,<1)){ 0 {lj 0__0 00 diy’ } 0 5(u(1>v<1>)]

_6x(ﬂl) 4r 6x,(52) ax(;) xg)—x}f)‘ avfj)

2
— 8 1 8 8 (2) a (1’2) (2) (2) (2) (2)
W{‘EI [ax@)‘ ) (z)d][va @] Fod v dg dy (3.12.7)
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o .8 8 I y) 5(0(2)—¢(2))5(c(2)—t//(2)> §(u(z)_v(2))
_me(%l—z}‘) ax(z) 6x(2) 5(9(1) (1))5( (1) (1))5( (1) (1))d (z)d (2)d ()
) a aﬂ aﬂ B A (3.12.8)

Lim v

(2) =(1.2) 7.(2) 74(2) 7, (2)
av(l) ME () ax(ﬂz) O JV F2 dv d¢ d(//

= —
o
]

We reduce the 7th term on left hand side of equation (3.12.2),

<_5(9<1>_¢<1>)5(C<1>_Wo>)2emﬂ 0, ul) % 5(u<1>_v<1>)>

a

“2e,, 0 % <u(1)5(u(1) S0)s(g0 - st _y,<1>)> (3.12.9)

We reduce the 8th term on left hand side of equation (3.12.2),

< 5(00 — )s(c — ) (- % §(u(l)—v(1))>
%

24

_ < £ =) 5 = 0)s(00 - g0)5(c -y ) ]> (3.12.10)

follows

oxl) ox)
r ¢ (3.12.11)
d o 0
% im ) 0.2) 7y 2) 140 gy @)
540 1Y 5 ax;z)jf” 2 $dy
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0 : o 0

__9 L0 0 05023204 g0
=5, im Do 8x(2)~[ y P EMavDdgdy (3.12.12)
B B
and
0 0
<— S —v0)s(6" - ) R m5(c<1> _ w“))> _ Ry 2 (3.12.13)

Substituting the results (3.12.6)-(3.12.13) in equation (3.12.2), we get the transport

equation for one point distribution function F (v 2, l,y) in turbulent flow in a rotating

system
oEY  oFY o 1.8 6 o)
i +vs) 1(1) + 7 __.[ PSOTNORND V{(ZZ) D F2(1,2)dx(2)dv(2)d¢(2)
ot Oxy' v, | 4r? | dx, ‘xﬂ —Xp ‘ ox;
m v _[Op) a 03 ([ o)) ()1 0), )
t— 1 him v [V gty s Lim - [0 Vg Py
a B B B ﬁ
0 0 0 [, ()22 0) 0)
oy x‘”Dax? ax(;)jw FMPaPdgPdy® +2¢, ., Q, F (3.12.14)
O ) Wy R T
a a av(l) 1 4 al//(l) =

Similarly, a transport equation for two-point distribution function Fz(l’z)in turbulent

flow in presence of dust particles can be derived by differentiating equation (3.4.2)
and using equation (3.9.1), (3.9.2), (3.9.3) and simplifying in the same manner which

1S

2
1 0 0 0
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0

)WFZU’Z) =0 (3.12.15)

+2€,., Q, F 4 flul) —0)

Continuing this way, we can derive the equations for evolution of F***), F:234) and
so on. Logically, it is possible to have an equation for every F, (n is an integer) but

the system of equations so obtained is not closed. It seems that certain approximations

will be required for closing the system.

3.13 Results and Discussion

If the reaction rate R=0, the transport equation for one point joint distribution function

(1
4 )(V’¢’V’) in turbulent flow undergoing a first order reaction, equation (3.12.14)

becomes

a};}(l) 0 a];i(l) 2

a " o) RPN

2
_ L 0 g (2)_0 | 02),(2),(2) 142) ;0 (2)
47[.'. [Gx(;) ‘x,(gl)x(ﬁz)‘ﬂ[v“ ax(ﬂz)J - de\ W avi dg' dy

0 0 0 o 0
+57,§Ylfl_’:fl V_(ET_(ETJ‘ ) lzdv d¢ d',{/(2 +W %lm }/ajx’gyajx’?yJ.¢(2)Fz(l’z)dv(z)d¢(2)dl//(2)

0 6 0
o dim, WI DR Lag¥ay 12 ¢, 0, Y+ ful) —vﬁi))m F=o,

which was obtained earlier by M.H.U.Molla [67]
If the system is non rotating and the fluid is clean then Q =0 & f =0 and the

transport equation (3.12.14) for one point join distribution function F (v @, 1//)

turbulent flow becomes

) ) ’
ok, +V((xl) aFl(l) + 8(1) _LJ %% vgz) 6(2) Fz(l’Z)dx(z)dv(z) d¢(2)
Ot ox,’  ov,| 4r? | Ox, ‘xﬂ — X, ‘ ox

0 . o 0 @) (12) 7,,2) 7 4(2) 7. (2)
+—— Lim vV———75 |V, dvidegd
avg) xé—mm axéz) ﬁx(ﬂz) '[ ? pdy
) @)
(ljel(‘ I¢ dl,”

6‘ 6 [y P2 a2agPay® =0, (3.13.2)

T oy L%Daxg” ox)
which was obtained earlier by Kishore and Singh [49]. For closing the transport

equations for the joint distribution functions, some approximations are required. If the

particles are ionized i.e., in plasma turbulence case, it can be provided closure form
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easily by decomposing F.\"*) as FVF® But such type of approximations can be
possible if there is no interaction or correlation between two particles. If we

decompose F\'?) as

F0) — (14 ) FVE® 3.13.3
2 1 1

F3(1’2’3) _ (l " 8)2E(1)E(2)E(3) (3.13.4)
where ¢ is the correlation coefficient between the particles. If there is no correlation
between the particles, € will be zero and joint distribution function can be
decomposed in usual way. Here, we are considering such type of approximation only
to provide closed the form of the equation i.e., to approximate two-point equation as
one point equation. The transport equation for the joint distribution functions of
velocity, temperature, and concentration have been shown here to provide an
advantageous basis for modeling the turbulent flows in presence of dust particles and

a rotating system due to a first order reaction.
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CHAPTER-1V

STATISTICAL THEORY OF CERTAIN VARIABLES FOR
THREE- POINT DISTRIBUTION FUNCTIONS IN MHD
TURBULENT FLOW IN A ROTATING SYSTEM IN
PRESENCE OF DUST PARTICLES

4.1 Introduction

At present, two major and distinct areas of investigations in non-equilibrium statistical
mechanics are the kinetic theory of gases and statistical theory of fluid mechanics. In
molecular kinetic theory in physics, a particle's distribution function is a function of
several variables. Particle distribution functions are often used in plasma physics to
describe wave-particle interactions and velocity-space instabilities. Distribution functions
are also used in fluid mechanics, statistical mechanics and nuclear physics. A distribution
function may be specialized with respect to a particular set of dimensions. Distribution
functions may also feature non-isotropic temperatures, in which each term in the
exponent is divided by a different temperature. The mathematical analogy of a
distribution is a measure, the time evolution of a measure on a phase space is the topic of
study in dynamical systems. Various analytical theories in the statistical theory of
turbulence have been discussed in the past by Hopf [43], Kraichanan [58], Edward [36]
and Herring [41]. Further Lundgren [65] derived a hierarchy of coupled equations for
multi-point turbulence velocity distribution functions, which resemble with BBGKY
hierarchy of equations of Ta-You [107] in the kinetic theory of gasses. Bigler [25] gave
the hypothesis that in turbulent flames, the thermo chemical quantities can be related
locally to few scalars and considered the probability density function of these scalars.
Kishore [47] studied the Distributions functions in the statistical theory of MHD
turbulence of an incompressible fluid. Pope [79] derived the transport equation for the
joint probability density function of velocity and scalars in turbulent flow. Kollman and
Janicka [56] derived the transport equation for the probability density function of a scalar
in turbulent shear flow and considered a closure model based on gradient — flux model.
Kishore and Singh [49] derived the transport equation for the bivariate joint distribution
function of velocity and temperature in turbulent flow. Also Kishore and Singh [50] have

been derived the transport equation for the joint distribution function of velocity,
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temperature and concentration in convective turbulent flow. Dixit and Upadhyay [35]
considered the distribution functions in the statistical theory of MHD turbulence of an
incompressible fluid in the presence of the coriolis force. Sarker and Kishore [96]
discussed the distribution functions in the statistical theory of convective MHD
turbulence of an incompressible fluid. Also Sarker and Kishore [98] studied the
distribution functions in the statistical theory of convective MHD turbulence of mixture
of a miscible incompressible fluid. Sarker and Islam [100] studied the Distribution
functions in the statistical theory of convective MHD turbulence of an incompressible
fluid in a rotating system. Azad and Sarker [2] discussed Statistical theory of certain
distribution functions in MHD turbulence in a rotating system in presence of dust
particles. Islam and Sarker [45] studied distribution functions in the statistical theory of

MHD turbulence for velocity and concentration undergoing a first order reaction.

The above researchers have done their research for two- point distribution functions. But
in this chapter, we have studied the statistical theory for three- point distribution function
of certain variables in MHD turbulence in a rotating system in presence of dust particles.
At this stage, one is met with the difficulty that the N-point distribution function depends
upon the (N+1)-point distribution function and thus result is an unclosed system. This so-
called closer problem is encountered in turbulence, Kinetic theory and other non-linear

system.

In present research, the main purpose is to study the statistical theory of three- point
distribution function for simultaneous velocity, magnetic, temperature and concentration
fields in MHD turbulence in a rotating system in presence of dust particles. Finally, the
transport equations for evolution of distribution functions have been derived and various

properties of the distribution function have been discussed.

METHODOLOGY

4.2 Basic Equations:
The equations of motion and continuity for viscous incompressible dusty fluid MHD
turbulent flow, the diffusion equations for the temperature and concentration in a

rotating system are given by
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ou 0 ow
“+— \wu,-hh,)J=———+Wu -2 . Qu +flu —v 4.2.1
ot axﬂ( a” p a ﬂ) Ox a maf m%a f( a a) ( )

a

oh 0
ai = (B —u h.)=AV?h 422
at axﬂ ( auﬂ ua ﬁ) a ( )
00 00 5
AL VT 423
o /o, N, (4.2.3)
oc oc 5
—+u,—=DV'c 42.4
o " ox, (324
o OUa _ Ova _ Oha _
Wltha = omy  Oxg 0 (4.2.5)
where
u, (x,l‘)

, a—component of turbulent velocity

ha (x’ t), a — component of magnetic field
G(x, t)

, temperature fluctuation
¢, concentration of contaminants

Va, dust particle velocity

€ .
maf alternating tensor
KN
f - T . .
P dimension of frequency
N, constant number of density of the dust particle

A

2

2

total pressure

A

Qxx

P(%,1)

, hydrodynamic pressure
p, fluid density
Q, angular velocity of a uniform rotation
v, Kinetic viscosity
A =(4zuc)", magnetic diffusivity

ky
Pep

, thermal diffusivity,

7/:

Cp, specific heat at constant pressure,
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kr, thermal conductivity
o, electrical conductivity
K, magnetic permeability

D, diffusive co-efficient for contaminants.

The repeated suffices are assumed over the values 1, 2 and 3 and unrepeated suffices
may take any of these values. Here u, h and x are vector quantities in the whole

process.

The total pressure w which, occurs in equation (4.2.1) may be eliminated with the
help of the equation obtained by taking the divergence of equation (4.2.1)
62
0x,0x 5

6ua auﬂ _6ha 8hﬁ ]
Oxy; Ox, 0Ox, Ox,

Viw =

(et = by ) == (4.2.6)

In a conducting infinite fluid only the particular solution of the Equation (4.2.6) is

related, so that

1 ou! Ouy,  Oh' Oh ox'
w= [ [ e e T (42.7)
4r Ox, Ox, Ox, Ox, "|X'—X
Hence equation (4.2.1) — (4.2.4) becomes
" ou ey '
o, +i(uauﬂ—hahﬁ)=_iij [ Qo X Oh Ty g & o,
ot Oxg 4r Ox, Oxy Ox,  Ox) Ox, |x'—x
=2 €05 Q1+ flut, =, (428)
Oh 0
@y~ \hu,—uh,)=AV’h 4.2.9
8t ﬁxﬁ( a” p a /3’) o ( )
00 00 )
—+u,—=N0 4.2.10
o 7 0x g i ( )
% tu, 2 _pvre @.2.11)

—+uy,
ot 8xﬁ
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4.3 Formulation of the Problem

We consider the turbulence and the concentration fields are homogeneous, the
chemical reaction and the local mass transfer have no effect on the velocity field and
the reaction rate and the diffusivity are constant. We also consider a large ensemble of
identical fluids in which each member is an infinite incompressible reacting and heat
conducting fluid in turbulent state. The fluid velocity u, Alfven velocity h,
temperature 6 and concentration C are randomly distributed functions of position and
time and satisfy their field. Different members of ensemble are subjected to different
initial conditions and the aim is to find out a way by which we can determine the

ensemble averages at the initial time.

Certain microscopic properties of conducting fluids such as total energy, total
pressure, stress tensor which are nothing but ensemble averages at a particular time
can be determined with the help of the bivariate distribution functions (defined as the
averaged distribution functions with the help of Dirac delta-functions). The present
aim is to construct the distribution functions, study its properties and derive an

equation for its evolution of this distribution functions.

4.4 Distribution Function in MHD Turbulence and Their Properties

In MHD turbulence, we may consider the fluid velocity u, Alfven velocity h,
temperature 6 and concentration c at each point of the flow field. Then corresponding
to each point of the flow field, we have four measurable characteristics. We represent

the four variables by v, g, ¢ and y and denote the pairs of these variables at the

points
—(1) —=(2 = —() =@ 1 1
FOF® X" ag (V“,g“,qé“,w“),
(v(”,g(”,gﬁ“),y/‘”), —————— (\7(”),§("),¢("),1//(")) at a fixed instant of time.

It is possible that the same pair may be occur more than once; therefore, we simplify
the problem by an assumption that the distribution is discrete (in the sense that no

pairs occur more than once). Symbolically we can express the bivariate distribution as

{ (;(1) g0, 90 yO } (‘7(2> gD, 4?, W(2>)’ ______ (\7(”) B, 4™ ™ ) }
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Instead of considering discrete points in the flow field, if we consider the continuous

distribution of the variables v,g,¢ and y over the entire flow field, statistically

behavior of the fluid may be described by the distribution function F (\7, g_,¢,l,y)

which is normalized so that
[ F(.2.4.p)dvdgdgdy =1
where the integration ranges over all the possible values of v, g,¢ and y. We shall

make use of the same normalization condition for the discrete distributions also.

The distribution functions of the above quantities can be defined in terms of Dirac

delta function.

The one-point distribution function F®(®, g™, 6" "), defined so that

M, SO 1) (1) M g,0 74(1) ()]
FOW0g g0y gV dg dy e probability that the fluid velocity,

Alfven velocity, temperature and concentration at a time t are in the element dv(!

M
about v, dg) about gV, d?" avout ¢ and dy about y" respectively and is

given by

E“)(v(”,g(”,gé“),t//“)) < (<1> “))5(h“’ (D)é‘(g(l) ¢(1>)5( W _ (1)) (4.4.1)

where 0 is the Dirac delta-function defined as

— =\jJ5_ )1 atthepoint u=v
_[5(” v)dv - {0 elsewhere

Two-point distribution function is given by

M = < ( m _ (”)5(}1“) ) )5(90) —¢“))5(c(1) —y/“))é(um _v<2>)5(h<2> _g<2>)
5@ -4 )s(c® —p)) (4.4.2)

and three point distribution function is given by

F29 = < ((1) ”)5(h(” (1))5(9<1>_ ¢<1>)5(C<1>_V,(1>)5(u<2>_v<2>)5(h<2>_ g<2>)
><5(0(2> _¢<2>)5(c<2> _l//u))(;(u(s) —v(3))5(h(3) <3>)5(9<3> ¢<3>)5( G _ <3>) (4.4.3)

Similarly, we can define an infinite numbers of multi-point distribution functions
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F4(1234) F5(12345 and so on. The following properties of the constructed distribution

functions can be deduced from the above definitions:

(A) Reduction Properties:

Integration with respect to pair of variables at one-point, lowers the order of

distribution function by one. For example,

JE(l)dv(l)dg(l)d¢(l)dl//(l) =1,

2

IF(I z)dv(z)dg(z)d¢(2)dl// <1>

J‘F(1 )2, 3)dv(3)dg(3)d¢(3)dl// (1 2)

and so on. Also the integration with respect to any one of the variables, reduces the

number of Delta-functions from the distribution function by one as

j FOdy® = < ( M _ <1))5( M (1))5( o (1))
J- E(l)dg(” _< ( n _ (1))5( n (1))5( M _ (1))
J' E(l)d¢(l) =<5(u(“ _v(l))é(h(l) (1))5( o (1))

and

I FOOa® = < ( a _ (1))5( M _ g )5(9(» _¢<1))5(C<1> _(//m)g(h(z) _gu))
5(9(2> —g® )5(0(2) _ 1//(2)) >

(B) Separation Properties:
If two points are far apart from each other in the flow field, the pairs of variables at
these points are statistically independent of each other i.e.,
lim
‘55(2) — )_c(l)‘ —> FM =FOF®
and similarly,
lim

=03) =(2) (1,23) _ 0 (1.2) p3)
‘x —>X ‘—>OO F, =F7F, etc.
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(C) Co-incidence Properties:

When two points coincide in the flow field, the components at these points should be

obviously the same that is F."? must be zero.
Thus v =v", g® =g 40 _40 and w =y, but F2(? must also have the
property.
J‘F2(1,2)dv(2>dg(2)d¢(2)dl//(2) = FO
and hence it follows that
lim

‘)—Ca) N fm‘ S I F = Fl‘”é(v(z’ _v<1))5(g<2> _g® )5(¢<z> —¢(1))5(l//(2) —W(l))

Similarly,
lim

‘f(” N )7(2)‘ S o J’ FO2 = F2<1,2)5(v<3) —v"’)&(g”) _g(1>)5(¢<3> —¢(”)5(1//(3) —'//(1)) etc.

(D) Symmetric Conditions:

F(I,Z,r, ffffff §,m———= n) _ F(I,Z, ***** §,——=r,———n)

n n

(E) Incompressibility Conditions:

OF 42— o
i |————v"av"dh"” =0
Gxg)
oF A=
(i) J."—,h;’)dv(”dh(’) =0
ox'”

a

4.5 Continuity Equation in Terms of Distribution Functions

The continuity equations can be easily expressed in terms of distribution functions.
An infinite number of continuity equations can be derived for the convective MHD

turbulent flow and are obtained directly by using divu =0

Taking ensemble average of equation (4.2.5), we get
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o:<a”3)>=< 0 u(l)IE(l)dv(l)dg(l)d¢(l)dl/l(l) )

ax(l) ax(l)
0 (O] @ 7,,d) (O] @ 1)
=W< ul [FOdv"dgVdg"dy " )

(1) (1) ()] ()] ()] ()]
ax(l)J. W B VvV dg VgV dy

:_8)?(1)I yOFO v dg Mg dy

1

_ J‘ 1(1) “)dv(”dg(”d¢(”dw

(4.5.1)
and similarly,

0= -[ 1(1) g(l)dv(l)dg(l)d¢(l)dl//(l)

(4.5.2)
which are the first order continuity equations in which only one point distribution

function is involved.

For second-order continuity equations, if we multiply the continuity equation by

@ _,@ 2 _ (2) 2 _ 52 @ _,,2
e e e R

and if we take the ensemble average, we obtain

)

0= ( @ _ (2>)5(h(2> (2))5(9(2> ¢(2>)5( @ @ )ﬁ >
_ 5(1) ( @) _ (2’)5(11(2’ (2))5(9(2’—¢(2))5(c(2)—1//(2))u“) >
ox. “

_ 5(1) [ J< u<1)5(u<1> —v(”)d(h(” _g<1))5(9<1> _¢(1>)5(C(1> —l//“))
ox,, ‘
« 5(u<2>_v<2>)5(h<2)_ g(Z))5(9(2> 2))5( ) d"dg"dg"dy " ]

- axa(r) [P R dgVdg O dy (4.5.3)

and similarly,

0= 5D j gVEavdgVdgVdy " (4.5.4)
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The Nth — order continuity equations are

0= axa)J. O 127N O gD g g Oy O (4.5.5)

and

0= aa(l) J‘gS)F]\(]LZ ........... N)dv(l)dg(l)d¢(l)dl//(]) (4.5.6)
xa

The continuity equations are symmetric in their arguments i.e.

0
ox (r)

( () 12 "N)dv(”dg"‘)d(/ﬁ")d1//"))

6 (Y)J. (.S)F(lz ..N)dv(s)dg(s)d¢(s)dv/(s) (4_5_7)
X

Since the divergence property is an important property and it is easily verified by the
use of the property of distribution function as

0 ou'!
I WEOHVdgVdgVdy < ul! >:< a—?‘l) >=0 (4.5.8)

(1) Ox (1)

and all the properties of the distribution function obtained in section (4.4) can also be

verified.

4.6 Equations for evolution of one — point distribution functions £":

We shall make use of equation (4.2.8) - (4.2.11) to convert these into a set of
equations for the variation of the distribution function with time. This, in fact, is done
by making use of the definitions of the constructed distribution functions,
differentiating them partially with respect to time, making some suitable operations on
the right-hand side of the equation so obtained and lastly replacing the time derivative

of u,h,0 and c from the equations (4.2.8) - (4.2.11).

Differentiating equation (4.4.1) with respect to time, we get,

oF" :ﬁ ( m _ <1>)5( M _ (1))5(0(1) (1>)5( M _ (1>)
ot

8
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5(h(” ) )5(9<1> ¢(1>)5( m _ (1)) ( ) —v(”) >
5( M _,m )5(9(1) ) )5(  _ (1)) ( ) —g“)) >

5( M _,0 )5(h(” ) )5( m _ (1)) (9<1> ¢<1>)>
5( M _,0 )5(h“) ) )5(6’“) i )5 5(c(1> —l//(l)) >

(h“) ) )5(9(1) ¢<1>)5( M _ (1)) u" ig(um _v(1>) >

or o
(~olut =+l ~4" e ) Coalh ) )
(olu =~ e - ol o) )
0 = = e olo” — )2 ol ) ) (“.6.1)

Using equations (4.2.8) to (4.2.11) in the equation (4.6.1), we get

al;l:) (h(” “))5(6?“) ¢<1>)5( M _ (1)){ (1) (u(l)ug) hg)h;”)

O] M ) ©)
0 D D e a0 AE Wlu, Emap ~<nlla
4r ox, X, OX, X, OX, |x —x|

+f( M _ (1)) }x%é‘(u“) _v(l)) >

((1) (1))5(9(1> ¢<1>)5( W _ (1)){ ~ (1)

y % 5(h“) _ gm) (ua) _v<1))5( M _ g“))é( W _ <1>){ (ﬂl) 7 +7V 29 )

(h(l) o _ (”hg))+/1v2h“) }

0 a
x 56" 5(9(1) _¢<1>) ( M _ 0 )5(}1(” ) )5(9(1) — g0 ){_u(ﬂ]) ?(ﬂl)_Fszc !
0
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aum <1> P
(h(” ) )5(9(1) e )5( o _ <1)) axg) W 5(u(1) —v(”) >
h(l)h(l) P
(h“) M )5(9(1) ) )5( M _ (1)) - (l)ﬁ W §(u<1> —v(”)>
ou (1) au(l) th) ah(l)
+( ( o _ (1))5( o _ (1))5( o _ (1>)4” ax“)J. (1) e axg” ]
dx' 0
_5(u<1> _Va)) >
|x —x| av“)
( M _ o )5( M _ g0 )5(C<1> —1//“))va ul 0 5(u<1> _v<1))>
ov
+< 5(h(” —g(”)d(e(” —¢“’)5(c(” _W(l))xzemaﬁ Q,u® %5@{(1) —v“)) >
va
(h“) (1))5(9(1> ¢(1>)5( M (1)) (u o _, (l))L5(u(1> _vm))
o Tovd
( M _ 0 )5( o _ (1))5(6,(1) _l//(l))>< a}gi);(ﬁl) éil)é‘(hm i g(l)) >
au;”h“) P
( M _,0 )5(90) ¢(1>)5( o _ (D)X o 3 §(h“’ —g“))>

(8 -
(ol -
5( a

(ol -

( M _

O )5(9(1)
»® )5(;2(1) _

»O )5(}1(”

»® )5(h“) _

b )5(h(1)

—p® )5(cu> v
g® )é‘(c“) _

) )5( a _
g® )5(9(1)

(1))5((9<1> ¢<1))X DV2e0

o

—¢(“)xu

0
m

a

m) avip® 2 5(;2(1)

)
oA,
0 2) 557 (9(1) ¢<1>)>
0 (g(l) ¢(1))>

oc o
2) T 5y 5(0(1) —l//(l)) >
B

S -w))

<1))

(4.6.2)

Various terms in the above equation can be simplified as that they may be expressed

in terms of one point and two point distribution functions.

The 1st term in the above equation is simplified as follows:

(h“’

= (u s(n" -

= (~uf 5(n

) )5(90) ¢<1>)5< W _

g“))é(é’“) _¢<1>)5(c<1> _
M _ g<1>)5(9(1> _ ¢<1))5(c<1> _

(1) (')
(1) )6u 0
ox o0

5(14‘” 0 ) >

5(14(" _vm) >

5(u<1> _v<1>) >

1)
(,))6ua 0
o0 VD
M
(1))8% 0
1) 1)
8xﬁ. axﬂ
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m

5(u(“ _Va)) > (smcez 0 =1)

=<—u(ﬁ”5(h(“ ) )5(9“) ¢<1>)5( My ® )_

ox (l)

(h“) (1))5(9(1> ¢(1))5( o _ “))u(ﬁ” aa(” ( M v‘”)} (4.6.3)

Similarly, seventh, tenth and twelfth terms of right hand-side of equation (4.6.2) can

be simplified as follows;

( M _ (1))5(9(1) il )5( o _ (1))8hg>u(1) 6(1) 5(h(1) —g“’))

6x(l) og,

: ( m_ (1))5(9(1) ¢<1))5( M _ (1))“,(51) A (h(”—g“))> (4.6.4)

Tenth term,

( m _ “))5(}1“) (1))5(60) <1>)M<1) 06" (6?‘” _¢(1>) >

s Ox (l) a¢(1)

_ ((1) (1))5(;1(1) “))5(0(”—!//“))142)% (0(1)_¢<1>)> (4.6.5)
s

and twelfth term

((l) m)&(h(') )5(6’“) ¢('))u(1 o d 5(c“)—1//“))>

B Ox (l)a 0}

_ ((1) (1))5(;1(1) (1))5(90) ¢(1>)Mg>aa(l) (U) <1>)> (4.6.6)

Adding these equations from (4.6.3) to (4.6.6), we get

S Ve P
R R U R A DY
(ol vl - <l>>a<cﬂ>-wlwga%&(ew—ww)>
ol vl - 0" - e )

: ajm< Dol 67—

B
_ 0 (I)F(l)
ax(l) B 1
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[ Applying the properties of distribution functions ]

1

_moF"
B ALD
Gxﬁ

(4.6.7)

Similarly second and eighth terms on the right hand-side of the equation (4.6.2) can

be simplified as

W _ gO)s(e® — gD )5(c — Ohy" ' 0 s
(ol g0 ~ 4 Jole® —y) S =)

M O
ox,  Ov,

) 58(9) 0

_ 0
8p 6\/;1) axg) I (4.6.8)
and
ou (l)h(l) P
(1) (1) 9(1) @1 (1) (1) a S h(l) (1)
6v S,
(1) 1
Y 5 WF (4.6.9)

Fourth term can be reduced as

< W u(l)é'(h(l) (1>)5(9(1> o )5( Wy )W ( m _ (1))>
-y 5(1) <V2 O] ( M _ (1))5(],1(1) _gm)(;(g(l) ¢(1))5( m _ (1))
0

v

[24

:—v%ax(f;x<l_) <u(1> ( o _ (1))5(}1“) g" (00 -4 (e - (1))
a Xp g

P lim Py

55 Lo ol g ol 7 (e ) ]

8va )_5(2) _(1) 8)6/3)8)6(2)

=y <J‘ 2) 5( @ _ <2>)5(h(2) <2>)5(9(2> ¢<2>)5( <2>)

ov, 3?(2) _(1) 0xﬂ)8x(2)

) ( M _,,m )5(;1(1) M )5(9(1) i )5(00) _,/,(1))dv(z)dg(2>d¢(2)dl/,(2)>

) P lim o? (Z)F(l DD doDdd®d 4.6.10
=V w @ (1)WJ e -
- —




Chapter-1V 108

Ninth, eleventh and thirteen terms of the right hand side of equation (4.6.2)

( M _ 0 )5<9<1> e )5( My ® )AV A aa“) §(h“) _ (1))>
8 o
=(-AVihY —— ag(” S = v - g (0 - g (e —yp ) )

lim
=-4 a;(l) ( ) (1) P >ax<2> J‘g(z)F(1 2)dv(2)dg(2)d¢(2)dl//(2) (4.6.11)
a _ B

Eleventh term,

M _ 5,0 O _ (1) o _ (1) 29
(-0l v - g ol -~y pv6

(9(1) ¢(1)) >

a¢(1)
- <—7V29(1)5(u(1) —v“))é(h(” (1>)5( M _ )W5<9<1) _¢<1)) )
=7 o [#OF vV dg P dg Py (4.6.12)

op" ox' >ax<>
¢ S(2) (1) %% 0

Thirteenth term,

( m _ (1>)5( m _ m)(;(@(l) —¢(”)DV2c“’ 5(1) 5(c(1> —l//(”) >
—(_ 2.1 @» 0 o _ (1) @ _ (1) (0] (0]
(-DVe s v g ol ) (00 ) )

a¢(1)

[
|
S

—_— _— (Z)F(1 DvPdePdepPdy® 4.6.13
6'//(1) 3(2) (1) Gx(z)ﬁx(z) .[‘// g dgdy ( )

We reduce the third term of right hand side of equation (4.6.2), we get

0 _ 0\s(gm _ 40)s(.0 _ w1 0 du, 6”2) 5}';1) ah(ﬁl) 1 &' 0 M0
(o 4" plo" 4" " -y )477 8xf1”'[ | T T o))

0 I 0 I 8v§f) 6\/(2 agm ag (12) 7,.2) 7.2 7,2 714(2) 7. (2)
a (U[ 4,,.[ oD ‘?2)—)?“)‘ 8x§f) 8x(2) 8x<2 o )F2 dx“dvTdg T de dy

(4.6.14)
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Fifth and sixth terms of right hand side of equation (4.6.2)

(h“) (1))5(90) ¢<1))5< m_ <1>)X2 €y 2t aa(]) 5(u(1> _vm) )

< 2e,., Q u0_9 0 ( M _,0 )S(h“) (1))5(9(1) ¢<1))5( M _ (1>)

m>a a(])

=2€,.,5 Q, %< u§)5(u“> —v(”)é(h“) ('))5(6’(” ¢(1))5( M _ <1))

—2¢,., Q, ZZ_%: ( M _,0 )5(;1(1) (1))5(9(1) e )5< M _ (1))

=2¢,,, Q7" (4.6.15)
and

(07 o g ey i )2l ) )
A ol bl g e ) )
A )T ol g o - e )
—fCud —v) aaﬂ) FY (4.6.16)

Substituting the results (4.6.3) to (4.6.16) in equation (4.6.2) we get the transport
equation for one point distribution function £ (v,g,d,y)in MHD turbulent flow in a

rotating system in presence of dust particles as

ag(l) av(l) \aF'l(l) o [ 1

oF " " oF"
4z

+v g + —
B D) <1) ORRAEND) )
ot axﬁ ov og., Oox X ov,,

x(

[ 2

1 — —
ax ‘xm _xa)‘

2 2
avz()tZ) 6v(ﬁ) 8 (2) 8g()

ENCIFNC RN ENT

)Fz(l,Z)dx(Z)dv(Z)dg(Z)d¢(2)dw(2)

llm a 2

2 7 1,2) 7,2 7,2 74(2) 7, (2)
— |\ v, F, 7 dvidg TV de  dy
oy 2) ) axu)ax(z).[ a 2

a _ — B B

X —> X

0 lim 82 2) p1,2) 7.,(2) 7,(2) 74(2) (2)
+1 @ W I g, B, dviidg de T dy
« =(2) <)
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lim a 2

a¢(1) _( ) (1) ax(2)6x(2)

X

+y J’¢(2>F(1 Z)dv(z)dg(z)d¢(2)dl//(2)

lim 2
+D 0 0

(2)F(1 2)dv(Z)d (2)d (2)d (2)
al//(l) _(2) _(1) axﬂ)ax(Z) J.l// g ¢ v
X —> X

+2 Emaﬂ QmF(l) f( n _ (1) )af(l) Fl(l) -0 (4.6.17)

24

4.7 Equations for two-point distribution function F”:

Differentiating equation (4.4.2) with respect to time, we get,

6}782(; 2 5 ( M _ 0 )5(h(“ ) )5(9(1) — g )5(00) —y® )5(u(2) _ vm)
(h(2> 2) )5(9<2) e )5< @ _ (2))

_ < 5(h“) e )5(9(» _ ¢(1>)5(C<1) _ V/a))g(u(z) _ v<2>)5(h<2) _ g(2>)5(9(2) _ ¢<2>)

5(c<2> _y® ) % 5(u<1> _ v(“) + §(u(1) _ v(”)é(é’(” _ g0 )5(00) _ V/m)

5(u(2) _ )@ )5(h‘2’ (2) )5<9<2) ¢<2))5( @ _ (2)) (h“) <1>) >
+< 5(u<1> _ v“))é(h“) _ g(l))5(0<1> _yt ))5(u(2) _, )5(11(2) _ g<2>)5(9(2) _ ¢(2))
5(c<2> _ W(Z)) % 5(90) _ ¢<1>) > +< 5(u<1> _ v(”)é(h(” _ g<1>)5(9<1> _ ¢<l>)

5(14‘2’ NE) )5(;1(2) 2) )5(9(2) e )5( @ _ (2)) ( M —l//(l)) >
< 5(u(1> 0 )5(;1(1) ) )5<9<1) B )5( o _ (1))5(;1(2) _ g(2))5(9(2) _ ¢<2>)
(c<2) _V,(z)) % 5(u(2) _V<2>) ( M _,m )5< M _ g )5(9(1> _ ¢<1>)

5(c“)—1//“))5(u(2) <2>)5(3<2) ¢(2>)5( @) _ (2)) (h<2> (2>)>

+

o9
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( M _ <1>)5(h<1>_ g“))é(é?(” ¢(1))5(c<1> —y/“))é( (2)_V(2>)5(h<2) _ g(2>)

5(c<2) !//(2))8 (9(2> ¢<2)) ((1) (D)(;(ha) (1>)5(9(1>_¢(1))
ot

( M _ gy )5(u(2> @ )5(}1(2’ _g® )5(9@) e )5 5(0(2) e )>
< 5(;1(1) ) )5(6?“) e )5(0(1) _ l//(l))5(u(2) _y@ )5(h(2) _ g(2>)5<9<2> _ ¢(2>)

5(6(2) (2))agt %5(u“)—v“))>

+< 5( M _,0 )5(9(1) — " )5(60) —y® )5(u(2) C) )5(;1(2) _g® )5(0(2) _ ¢<2))
5(c<2> (2))‘%( 9 5(h“) _ gu)) >
(-

ot a(l)

n 5( M _ 0 )5(h“) _g(1>)§(c<1) —y O )5(u(2> ) )5(h(2) _g® )5(9@ _ ¢(2>)

5(0(2> (2))8(‘; % (<1> ¢(1>)>

n < 5( M _ “))5(}1(” (1))5(9(0 _ ¢(1))5(u(2) _v<2>)5(h(2> _ g<2))5(9(2) _ ¢(2))

5(6(2) (2))62) %5(0(” —l//(l)) >
%

+< 5( M _ (1))5(;1(1) ('))5(0“)—¢('))§(c“)—1//('))5(h‘2)—g(2))5<6(2)—¢‘2))

5(0(2) (2))agt 66(2) 5(u(2)—v(2))>

n 5( M _ (")5(}1“) (1))5(9(1>_¢<1>)5(c(1)_l//a))&(u(z)_v(z>)5(9(2>_¢(2))

(-
5 - (2))32 %5(h<”—g(”)>

5( M _ 0 )5(11(” _ g(l))5(9(1) — g )5(0(1) _ W<1>)5(u(2> @ )5(h<2) _ g(2>)

(-
(C(Z) (2))a§t Z(z) 5(9(2) _¢(2)) >

(u“) _ v(”)5(h(” _ g“))é(ﬁ“) _ ¢(1))5(C<1> _ w(l))é(u(z) _ v(2>)5(h<2) _ g(2>) '

(-0
S0 g0 ol )

+

o9

+

Using equations (4.2.8) to (4.2.11) we get,

(h“) <1>)5(9<1) ¢<1))5( o _ (1))5(u<2) _v(2>)5(h<2> _ g(2>)5<9(2> _ ¢<2>)

(1) 1) 1) 1)
(<2> <2>){ (umum h(”h(”) 1 0o J‘ Ou,,’ Ou _6ha Oh,
4 A 4 6x(') 8x2) axg) 8x(ﬂl) axs)

df"

X —x‘

ox (1)

X + Wil -2¢e

v Q) +f( o _ (1)) }xﬁé(u(” _v<1))>
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+( ( m _ <1>)5(9(1) ¢(1>)5(C(1) _V,a))g(u(z) _p® )5(;,(2) —g® )5(9@) _¢(2))
( @ _ (2)){ (1> (h“’u“) (”hg))+/w2h“’ }x%&(h(” _gm) >
ox “ og,
( M _,m )5(}1(‘) 0 )5(c<1> —y 0 )5(u(2) VG )5(h(2) _ @ )5(g<2> —¢® )5(c<2> _V/<2>)
{ ux e R e W N )

o¢"
(h(z) ) )5(9@ e )5( @ _ (2>){ <1) +DV c }85(1) 5(0(” _W(l)) >
( M _,0 )5(h“’ ) )5(9(1) ) )5( My )5(h(2) @ )5(9@ e )5(c<2) —l//(2))

(u(z)u(z) h(z)h(z)) 10 J. 8(2) au(z) 8hf) th,f) e

==
4r o)t o ax<2> o o v -

F WP —2e, O u(2)+f( @ _ <2>) }Xaig(um <2))>

Va (2)

( m _ (1))5(;1(1) ) )5(9“) _¢<1>)5(C(1> (1))5( @ _,@ )5(9(2) _¢(2>)

( @ _ m){ ~ (2) (h<2) @ _ (2)h}f))+/W B } aga<2) 5(}1(2) <2>)>

+< 5( m _ 0 )5(}1‘” ) )5(9(1> _ g )5(c“) —y® )5(u<2> @ )5(;1(2) _g<2))

0
(c(2> m){ u(ﬂZ) 6 (2) NOD } a¢(2) (90) ¢<2>)>

+< 5( m _ (1>)5(h(1> <1>)5(9(1> i )5( ) —w(l))é(u(z) RNE) )5(h(2) _g<2))

0 0
5(9(2) ¢(2)){ 5 8022) +DV7*c® }X 8w(2) 5(0(2) _l//m) >

=9

5(h(” (1))5(9(1) ¢(1>)5( m _ (1>)5(u<2> e )5(h(2> _g® )5(9@) _¢(2))

(
oulul 5
(C(Z> (2)) = (l)ﬂ av(“ 5(u(1> _vu)) >

5(;1(1) (1))5(9(0 ¢(1))5( M _ (1>)5(u(2> _y® )5(11(2’ _g® )5(90) _¢<2))

(-
(0(2) <2>) ah(l)h(l) 0 5(u(l>_v<1>)>

=%

+

S,

Ox (1) av(l)
+< §(h(” (0)5(90) ¢<1>)5(c<1> _l/,a))é(u(z) ) )5(;1(2) _g® )5(9@ _ ¢<2>)
(1) au(l) 8//12) ah(l) dx" P
5(c<z> (2)) yies (1),[ P, (1) o - 6xf3” 6x§) ]|x”x _| 50 5(u<1> _v(1>)>

+< ( W _ g )5( W _ g0 )5( <1> y® )5( @ _,@ )5(;,(2) (2>)

5(9(2) —g® )5(6(2> m)xvvz 0 aaﬂ) 5(14“) _v(l)) )

a
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+< (h“’ 0 )5(6’“) o )5( My ® )5(u<2) E) )5(}1(2’ _g® )5(90) _¢(2>)

5(6’(2) (2))X26 Q u(l) 86(1) 5(u(1) —V(l)) >

< 5(}1(1) 0 )5(90) P )5( My ® )5(u(2) _,@ )5(}1(2’ _g® )5(6"2) _¢(2))

5(C(2) _Wa))xf(ua(l) —va('))ié'(u(l) _V(l)) )

—+

A Bl o)
oy ) P g0
ol ~>)a<e~> ¢“>)5( Oyl g bl )
o B2 ),

Ox (1) og (U
(- 5( M _,m )5(90) #O )5( Wy >)5(u<2) RNE) )5(h‘2) _g® )5(49‘2) _¢(2>)

(C<2>_v,<2>)x/w R 0 ( M gm)

5( M _,,m )5(}1“) (1) )5( —y )5(u<2) ) )5(h(2) —g® )5(9<2) _ ¢<2))

(
(C(Z) (2)) ;)’1) a89(1) a;(l) ( v ¢(1))>

< 5( M _,0 )5(h“) ) )5( My ® )5(14(2) @ )5<h(2) _g® )5(9(2) _¢(2>)

5(c<2> <2>)x N2 5(1) (9(1) _ ¢<1>) )

+< 5( M _,0 )5(11(“ M) )5(0(1> nu )5(u el )5(h(2) —g® )5((9(2) _¢<2>)
(

@ _ (2)) ) ac ( o _ (1>)
Up o (1> oy

+ < 5( M _,0 )5(h(“ ) )5(9<1) — 0 )5(u(2) @ )5(}1‘2) _g® )5(6"2) _ ¢<2>)

5( @ _ (D)XDVZC(I) ajw 5( M —z,//(”) )

+<5(u(1) _y® )5(;1(1) _ (1))5(90) e )5(c<1> _y® )5(h(2) _g® )5(9@ _¢<2))

@y
(C<2> (2)) Ou,, 0 5(u<2> _V<2))>
éx(z) v

+< 5( M _ 0 )5(;[(1) ) )5(9(1) _¢(1))5(c(1) iy )5(;1(2) _g® )5((9@) _¢(2>)

ohPh? 5
( (2)) - (2)ﬂ 50 5(u(2) _V<2))>

n <5(u<1) O )é(h(” ) )5(9(1> i )5(c<1> O )5(}1(2) _g® )5(6(2) _¢<2))

o9

+

>

—+

>

C

o

>

2 _

S,

o

(2) (2) "
5(0(2) (2>) 0 [ ouy ouy _ ohy Ohy; 19 0 5(u(2) _V(2>) >
4@ oD a® a? a? x| v
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" < 5( M _ 0 )5(h“) _g® )5(9(1) iy )5(6(1) iy )5(h(2) _g® )5(6?(2) _ ¢(2>)
5(6(2) (2))X W 65(2) 5(u<2> (2)) >

n (1>)5 h(” (1))5(9(1) ¢(1>)5( o _ “))5(}1(2) _g<2>)5(9(2> _¢(2>)

o9

(o -
(

- _ (2))><2€ o, 9 5(u<2)_v(2>)>

maf} ma a (2)

»O )5(11(” ) )5(9<1) # )5(0(1) _

+

ol

5(0(2) <z>) (u (2)—va(2))%5(u(2)—v(2))>

+< 5( m_ (”)5(}1(” —g(”)é(é’(” ¢<1))5(c<1) _W(l))5(u(2) _
ah(Z) (2) P

+< 5( M _ (1))5( (1> <1>)5( ) ¢<1))5(c(1> _W<1))5(u(2> _

5(c<2> ) au<2>h(2) (h‘2> g(2>)>

Ox (2)

» )5(}1“)

(1))5(90) ¢(1))5(c<1>_
(2>)x pAe 0 5(h(2)—
0

g(z) gu)) >
O )5(/4(” ) )5(90) — g )5(6(1) _

00% o
(ﬁZ) ~ (2) e 5((9(2) _¢<2)) >

+< 5( M _ (1))5(;1(1) <1>)5(9<1>_¢<1>)5(C<1>_

(c(z) <2>) N2D 0 (9(2) ¢(2))>

+< 5( M _,m )5(}1(1) M )5(0(1) o )5(0(1) B

0= e e )
(m

(1))5(h<1> (1))5(90) _¢(1>)5(C(1> _

5(9@ ¢(2>)X DV a;”) 5(6.(2) _l//@)) )

ag(Z)
5( o _

(-
(cm

+

o)

5( m _

{
(c<2>

+

(2) )

o9

S,

o9

+

l//(l))5(h(2) _

Ol -
Ol o
Ol -l
Ol -

l//(]))5(”(2) _

g® )5(9@) _ ¢(2>)

@ )5(6’(2) _ ¢(2>)

@ )5(9(2) _¢(2>)

@ )5(90) _ ¢<2))

g<2))

g<2>)

@ )5(;1(2) _ g(z>)

el )5(;2(2) _ g(z))

(4.7.1)

Various terms in the above equation can be simplified as that they may be expressed

in terms of one point , two point and three point distribution functions.




Chapter-1V 115

The 1st term in the above equation is simplified as follows:

(h“) <1>)5(@(1) ¢(1))§( m _ <1>)5(u(2> ) )5(;1(2) _g® )5(6?(2’ _¢<2))

au(l) (1) P
5(0(2) _V/(Z)) ax(l) av(l) 5(”[(1) _v(l)) >

_ <u;}1) 5( W _ g® )5( M _ 4O )5( M _ <1>)5(u(2> @ )5(;1(2) —g® )5(0@ _¢(2>)

5(c<2> _W(z))x%%dum _vm) )

- <_ u(ﬂ”5(h(” _g® )5(90) — g )5(c<1> —V/(l))5( @ _,® )5(h(2) _g® )5(90) _¢<2>)

oul @ Ouy’
5(0(2) —y® )x PN 5(14“) —v(l)) ); (since —%- 5 (1) =1)
« OXp

(h“’ (1))5(90) ¢<1>)5( o _ <1>)5(u(2> E) )5(;1(2) _g® )5(6?(2) _¢<2))

5(6,(2)_‘//(2)))(”2)%2)5(“(1)_vm)> (4.7.2)

Similarly, seventh, tenth and twelfth terms of right hand-side of equation (4.7.1) can

be simplified as follows;

( M _,m )5( ) ¢<1>)5(c(1> _V,<1>)5(u<2) RNE) )5(;1(2) _g® )5(6’(2) _¢<2))

ohu 5

_ ( M _ <1))5(0<1> A )5( My O )5(u(2) _V<2))5(h(2) _g<2))5(9<2> _¢(2))

5(0(2) —z//(z’)x u(ﬂl) aam é(h(” _gm) > (4.73)

Tenth term,

( M _,0 )5(h“) —g® )5( M gy )5(u<2) ) )5(h‘2) _ g(2>)5(9<2) _¢<2))

5(C(2)_‘//(2)) ug) Ze(l) a;(l) ( v ¢(1))>

< 5( m _ (1))5(h“) <1>)5( M _W<1>)5(u(2> _v<2))5(h<2) _ g(z>)5(9<2) _¢<2>)

- 2ol 7)) 470
B

S,

and twelfth term

_ (<1> “))S(h(”— g(”)é(é?(” ¢(1))5( <2>_v<2>)5(h<2> <2>)

5@@ 7Bl e ool ) 475
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Adding these equations from (4.7.2) to (4.7.5), we get

(h“) M )5(9(1) i )5( My )5(u(2> _y® )5(;1(2) —g® )5(9@ _¢<2))

5(0(2> (2>)Xu2) aa(U 5(u(1> (1>) >

+< 5( m _,m )5(9(1> ¢<1>)§( My ® )5(14‘” e )5(;1(2) _g® )6(6’(2’ _¢(2>)

e -y 2 - )

M _,0 <1> 25—y D@ —v@)5(r? — ¢ @ )5(9@ — @
ol 0 g e ol - o )
(c(2> (2))xu2) 0 (90) ¢<1)) )
A (1)

+< 5( M _,,m )5(h(” 0 )5(90) e )5(u<2> ) )5(;1(2) _g® )5(9@ _¢<2>)

5(C<2> —w(z))xu(ﬁ” axig)é(c(]) _V/m) )

_ aa“) < <1> ( m _ 0 )5(;1(1) <1))5(9(1> e )5(c“’ —y® )5(u<2) _v<2>)
(h<2> @) )5(9<2> $? )5( @ _ (2))

— 0 (I)F(l ,2)
8)6(1)

+

o)

[ Applying the properties of distribution functions ]

1.2)
. OF,

e~ (4.7.6)

Similarly, 14th, 20th, 23th and 25th terms of right hand-side of equation (4.7.1) can

be simplified as follows;

< ( m _ “))6(}1“) <1>)5(9(1) _¢(1))5(c<1> —y/"))é(h(z) _g® )5(9@) _¢(2))

ouu (2) P
5(00) _W(z)) - (2) W(s( @) _v(2>)>

: ( M _ (1))5(;1(1) (1))5(9(1) _¢(1))5(c(1) —!//(1))5(h(2) _g(2>)5(9<2> _¢<2))

5(6(2) —y/(z))x u(ﬁz) 822) 5(u(2) —v(2)> > (4.7.7)
20th term,

( W _ (1>)5(h<1> (1))5(0(1) _¢<1))5(c<1) _V,<1>)5(u(2> ) )5(@<2> _¢(2))

ah(z) (2) P
5(0(2) _V/(Z))X ox (ﬁz) g 5(h(2) _g(Z)) >
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- O _y0)5(h0 = g™ s(00 — g0 )5(c® = V)5 —v@ )5(6@ - @
L R A e S e A R

5(0(2)_V,(2>)Xu<;)$?5(h(2>_g<2>)> (4.7.8)
23th term,

( m _ (")é(h“’ <1>)5(9(1> _¢<1))5(c(1> _W<1>)5(u(2> _y@ )5(h(2’ _ g<2>)

00% o
5(c<2> _W<2)) ;2) . (2) e 5(6?(2) _¢<2>) >

_ O _y0)5(h® = g0 )5(0D — g0 )I5(c® — (@ — v (D — g@
(olu vl ~ g oo~ g ol —y ol v o~ )

5(c(z>_W(z>)xu(ﬁz>§g)5(9(2>_¢m)> (4.7.9)

and 25th term,
M _ 0 M _g® M _ 40 M _,, M @ _ @ @ _ @
(ol =y )l g (0 =40 Ble® —p Jolu® —v@ J(n> — )

oc?® 0
5(9(2) _¢(2))X”g) ?(ﬂz)aw(z) 5(0(2) _'/’(2)) >

_ ( M _,0 )5(;1(1) () )5(90) e )5(cm —y® )5(u(2> _v(2>)5(h<2) _ g(z))
5(e<2> — P Jxu? aam Se? =) (4.7.10)
Yp

Adding these equations from (4.7.7) to (4.7.10), we get

__0 < <2> ( o _ <1>)5( M _ (]))5<9(1)—¢(1))5(C(1)—l//(l))5(u(2)—v(2))

o (2>
(h(z) ) )5(9(2) e )5( @ _ <2))

1,2
S oF, "
B A
Gxﬁ

4.7.11)

Similarly, 2nd ,8th ,15th and 21st terms of right hand-side of equation (4.7.1) can be

simplified as follows;

@ _ (1) 1) (1) @ (1) 2) _,,®2 2 _ ,2 2) _ 4(2)
(~5{n b0 - g )s(c W5 —v@ Js(h? - g (0™ - )

GISVII
5(0(2> _lr,/<z))>< ax(ﬂ”ﬁ 50 5( M _v(1>)>
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0 (3] aF(l,Z)
_ ;aif? a;;” (4.7.12)
8th term,
( M _ <1>)5(9<1> ¢<1>)5( M _ (1>)5(u<2> _,® )5(,1(2) _g® )5(9@ _¢<2>)
P (”h“’
e -y 2 fu )
0 () aF(l,Z)
__ ;a;zl) a;;” (4.7.13)
15th term,
( M _ (1))5(;1(1) (1))5(0(1) _¢<1>)5(C<1> —y/(l))é(h(z) _g® )5(9@ _¢<2>)
27,2
e
2 0g? oF?
—_ gﬁ ai‘” o (4.7.14)
and 21st term,
( M _,0 )5(;1(1) () )5(9(1) — g0 )5(0(1) —gz/(”)d(u(z) @ )5(9@) _¢<2>)
ou® h(z) 5
5(0(2) _W(z))x uﬁx(z) og® 5(h(2) -g? )>
g2 e OB (4.7.15)

-8, 287 D

Fourth term can be reduced as

(h(” ) )5(9(1> ¢(1> )5( M _

5(c<2)_w<2))xvv u 5 ((1) (1)>

O )5(}1“)

ov

=—v

aa(” <V2u“) ( m _

( @ _,® )5(h(2)

e )5( @ _

' )

e )5(;1(2) _

g® )5(6?(2) _ ¢(2))

M )5(9@ i )5(0(1) _ z,//“))
) )5(9@ e )5( @ _
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__, 9 0 <u((11)[ 5<u<1> _y0 )5(h“) _g® )5(90) — g0 )5(6.(1) _ '//(1))

ov (1) ax(l)ax(l)

@ _y@)5(h® — g )s5(0@ = @ )5(c® — @
Sl o g (o g e )1)

lim

- 81 0’ < | ((1) ‘”)5(h<” (1))5(9(1)_¢(1))

avé) f(3) (1) ax( )ax(S)

( W _ <1>)5( @ _ (2>)5(h(2> (2))5(9(2) ¢<2>)5( @ _ (2>)

=-v

( 3 _,® ) _ ) (3) _ 4(
v _(3) (1) 80 ([ w0l = - g (o - )

( Gy )5( @ _,® )5(/1(2’ _g® )5(90) e )5(C<2> @ )5(u(1> _ v“))

(h(” (1))5(90) ¢(1))5( M _ (l))dv(3)dg(3)d¢(3)dl//(3) >

a0 xS ox)
¢ G) )

v EN2 Iy O dg gV dy (4.7.16)

Similarly, 9th ,11th ,13th ,17th ,22nd ,24th and 26th terms of right hand-side of

equation (4.7.1) can be simplified as follows;

( M _,0 )5(90) ¢<1>)5( My O )5(u(2) @ )5(;1(2) _g<z>)5(9(2) _¢(2>)

5(6,(2) <2>)X AV hY 58“) 5(h(” _ga)) )

—— ORIy dg VgV dy 4.7.17
%’ _(3)_, () ‘9"“)6’“3)I £ .

11th term,

( W _ “))5(}1“’ (1))5( ) —1//“))5(14(2) ) )5(;1(2) _g(2>)5(9(2) _¢<2>)

5(0(2) (2)) x W20 ;(1) (9(1)_¢<1>)>
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0 fim 82 3) p(1,2,3) 7..(3) 3) 3) 3)
T e oy [ dg Vg dy (47.18)
X

13th term,

( o _ (1))5(;[(1) (”)5(9“) — g0 )J(u@) _y® )5(]1(2) —g® )5(9(2) _¢(2>)

5(6(2) _l//(Z))>< DV2ch %5(0(1) _l//(l)) >

[
|
)

2 — %[y OF iV dgOdg Oy 47.19
v 3, ax(3)6x(3)'[ £ .

17th term,

( M _,0 )5(h“) ) )5(9@ — g0 )5(0(0 _ W(l))5(h(2) —g® )5((9(2) _ ¢<2))
5(6,(2) _y/<z>)x W 88(2) 5(u<2> _v<2>) )
o lim

— (3) (1 2,3) 3.,(3) 3) 3) 3)
X

22nd term,

( M _ 0 )5(h(” O )5(9<1) _ ¢<1>)5(C(1) —1//“))5(14(2) @ )5(9@) _ ¢(2))

5(0(2> ,//(2>)>< AV O - 8(2) §(h(2) _g<2>) )

=% o (2)—ax<3>ax<3> [e& R avOdgVagVay (4.7.21)

24th term,

( m _ “))5(h(” (1))5(9(1) _¢<1>)5(c(1> —w(l))é(um _y® )5(;1(2) _g<2))

5(0(2) !//(2)) x W29 ¢
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lim

0 ) 0.23) 70 (3) 703) 143) 70 (3)
== PUF; T dvYdg Y dg Y dy (4.7.22)
8¢(2) _(3) e) 8x§’)6x‘;’ I ’
X —> X

26th term,

( M _,m )5(}1(1) (”)5(6?“) ) )5(c<1) —‘//(1))5('1(2) RNE) )S(h(” _g<z))

(9(2) ¢(2))>< DV2c® a;(z) 5(0(% _l//u)) )

— ——— W PE O dg PV dgVd 4.7.23
al//(Z) )_6(3) _(2) ax(3)8x(3) .[‘// g dg l// ( )

We reduce the third term of right - hand side of equation (4.7.1),

(h‘” 0 (9(1) ) )5(0(» —y )5(u(2> _y® )5(h(2) —g® )5(9@ _¢<2>)

(1> O} ) 0} "
5(6'(2) (2)) L J. au 5ha ahﬂ df a 5(1,{ ) —V(l)) >
Y (1) (1) ax(l) ax;l) ax(l) x‘ av(l)

8[1

_ )F(1,2,3)
3
8\/;1) 4

P 1 av(s) 8\/(3) 6 (3) ag(3)
I Gx(l)( ‘ A3) —(1>‘ )( <3) 5x<3) 8x(ﬁ3) ox®

x dxPdv®dg®dgPdy ] 4.7.24)

Similarly,16th term,

< ( M _,0 )5(h(” ) )5(9(1> iy )5(6(1) O )5(11(2) —g® )5(9(2) _ ¢<2>)

(2) (2) "
5(0(2) _l//(z))x 1 0 ouy oug’ o Ohy dx 0 5(u(2) _v(Z)) >

ar @ b a? a®  a® a® F-x|an®
P [ 1 I ) ( 1 ov (3) 5v(3) 6 (3) 8g(3) ) (123
~ <2> 4z o ‘—(3) —(2)‘ (3) 5x(3) ax(s) o
x P dvVdgOd g dy® ] (4.7.25)

Fifth and sixth terms of right hand side of equation (4.7.1), we get

(h‘” (1))5(90) ¢<1))5( M _ (1))5<u(2) @ )5(h(2) _g® )5(9(2) _¢<2>)

5(0(2) —1//(2))><2 € pap Q1)) aa(l) 5(u(” —v“)) >
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< 2e,.,Q, u® < (1) ( M _,0 )5( M _ g )5( W _ g0 )5<c(1) —‘//(l))
ov
@ _,@ @ _ g @ _ 4 @ _ @
8l o W50 — ™ sl )1)

0

(1) (1)5( M _,m )5( M _ g )5( M _ g0 )5(c(” —z,//(”)
" Ov
( @ _,@ )5(h(2) ) )5(9&) _ g )5(c<2> @ )>
—2e,, Q % ( M _,0 )5(h(” M )5(9(1) iy )5(c<1> —z//(”)
( @ _,® )5( @ _o® )5(9@ &) )5( @ _ <z>)

=2¢€,,, Q.57 (4.7.26)

=2€,,

and sixth term,

(h“) ) )5(9<1> e )5( Wy )5(u(2> e )6(h(2) _g(2>)5(9(2> _¢(2))

5(c<2) _l//a))x F(ul® =y® )%5@(1) _Vm) )

=—( f(ud -y )a 2 [ 5( M _ 0 )5(}1(” (1))5(9<1> — g )5(c<1> _Wm)
( @ _,@ )5(}1(2) ) )5(9(2> el )5( @ _ @ )]

o =y )i

( M _,m )é(h“) ) )5@(1) e )5(0(1) _Wm)
Py <1)
( @ _,® )5(;1(2) &) )5(49(2) _g® )5(C<2> _y® )>

0
= —f(u® -y )WF;”) (4.7.27)

Similarly, 18th and 19th terms of right hand side of equation (4.7.1),

< ( M _,0 )5(}1(” ) )5(6?(” i )5(C<1> _y 0 )5(h‘2) _g® )5(9@ _ ¢<2>)

5(0(2) —y/(z))XZ € map Qlt ff) 88(2) 5(u(2) —v(z)) >

(04

=2¢,., Q,F" (4.7.28)
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and 19th term,

( M _ 0 )5( M _ o )5(9(1> — g0 )5(0(1) —y® )5(h(2) _g® )5(0(2) _ ¢<2))

5(c<2) _l//<2>)>< F(u®—v® )%5@(2) _v(2>) )

0
==f(ug v ) (4.7.29)
Substituting the results (4.7.2) — (4.7.29) in equation (4.7.1) we get the transport
equation for two point distribution function F,"* (v,g,é,5)in MHD turbulent flow in

a rotating system in presence of dust particles as

(1,2)
OF (o

()]
at OV g ( al Pe ) O pus

vl ag<“ ox)

[ ()

og?  ov® 0 0 1
2 1,2)
( ) F [ axg) ‘x@) _f(l)‘

+g + - —
P v ag® T v " 4x

avs) aV(S) a (3) ag(S)

x(
D O o x?

)F3(1,2,3)dx(3)dv(3)dg (3)d¢ &g l//3) ]

SRCCHN  Y ! ov v gl 2
ov? " 4xd ox? ‘f(”—f(z)‘ 8x(ﬁ3) ox® ax;” ox®

% F3(1’2’3)dx(3)dv(3)dg(3)d¢(3)dl//3) ]

+v( —— + —
v ov? o )Gx(3 )
a f(3) N f(l) a x(?’) N f(z) s

J‘ <3>F123>d (3)dg d¢

+ A( ) J.g(S)F(I’Z’S)dvmdg(3)d¢(3)dl//(3)
(1) 3)Aa.3) a ©3
8a _(3) _, (1) "o ), () &
( 0 lim 0 fim ) o’ '[ (3) (1.23) 1.3) 7.3) 7403)
ty o ———— | gV F P dgVdg P dy
a¢(l) 6¢(2) 8)6(3)8)6(3)
NERIR() -3, =)
lim lim 2
+D( Ll +L ) 0 (3).[ O F 029 gy de® dg® dy

oy oy? ox ) ox
) B () B A ) R ¢)
+4 €,0p Q FM?
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+ f(u® v )i JE8 =0 (4.7.30)

0
+[ f( Y - ((zl) ) PYE)

ov (1)

4.8 Equations for three-point distribution function £"*V:

Differentiating equation (4.4.3) with respect to time, we get

T ol =l = =g bl - Pl - o )
o107 47 D -l vl o - bl )
(0l =20 =6 Ble ol = (i — ¢ oo ~4)
<m VOBl vl - ¢ o 67l ) ol 00 )
o=l -yl - - o )
<m OBl vl (o 6 bl -V o - ) )
Lo gl g gl
6w ol =00 ol g bl = e - ) o -
-~ gl - o g
6y ol = ol e Bl - e ) o "
Y R R T
6yl -0 ol - g (o -7 o - ol <))
L -~ (o~ - i - )
6wl -0 ol - g (o -7 e ) 0 -4
-~ ()~ o o - )
o0~ ol = o~ oo —g Bl ol -y )

+< 5(u“)—v(”)6(h(” —g“))é( o _ (1))5( @ _ <2))5<h(2>_ (2))5(9@_ ¢<2))
5(0(2> _ ‘//(2))5(“(3) —v(3))5(h(3 <3>)5(9(3> e )5( 3 _ <3>) (00 ¢<l))>

o2

+

)
))
)
)

o2

+

o2

+

o2

_|_
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+ ( M _ 0 )5( 0 _ g )5( 0 _ 40 )5( 0 O )5( @ _,@ )5( @ _ g(2>)

5(9@) g )5( @ _y® )5(h(3) 3 )5< @ _ g® )5( 3 _ (3)) ( 3) _V(3>) >

+ ( M _,0 )5(h“) M) )5(9“) P )5( M _ O )5( @ _,@ )5(h(2’ _ g‘”)

o s o g e )
£ b0 -4 -yl
ol s i g e -
Mo g e -y

5) )5(u<3> _y0 )5(h(3) _g® )5(9(3) e ) %
(1))5(9(1) ¢<1>)5( 0 _ 0 )5(u(2) 3

5(9(2) _g® )5( @ _
( m _,0 )5(h“)
(9<2> _g® )5( @ _
( M _,0 )5(h“>
5(90) e )5(0(2) v

e )

(h“)

@ )5(h(2) _

( @ @ )5( G _,0 )5(;1(3) _g® )5(90) _ 4O )5(C<3> —y® )ag_:) % 5(u<1> —v(“)>
O 0500 — g 5(c — 5@ —v@ (R — g@ )59 — g )5(c@ — @
(=6l v )o(0® 0 ol —y  Blu® v Js(h® - g Jo(0® -4 ol —y )
(u<3> NE) )5(}2(3) 3) )5(9@) _g® )5(C<3> e )%;) % 5(;,(1) _ ga)) >
O _y0)s(h® — g®5(e® — O )s(u® —v@ Js(h® = g@)5(6? = p@ Js(c® — @
(=0l vl - g ole” —p ol = v ln® - g oo - 42 e~y )
((3) (3))5(h(3) (3))5(9(3)—415(3))(3(0(3)—'//(3))62 ajﬂ) ((1) ¢(1))>
+ <_ 5(14“) _ v(”)é(h(” _ g(”)é(@(” _ ¢<1>)5(u<2> _ v(z))g(hm _ g<2>)5(9(2> _ ¢(2>)5(C<2> _ V/(Z))
5(u<3> —v“’)é(h(” _ g(3>)5(9(3) _ ¢(3>)5(C(3) _l//<3)) % % 5( >) >
. <_ 5(14“’ _ v(”)é(h(” _ g“’)é(ﬁ(” _ ¢(l))5(c(l) _ (l))é(h(” _ <2))5(9(2> _ ¢<2))5(c(2> _ W(2))
5(u<3> —v(3))5(h(3) _ g(3>)5(9(3> _ ¢<3>)5(C<3> _W(3))8L(;—(t2) . Va(z) 5(u<2) _v<2>) >
+ <_ 5(1,;(” _ v(”)é(h(” _ g“’)é(ﬁ(” _ ¢<1>)5(c<1> _ y/(l))é(um _ v<2>)(3(9<2> _ ¢<2))5(c<2> _ ‘//(2))
5(u(3) _v<3>)5(h<3) _ g“))é(ﬁ(” _ ¢<3>)5(c<3> _W@))%(;) % é(h(” _ g<2)) >
_5(® —v)5(hY = gMs(00 = g0 )5(c O W5 =12 )5(h? = g )5(c® — @
L ) S R A ) o ) ) G
5(u(3)—v(3))5(h(3) (3))5(6;(3) ¢<3>)5( 3) _ <3>) ﬂ _Jd 5(6’(2)— ¢<2))>

ot og”

e )5(;1(2)

e )5(;1(2)
5(C<3) e )>

(h“’

)
) )
(9@) g ) >

) )

o® )5(9@ _ ¢(z>)
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( M _ ‘“)5(h“) <1>)5(9<1)_ ¢(1>)5(c<1) (1))5( ) _v(2>)5(h<2> _ g(z))5(9<2)_ ¢<2))

( 3 _ (3))5(h(3) (3>)5(9(3) e )5(0(3) m)agt - 5(2) 5(C<2) _ Wm) >

+<—5(u(” —v('))é(h(') —g(”)d(é’(') —¢('))5(c(') —l//('))é(u(z) 0 )5(}1(2) _g® )5(6’(2) _¢(2))

S,

(c<2> e )5(}1(3) _g® )5(9@) e )5(c<3) —y® )5”_(3) % 5(u<3> _ v(3)) >

ot

+

oY)

{
' (c(z) e )5(u<3> _® )5(9(3) _¢(3))5(c(3) —z//“))ag—(;)% 5(h(3) _ g(z)) >

+

5(0(2> e )5(u(3> _ v(3))5<h(3) _ g<3))5(c<3> e )ag_;)%&(g(s) _¢(3>) >

_5(u(1> _y® )5(}1(” —g® )5(9(1> e )5(0(1) —y® )5(14(2) _y@ )5(h(2) _g® )5(6?(2) —g? )

<_5(u<1> —y0 )5(/1(” _g® )5(90) e )5((:“’ —y® )5(1,1(2) ) )5(h(2) _g® )5(6?‘2) _ ¢(2>)

+ ((1) “))5(h(') (1))5(9(0 ¢<1))5( m_ (1))5( @ _ (2’)5(}1(2)— g<2>)5(9(2)_ ¢(2>)

((2) (2))5( G _ (3))5(;1(3) (3))5(9(3> ¢<3>)5C (<3> V,<3>)>

ot aw

Using equations (4.2.8) to (4.2.11), we get

(h(l) ) )5(5(1> ) )5(60) e )5(u(2> _y® )5(h(2) _g® )5(9&) _ ¢(2))
( @ _ @ )5( 3 _,0 )5(h(3’ 3) )5(9(3) e )5( (3) —1/1(3))

au(l) au(l) ahg) ah[(;) dx"

0
{ W(u(l) (ﬂl) k(l)h(l)) 4 Gx(l)j [ (1) 8x(1) Gx(ﬂl) oM X" -x
+wW u(” 2e,, Q u(l) +f( M _ fz”) }x%&(u“) —v“)) >

( m _ (“)5(6?“’ $ )5( M _ (1))5(u<2> _y@ )5(h<2) _g® )5(6"2) _¢<2>)
( @ _ <2>)5( 3 _,® )5(;1(3) ) )5(9<3> _g® )5(0(3) _WG))

{ aa“) (h“)u“) (‘)h(‘))+/W2h;” } aga“) §(h“) (1)) >

( M _ (1))§(h(1) M )5(6(1) e )5(u(2> @ )5(h‘2) _g® )5(6’(2’ _ ¢(2>)
( @ @ )5( 3 _,0 )5(h(3) 3) )5(9(3> _g® )5(6(3) _W(S))

849(” 0
< G0 beglo”-4")
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( M _,0 )5(h(” (1))5(6;(1) e )5(u(2> _v(z))5<h(2) _g® )5(9@ _ ¢(2))
( @ @ )5( 3 _,0 )5(h‘3) _ g(3>)5(9(3) _ ¢(3>)5<c(3) _ l//(s))

20 e 2 sen )

+ M _,m M _ g M _ 40 M _, M @ _ @ @ _ 42
—5{u Jo(n Jo(60 — g0 (e (> - g Js(0® — )
( @ @ )5( 3 _ (3))6(}1(3) NG )5(9<3> $ )5( ) 1//(3))

(2) (2) (2) (2) m
{ 0 (uu) (2) h(2>h(2>) 1 a“ Ou, 5ha Ohy; ] dx
Oox (2) 4 6x(2’ (2’ ax<2> 6x(ﬂz’ ox'? |)?’”—)_c'|

+wW u(z) 2 €, Q l/l(z) +f( @ _ (2)) }x%é‘(u(z) (2)) >

a

<_5(u<1) _y® )5(;1(1) —g“))5(0“) _¢<1))5(c<1> <1))5( @ _ (2))5(90) _¢<2))
(C(2> —'//(2))5(H(3) —v(3))5(h(3) _g® )5(9(3) ¢<3>)5( G _ (3))
<_5(u(1) _y® )S(h“) _g(l))5(9<1) _¢(1))5(c(1) _W(l))5(u(2) _V<2))5(h(2) _g<2))
@ _ 4@ 3 _,® G _ 53 G _ 43 G _,,0
5(0% ¢ bu® —vO B —g@ (0P =4 (e —)

dc® 5
!yt DV ey 3e® ~y))
Xp

+

+ &
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Various terms in the above equation can be simplified as that they may be expressed

in terms of one, two, three and four point distribution functions.

The 1st term in the above equation is simplified as follows
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Similarly, 7th, 10th, 12th terms of right hand-side of equation (4.8.1) can be

simplified as follows;
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and 12th term
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Adding these equations from (4.8.2) to (4.8.5), we get
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Similarly, 14th, 20th , 23rd and 25th terms of right hand-side of equation (4.8.1) can

be simplified as follows:
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( 3 _,0 )5(}1(3) ©) )5(49(3) e )5( G _ <3>) - 5(h(2) _gm))

6x(2) og,

_ ( M _ (”)5(}1(” (1) )5(9(1> e )5(0(» —y® )5(u(2> @ )5(9(2) _ ¢<2))5(c<2> _ ‘//(2))

( 3 _ 3 )5(h(3) (3))5(9@ e )5(0(3> _V/G))X”(;) 85(2) 5(;1(2) _g<2>) ) (4.8.8)

X

23th term,

( M _ ('))é(h(” <1))5(9<1> _¢(1))5(c<1> —V/(l))5( @ _,@ )5(h(2) —g® )5(c<2> _y,<2))
( 3 _,0 )5(}1(3) ) )5(6?(” _ g )5(60) _W@)) @ 00 0 5(9<2> _¢<2>) >

Up Ox (2) og?
: ( M _ 0 )5(;1(1) ) )5(9(1) e )5(0(1) iy )5(u(2> @ )5(}1(2’ _ g(2>)5(c(2> _ W(Z))
( 3 _,0 )d(h(” ® )5(9<3) o )5(6,(3) _ l//(3))>< uf ~ 5(2) (6"2) _ ¢(2)) ) (4.8.9)

X

and 25th term,

( M _ 0 )5(}1(1) M) )5(9(0 e )5(c<1> O )5(u<2> @ )5(h(2) _g® )5(9@) _ ¢<2>)
( 3 _,0 )5(;1(3) @) )5(9(3) e )5( G _ m) 22) oc? 0 5(6(2> _l//(2>)>
ax(2) aW(Z)
_ <_5(u(1) —v('))5(h(') _ g(]))5(49“) _ ¢(1))5(c(1> _w(l))5(u<2> —i(z))é(h”) _ gm)g(,g(z) _¢<2))

5(u<3) RNE) )5(h<3’ _g® )5(9<3> _¢<3>)5(C<3> _W(s))>< u? 6622) 5(0(2’ _W(2>) ) (4.8.10)
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Adding equations (4.8.7) to (4.8.10), we get

__0 O 5 =y (r" - g® (60 =0 (e —p P @ —v@ J5(r® — g
P O R B R A A A e R

ax(2)

5(9<2) —g® )5(0(2> —y® )5(u<3) _,0 )5(;1(3) 3) )5(6?(3) e )5( G _ <3>)

aF(1,2,3)
=y =3 (4.8.11)

Similarly, 27th, 33rd , 36th and 38th terms of right hand-side of equation (4.8.1) can
be simplified as follows;

O _yM o _ (1) M _ 0 o _ 0 @ _,®@ 2) _ »®@ 2) _ 42
e e A e e )

( @ _y,@ )5(}1(3) 3) )5(9@ e )5( G _ (3)) a”a( )(l:)(ﬂS) 65(2) 5(u(3> _v<3>) >

O 0O = gD s(00 — g5 (c® — O W5 (u® v 5 (h® - g@
B e O N S A R A
5(9<2) e )5(0(2> @ )5(;1(3) _g® )5(9<3) e )5(0(3) _y® )X us) ~ 8(3) 5(14‘3) _ v(3)) )

ﬂ
(4.8.12)

33rd term,

M _yM O _ (1) ™ _ 40 o _,, M @ _,® 2 _ »®? (2) _ ()
(ol v~ g (o™~ g ol Jolu® —v (- g (o™ - )

( @ @ )5( 3 _,0 )5(9@) —g® )5(0‘3) —1//(3)) ah(:);‘)(;) 65(3) 5(}1(3) _ g(z)) >

_ ( M _,0 )5(;1(1) M )5(90) e )5(c(” —y O )5(u<2> _y@ )5(;1(2) _g® )5(6’(2) _ ¢<2>)
( @ @ )5(u(3> _V(3>)5(9(3> _¢(3>)5(C(3> —z//(”)x us) 68(3) 5(;1(3) _ g(”) ) (4.8.13)

X

36th term,

( M _,0 )S(h(” M )5(90) e )5(0(1) O )5( @ _ @ )5(h(2) —g® )5(9<2> _¢(2>)
( @ @ )5( 3 _,0 )5(h(3) _g® )5(0(3> —1//(3)) (ﬁa> 29(3) a;“) 5(9(3) _¢(3>) >

_ ( M _ (1))5( m _ (1))5(90) _¢(1>)5(c(1> _W<1>)5( @ _ (2))5( &) g<2))5(9<2> _¢(2>)
( @ @ )5( 3 _ (3>)5(h(3> _g® )5(0(3> —1/1(3’)>< us) 88(3) (gm _¢(3)) ) (4.8.14)
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and 38th term,

M _,® O _ (1) ® _ 40 @ _ M 2 _,,® 2 _ 52 2) _ 4(2)
(ol = ol — g (o — g ol —y ol v o1 — g Jolo™ ~¢)

( @ @ )5( 3 _,0 )5(/1(3) _g® )5(6?(3) _¢(3>)X uf) Z)CC_;@;G) 5(0(3> _W<3)) )

_ ( M _ ('))é(h‘” (1))5(9(1) _¢(1))5(c<1) _ y/"))é(u(z) _v(z))g(hm _ g(2>)5(9(2> _ ¢(2>)
( @ _ (2))5( 3 _ <3))5(h<3> _g<3))5(9<3>_¢<3))xu<ﬁs> 85(3) 5(0(3)—1//(3)) ) (4.8.15)

Adding equations (4.8.12) to (4.8.15), we get

__0 O (=5 v )5(r" — M50 - g (e -y )5 — v J(n? - @
o ol v sl - gl g e~y ol v ol - g)

ax<3>
5(90) —g® )5(6(2> —y® )5(u<3) _,0 )5(}1(3) 3) )5(9(3) e )5( G _ (3))

5F(1 12,3)

Similarly, 2nd ,8th ,15th ,21st ,28th and 34th terms of right hand-side of equation
(4.8.1) can be simplified as follows;

(h“) M )5(6’“) g )5( 0 _y® )5(u(2’ e )5(}1(2) _g® )5(0@ —g® )5(6(2) _V/<2))
( 3 _,0 )5(;1(3) &) )5(9(» _ gV )5(c<3> _V/m)x 5’;{;}1) % 5(u(1) _va)) )

1) Ap(1.2.3)
o 08 og,’ OF,

— & avm o0 (4.8.17)

8th term,

( M _,0 )5(90) o )5( m_ (1))5(u<2> E) )5(;[(2) _ g<2>)5(9<2> _g® )5(0(2> —1//(2))
5(u(3) —v“))é(h(” <3>)5(9<3) e )5( G _ (3))X aufj)h)},” 0 5(h“’ _ g“)»

8x(ﬂl og,

ov (1) 8F(123)
=-g5 =~ m 8g“’ 6x(“ (4.8.18)
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15th term,
( o _ “’)5(h“) (1))5(90) _¢<1>)(5(c<1> —y/(l))é(h(z) —g(2))5(6?(2) _¢<2>)5(C<2> _V/a))
( G _,0 )5( 0 _ 0 )5( 0 _ g )5( G _ <3>) ahf)hg) i5(u<2> _V(2>)>
8x§) o’
@) A(.23)
g ?;i”) agxw (4.8.19)

21st term,

(- 5(u“) _y0 )5(h“)
§(u(3) _ 0 )5(},(3) _g® )6(9(3) e )5(0(3)

o oy (2) aF““)
“&p agm axu)

28th term,

( a
( @ _

Ly )5(h“)

(2))5(}1(3) <3))5(9<3> ¢<3>)5( 3 _

_ g(3) ags) aF;(l,ZJ)
& 3 ®3)
ov, 0Oxy

and 34th term,

( M _,0 )5( m _
( @ @ )5( 3 _

o ov (3) aF(123)
-y ag(s) axa)

Fourth term can be reduced as

(h“ <1>)5( ¢<1))5( 0 _ <1>)§( @_,
5(u ) _,0 )5( 3 _ 3>)5(9<3> ¢3>)5(

oW )5(9(1) g0 )5(c<1> _

oup®
—V/(S))X Uy, My 0

M )5(90) _ g0 )5( o _

g® )5(9(1) L )5(c<1> _
Ne) )5(9@ 4O )5(0(3) _

w® )5(u(2) ) )5(;1(2) _
y® )X

@ )5(,1(

)>< Wi

y )5(u @ _ 0 )5(9@) e )5(c<2> _ ‘//(2))
5(h(2) _g® )>

P og?

a

(4.8.20)

O )5( @ _,@ )5(h(2) _
3)) Oh;, )h};) i
oy v

g® )5(9&) _ ¢(2>)

5(u(3> _ v(”) >

(4.8.21)

g® )5(9<2> _ ¢(z))
5(h(3) _g® )>

5
n®  og”

(4.8.22)

bl -4l )

a 86(1) 5(u(1) _V(l))
v

a




Chapter-1V 138

- 6(1) <V2u“)[ 5( o _ l))é(h“) —g“>)5(.9<“ _ (1))5(c<1> _ (1))5(u(2> _v<2))5(h(2> —g(z))
8
5( ¢(2))5(c(2’—w(z’)é(u“)—v(”)é(h“ 3))5( 3) ¢(3))5( 6) 3))

0 0*
= av(l) 5x(1)8xﬁ <u(1>[ 5( M _,0 )5( 0 (1))5(90) ¢<1))5( (1))5(u(2) —v“))
5(h<2 - )5(¢9<2 —¢" )5(5(2) e )5(;1(3) _,0 )5( g® )5((9(3) e )5( o (3))

lim

—y a(l) 0° <<4> (1 1))5( o _ “))5(0‘”—¢“))5(c“)—1//“))

GRORRIE A

((2) 2’)5(%1(2 (2))5( ) ¢(2))5(c(2)—y/“))d(u“)—v“))é(h(”—g“))
(9@) g0 )5( 3) l//<3>)]>

lim 2
- avi“ () - ax},‘fax;;” ([ us ol v ol - g (o~ g e )
X —>X

((3)_ (3))5(},@) 3) )5(9@ ¢<3>)5(C _W@))&(u(z)_v( )5(;,(2)_ g<2>)5(0<2>_ ¢<2>)
(<2) (2))5( M _ (”)5(h“)— g<l>)5(9<1)_ ¢(1))5(C(1)—l//(l))dv(4)dg(4)d¢(4)dl//(4) >

0 lim 0’ SO F1.234) 408 g0 @) g 4@ g @)
== " (l)mj F23 9y dg @ dp® dy (4.8.23)
_ — B
X —> X

a

Similarly, 9th ,11th ,13th ,17th ,22nd ,24th ,26th ,30th ,35th ,37th and 39th terms of
right hand-side of equation (4.8.1) can be simplified as follows;

( M _ )5(90) P )5(c<1> 0 )5(u(2> —_y@ )5(;1(2) &) )5(9@ — 4 )5(6(2) _W(Z))

( 3 _,0 )5(11(3) _g® )5(9(3) e )5( ® _ <3>)X AV2hY > ;(l) 5(h(“ _ ga)) )

a

=-1 _6 i —82 j (“)F(1 2.3, 4)dv(4)dg(4)d¢(4)dl//(4) (4.8.24)
GgS) _(4) (1) 8x( )8x(4) o
X
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11th term,

( M _,0 )é(h(” ) )5(C<1> —y® )5(u(2> _y® )5(h‘2) _g® )5(9<2> — )5(00) _ V,(2>)

((3) (3))5(h<3> (3>)5(9(3)_¢(3))5(c<3> <3>) x W20 2 0 (90) ¢(l))>
o

_ 0 lim o I¢(4)F(1234)d DdgD gD dy® (4.8.25)
= 76¢“) o) Vg 4 e
{4 =D

13th term,

((1) (1))5(;1(1) (1>)5(9(1>_¢<1))5( @ _ (2))5(;1(2)_ <2>)5(9<2)_¢(2>)5(c<2)_Wu))

( 3 _ (3))5(;1(3) _g<3>)5(9<3> e )5( 3 _ m)x DV2eM a;m 5(6,(1) —l//(l)) )

0 fim o’ J‘ ) (12.3.4) 3 (4) 7 (4) 7 1(4) 7, (4)
__p_2_ [y @RI gy e @ g gDy (4.8.26)
oy (4) 0 8x(ﬁ4)8x(ﬁ3)
X > X

17th term,

( M _ 0 )5(h(” 1) )5(6?(” — g0 )5(C<1> —y® )5(;1(2) _g® )5(9@ _ g )5(c<2) _ l//(z))
( @ _,0 )5( G _o® )5@(3) 4O )5(6,@ —l//(3))>< Wi 68(2) §(u(2) _V<2>) )

o [YOE O a O dg O dg D dy (4.8.27)

avf) )?(4) (2) ax( )6x

22nd term,

<_ 5(u“) _y0 )5(;[(1) oW )5(90) g0 )5( D _ 0 )5( )5(90 g )5(00) _ W(D)
5(u 6 _,0 )(5(11(3) _g® )(5(9@) e )5(c<3> _ l//u))x AV H® % 5(h(2) _ g(2>) )

a
L, P lim o’ gPFI23 gy dg @ d gD gy @ 4.8.28
- T ag? CONN (@WI ey e
“x
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24nd term,

( M _ 0 )5( M _ o )5( M _ g0 )5( My ® )5( @ _,@ )5( @ _ o )5(c<2> —1/1(2))
( G _,0 )5(;1(3) _g® )5(9@) P )5( 3 _ (D)XW g _9 0 5( @ _¢(2>)>

a¢(2)
o 0 lim a2

PO EI2 gy @ dg @ d g™ dy @ (4.8.29)
e @) _(2) xPax) I
X —> X

26th term,

( W _,0 )5( g )5(9(0 gV )5(c<1> _y )5(u<2) e )5(11(2’ _g® )5(9(2) _ ¢<2>)
( @ _,® )é(h(” G) )5(0(3 W )5( 4 _ (3>)X Dy 9 0 5( @ _y/<2)) )

8W(2)

— | WPE"Y D deDdp D dy 4.8.30
6(//(2) f(4) _(2) ax(4)ax(4) I 4 g Vdg 4 ( )

30th term,

<_5(u<1> _y0 )é(h“) _ g(”)é( g0 )5( M _ (1>)5(u(2) ) )5(h(2’ _g® )5(9@ _ ¢<2>)
5(0(2> e )5(;1(3) _g® )5(9<3> e )5(c<3> )>< wi® = j@) 5(u @ _,0 ) )

a

4 p(1,2,3,4) 3.(4) 7..(4) 7 4(4) 4)
[VOF9av dg g dy

e PROPWO! (4.8.31)
o _(4) (3) % O

35th term,

( M _,0 )5(11“) <1>)5(9<1) _ g0 )5(00) —1//“))5( @ _,@ )5(11(2’ _g® )5(9(2> _ ¢<2>)
( @ @ )5( @ _,0 )5(9@) 4O )5(c<3> <3>)>< Ve S 0 5(}1(3) _ g(s))>

oo ®

24

[P FI Y D dg D dg O dy 4.8.32
0g (@) _, () 5’6“)@“4’] " s R
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37th term,

( M _,m )5( g )5(9(1> — g0 )5(c<1> —y® )5(u<2> _y® )5(;1(2) _g® )5(90) _ ¢(2))
( @ @ )5( G _,0 )5(h(3) _g® )5(00) m)xw g®_9 0 (9@) _ ¢<3)) )

5¢(3)

lim 82

_ 4) r7(1,2,3,4) g.(4) 4) 4) (4)
=~y — o | $OF av D dg Vg Dy (4.8.33)
8¢ f(4) N )?(3) axﬁ 8x

39th term,

( M _ (‘))é(h“) (1>)5(9(1> _¢<1))5(c<1> _ (1>)5(u(2) _V<2>)5(h<2> _g<2>)5(9<2> _¢<2>)
( @ @ )5( 3 _,0 )5(h(3’ ) )5(9@) ¢<3>)X DV2:0) > 5(3) 5(c<3) _V/<3>)>

(4)F(l’2’3’4)dv(4)d (4)d (4)d 4
0(//(3) _(4) _(3) ax(;)ax;?) '[l// 4 g ¢ W (4834)
X —>X

We reduce the third term of right hand side of equation (4.8.1),

(001" - ol =g e - ol v Blh - o6 -9 e -y ol )

1 0 oul uy  on" ohy L " 9
=g blo” 4" (3)"”(3))%5)&“I | oy 5xﬁ)_6x(ﬁl) 0 ]Ix’"x-fl o o))

0 | 0 1 8\1(4 6\/ o og 4) ag(4) 0234 74 7,4 76 74 7,
5 (1)[ 472"[ 6x(l)( ‘_(4) _(1‘ 5X(4) 8x(4) 5x(4 ox, ) )4 v dgTdy ]
(4.8.35)

16th term,

< ( m _ (1>)5(h(1) ) )5(9(1> _ g0 )5(c<1> _l/,<1>)5(h<2> PNE) )5(6?(2) _¢<2>)5( @ _W<2>)

P @ 9 (2) ah(z) ﬁh(z)
((3) (3))5(}’(3) (3))5(‘9(3)‘¢(3))5(C(3) (3)) 47 ox <z)j u(z) aj;z) 6x(2) ax;) ]

x Lmig(uﬂ) —y®) )

|)—Cm _ _f'| 6‘)((12)
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o 1 9 1 ov® v, g og))”
a (2)[ 47Z'J. ax(Z) ‘—(4) —(2)‘ (4) ax(4) ax(4) ax(4) )
FO 9 gy D dg Odg Oy | (4.8.36)

Similarly, 29th term,

( W _ “))5(}1“) (1))5(90) _ ¢<1>)5(C<1> _ y/(”)é(u(z’ _ V(z))g(hm _ g<2>)
(gm ¢<2>)5( @ _ (2>)5(h(3> _ g“))é(ﬁ(” _ ¢(3>)5(C<3) _ Wm)
0

3) au(S) 3) ah@) m
1 3 J. [ Py 3 3 5ha3 ﬁz ] —df — 3 5(u(3) —v(3)) >
471' 8x( ) ( ) ax( ) Gx(ﬂ) axfz) |x’”—x"| avé)

o 1 o 1 v v g og)
- av(3)[ EJ. ax(3) ‘—(4) (3)‘ )( (4) 8x(4) ax;;) ax(4) )

FO a9 dyOdg@dpDdy® | (4.8.37)

Fifth and sixth terms of right hand side of equation (4.8.1),

(h(” () )5(6?“) e )5( My )5(u<2> ) )5(h(2) _g® )5(9@ _ 4@ )5(0(2> _V/<2>)
( 3 _ (3))5(h<3> (3))5(9<3) _¢<3))5(C<3> _V/m)xze Q ul aa(l) 5(u(1> _Vm) )

< 2e Qm“((zl) aa(l) [ 5( M _,0 )5(;1(1) _g(l) )5(0(1) _¢(1) )5(0(1) _l//(l) )5(u(2) _v(z))
(hu) @) )5(9(2) e )5( @ _y® )5( G _,0 )5(;1(3) _g® )5(«9(3) g )5( G _ (3>)

0

o (1) (1>5( m _ “))5(}1“) (1))5(‘9(1) —¢“))5(c“) _Wm))(;(u(z) _V(z))
ma, a
(h<2> &) )5(3<2) e )5( @ @ )5(u 3 _,0 )§(h<3) _g® )5(9@) —g® )5(c<3> —y® )>

=2¢€

@

=2¢,,, a”«é) ( M _,0 )é(h“’ _g® )5(90) 40 )5( M _y )5(u<2> _y® )5(h(2) _ g(z))
(9<2> e )5( @ _y® )5(u<3> NE) )(;(hm 6) )5((9(3 _g® )5( 3 _ 3))

=2€,,, Q. F"* (4.8.38)
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and sixth term,

(h“) (0)5(0(1) ¢<1))5( m_ (1))5( @) _ (2))5(;1(2)_g<2>)5(9(2)_¢<2>)5(c<2>_l//<2))
( 3 _ <3>)5(h(3> <3>)5(9(3) ¢<3))5( 3 _ (3)) u® — v )i5(u“)—v”))>

M
ov,

__ m _,m M _ 0 m_,m W _ g0 )5(c® —y® @ _ @
(A =0 )55 L ol - ol -5 hlo” -4 Ple Jolu® =)
(h<2> @) )5(9@ ¢<2> )5( @ @ )5(u‘3) NE) )5(}1(3) 3) )5(9(3> e )5( @ _y® )]

= f( ug) vg) )W ( M _ 0 )5(}1(1) ) )5(9(1) _¢(1) )5(0(1) _l//(l) )5(14(2) —v(z))
(h<2) &) )5(9<2) e )5( @ @ )5(u<3> 0 )5(/1(3) _g® )5(9@) e )5(c<3> —y® )>

0
— (O] (@) (1,2,3)
=—f(ud =) 5,0 £ (4.8.39)

Similarly, 18th,19th ,31st and 32nd terms of right hand side of equation (4.8.1),

< ( m _ (1>)5(h(1> _g(l>)5(9<1) ¢(1>)5( m _ (1))5(;1(2) _g® )5(90) e )5(0(2> —1//@))

( () _ 3 )5(h‘3) _g® )5(9@) e )5( 3 _ (3))><2 €y 1t aa(” 5(u<2> _v<2>) )

=2e, , Q F"Y (4.8.40)

maf}

19th term,

((n “’)5(}1“) m)g(g(l)_ ¢<1>)5(c<1>_ “))5(}1(2’— (2>)5(9<2>_ ¢<2>)5(c<2>_v/<2))
((3) (3))5(h(3) (3))5(6’(3) ¢<3>)5( G _ (3>) u? —y® ) 0 5(u<2)_v(2>)>

B
ov,

0
ov?

a

=—f(u® v ) FY (4.8.41)

31st term,

< ( m_ ‘”)5(}1“) ) )5(9<1) — " )5(0“) iy )5(u(2> @ )5(;1(2) _g® )5(6?(2) _¢(2))
( @ @ )5(h‘3) 6 )5(9(3) —g® )5(c(3) —yﬂ”)x 2¢,., Qu 68(3) 5(u(3> —v“)) )
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_ (1,2,3)
=2 emaﬁ QmF'S

(4.8.42)
32nd term,
< 5(u ) )5( _ g”)ﬁ( (1))5( <1>_{/,(1))5(”<2)_v(2>)5(h(2>_ gu))(;(e(z)_ ¢<2))
5(c<2> _ W(n)&(h(s) _ g“))é( O _ g )5( @ _ <3>)x Fu® =) % 5(u<3> _v<3>) )
=—f(ul v )LF("“) (4.8.43)

v 3
Substituting the results (4.8.1) — (4.8.43) in equation (4.8.1) we get the transport

equation for three point distribution function F*** (v, g, @,w)in MHD turbulent flow

in a rotating system in presence of dust particles as

(1,2,3) 1 1
OF} m O @ 0 3 O (1,2,3) ) Gg“ vy’ e
+( Ve oo TV oo VB AL )F3 +[ 8p ( o t> o Ao
ot 0x 0x ox; ov, 0g, "ox,

8g(2) av(2) o o (3) 8\/(3) o
+ g(ﬁZ)( 2 + 2 ) 2 + g(ﬂ3)( 2. 3 + 3 ) 3 ]F3(]’2’3)
a() ag() ax(ﬂ) a() ag() ax;)

8\/(1) 4 1 av 4 2 i 8v(3) 4 3
« (4 () @ ) Y (4, -0
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X —
4)A,.(4)
Gxﬁ ﬁxﬂ

+v(
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A gy T og® T og?
S @ % @) @) % @) )
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) lim 0 lim P lim
+D( oy +8l//(2’ +5l//(3)
NORR0 S 0) RORRE
82
< Y R v dg g dy
B B
o (1 0 1 o , 1 0 1
Tart &) (o Vapt &l aol e )
SN U S G W QA M P PIERS
v ped| o 7@ -39 o ox™ o) o™

xdx Vv PdgVdgVdy P +6e,,, Q,FY

0 0 0
M M (2) (2) 3 3 (1,2,3) _
+[f( U, —Vv, )av(1)+f( u, —v, )av(2)+f( u, —v, )6\/(3) ]FS =0
a a a
(4.8.44)
: : : : : . (1,2,3,4) (1,2,3,4,5)
Continuing this way, we can derive the equations for evolution of F, , F;

and so on. Logically it is possible to have an equation for every Fy (n is an integer) but
the system of equations so obtained is not closed. Certain approximations will be

required thus obtained.

4.9 Results and Discussion
If the fluid is clean and the system is non rotating then f=0 and €2, =0, the transport

equation for one point distribution function in MHD turbulent flow (4.8.44) becomes

Ggf;) Gvfll) \ 0
oyD +5 0) /axu)
a g B

OF (2 o 0 5 @
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o TV Gt G G B L
B B B

(2) (2) (3) (3)
og +8va y O (3)( og, +5Va y O ]F3(1,2,3)
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18 ( ov® ag(z) /ax;jz) B oy ag(a) /ax'(gs)
+v(

8v(” 4 1 " 8v(2) 4 2 i 6\1(3) 4 3
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which was obtained earlier by Azad et al [14].
If we drop the viscous, magnetic and thermal diffusive and concentration terms from

the three point evolution equation (4.8.44), we have
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PO +8 0) )6 )
a g x,H
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6vS) Ar 8x5) ‘x(4)—x(3)‘ ﬁx(;) ax(4) axg) 5‘x(§4)

x dxVdyVdgDdgPdy® =0 (4.9.2)
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The existence of the term

ooV gy @ A 3 AL
( g(l) ) ( %o, Mo and %y Vo
v ag0 I\ G0 v og

can be explained on the basis that two characteristics of the flow field are related to
each other and describe the interaction between the two modes (velocity and

magnetic) at point x| x® and x®

We can exhibit an analogy of this equation with the 1st equation in BBGKY hierarchy
in the kinetic theory of gases. The first equation of BBGKY hierarchy is given [107]

as

oF" 1 oy, oF"? _
— v 5 F .” V/(11,)z G dv
ot m 8x ox, 0ov, (4.9.3)
where ¥V, =V v(f) - VS) is the inter molecular potential.

In order to close the system of equations for the distribution functions, some
approximations are required. If we consider the collection of ionized particles, i.e. in
plasma turbulence case, it can be provided closure form easily by decomposing F»!-?
as F1 F1®. But such type of approximations can be possible if there is no interaction

or correlation between two particles. If we decompose F2'? as

F,(1:2) = (1+¢€) F,DF,®

and

F;(1.23) = (1+e )2 FOF®FG

also

Fs0:23:4) = (1+€ )3 FIOF,@FCF®
where € is the correlation coefficient between the particles. If there is no correlation
between the particles, € will be zero and distribution function can be decomposed in
usual way. Here we are considering such type of approximation only to provide

closed form of the equation.
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CHAPTER-V

CONCLUSION

In the thesis mainly turbulent and Magneto-hydrodynamic turbulent flow in
incompressible fluid has been studied. We have tried to give here a general idea of

turbulence and Magneto—hydrodynamic turbulence related to this research work.

We have studied the decay of temperature fluctuations in dusty fluid homogeneous
turbulence prior to the final period in section II-A. In this chapter to derive the decay
law of temperature fluctuations in dusty fluid turbulence, we have considered two-
point and three-point correlations between fluctuating quantities. Correlation
equations between fluctuating quantities with dust particles are obtained. Converting
these correlation equations to spectral form by taking their Fourier transform. By
integrating energy spectrum over all wave numbers the energy decay law of
temperature fluctuations in homogeneous turbulence before the final period in
presence of dust particles is obtained. In this result we have seen that the energy
decays more rapidly than the energy for clean fluid prior to the ultimate period.

Throughout this work we have applied Deissler’s method.

Applying the same method we have made an attempt to derive the energy decay law
of temperature fluctuations in homogeneous dusty fluid turbulence before the final

period in presence of Coriolis force in section II-B.

In section III-A, we have derived the transport equation by making use of the
derivation of the constructed joint distribution function of certain variables in
convective turbulent flow in presence of Coriolis force undergoing a first order
reaction. We have got a partial differential equation under the deviation of the joint
distribution function. The equation of motion, field equation of temperature and

concentration of particles with Coriolis force have been used in above partial
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differential equation. Then we have simplified each term of the equation in terms of
one- and two- point distribution function. By substituting the simplified terms in the
above equation, the transport equation for the joint distribution functions of certain
variables in convective turbulent flow in presence of Coriolis force undergoing a first
order reaction is obtained. Lastly, we have compared the result with the equation for
one- point distribution function in absence of the Coriolis force. We have extended
the above problem for the case of dust particles due to first order reaction in section
ITI-B. It is better to say that the system is unclosed that is why some approximations

are required to close the system of equations for the joint distribution function.

In chapter-1V, we have studied the statistical theory of certain variables for three-
point distribution functions in MHD turbulent flow in rotating system and their
properties, e.g. reduction properties, separation properties etc. Continuity equation in
term of distribution function has been considered. Equations for three-point
distribution function of it have been formulated by analyzing two-point distribution

functions.
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