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Introduction

The notion of a fuzzy set, as proposed by L.A. Zadeh[90] in 1965 to provide a
foundation for the evolution of many areas of knowledge. After then in quick
succession, L-fuzzy sets were introduced by Goguen[24] in 1967. As a result, this
provides a natural frame work for generalizing many algebraic and topological
concepts in various directions such as L-fuzzy sets, fuzzy logics, fuzzy control,
fuzzy groups, fuzzy rings, fuzzy vector spaces, fuzzy topology, fuzzy bitopology,
L-topology etc. Many other branches of mathematics have been developed all over
the world during the last five decades. Chang [12] first introduced and studied the
concept of a fuzzy topological space by using the fuzzy set in 1968. Hutton[31-34]
,Reilly[33-34],Wong [83-84], Lowen[47-48], Srivastava[73-79], Dude[16-17],
Cutler[14], Ying[88], Ali[2-9], Hossain[26-30], Pu and Liu[53-54], etc., discussed
and developed various aspects of fuzzy topological spaces. Ying [88] introduced
fuzzifying topology and developed this in a new direction with the semantic
methods of continuous valued logic. With the help of fuzzifying topology,
Sinha[69-70] introduced and studied T, T,, T,.(Hausdorff), Ts(regular), T,.
(normal), separation axioms. Mashhour et al. [51-52] introduced and studied the
concepts of the family of fuzzifying semi-open sets, fuzzifying neighbourhood

structure of a point and fuzzifying semi-closure of a fuzzy set. Also in fuzzifying



topology they introduced and studied semi-Ty-, semi-Ry-, semi-T;-, semi-R;-,
semi-T,(semi Hausdorff)-, semi-T;(semi regular)-, semi-T4(semi normal)-,
separation axioms. Ali and Hossain [28] developed the R, and R; separation
axioms and studied their relations with the T, and T,-separation axioms
respectively. In 1993, Warner and Mclean [80] introduced on compact Hausdorff
L-fuzzy spaces. Later Jin-xuan, Ren Bai-lin[35] introduced and studies a set of
new separation axioms in L-fuzzy topological spaces. After wards, Kudri[41-42],
Li[43-44], Song[71], Xu[86], ZHAO Bin[93], introduced the L-fuzzy topological
spaces and studied the strong Hausdorff Separation property in L-fuzzy
topological spaces.

In this present thesis, we are going to introduce some new definitions of
separation axioms in L-topological spaces using the ideas of Jin-xuan and Ren
Bai-lin[35]. Some of their equivalent formulations along with various new
characterizations and results concerning the existing ones are presented here. Our
criterion for definitions has been preserving as much as possible the relation
between the corresponding separation properties for L-topological spaces.
Moreover, it will be seen that the definitions of these axioms are ‘good extensions’
in the sense of Lowen [47-48].

We aim to develop theories of L-T,, L-T;, L-T, (Hausdorff), L-R, and L-

Ri-separation axioms analogous to its counterpart in ordinary topology. The



materials of this thesis have been divided into six chapters, a brief scenario of
which we present as follows.

The first one is to incorporate some of the basic definitions and results of fuzzy
set, fuzzy topology, fuzzy mapping, L-topology and its mapping. These results are
ready references for the work in the subsequent chapter. Results are stated without
proof and can be seen in the papers referred to.

Our work starts from chapter two. In this chapter, we have introduced and
studied T, properties in L-topological spaces. Here we add eight more definitions
to this list and we have established relationship among them. All these eight
definitions are ‘good extensions’ of the corresponding concept T, in a topological
space. We prove that all these definitions satisfy property of hereditary, productive
and projective. Also we have studied some other properties of these concepts.

In chapter three, we have developed and studied T, properties in L-
topological spaces. Here, we include eight more definitions to this chapter and we
have established relations among them. All these eight notions are ‘good
extensions’ of the corresponding concept of T; in a topological space. We prove
that all these notions are hereditary, productive and projective. We have discussed
some other properties of these concepts.

We have introduced and studied T,(Hausdorff) properties in L-topological

spaces, in chapter four. We have developed here seven more definitions and we



established relations among them. All these properties are ‘good extensions’ of the
corresponding concept T,(Hausdorff) in a topological space. We have observed
that all the definitions satisfy property of hereditary, productive and projective.

Chapter five is based on the R, properties in L-topological spaces. Here we
have obtained seven more definitions. We see that all these properties are ‘good
extensions’ of the corresponding notions in topological spaces. We have discussed
that all the properties are hereditary, productive and projective. We have also
studied several other properties of these concepts.

The R, properties in L-topological spaces are to be studied in chapter six.
We have given here seven more definitions and we have established relations
among them. All these are ‘good extensions’ of their corresponding concept in a
topological space. Some other pleasant properties of these concepts have been

studied here.



Preliminaries

CHAPTER-1

Preliminaries

1.1 Introduction:

We have discussed the fuzzy sets, fuzzy topological spaces and L-topological
spaces in this chapter. We have incorporated some of the basic definitions and
results of the fuzzy sets, Grade of membership, L-fuzzy sets, complement of L-
fuzzy sets, some laws of L-fuzzy sets, different mapping on L-fuzzy sets,
Fuzzy topological spaces, L- topological spaces, L-T,, L-T; L-T,-spaces, fuzzy
product topological spaces and L-product topological spaces which are to be
used as ready references for understanding the subsequent chapters. Most of the
results are quoted from various research papers. We make use the following

general notations in this thesis paper.

A . Index set.

L : Complete distributive lattice with 0 and 1.

[=10, 1] : Closed unit interval.

I, =10, I) : Right open unit interval.

Iy=(0, 1] : Left open unit interval.
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u, o, B, v,.. : L-Fuzzy sets.
(X, 1) : Fuzzy topological space.

X, 1) : L-topological space.

(X, T) : General topological space.

IT; Ao X; @ Usual product of X .

(X, T1x T,) : Product of L-topologies 1, and 1, on the set X.

I(0)={u'(a,1]: uet }, a € I; : General topology on X.
1.2 Fuzzy Set

1.2.1 Definition [90]: Let X be a non-empty set and I= [0, 1]. A fuzzy set in X
is a function u:X — I which assign to each element x € X, a degree of
membership, u(x) € [.Thus a usual subset of X, is a special type of a fuzzy set

in which the range of the function is [0,1].

1.2.2 Definition: Let X be a nonempty set and A be a subset of X. The function

1,: X - {0,1} defined by

lif xe A ) . .
1L,(x) = { 0ifxeA is called the characteristic function of A. We also

write 1, for the characteristic function of X.
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1.2.3 Definition: The characteristic functions of subsets of a set X are referred

to as the crisp sets in X.

1.2.4 Example: Suppose X is real number R and the fuzzy set of real numbers
much greater than 5 in X that could be defined by the continuous function

0if x<5
x—
50
1 if x=55

U: X —[0,1]such that u(x) = > if 5<x<55.

1.2.5 Definition [47]: A fuzzy subset is empty if and only if grade of
membership is identically zero in X. It is denoted by 0.

1.2.6 Definition [47]: A fuzzy subset is whole if and only if its grade of
membership is identically one in X. It is denoted by 1.

1.2.7 Definition [82]: Let u and v be two fuzzy subsets of a set X. Then u is
said to be subset of v, 1.e., u < v if and only if u(x) < v(x) for every x € X.

1.2.8 Definition [82]: Let u and v be two fuzzy subsets of a set X. Then u is
said to be equal to v, i.e., u = v if and only if u(x) = v(x) for every x €X.

1.2.9 Definition [82]: Let u and v be two fuzzy subsets of a set X. Then u is
said to be the complement of v, i.e., u = v° if and only if u(x) = 1 — v(x), for
every x eX. Obviously (v©)“=v.

1.2.10 Definition [11]: Let u and v be two fuzzy subsets of a set X. Then the

union w of uand v, i.e., w=u U v if and only if w(x) = (u LU v) (x) =



Preliminaries

max{ u(x), v(x) }, for every x €X. The union w is a fuzzy subset of X.

In general, if A be an index set and A = {u; :1 €A} be a family of fuzzy sets
of X then the union Lu; is defined by

(Uu;) (x)=sup {u; (x) :1e€ A}, xeX.

1.2.11 Definition [11]: Let u and v be two fuzzy subsets of a set X. Then the
intersection m of u and v, i.e., m = u N v is a fuzzy subset of X if and only if
m(x) =(uNv)(x) =min {uXx), v(x)}, Vx e X, and (Nuj (x) =

inf {u;(x):1€eA }, xe X, where {u;,ie A }.

1.2.12 Definition: Let u and v be two fuzzy subsets of a set X. Then the
difference of u and v is definedbyu-v=unv®,

1.2.13 Definition: If a.e I and u eI define by u(x) =a, for all xe X, we refer
to u as a constant fuzzy set and denote it by a itself. In particular, we have the
constant fuzzy sets 0 and 1.

1.2.14 Example: Let X= {x, y, z} and u, v eI* are defined by u(x) =.6,

u(y) =.7,u(z) =5 and v(x) =.7, v(y) =.5, v(z) =4. Then (uw v) (x) =

max {u(x), v(x)j =7, (W v) (y) =max {u(y), v(y)} =7, (@ v) (y) =

max {u(y), v(y)} =5, (u N v) (x) =min {u(x), v(x)} =.6, (uNv)(y)=

min {u(y), v(y)} =.5, (u N v) (z) =min {u(z), v(z)} =.4., u° (x)= l-u(x)=4,

u’ (y)= I-u(y)=.3, u’ (z)= 1-u(z)=.5.
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1.2.15 Laws of the algebra of fuzzy sets:

As in ordinary set theory, idempotent laws, associative law, commutative law,
distributive laws, identity law, demorgan’s laws hold in the case of fuzzy sets
also. But the complement laws are not necessarily true. For example, if

X={a, b, ¢} and u is a fuzzy subset of X where is defined by
u={(@,.2),(b,.7),(c,1)},

then u“={(a,.8),(b,.3),(c,0)}
souvu‘={(a,.8),(b,.7),(c,1)}=1,
unu={(a,.2),(b,.3)(c,0)}#0.

Also in ordinary set theory U n V = ¢ if and only if U — V °. But in fuzzy
subsets reverse is not necessary true. For example if

v={(a,.6),(b,.2),(c,0)}then ucv®,
unv={(a,.2),(b,.2),(c,0)}=0.

1.3 Fuzzy Topology

1.3.1 Definition [12]: Let I = [0,1], X be a non-empty set and I* be the
collection of all mappings from X into I, i. e. the class of all fuzzy sets in
X. A fuzzy topology on X is defined as a family t of members of I*,

satisfying the following conditions:

() 1,0€et
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(i) ifu; €t foreachi € Athen Ujepu; €t

(i) ifuy,u,thenu; Nu, €.

The pair (X,t) is called a fuzzy topological space (fts, in short) and the
members of t are called t-open (or simply open) fuzzy sets. A fuzzy set v

is called a t-closed (or simply closed) fuzzy setif 1 —v € t.
1.3.2 Example : Let X={a,b,c,d},t={0,1,u, v},
where 1={(a,1),(b,1),(c,1),(d,1)}
0=1{(a,0),(b,0),(c,0),(d,0)}
u= {(a,.2),(b,.5),(c,.7),(d,.9)}
v={(a,3),(b,.5),(c,.8),(d,.95)}
Then (X, t) is a fuzzy topological space.

1.3.3 Definition: A fuzzy topological space (X, t) is said to be fuzzy regular if
and only if for each x € X and closed fuzzy set u with u(x) =0, there exists

open fuzzy sets v,w € t such that v(x) =1, ucw andvc1-w.

1.3.4 Definition: A fuzzy topological space (X, t) is said to be fuzzy normal if

and only if for each close fuzzy set m and open fuzzy set u with m cu, there

exists a fuzzy set vsuch that mcv cvcu.

10
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1.4 L-Fuzzy Set

1.4.1 Definition [24]: Let X be a non-empty set and L be a complete
distributive lattice with 0 and 1. An L-fuzzy set in X is a function a: X — L

which assign to each element x € X, a degree of membership, a(x) € L.

1.4.2 Definition [24]: Let a be an L-fuzzy set in X .Then 1 —a = ' is

called the complement of « in X.

1.4.3 Definition [24]: An L-fuzzy subset is empty if and only if grade of
membership is identically zero in X. It is denoted by 0.

1.4.4 Definition [24]: An L-fuzzy subset is whole if and only if its grade of
membership is identically one in X. It is denoted by 1*.

1.4.5 Definition [24]: Let a and 8 be two L-fuzzy subsets of a set X. Then « is
said to be subset of 8, i.e., « € B if and only if a(x) < S(x) for every x € X.
1.4.6 Definition [24]: Let a and S be two L-fuzzy subsets of a set X. Then « is
said to be equal to B, i.e., @ = Bif and only if a(x) = B(x) for every x eX.
1.4.7 Definition [24]: Let a and 8 be two L-fuzzy subsets of a set X. Then « is
said to be the complement of £, i.e., « = B¢ if and only if a(x) = 1- B(x),

for every x eX. Obviously (B€)¢ = B.

11
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1.4.8 Definition [24]: Let a and f be two L-fuzzy subsets of a set X. Then the
union ¥ of a and B, ie, y=a U if and only if y(x) = (@ UB)(x) =
max { a(x),B(x) }, for every x € X. The union y is an L-fuzzy subset of X.

In general, if A be an index set and A = {a; : i € A} be a family of L-fuzzy
sets of X then the union U ¢; is defined by (U ;) (x) = sup {a;(x):i €
A}, x € X.

1.4.9 Definition [24]: Let a and f be two L-fuzzy subsets of a set X. Then the
intersection m of a and S, i.e., m = a N f is an L-fuzzy subset of X if and
only if m(x) = (anpB)(x) =min{a(x),B(x)},Vx € Xand(Nea; )(x) =
inf {a;(x) : i € A}, x € X,where {a;,i € A}.

1.4.10 Definition [24]: Let @ and S be two L-fuzzy subsets of a set X. Then the
difference of a and S8 is defined by « — f = a N B°.

1.4.11Example: Let X = {x,y,z}, L = {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}
and a,f € LX are defined by a(x) =.6,a(y) =.7,a(z) =.5 and B(x) =
7,6(y) =.5LF(z) = .4.Then (e U f)(x) = max {a(x),B(x)} =.7,

(@up) (y) =max{a(y), ()} =.7, (aVp)(2) =max{a(z),B(2)} =
S5, (@n p)(x) =minfa(x),F(x)} =.6,(anP) (y) =min{a(y),B(¥y)} =
S5, (anpB)(z2) =min{a(2),B(2)} =4, a*(x) = 1—a(x) =4, a(y) =

1—a(y)=.3,a%2)=1—a(z) =.5.

12
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1.4.12Definition [45]: Two L-fuzzy sets a and £ in X are said to be intersected
if and only if there exist a point x € X such that (anNf) (x) # 0 . In this
case we say that « and f intersect at x.

1.4.13 Definition [46]: Let X be a non empty set and u be an L-fuzzy set in X.
A a- cut of p is defined by a, = {x: u(x) = a,Va € L}.

1.4.14 Definition [46]: Let X be a non empty set and u be an L-fuzzy set in X.
A strong o- cut of p is defined by a,* = {x: u(x) > @, Va € L}. We see that
a-cut and strong o-cut are crisp subsets of X. The 1-cut of u is called the core

of u.

1.4.15 Definition [46]: Let X be a non empty set and u be an L-fuzzy set in X.
The support of ¢ in X is the crisp subset of X that contains all the elements of X

that have none zero membership grads in u, i.e., suppu = {x: u(x) > 0}.

1.4.16 Definition [46]: The height h(u) of an L-fuzzy set p is the largest

sup

membership grade obtained by any element in that set, i.e.,h(u) = ,cyxu(x).

1.4.17 Definition [46]: For a finite L-fuzzy set, the cardinality |a| defined as

la| = Y exa(x). |la]l = % is called the relative cardinality of a.

13
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1.4.18 Definition [46]: An L-fuzzy set u is called normal when h(u) = 1;
it is called subnormal when h(u) < 1. The height of y may also be

viewed as the supremum of a for which a,, # @.

1.4.19 Definition [90]: If r € L and « is an L-fuzzy set in X defined by
a(x) =r, Vx € X then we refer to a as a constant L-fuzzy set and

denoted it by 7 itself.
In particular, we have the constant L-fuzzy sets 0 and 1.

1.4.20 Definition [46]: An L-fuzzy point p in X is a special L-fuzzy set

with membership function p(x) =r if x = x,
= 0 otherwise x # x, where r € L.

1.4.21 Definition [46]: An L-fuzzy point p is said to belong to an L-fuzzy
setainX (p € a) ifand only if p(x) < a(x) and p(y) < a(y)
(y#x)i.ex,€a=>r<a(x) .

1.4.22 Definition [90]: An L-fuzzy singleton in X is an L-fuzzy set in X
which is zero everywhere except at one point say x, where it takes a value

say ¥ with 0 <r <1 and r € L . We denote it by x, and x, € a iff

r<ax).

14
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1.4.23 Definition [46]: An L-fuzzy singleton x, is said to be quasi-
coincident (g-coincident, in short) with an L-fuzzy set a in X, denoted by

xrqa iff r + a(x) > 1. Similarly, an L-fuzzy set a in X is said to be

g-coincident with an L-fuzzy set f in X, denoted by aqf if and only if
a(x) + f(x) > 1 for some x € X . Therefore ag B iff a(x) +p(x) <1
for all x € X , where aq f denotes that an L-fuzzy set a in X is not g-

coincident with an L-fuzzy set § in X.

1.4.24 Laws of the algebra of L-fuzzy sets:

As in ordinary set theory, idempotent laws, associative laws, commutative
laws, distributive laws, identity laws, Demorgan’s laws hold in the case of
L-fuzzy sets also. But the complement laws are not necessarily true. For
example, if X = {a,b,c}, L = {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1} and « is
an L-fuzzy subset of X where is defined by

a={(a,2),(b,.7),(c,1)},

then a¢ ={(a,.8),(b,3),(c,0)}

soaVUa®= {(a,8),(b,.7),(c,1)}#1,
ana‘={(a,2),(b,3),(c,0)}#0.

Also in ordinary set theory U NV = @ if and only if U c V. But in L-fuzzy

subsets reverse is not necessary true. For example

15
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iff={(a,6)(b,2)(c,0)}thena c B¢,
anB={(a,2),(b,2),(c,0)}#0.

1.5 Mapping in L-fuzzy set

1.5.1 Definition [23 |: Let f be a mapping from a set X into a set Y and « is an
L-fuzzy subset on X.Then f and a induced an L-fuzzy subset § = f(a) of Y

whose membership function is defined by

BO) = @) = {S“P{am} if fU)] %8, x€X

0, otherwise
1.5.2 Definition [11]: Let f be a mapping from a set X into Y and £ is an
L-fuzzy subset of Y. Then the inverse of  written as @ = f~*(f) is an
L-fuzzy subset of X and is defined by a(x) = (f~1(B)) (x) = B(f (x)), for
x €X.
1.5.3Example: Suppose that X = {x,y,z,w}andY = {a,b,c}. Define
f:X —Y by f(x) =b,f(y) =c¢,f(2) =a,f(w) =a. Let a € L¥ be
given by a(x) =.2,a(y) = .3,a(z) =.5and a(w) = .4. Then (f (@))(a) =
sup {a(z),a(w)} = .5.Similarly,(f (a))(b) = sup a(x) = .2,

and (f (a))(c) = sup a(y) = .3.

On the other hand, if 8 is an L-fuzzy set in Y given by B(a) = .6,8(b) =

8,p(c) =.7.Then (f 1 (BN (x) = B(f(x)) = B(b) = 8, F ' (BN =

16
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BU) =B =7, T BN =B(f(2) =B@) =6, (T (BNW) =
BUf(w)) = B(a) =.6.

We now mention some properties of L-fuzzy subsets induced by mappings.
1.5.4 Definition [11]: Let f be a mapping from X into Y, @ be an L-fuzzy
subset of X and f§ be an L-fuzzy subset of Y. Then the following properties are

true.
(@) f71(B°) = (f_l(ﬁ))c for any L-fuzzy subset 8 of Y.
(b) f (a¢) = (f(a'))c for any L-fuzzy subset @ of X.
() BrcB,= f1(B) c f1(B,), where B; and B, are two L-fuzzy
subsets of Y.
(d a; c a, = f(a,) < f(ay), where a; and a, are two L-fuzzy subsets
of X.
(e) B o f (f~1(B)), for any L-fuzzy subset S of Y.
(D a c f~1(f(a)), for any L-fuzzy subset a of X.
(g) Let f be a function from X into Y and g be a function from Y into Z.
Then(go f) Y(y) = fY (g *(y)), for any L-fuzzy subset y inZ,

where (g o f) is the composition of g and f.
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1.6 L-topology

1.6.1 Definition [46]: Let X be a non-empty set and L be a complete
distributive lattice with 0 and 1. Again suppose that T be the sub collection
of all mappings from X to L i.e.T € LX. Then 7 is called L-topology on X
if it satisfies the following conditions:

(1) 0",1"et

(1) Ifu,,u, €Etthenu; Nu, €t

(i) Ifu; € tforeachi € Athen Ujepu; ET.

Then the pair (X, 7) is called the L-topological space (lts, in short) and the
members of T are called open L-fuzzy sets. An L-fuzzy set v is called a

closed L-fuzzy setif 1 — v € 7.

1.6.2Example:LetX = {a, b, c},t = {0*,u,v,1"}and

L = {0,0.05,0.1,0.15, ... ... ... 0.95,1}.Where 0* = {(a, 0), (b, 0), (c, 0)},1* =
{(a,1),(b,1),(c, D}, u ={(a,0.1),(bh,0.3),(c, 0.5)}and

v ={(a,0.2),(b,0.4),(c,0.6)}. Then 7 is an L topology on X and the pair

(X, 1) is called L-topological space.

1.6.3 Definition [46]: Let A be an L-fuzzy set in Its (X,7). Then the
closure of 1 is denoted by A or clA and defined as A =N{u:A S pu,u €

¢
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The interior of A written A° or inflis defined b}’ =U {u:u € A, € 1}.

1.6.4 Definition [46]: If (X,7) is an Its and A € X then 7, = {uld: u € t}

is calld the sub space L-topology on A and (A4, t,) is referred to as an
L-sub space of (X, 7).

1.6.5 Definition [46]: Let (X, t) be an L-topological space. A subfamily B of t
is a base for 7 if and only if each member of t can be express as the union of
some members of B.

1.6.6 Definition [46]: Let (X, 1) be an L-topological space. A subfamily S of t
is a sub-base for 1 if and only if the family of finite intersection of members of

S forms a base for 7.
1.6.7 Definition [46]: Let x,. be an L-fuzzy point in an Its (X, 7). An

L-fuzzy set a in X is called a neighborhood (in short, nhd) of x, if and only

if there exists an open L-fuzzy set f in X suchthatx, € f S «a .

1.6.8 Definition [46]: An L-fuzzy set u in an L-topological space (X, 1) is
called a neighborhood of an L-fuzzy point x , if and only if there exist an

L-fuzzy set u; € 7 such that x , € u; < u. A neighborhood u is called an open
neighborhood if u is open. The family consisting of all the neighborhoods of x .

is called the system of x ..
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1.6.9 Definition [46]: An L-topological space (X, 1) is said to be L-T, if and
only if
a) for all distinct elements x, y €X, there exists uet such that u(x) =1, u(y)
=0 or u(x) =0, u(y) =1.
b) for all distinct elements x, y €X, there exists uet such that u(x) <u(y)
or u(y) <u(x).
c¢) for all distinct elements x, y €X, X1 m;l <.
1.6.10 Definition [46]: An L-topological space (X, 1) is said to be T, if and
only if
(a) for all distinct elements x, y €X, there exist u, v et such that u(x) =1,
u(y) =0 and v(x) =0, u(y) =1;
(b) for all distinct elements x, y €X, there exist u, v €1 such that u(x) >0,
u(y) =0 and v(x) =0, v(y) >0;
(c) for all distinct elements x, y €X, there exist u, v €t such that u(x) > u(y)
and v(y) > v(x).
1.6.11 Definition [46]: An L-topological space (X, 1) is said to be L-fuzzy
Hausdorff or L-T; if and only if
(a) for all distinct elements x, y €X, there exist u, ve 1 such that u(x)

=l=u(y)and unv=0;
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(b) for all pair of distinct L-fuzzy points x,, ys €S(X), there exist u, ve 1
such that x, eu, ysevand unv=0;
(c) for all distinct elements x, y €X, there exist u, ve 1 such that u(x) > 0,

v(y)>0and unv=0.
1.7 Continuous map Open map and closed map

1.7.1 Definition [46]: Let f be a real-valued function on an L-topological
space. If {x: f(x) > a} is open for every real a, then f is called lower-semi

continuous function (Isc, in short).

1.7.2 Definition [46]: Let (X,7) and (Y,s) be two L-topological spaces
and f be a mapping from (X, 7) into (V,s)i.e. f:(X,7) = (Y,s). Then f

is called-

(i)  L-Continuous iff for each open L-fuzzy set u € s = f~1(u) €
T

(i)  L-Open iff f(u) € s for each open L-fuzzy set u € 7.

(i) L-Closed iff f(A) is s-closed for each 4 € 7€ ie. A 1is a closed L-
fuzzy setin X.

(iv) L-Homeomorphism iff f is bijective and both f and f~! is L-

continuous.
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1.7.3 Proposition[46]: Let f: (X ,1) —— (Y, s ) be an L-fuzzy continuous

function, then the following properties hold :
(i) For every s — closed v, ™ (v) is t — closed.

(i1) For each L-fuzzy point p in X and each neighborhood u of f (u), then

there exist a neighborhood v of p such that f (v) =u.
(iii) For any L-fuzzy setuin X, f (u) < (f (w)).
(iv) For any L-fuzzy set vin Y, (f~1(v)) € f~1(v).

1.7.4 Proposition[46]: Let f: (X ,t1) —> (Y ,s) be a L-fuzzy open

function , then the following properties hold:
(i) F(u)e(r (u))0 , for each L-fuzzy set uin X .

(i) (f_l(v))o c 1", for each L-fuzzy setvin Y.

1.7.5 Proposition[46]: Let f: (X ,t) ——> (Y, s ) be a function. Then f is

closed ifand only if f (u) € f (u) for each fuzzy set u in X.

1.8 “Good extension” and Product in L-topology

1.8.1 Definition [46]: Let X be a none empty set and T be a topology on X.

Let T = w(T) be the set of all lower semi continuous (Isc) functions from
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(X,T) to L (with usual topology). Thus w(T) = {u € L*:u"(a,1] € T}

for each a € L . It can be shown that w(T) is an L-topology on X.
Let “P” be the property of a topological space (X ,T) and LFP be its

L-topological analogue. Then LFP is called a “good extension” of P “if the
statement (X ,T) has P iff (X,w(T)) has LFP” holds good for every
topological space(X,T).

1.8.2 Definition [91]: Let {(X;,7;):i € A} be a family of L-topological
space. Then the space (I1X;,I17;) is called the product lts of the family
{(X;,1;):i € A} where Ilt; denote the usual product L-topologies of the
families {7;:i € A} of L-topologies on X .

1.8.3 Definition [91 ] : If u, and u , are two L-fuzzy subsets of X and Y
respectively then the Cartesian product u; x u, of two L-fuzzy subsets u; and
u, is a fuzzy subsets of X x Y defined by (u; xu;)(x,y)=

min{u (x),uy(y) }, for each pair (x,y)e X xY.

1.8.4 Definition [46] : Let { X;,1 € A }, be any class of sets and let X
denoted the Cartesian product of these sets, i.e., X =1I1;.5 X;. Note that
X consists of all points p= <a;, i€ A>, where a;e€ X;. Recall that,

for each j, € A, we define the projection m;, from the product set X to
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the coordinate space X, . ie wj, : X ——> Xj, by 7, (<a; :1e A>)=aj,
.These projections are used to define the product L-topology.

1.8.5 Definition [ 46]: If (X, 1, ) and ( X, , T, ) be two L- topological
spaces and X =X x X, be the usual product and t be the coarsest
L-topology on X , then each projection ; : X——X;, 1=1, 2., is L-fuzzy
continuous. The pair (X, 1) is called the product space of the L-topological

spaces (X 1, 1) and (X, 7).
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Chapter-2

On T, Space in L-Topological Spaces

2.1Introduction

Fuzzy T, spaces have been defined and studied by Hutton and Reilly[33,34],
Pu and Liu [53,54].After then, in quick succession, a large number of
seemingly different definitions of fuzzy T, spaces were developed and studied
by several workers, e.g. Ali [2], Hossain [30] ,Srivastava [77,78] and
Choubey[13] etc. In this chapter we define possible eight definitions of T,
space in L-topological spaces. We established all these definitions satisfied
“good extension” property; also we show that these spaces possess many nice

properties and that they are hereditary, productive and projective.

2.2 Ty-property in L-Topological Spaces
We now give the following definitions of Ty-property in L-topological
spaces.
2.2.1Definition: An Its (X, 7) is called-
(@ L—-Ty@) if Vx,y€eX,x+ythen3u€7t such that u(x) #

u(y).

(b)L —Ty(ii) if Vx,y€ X, x #ythendu €1 such that u(x) =

1,u(y) =0oru(x) =0,u(y) = 1.
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(c) L — Ty(iii) if for any pair of distinct L-fuzzy points x,,y, €
S(X)then3 u € tsuchthatx, € u,y; € uorx, € u,ys € u.

(d) L — Ty(iv) if for all pairs of distinct L-fuzzy singletons x,,ys €
S(X) with x,.qy;then3u €t such that x, S u,y,qu or y, S
U, X, qu.

() L —Ty(v) if for any pair of distinct L-fuzzy points x,,ys €
S(X) then 3 u € 7 such that x, € u,uqys or y; € u,ugx,.

(f) L — Ty(vi) if for any pair of distinct L-fuzzy points x,,ys €
S(X)then3u €t suchthatx, Eu,y,Nu=0o0ry, Eu,x, Nu=
0.

(g) L —Ty(vii) if Vx,y€X,x #ythen3u €1 such that u(x) >
0,u(y) =0oru(x) =0,u(y) > 0.

(h) L — Ty (viii) if Vx,y € X,x # ythen3 u € t such that u(x) >

u(y) oru(y) > u(x).

A complete comparison of the definitions L — T, (ii), L — T, (iii),

L—Ty(iv),L — Ty(v), L —Ty(vi), L — Ty(vii) and L — Ty (viii)with

L — T, (i) are given below:
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2.2.2Theorem: Let (X,7) be an Its. Then we have the following

implications:

L—Ty(v) L — T, (iii)

(viii) (vii) (i) \(/
L — Ty(viii) » L — Ty(vii) » L — T,(ii) » L = To(i
R

L — T, (vi) L — Ty(iv)
The reverse implications are not true in general.
Proof: L — Ty(ii) = L — T, (i), L — Ty(iii) = L — Ty (i) and
L —Ty(iv) = L — Ty(i) can be proved . Now L — Ty(v) = L — T, (i) since
L—T,(v) & L — Ty(iii) .
L —Ty(vi) = L —Ty(i), since L —Ty(vi) = L —Ty(v). L — Ty(vii) and
L — Ty(viii) = L — T, (i) since L — To(viii) = L — T, (vii) and
L — T, (vii) = L — T, (i) .

None of the reverse implications are true, it can be seen through the
following counter example: Let X = {x,y} , T be the L-topology on X
generated by {a:a € L} U{u} where u(x) =0.5 , u(y)=0.3 and

L = {0,0.05,0.1,0.15, .........0.95,1} .

Proof: L — Ty(i) # L — T, (ii): Here the Its (X, 1) is clearly L — T, (i) but
it is not L — Ty (ii). Since there is no none empty L-fuzzy set in T which

takes zero value at x or y .
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L—Ty(i) # L — T,(iii): For if we take the distinct L-fuzzy points
X3/4,Yass, there does not exist u € 7 such that x3,, € u,y,5s € u or
X3/4 € W, Yas5 € U

L —Ty(i) # L — Ty(iv): As for the distinct L-fuzzy singletons x;,y; in T
there does not exist u € t such that x; € u,y,qu or y; € u,x,qu.

L —Ty(i) # L — Ty(v): This follows automatically from the fact that

L —Ty(v) © L — Ty(iii) and it has already been shown that L — T, (i) #
L — T, (iii).

L—Ty(i) # L —Ty(vi): Since for any two distinct L-fuzzy points
X374, Yass 0 X, there does not exist u € T which is disjoint with x5/, or
Yass-

L—T,(i) # L—Ty(vii) and L —T,(i) # L — Ty(viii): It is obvious
because L — Ty(vii) = L — Ty (ii) and L — Ty(viii) = L — T,(ii) and it
has already been shown that L — T, (i) # L — T, (ii):

2.3 “Good extension”, Hereditary, Productive and Projective

Properties in L-Topology
Now all the definitions L — T, (i),L — T, (ii), L — Ty (iii), L — T, (iv),

L—Ty(w),L—Ty(vi), L —Ty(vii),L — Ty(viii) are ‘good extensions’ of

T, — property is shown below:
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2.3.1Theorem: Let (X ,T) be a topological space. Then (X ,T) is T, iff

(X ,w(T)) is L — Ty (i).

Proof: Let (X, T) be T, space. Choose x,y € X with x # y. Then3 U €T
such that x e U,y € U ory € U,x & U. Now consider the characteristics
function 1. Then 1, € w(T) such that 1;(x) = 1,1,(y) = 0 and so that

1y(x) # 1y(y). Thus (X, w(T)) is L — T, (i).

Conversely, let (X, w(T)) be L — Ty(i). To show that (X, T) is Ty. Choose
x,y€X with x #y. Then 3u € w(T) such that u(x) # u(y). Let
u(x) <u(y). Choose r such that u(x) <r <wu(y) and -consider
u(r,1]. Then ut(r,1]1 €T with x € u 1(r,1] and y € u1(r,1].
Hence (X, T) is T,. Similarly we can easily show that each of L — T,(ii),
L — Ty (iii), L — Ty(iv),L — Ty(v),L — Ty(vi), L — Ty (vii), L — T,y (viii)

are also holds ‘good extension’ property.
2.3.2Theorem: Let (X,7)beanlts, A € X and 74 = {uld: u € 7}, then

(@) (X,7)is L — Ty (i) = (A,7,) is L — T, (i).
(b) (X ,7) is L — T, (ii) = (A,7,) is L — To(id).
(©) (X,7) is L — Ty (i) = (4, 14) is L — T, (ii).
d) (X,7) is L — T, (iv) = (4,7,) is L — To(iv).
@) (X,7)isL —To(v) = (4,7,) is L — Ty(v).
() (X,7)is L — To(vi) = (4,14) is L — To(vi).

(g) (X,1)is L — Ty(vii) = (A,14) is L — T, (vii).
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(h) (X ,1)is L — Ty(viii) > (A,1,) is L — Ty (viii).
Proof: We prove only (b). Suppose (X,7) is L-topological space and
L — Ty (id).
We shall prove that (4,74) is L — Ty (ii). Let x,y € A with x # y, then
x,y €X with x #y as A € X. Since (X,7) is L — Ty(ii), 3u € t such
that u(x) = L,u(y) =0 or u(x) =0, u(y) =1. For A€ X we find
ulA € 7, such that ulA(x) = 1,ulA(y) =0 or uldA(x) =0, ulA(y) = 1.
Hence it is clear that the subspace (4, T,) is L — T (ii).
Similarly, (a), (c), (d), (e), (f), (g), (h) can be easily proved.
2.3.3Theorem: Given {(X;,7;):i € A} be a family of L-topological space.
Then the product of L-topological space (I1X;, I1t;) is L — T,(j) iff each
coordinate space (X;, t;) is L — T, (j) where j = i, ii, iii, iv, v, vi, vii, viii.
Proof: Let each coordinate space {(X;, 7;):i € A} be L — T, (ii). We show

that the product space is L — T, (ii). Suppose x,y € X with x # y, again

suppose that x = Ilx;, y = ILy; then x; # y; for some j € A. Now consider
x;,y; € X;. Since (X;,7;) is L—To(ii), 3u; €7; such that w;(x;) =
Lui(y;) = 0 or u;(x;) = 0,u;(y;) = 1. Suppose u;(x;) = 1, u;(y;) = 0.
Now take u = Ilu’; where u] =wu; and u; =1 for { # j. Then u is such

that u(x) = 1,u(y) =0. Hence the product L-topological space

(T1X;, 1 7;) is L — T, (id).
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Conversely, let the product L-topological space (I1X;IIt;) is

L — T, (ii). Take any coordinate space (X]-,T]-), choose x;,y; € X;,x; # ;.
Now construct x,y € X such that x = IIx’;, y = Ily’, where x; = y; for
i #j and x; = x;,¥; =y;. Then x #y and hence 3 u € Ilr; such that
u(x) =1, uly) =0 or u(x) =0,u(y) = 1. Suppose u(x) =1, u(y) =
0. Now u must be the union of basic open L-fuzzy set say u =Uyecg by.
Thus U by (x) = 1 and U b, (y) = 0 which implies that there exist at least
one k such that b,(x) = 1,b,(y) = 0. Now let b, = Ilv; where v; = 1
except for finitely many i's. So ITv;(x) = 1, Iv;(y) = 0,i.e.i nfzi(xl-') =
1 and iani(yi') = 0, which implies that v]-(x]-) =1, v]-(y]-) = 0. Since
x; = y; fori # j, thus (X;,7;) is L — T, (ii).
Moreover one can easily verify that

(X;,7,),i € Ais L — Ty(i) & (I1X;, 11 7;) is L — T, (i)

(X;,7)),i € Ais L — Ty (iii) & (11X, I ;) is L — T, (iii)

X;, 1), i € AisL — Ty(iv) & (I1X;,111;) is L — Ty (iv)

X;, 1), i €ANisL —Ty(v) & (IIX;,I17;) is L — Ty(v)

X;,t), i €ANisL — Ty(vi) & (I1X;, 11 1;) is L — Ty (vi)

(X,,7,),i € Ads L — Ty(vii) & (IIX,, 1 7;) is L — Ty (vii)

(X;,7),i € Ais L — Ty (viii) < (11X, T1 7;) is L — T, (iii).
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Hence, we see that L — T (i), L — T, (ii), L — Ty (iii), L — T, (iv),

L—Ty(v),L —Ty(vi),L — Ty(vii) and L — Ty (viii) Property is productive

and projective.

2.4 Mapping in L-topological spaces

We show that L — T,(j) property is preserved under one-one, onto and
continuous mapping for j = i, ii, iii, iv, v, vi, vii, viii .

2.4.1Theorem: Let (X,7) and (Y,s) be two L-topological spaces and

f:(X,7) = (Y, s) be one-one, onto and L-open map, then-

(@) (X,7)is L — Ty (i) = (¥,s) is L — T, (0).

(b) (X ,7) is L — Ty (ii) = (Y, s) is L — T, (ii).
(©) (X,7) is L — T, (iit) = (Y,s) is L — To(iii).
d) (X,7) is L — Ty(iv) = (¥, s) is L — To(iv).
) (X,7)isL —To(v) = (Y,s) is L — T, (v).
() (X,7)is L — Ty(vi) = (V,s) is L — T,(vi).
(@) (X,7) is L — T,y (vii) = (Y, 5) is L — T, (vii).

(h) (X, 7) is L — T, (viii) = (Y, ) is L — T, (viii).
Proof: Suppose (X, 1) is L — T, (ii).We shall prove that (Y, s) is

L —T,(ii). Let y,,y, €Y with y; # y,. Since f is onto, 3 x; ,x, € X

such that f(x;) =vy,,f(x;) =y, and x; # x, as f is one-one. Again
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since (X,7) is L —Ty(ii), 3u € t such that u(x;) =1,u(x,) =0 or

w(xy) = 0,u(xy) = 1.
Now

FW ) = supu(x,): f(x) =y} =1
fF () = {supu(xy): f(x) = y,} =0
or

f ) = {supulxy): f(x1) =y} =0
F ) = {supulxy): f(xz) = yo}= 1.

Since f is L-open, f(u) € s. Now it is clear that 3 f(u) € s such that
f(w () =1, fW(yz) =0 or f(u)(y,) =0, f(w)(y,) = 1. Hence it is
clear that the L-topological space (Y, s) is L — Ty (i ). Similarly (a), (¢), (d),

(e), (), (g), (h) can be proved.

2.4.2 Theorem: Let (X,7) and (Y,s) be two L-topological spaces and

f: (X, 1) = (Y, s) be L-continuous and one-one map, then-

@ (Y,s)isL—Ty(i) = (X,1) is L — T, (i).

(b) (Y,s)isL—Ty(i) = (X,1)isL—ToG).
(©  (Y,s)isL—Ty(ii= (X,7)is L — T, (i ii
d) (Y,s)isL—Ty(iv) = (X,7) is L — T,(iv).
@ (Y,s)isL—Ty(v) = (X, 1) is L — To(v).

) (Y,s)is L — Ty(vi) = (X,7) is L — Ty (vi).
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(g (Y,s)isL —Ty(vii) = (X, 1) is L — T, (vii).

(h) (Y,s)is L — Ty(viii) = (X, 1) is L — Ty (viii).
Proof: Suppose (Y,s) is L — T, (i ).We shall prove that (X, t) is L — T, (i ).
Let x4,X, € X with x; # X,, = f(x;) # f(x;) as f is one-one. Since (Y, s)
is L—Ty(i),thendu€es such that u(f(x,))=1u(f(x,))=0 or
u(f(x,)) = 0,u(f(x,)) = 1. Suppose u(f(x;)) =1, u(f(x,)) = 0. This
implies that f~2(u)(x;) = 1,f 1 (W) (x,) = 0and f~1(u) € T asfis
L-continuous and u € s. Now it is clear that f~(u) € T such that
f~1(w)(xy) =1 ,f71(u)(x,) = 0. Hence the L-topological space (X, T) is

L—T,@).

Similarly (a), (c), (d), (e), (f), (g), (h) can be proved.
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Chapter-3

On T, Space in L-Topological Spaces

3.1Introduction

The concept of fuzzy T, space was introduced Ali [2, 3], Hossain[26],
Srivastava and Lal[79], Sinha[69,70], Malghan[49,50] and other
mathematician have contributed to the development of the theory. In this
chapter, we discuss possible eight definitions of T; space in L-topological
spaces; all these notions satisfy “good extension” property. We show that
these notions possess many nice properties which are hereditary,

productive and projective.

3.2 Ty-property in L-Topological Spaces

Here, we define the following definitions of T;-property in L-topological

spaces.
3.2.1 Definition: An Its (X, 7) is called-

() L—T,(i) if Vx,y € X,x+# ythemdu,v €1 such that u(x) # u(y)

and v(x) # v(y).
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(b)L —T,(ii) if Vx,yeEX,x#ythemdu,vert such that u(x) =
1,u(y)=0and v(x) =0, v(y) =1.

(c) L —Ty(iit) if for any pair of distinct L-fuzzy points x,,ys €
S(X)themd u,v € T such that x,, € u,y, € u and x,, € v,y € v.

(d) L — T,(iv) if for all pairs of distinct L-fuzzy singletons x,.,ys €
S(X)with x,.qys;themdu,v € t such that x, € u,y,qu and 1y, C
v, X qU.

(e) L—Ty(v) if for any pair of distinct L-fuzzy points x,,y €
S(X) them u, v € 7 such that x,, € u,uqy, and y; € v, vqx,.

() L—Ty(vi) if for any pair of distinct L-fuzzy points x,,ys €
S(X)them u,v € 7 such that x, Eu,ysNu=0and y; Ev,x, NV =
0.

(g)L —T,(vii) if Vx,y€X,x# ythe@du,v€Eet such that u(x) >
0,u(y) =0and v(x) =0, v(y) > 0.

(h) L — T, (viii) if Vx,y € X,x # ythend u, v € t such that u(x) > u(y)

and v(y) > v(x).
Here, we established a comparison of the definitions L — T, (ii),

L —T,(iid), L — T,(v), L — Ty(v), L — T, (vi), L — Ty (vii), L — T, (viii)with

L — T, (i) is given below:
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3.2.2Theorem: Let (X ,7) be an Its. Then we have the following implications:

L — T,(viii) » L — Ty(vii) » L —T,(i)) » L — T, (i
o 9\

L —T,(vi) L —T,(iv)

L—T,(v) L — T, (iid)

The reverse implications are not true in general.

Proof: L — T, (ii) > L — T, (i), L — T, (iii) > L — T, (i) and L — T,(iv) =
L — T, (i) can be proved easily. Now L — T; (v) = L — T, (i) since
L—T,(v) & L — T,(iii).

L—T,(vi)=L—-T,(i), since L-—T,(vi)=L—-T,(v). L —T,(vii)and
L — T, (viii) > L — T, (i) since L — T, (viii) = L — T,(vii) and L — T, (vii) =
L — T, (ii).

None of the reverse implications are true; it can be seen through the following

example:

Let X = {x,y}, T be the L-topology on X generated by {a:a € L} U {u, v}

where u(x) = 0.5, u(y) = 0.6 and v(x) = 0.7,v(y) = 0.4 and
L = {0,0.05,0.1,0.15, ... ... ...0.95,1}.

Proof: L — T, (i) # L — T, (ii): Here the Its (X, 7) is clearly L — T;(i) but it is
not L — T, (ii) . Since there is no none empty L-fuzzy set in T which takes zero

value at x or y.
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L —T,(i) # L — T, (iii): For if we take the distinct L-fuzzy points x3/5,¥;,, €
S(X),then there does not exist u,v €7 such that x3,5 € u,y;/, € u and

X3/5 € V, Y12 € V.

L—T,(i) # L — T,(iv): As for the distinct L-fuzzy singletons x,,y, in T there

does not exist u, v € T such that x; € u, y;qu and y; € v, x,qv.

L —T,(i) # L — T, (v): This follows automatically from the fact that

L —T,(v) & L — T,(iii) and it has already been shown that L — T, (i) #

L — T, (iii).

L —T,(i) # L — T, (vi): Since for any two distinct L-fuzzy points X35,y /> in
S(X), then there does not exist u, v € T which is disjoint with x3,5 and y, /5.
L—T,(i) # L —T,(vii) and L —T,(i) # L — T, (viii): It is obvious because

L —T,(vii) = L —T,(ii) and L — T,(viii) > L — T,(ii) and it has already

been shown that L — T, (i) # L — T, (ii).

3.3 “Good extension”, Hereditary, Productive and Projective Properties in

L-Topology
Here, we show that all the definitions L — T, (i), L — T, (ii), L — T, (iii),

L—T,(iv),L —T,(v), L —T,;(wi),L — T;(vii) and L — T,(viii) are ‘good

extensions’ of T; — propert y is shown below:
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3.3.1Theorem: Let (X,T) be a topological space. Then (X,T) is T, iff

X,w(T))is L — T, (i).

Proof: Let (X,T) be T;. Choose x,y € X with x #y. Then 3 U,V € T such
that x e U,y € U and y € V,x € V. Now consider the lower semi continuous
functions 1,1,. Then 1,1, € w(T) with 1,(x) =1, 1;(y) =0 and
1,(x) =0,1,(y) =1 and so that 1,(x) # 1,(y) and 1,(x) # 1,(y). Thus

X, w(T)) is L — T, ().

Conversely, let (X, w(T)) be L — T,(i). To show that (X,T) is T;. Choose
x,y €X withx # y. Then 3 u,v € w(T) such that u(x) # u(y)and v(x) #
v(y). Let u(x) < u(y) and v(y) < v(x). Choose r ands such that u(x) <
r <u(y) and v(y) <s < v(x) and consider u~(r,1] and v~1(s,1]. Then
u t(r,1],v1(s,1] €T and is x ¢ u™1(r,1], y € u~(r,1] and x € v~ (s, 1],

y € v~ 1(s,1]. Hence (X ,T) is T;.

Similarly we can show that L — T, (ii), L — T, (iii), L — T,(iv), L — T;(v),

L — T, (vi), L —T,(vii), L — T, (viii) are also hold ‘good extension’ property.
3.3.2Theorem: Let (X,7)beanlts, A S X and 74 = {uld: u € 1}, then

(@) (X,7)isL —T,(i) = (A,1t,) is L — T, (i).
(b) (X ,7)is L — T,(ii) = (A,1,) is L — T, (ii).
(c) (X,1)is L — T, (iii) > (A,14) is L — T, (iii).

(d)(X,7)isL —T,(iv) > (4,1t4) is L — T, (iv).
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(e) (X, 0)isL—-T,(v) = (A,1,)is L — T;(v).

(f) (X,7)is L — T, (vi) > (4,1,) is L — T, (vi).

(g) (X,1)is L — T, (vii) = (A, 1y) is L — T, (vii).

(h) (X ,7) is L — T, (viii) = (4,7,) is L — T, (vii).
Proof: We prove only (b). Suppose (X, 7) is L-topological space and
L — T, (ii). We shall prove (4,t,) is L — T, (ii). Let x ,y € A with x # y, then
x,y € X withx #yas ACX. Since (X,7) is L — T,(ii), 3 u, v € T such that
u(x) =1,u(y) =0 and v(x) =0, v(y) =1. For A € X we find ul4,vlA €
7, and ulA(x) =1, ulA(y) =0 and vlA(x) =0,vlIA(y) =1 as x,y € A.
Hence it is clear that the subspace (4, t,) is L — T (ii).

Similarly, (a), (c), (d), (e), (f), (g), (h) can be easily proved.

3.3.3Theorem: Given {(X;, 7;):i € A} be a family of L-topological space. Then
the product of L-topological space (I1X;,I1t;) is L — T, (j) iff each coordinate
space (X;,1;) is L — T, (j) where j = i, i, iii, iv, v, vi, vii, viii.

Proof: Let each coordinate space {(X;,t;):i € A} be L — T;(ii). Then we show

that the product space is L — T,(ii). Suppose x,y € X with x # y, again

suppose x = Ilx;, y = Ily; then x; # y; for some j € A. Now consider

x;,yj € X;. Since (Xj,7;) is L—Ty(i), Ju;,v; €15 such that u(x;) =
1'uj(yf) = 0 and vj(xj) =0, vj(yj) = 1. Now take u = Iu';, v = IIv'; where

uj =u;,v; =v; and w; = v; = 1 for i # j. Then u, v € Ilt; such that u(x) =
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1,u(y) =0 and v(x) = 0,v(y) = 1. Hence the product L-topological space
(X, T 7,) is L — T, (id).

Conversely, let the product L-topological space (I1X;,I1 ;) is L — T, (ii).
Take any coordinate space (X]-,T]-), choose x;,y; € X;,x; # y;. Now
construct x,y € X such that x = Ilx;,y = [y'; where x; = y; for i #j
and x{ = x;,¥; = y;. Then x # y and using the product space L — T, (ii)
3 u, v € I1; such that u(x) = 1,u(y) = 0 and v(x) = 0, v(y) = 1. Now
choose any L-fuzzy point x, in u. Then 3 a basic open L-fuzzy set
Mu; € It; such that x, € MMuj € u which implies that r < ITu; (x) or that
r < infiuf (x) and hence r < Iuj (x/)Vj € A.....(i) and u(y) =0 =
Mu;(y) =0 ...... (ii). Similarly, corresponding to a fuzzy point y, € v
there exists a basic open L-fuzzy set ITv; € Ilt; that y, € llyj € v which
implies that s < v/ (j)VjEA..... (iii) and v (y) =0...... (iv). Further,
Mui (y) = 0= u;(y;) =0, since for j # i,x; = y; and hence from (i),
u]-r(yj) = u]-r(xj) > r. Similarly, v (x) =0 = v;(x;) =0 using (iii).
Thus we have uj (x;) > r,u; (y;) =0 and v;(y;) > s,v;(x;) = 0. Now
consider sup,uj = u;, supsvy = v; € 7; then u;(x;) = 1,u;(y;) =0 and
v;i(x;) = 0,v;(y;) = 1 showing that (X;, t;) is L — T, (ii).

Moreover one can easily verify that

(Xi,Ti),i EANisL — Tl(l) g (HX“H Ti) 1s L — Tl(l)
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(X;,7),i € Ais L — T, (iii) < (11X, 7,) is L — T, (iii)

(X, 7,),i € Ais L — T,(iv) & (IIX;, 11 7,) is L — T, (iv)
X;,t),i€ANisL—T,(v) & (IIX;, I t;)is L — T, (v)

X, t), i €NisL —T,(vi) & (I1X;, 11 1;) is L — T, (vi)
(X;,7),i € Ais L — T, (vii) & (I1X;, 11 7;) is L — T, (vii)
(X;,7,),i € Ais L — Ty (viii) & (11X, 11 7,) is L — T, (viii) .
Hence we see that L — T; (i), L — T, (ii), L — T, (iii), L — T, (iv),

L—T,(v),L —T,(vi),L — T, (vii), L — T, (viii) Properties are productive
and projective.
3.4 Mapping in L-topological spaces
We show that L — T;(j) property is preserved under one-one, onto and
continuous mapping for j = i, ii, iii, iv, v, vi, vii, Viii.
3.4.1Theorem: Let (X,7) and (Y,s) be two L-topological spaces and
f:(X,7) = (Y, s) be one-one, onto and L-open map, then-

(@) (X,7)isL —T,(i) = (Y,s) is L — T, (i).

(b) (X,7)is L — T, (ii) = (Y,s) is L — T, (ii).

(c) (X,1)is L — T, (iii) = (Y,s) is L — T, (iii).

(d)(X,7)isL —T,(iv) > (Y,s) is L — T, (iv).

e)X,n)isL—-T,(v) = (Y,s)isL — T;(v).
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() (X,7)isL —T,(vi) > (Y,s) is L — T, (vi).

(g) (X,7)is L — T, (vii) = (Y,s) is L — T, (vii).

(h) (X ,7) is L — T, (wiii) = (Y, ) is L — T, (viii).
Proof: Suppose (X, t) is L — T, (ii). We shall prove that (Y,s) is L — T, (ii).
Let y;,y, €Y with y; # y,. Since f is onto, 3 x; ,x, € X such that f(x;) =
v1,f(x;) =y, and x; # x, as f is one-one. Again since (X, t) is L — Ty (ii)
Ju,v € tsuch thatu(x;) =1, u(x,) = 0and v(x;) = 0,v(x,) = 1. Now
f@(y1) = {supulx): f(x) =y} =1
f@)(y2) = {supulxz): f(xz) = y,} = 0 and
f@)(y1) = {supv(x1): f(x1) =y} =0
fW)2) = {supv(x,): f(x2) = y2} = 1.
Since f is L-open, f(u), f(v) € s. Now it is clear that 3 f(u), f(v) € s such
that f(W)(y,) = 1, f(W)(y2) = 0 and f(W)(y1) = 0, f(v)(y2) = 1. Hence it is
clear that the L-topological space (Y, s) is L — T, (ii).
Similarly (a), (c), (d), (e), (), (g), (h) can be proved.
3.4.2Theorem: Let (X,7) and (Y,s) be two L-topological spaces and
f:(X,t) = (Y,s) be L-continuous and one-one map, then-

(@) (Y,s)isL—T,(i) = (X,7) is L — T, (i).

(b) (Y ,s) is L — T, (ii) = (X,7) is L — T, (id).

(c) (Y,s)is L — T, (iii) = (X, 1) is L — T, (iii).
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(d) (Y,s)is L — T,(iv) = (X, 7) is L — T, (iv).

() (Y,s)isL —T,(v) = (X,7)is L — T, (v).

) (Y,s)isL —Ty(vi) = (X, 1) is L — T, (vi).

(2) (Y ,s) is L — T, (vii) = (X, 1) is L — T, (vii).

(h) (Y,s) is L — Ty (wiii) = (X, 1) is L — T, (viii).
Proof: Suppose (Y,s) is L — T;(ii). We shall prove that (X,7) is L — T, (ii).
Let x;,x, € X with x; # x,,= f(x;) # f(x,) as f is one-one. Since (¥, s) is
L—Ty(ii), 3u,v € s such that u(f(x;)) = 1, u(f(xz)) = 0 and v(f(xy)) =
0,v(f(x,)) = 1. This implies that f~1(w)(x;) =1,f *(w)(x,) =0 and
F1w)(x) = 0, F1(v)(x,) = 1 and hence f~1(w), f~1(v) € T as f is
L-continuous and u, v € s . Now it is clear that f~1(u), f~1(v) € T such that
) =1, 7)) =0 and fT'W)(x) =0, fT(W)(x,) = 1.

Hence the L-topological space (X, t) is —T; (ii).

Similarly (a), (c), (d), (e), (f), (g), (h) can be proved.
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Chapter-4

On T, Space in L-Topological Spaces

4.1Introduction:

Hausdorff, [25] introduced the fundamental concept of T, space in general
topology. T, space in fuzzy topology was introduced by Ghanim et.al. [23],
Ganguly [22], Shinha [70] and Fora[1] etc. Later FT, space has been developed
by Ali [2, 6], Cutler [14], Reilly [34] and Hossain [27]. Seven concepts of T,
space in L-topological spaces are introduced and studied in this chapter. We
showed that all these concepts satisfy “good extension” property. We also
establish some relationships among them and study some other properties of

these spaces.

4.2 T,-property in L-Topological Spaces

We now give the following definitions of T,-property in L-topological

spaces.
4.2.1Definition: An Its (X, 1) is called-

(@)L —T,@) if Vx,y€ X, x # ythen3 u,v € T such that u(x) =

Lu(y)=0v(x) =0, v(y) =1landunv=0.
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(b) L — T,(ii) if for any pair of distinct L-fuzzy points x,,y, €
S(X)then3 u,v € T such that x, € u,y, € u and x, € v,y € v and
unv=_0.

(c) L — T, (iii) if for all pairs of distinct L-fuzzy singletons x,,ys €
S(X)with x,qy;then3u,v €t such that x, Cu,y,qu and
Vs CSv,x,quvandunv =0.

(d) L —T,(iv) if for any pair of distinct L-fuzzy points x,,ys €
S(X) then3 u,v € t such that x, € u,uqy, and y; € v,vqx, and
unv=20.

(e) L —T,(v) if for any pair of distinct L-fuzzy points x,,ys €
S(X) then3 u,v € T such that x, € u € coys, ys € v € cox, and
u < cov.

(f) L—Ty,(vi) if Vx,y € X,x # ythen3 u,v € T such that u(x) >
0,u(y) =0andv(x) =0,v(y) >0.

(g) L — T,(vii) if Vx,y € X,x # ythen 3 u,v € T such that u(x) >

u(y) and v(y) > v(x).
Here, we established a complete comparison of the definitions

with L — T, ().
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4.2.2Theorem: Let (X,7) be an Its. Then we have the following

implications:

L — Ty (iv) L —T,(ii)

N T

L — T,(vii) «— L — T,(vi)«———— L —T,(i)

™

L—T,(v) L — T, (iii)

The reverse implications are not true in general, except L — T,(vi) and

L — T, (vii).

Proof: L —T,(i) = L—T,(ii),L —T,(i) > L — T,(iii)can be proved
easily. Now L —T,(i) > L —T,(iv)and L —T,(i) = L —T,(v), since
L—-T,(>i) ©L—T,(iv)and L — T,(iv) © L — T,(v). L — T,(i) =

L — T,(vi); It is obvious. L — T,(i) = L — T,(vii), since L —T,(vi) =
L - TZ (Uil).

The reverse implications are not true in general, except L — T,(vi) and

L — T, (vii), as can be seen through the following counter-examples:

Example-1: Let X = {x,y}, t© be the L-topology on X generated by
{a:a € L} U {u,v} where u(x) =0.5u(y)=0 v(x)=0,v(y) =0.6,

L ={0,0.05,0.1,0.15, ...,095,1} and r = 0.4,s = 0.3.

Example-2: Let X = {x,y}, t© be the L-topology on X generated by
{a:a € L} U {u,v} where u(x) =0.5u(y)=0 v(x)=0,v(y) =04,

L ={0,0.05,0.1,0.15, ...,0.95,1} and r = 0.5,s = 0.4.
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Proof: L — T,(ii) # L — T,(i): From example-1, we see that the Its (X, 7)
is clearly L — T,(ii) but it is not L — T, (i) . Since there is no L-fuzzy set

in T which grade of membership is 1.

L — T, (iii) # L — T,(i): From example-2, we see the Its (X, 1) is clearly
L — T,(iii) but it is not L — T,(ii). Since L — T,(iii) # L — T,(ii) and
L—T,(i0) # L —T,(i) so L — T,(iii) #» L — T, ().

L —T,(i) # L —T,(iv): As for the distinct L-fuzzy singletons x;,y, in T
there does not exist u, v € t such that x; € u,y;qu and y;, € v, x,qv .

L — T,(iv) # L — T,(i): This follows from the fact that

L — T,(ii) © L — T,(iv) and it has already been shown that L — T, (ii) #
L—T,(v) # L—T,(~i) : Since L — T,(iv) © L — T,(v)and L — T,(iv) #
T, (i) is obvious.

4.3 “Good extension”, Hereditary, Productive and Projective
Properties in L-Topology

Here we showed that all definitions L — T, (i), L — T, (ii), L — T, (iii), L —
T,(iv),L — T,(v), L — T,(vi) and L — T,(vii) are ‘good extensions’ of

T, — property, is shown below:
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4.3.1Theorem: Let (X ,T) be a topological space. Then (X ,T) is T, iff
(X, w(T)) is L — T, (), where j = i, i, iii, iv, v, vi, vii.

Proof: Let (X,T)be T,. Choose x,y € X with x # y.Then U,V €T
suchthatx e U,y g Uandy € V,x € V and U NV = @. Now consider the
lower semi continuous functions 1y, 1y,. Then 1,1, € w(T) such that
1,(x) =1,1,(y) =0 and 1,(x) =0,1,(y) =1 and so that 1, N1, =
0. Thus (X, w(T)) is L — T, (i).

Conversely, let (X, w(T)) be L — T,(i). To show that (X, T) is T,. Choose
x,y €X with x #y. Then 3 u,v € w(T) such that u(x) =1, u(y) =
0,v(x) =0,v(y) =1land unv =0, i.e,u(y) <u(x) and v(x) < v(y).
Choose rands such that u(y) <r <u(x) and v(x) <s <wv(y) and
consider u~1(r,1] and v~!(s,1]. Then u='(r,1],v"'(s,1] €T and is
xgul(r,1,yeul(r1],xevi(s,1],yevi(s, 1] andu™(r, 1] n
v 1(s,1] =0 asunv =0.Hence (X,T) is T,.

Similarly, we can show that L — T, (ii), L — T, (iii), L — T,(iv),
L—-T,(v),L —T,(vi), L —T,(vii)are also hold ‘good extension’
property.
4.3.2Theorem: Let (X ,7) beanlts, A € X and 74 = {uld: u € 7}, then

(@) (X,7)isL —T,(i) = (A,t,) is L — T,(i).

(b) (X ,7)is L — T,(ii) = (A4,14) is L — T, (ii).
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() (X,7)is L — T, (iii) = (4,7,) is L — T, (iid).

(d) (X,7)is L — T,(iv) = (A4,74) is L — T, (iv).

) (X, 0)isL—T,(v) > (A,t4)isL — T,(v).

() (X,7)isL —T,(vi) = (A,1,) is L — T, (vi).

(g) (X,7)is L — T,(vii) = (A, ty) is L — T, (vii).
Proof: The author proved only (a). Suppose (X, 1) is L-topological space
and L — T,(i). We shall prove (4,74) is L —T,(i). Let x,y € A with
x #7Yy, then x,y €X with x #y as A € X. Since (X,7) is L —T,(i),
Ju,v € T such that u(x) = 1,u(y) =0,v(x) =0,v(y) =1landunv =
0. For A€ X we find ul4,vlA € 7, and uld(x) = 1,uldA(y) =0 and
vIA(x) = 0,vlIA(y) =1 and ulAnviA=wnv)IA=0 as x,y € A.

Hence it is clear that the subspace (4, t4) is L — T, (i).
Similarly, (b), (¢), (d), (e), (f), (g) can be proved.

4.3.3 Theorem: Given {(X;,7;):i € A} be a family of L-topological space.
Then the product of L-topological space (IX;, 11 t;) is L — T,(j) iff each
coordinate space (X;, t;) is L — T,(j) where j = i, ii, iii, iv, v, vi, vii.

Proof: Let each coordinate space {(X;,7;):i € A} be L — T, (i). We showed
that the product space is L — T,(i). Suppose x,y € X with x # y, again

suppose x = Ilx;, y = Ily; then x; # y; for some j € A. Now consider
x] ,y] € )(] Since (X],T]) is L — Tz(l), 3 u]', 1.7]' € Tj such that u](x]) =
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Now take u = Iu';, v = IIv'; where u]’- = uj,v]f =v; and u; = v; = 1 for
i #j. Then u,v €Ilr; such that u(x) = 1, u(y) =0,v(x) =0,v(y) =
land u N v = 0. Hence the product of L-topological space (I1X;, I 1;) is
L —T,(0).

Conversely, let the product of L-topological space (I1X;, IIt;) is
L — T,(i). Take any coordinate space (Xj,‘[j), choose x; ,y; € X; ,x; # ;.
Now construct x,y € X such that x = [x';,y = [Iy’; where x{ = y; for
i#j and xj =x;,y; =y;. Then x #y and using the product space
L —T,(i) 3u,v € Ilt; such that u(x) = L,u(y) =0,v(x) =0, v(y) =1
and u N v = 0. Now choose any L-fuzzy point x,. in u. Then 3 a basic

open L-fuzzy set Ilu] € I1t; such that x,. € Mu; S u which implies that

Similarly, corresponding to a fuzzy point y; € v there exists a basic fuzzy

open set [1v; € Ilt; such that ys € Mv; € v which implies that
s<v(HVjEA.. .. (iii) and

Mvi(y) =0..... (iv).  Further,Iu; (y) = 0 = uj (y;) = 0,since  for
j#i,xi =y and hence from (i), ujr(yj) = ujr(x]-) > r. Similarly,
lv; (x) = 0 = v (x;) = 0 using (iii). Thus we have u; (x;) > 7, ui (y;) =

0 and v{ (y;) > s,v{(x;) = 0.
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Now consider sup,u; = u;, sup,vi = v; € t; then w;(x;) =1, u;(y;) =

0,v;(x;) = 0,v;(y;) = 1 and u; N v; = 0, showing that (X;,7;) is
L—T,0).

Moreover one can verify that

(X;,7),i € Ais L — T, (ii) © (X, [ 7,) is L — T, (ii).

(X;,7,),i € Ais L — T, (iii) & (X, M 1,) is L — T, (iii).

X;, 1), i e AisL — T,(iv) © (IIX;, 11 1;) is L — T, (iv).

X, 1), i€ ANisL —T,(v) & (IIX;, I t;) is L — T, (v).

(X;, 1), i € Ais L — T,(vi) & (I1X;, 11 7;) is L — T, (vi).

X;, 1), i € Ais L — T,(vii) & (I1X;, 11 ;) is L — T, (vii).

Hence it is seen that L — T, (i), L — T, (ii), L — T, (iii), L — T, (iv),

L —T,(v),L — T,(vi), L — T,(vii) Properties  are  productive

projective.

4.4Mapping in L-topological spaces

and

We showed that L — T, (j) property is preserved under one-one, onto and

continuous mapping for j = i, ii, iii, iv, v, vi, vii.

4.4.1 Theorem: Let (X,7) and (Y,s) be two L-topological spaces and

f:(X,7) = (Y, s) be one-one, onto and L-open map, then-

(@) (X,7)isL —T,(i) = (Y,s) is L — T,(i).
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(b) (X ,7) is L — T, (ii) = (Y, s) is L — T, (ii).
(©) (X,7) is L — T, (iit) = (V,s) is L — T, (iii).
d) (X,7) is L — T,(iv) = (¥,s) is L — T,(iv).
@) (X,7)isL—T,(v) = (¥,s) is L — T,(v).
(O (X,7)is L —T,(vi) = (V,s) is L — T,(vi).

(g) (X,7)is L — T,(vii) = (Y,s) is L — T, (vii).

Proof: Suppose (X, 1) is L — T,(i).We shall prove that (Y,s) is L — T, (i).
Let y,,y, €Y with y; # y,. Since f is onto, 3 x; ,x, € X such that
f(x) =y1,f(x;) =y, and x; # x, as f is one-one. Again since (X, 1) is

L—T,()) 3u,v € rsuch that u(x;) = 1, ux,) = 0, v(x;) =0,
v(x,) =landunv =0,

Now

f@ (1) = {supulxy): f(x) =y1} =1

f@)(y2) = {supulxy) : f(x) =y,} =0

fW)(y1) = {supv(xs): f(x1) =y} =0

f@)(y2) = {supv(xr): f(xz) =y} =1

and

fwnv)(y,) = {sup(u N v)(x,): f(x1) = ¥4}

fuwnv)(y;) = {sup(u N v)(xz): f(x2) = ¥}
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Hence flunv)=0= fu)nf(v) =0

Since f is L-open, f(u), f(v) € s . Now it is clear that 3 f(u), f(v) € s
such that f(u)(y1) =1, fW(y2) = 0.f(W)(y1) =0, f()(y) =1 and
f(u) N f(v) =0. Hence it is clear that the L-topological space (Y,s)

isL — T, (i). Similarly (b), (c), (d), (¢), (), (g) can be proved.

4.4.2 Theorem: Let (X,7) and (Y,s) be two L-topological spaces and

f:(X,7) = (Y, s) be L-continuous and one-one map, then-

(@) (Y,s)is L —T,(i) = (X,7) is L — T,(i).

(b) (Y,s)is L — T,(ii) = (X,7) is L — T, (ii).

(©) (Y,s) is L — T,(iii) = (X,7) is L — T, (iii).

) (Y,s)is L — T,(iv) = (X,7) is L — T,(iv).

@ (Y,s)isL —T,(v) = (X,7) is L — T, (v).

® (Y,s)is L — T,(vi) = (X,7) is L — T, (vi).

() (Y,s)is L — T,(vii) = (X,7) is L — T, (vii).
Proof: Suppose (Y, s) is L — T, (i).We shall prove that (X, 7) is L — T, ().
Let x,,Xx, € X with x; # x,,= f(x;) # f(x,) as f is one-one. Since
(Y,s) is L—T,(i),3u,ves such that u(f(xy))=1u(f(xy)) =
0,0(f(x)) = 0,v(f(x,)) =1 and unv=0. This implies that
frWC) =1, W) = 0.f 71 (W) (x) =0, f ' ()(x;) =1  and
frunv)=0= f1(w) N f1(v) = 0. Hence f*(u), f~*(v) E T as f

is L-continuous and u, v € s . Now it is clear that f~1(u), f~*(v) € T such
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that f~'(wW)(x) =1 ,f 7' (W)(xx) =0, fT1(W)(x) =0, f 1 (W)(xp) = 1
and f7'(w) N f~1(v) = 0. Hence the L-topological space (X,7) is

L — T,(i). Similarly (b), (¢), (d), (e), (f), (g) can be proved.
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Chapter-5

On R, Space in L-Topological Spaces

5.1: Introduction

The concept of Ry-property first defined by Shanin[64] and there after
Dude[16], Naimpally[57], Dorsett[15], Caldas[10], Ekici[18], as earlier
Keskin[38] and Roy[62] defined many characterizations of Ry-properties. The
concepts of fuzzy Ry-propertise are established and discussed by
Hutton[33,34], Srivastava[78], Ali[9], Khedr[40], Zhang[92] and many other
fuzzy topologist. In this chapter we define possible eight definitions of Ry
space in L-topological spaces and we show that this space possesses many nice

properties which are hereditary, productive and projective.

5.2 Ry-property in L-Topological Spaces

We now give the following definitions of Ry-property in L-topological spaces.
5.2.1Definition: An Its (X, 7) is called-

(@) L—Ry(i) if Vx,y € X,x #y whenever 3 u € T with u(x) # u(y)
then 3 v € 7 such that v(x) # v(y).
(b) L —Ry(ii) if Vx,y€X,x#y whenever 3u €t with u(x) =

1,u(y) = 0 then 3 v € T such that v(x) = 0,v(y) = 1.
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(¢) L — Ry(iii) if for any pair of distinct L-fuzzy points x,,ys € S(X)
whenever 3u € T with x, € u,y, € u then 3 v € T such that x, &
v,y € V.

(d) L —Ry(iv) if for all pairs of distinct L-fuzzy singletons x,,y, €
S(X) and x,qy;, whenever 3 u € t with x,, € u,y,qu then IvE T
such that y; € v, x,.qv.

(¢) L —Ry(v) if for any pair of distinct L-fuzzy points x,,ys €
S(X)whenever 3u € t with x, € u,uqy, then Iv €  such that
Vs € V,VqX,.

(f) L — Ry(vi) if for any pair of distinct L-fuzzy points x,,ys € S(X)
whenever 3u €t with x, €Eu,y,Nu =0 then 3v € T such that
ys Ev,x. NV =0.

(g) L —Ry(vii) if Vx,y € X,x #y whenever 3u € v with u(x) >
0,u(y) = 0 then 3v € 7 such that v(x) = 0,v(y) > 0.

(h) L — Ry(viii) ifVx,y € X,x # y whenever 3 u € T with u(x) > u(y)

then Jv € 7 such that v(y) > v(x).

5.3 “Good extension”, Hereditary, Productive and Projective Properties in

L-Topology
Now all the definitions L — Ry (i), L — Ry (ii), L — R, (iii), L — Ry (iv),

L —Ry(v),L — Ry(vi),L — Ry(vii)and L — Ry (viii) are ‘good extensions’ of

R, — property, is shown below:

57



5.3.1Theorem: Let (X,T) be a topological space. Then (X,T) is R, iff
(X, w(T)) is L — Ry (), for j = i, ii, iii, iv, v, vi, vii, viii.

Proof: Let the topological space (X,T) be R,, we shall prove that the fuzzy
topological space (X, w(T)) is L — R,y(ii). Choose x,y € X with x # y. Let
u € w(T) withu(x) = 1, u(y) = 0, then it is clear that u=!(r, 1] € T, for any
re€l;and x eu"(r,1], y € u1(r,1]. Since (X,T) is R,, then there exist
VET with x €V,y € V. Now consider the characteristics function 1,,. We

see that 1, € w(T)with 1,(x) = 0,1,(y) = 1. Thus (X, w(T)) is L — R, (ii).

Conversely, let (X, w(T)) be L — R, (ii), we shall prove that (X ,T) is
Ry. Choose x,y € X, x #yand U € T, with x € U,y & U, but we know that
the characteristic function 1, € w(T). Also it is clear that 1,(x) = 1,1,(y) =
0. Since (X, w(T)) is L — R,(ii), then 3v € w(T) such that v(x) = 0,v(y) =
1. Again since v is lower semi continuous function then v=1(0,1] € T and
from above, we getx € v~1(0,1],y € v™1(0,1]. Hence (X, T) is R,.
Similarly we can show that L — Ry (i), L — Ry (iii),L — Ry(iv),L — Ry(v),
L — Ry(vi),L — Ry(vii), L — Ry(viii)are also hold ‘good extension’ property.
5.3.2Theorem: Let (X ,7) beanlts, A € X and 7, = {uld: u € t}, then

(@) (X,7)isL — Ry(i) = (A,14) is L — Ry ().

(b) (X, 7) is L — Ry (ii) = (A,14) is L — Ry (id).
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(¢) (X,7) is L — Ry (iit) = (4,14) is L — Ry (iii).
(d) (X,7) is L — Ro(iv) = (4,74) is L — Ry (iv).
(€) (X,7)is L — Ry(v) = (A4,7,) is L — Ry (v).
(0 (X,7)is L — Ry(vi) = (4,14) is L — Ry (vi).
(@) (X, 1) is L — Ry(vii) = (A,7,) is L — R, (vii).

(h) (X,7) is L — Ry(viii) = (A, 14) is L — Ry (viii).

Proof: We prove only (b). Suppose (X,t) is L-topological space and
L — Ry (ii).We shall prove (4,7,) is L — Ry(ii). Let x,y € A, x # y, and
w € 1, with w(x) =1, w(y) =0. Then x,y € X with x #y as A € X.
Consider u be the extension function of w on the set X, then it is clear that
u(x) = 1,u(y) =0. Since (X,7) is L — Ry(ii). Then 3 v € T such that
v(x) =0,v(y) =1. For A € X, we find 3 vlA € 7, such that vlA(x) =
0,vlIA(y) =1 as x,y € A. Hence it is clear that the subspace (4,T,) is

L — R, (ii). Similarly, (a), (¢), (d), (¢), (), (g), (h) can be proved.

5.3.3Theorem: Given {(X;,7;):i € A} be a family of L-topological space. Then
the product of L-topological space (I1X;,I1t;) is L — R, (j) iff each coordinate
space (X;,1;) is L — Ry(j) where j = i,ii, iii, iv, v, vi, vii, viii.

Proof: Let each coordinate space {(X;,7;):i € A} be L — Ry(ii). Then we show
that the product space is L — Ry (ii). Suppose x ,y € 1X;, x # y, andu € [l 7;
with u(x) = 1,u(y) = 0. Choose x = Ilx;, y = Ily;, but we have u(x) =

min{u;(x;) ,fori € Aand u; € 7;},
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u(y) = min{y;(y;) ,fori € Aand u; € 1;}, then there exist at least one j € A,
such that x; # y; and u;(x;) = 1, u;(y;) = 0. Since (X}, 7;) is L — R, (ii) for
each j € A, then 3 v; € 7; such that vj(xj) =0, vj(yj) = 1. Now take,v =
Mv'; where v; =v; and v; =1 for i # j. then v € Ilr; such that v(x) =
0, v(y) = 1. Hence the product of L-topological space (I1X;, I t;) is
L — R, (ii).

Conversely, let the product of L-topological space (IX;, IIt;) is
L — R,y(ii). We shall prove the each coordinate space (Xj,rj) is also
L —Ro(ii). Choose x;,y; €X;,x;#y; and u; €7, with u;(x)=
1,u;(y;) = 0. Now construct x,y € X such that x = Ilx’;, y = Iy’; where
xi =y fori # j and xj = x;,y; = y;. Then x # y. Further, let ;: X - X;

be a projection map from X into X;. Now, we observe that u; ((ﬂj)(x)) =

uj(xj) =1y ((nj)(y)) = uj(yj) =0, ie for wjom € lI7;, with
(u]-mrj)(x) =1, (ujon]-)(y) = 1. Since the product space (I1X;,I1T;) is
L — Ry(ii). Then Jv € IIt; such that v(x) = 0,v(y) = 1. Now choose any

L-fuzzy point y, in v. Then 3 a basic open L-fuzzy set [lv; € I1t; such that
¥y, € IIv] € v which implies that r < Iv] () or that r < inf;v] (y;) and
hence r < ij’(y;)‘v’j EA.. .. (i) and v(x) = 0= Mv;(x) =0 ...... (i0).
Further, Tvj (x) = 0= v;(x;) =0, since for j # i,x; =y; and hence

from (i), ujr(x]-) = vjr(y]-) > r. Thus we have v](y;) >r,v](x;) = 0.
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Now consider sup,.v{ = v; then v; € t; with v;(y;) = 1,v;(x;) = 0. This

showing that (X;, ;) is L — Ry (ii).

Moreover one can easily verify that

X;,t),i€NisL —R,(i) & (IIX;, 11 t;) is L — Ry (i)

(X;,7,),i € Ais L — Ry (iii) & (11X, T 7,) is L — Ry (iii)
(X;,1;),i € AisL — Ry(iv) & (I1X;, 11 ;) is L — R, (iv)
(X;,11),i € AisL — Ry(v) © (IIX;, I 7;) is L — Ry(v)

X;,11),i € AisL — Ry(vi) & (IIX;, I ;) is L — Ry (vi)
(X,,7;),i € Ais L — Ry(vii) & (11X, 11 7,) is L — Ry (vii)
(X;,7,),i € Ais L — Ry(viii) & (1X;, 11 7;) is L — R, (viii).
Hence we see that L — Ry (i), L — R, (ii), L — Ry (iii), L — Ry(iv),

L—Ry(v),L — Ry(vi),L — Ry(vii), L — Ry(viii) Properties are productive

and projective.

5.4 Mapping in L-topological spaces

We show that L — R, (j) property is preserved under one-one, onto and

continuous mapping for j = i, ii, iii, iv, v, vi, vii, viil.
5.4.1Theorem: Let (X,7) and (Y,s) be two L-topological spaces and

f:(X,7) = (Y, s) be one-one, onto, L-continuous and L-open map, then-
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(a) (X,7) is L — Ry(i) = (¥,5) is L — Ry(i).

(b) (X, 1) is L — Ry (ii) = (V,s) is L — Ry (ii).

(©) (X, 1) is L — Ry (iii) = (Y, s) is L — Ry (iii).
(d) (X, 1) is L — Ry (iv) = (¥, 5) is L — Ry (iv).
(€) (X,1)is L — Ry(v) = (Y,s) is L — Ry(v).

(0 (X,7)is L — Ry(vi) = (Y,s) is L — Ry(vi).
(@) (X, 1) is L — Ry(vii) = (Y, s) is L — Ry(vii).
(h) (X, 1) is L — Ry (viii) = (¥, s) is L — Ry (viii).

Proof: Suppose (X, 1) is L — Ry (ii).We shall prove that (Y, s) is

L — Ry(ii). Lety,,y, €Y, y; # y, and u € s with u(y,) = 1,u(y,) = 0.
Since f is onto, I x;,x, € X such that f(x;) =y,,f(x;) =y, and

X, # X, as f is one-one.
Now f~1(w)(x;) = u(f () = u(y,) = 1 and

fHa ) = u(f(x)) = ulyz) = 0

Since fis L-continuous then f~1(u) € tand f (W) (x) =1,
ft(w)(x,) =0. Since (X,7) is L —Ry(ii), then 3v € T such that

v(x) =0,v(y) = 1.

Now
f@)(y1) = {supv(xy): f(x1) =¥13 =0

fW)(y2) = {supv(xy): f(x2) = y.} = 1.
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Since f is L-open, f(u) € s. Now it is clear that 3 f(v) € s such that
f)(,) =0, f(v)(y,) = 1. Hence it is clear that the L-topological space
(Y,s) is L — Ry (ii) .
Similarly (a), (c), (d), (e), (), (g), (h) can be proved.
5.4.2Theorem: Let (X,7) and (Y,s) be two L-topological spaces and
f:(X,7) = (Y, s) be one-one, L-continuous and L-open map, then-

(@) (Y,s)isL —Ry(i) = (X,1) is L — Ry ().

(b) (Y,s) is L — Ry(ii) = (X,7) is L — R, (ii).

(c) (Y,s)is L — Ry(iii) = (X,7) is L — R, (iii).

(d) (Y,s)is L — Ry(iv) = (X, 1) is L — Ry (iv).

(e) (Y,s)isL—Ry(v) = (X,7)is L — Ry(v).

(f) (Y,s)is L — Ry(vi) = (X,T) is L — Ry(vi).

(g) (Y,s)is L — Ry(vii) = (X, 1) is L — Ry (vii).

(h) (Y,s) is L — Ry(viii) = (X, 1) is L — Ry (viii).
Proof: Suppose (Y, s) is L — R, (ii). We shall prove that (X, 1) is
L —Ry(ii). Let x; ,x, € X, x; # x, and u € T with u(x;) = 1, u(x,) = 0.

Since f is one-one map then f(x;) # f(x,).
Now f(w)(f(x1)) = sup{u(x;)} = 1 as f is one-one

And f(w)(f (x)) = sup{u(x;)} = 0
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So, we have f(u) € s, with f(w)(f(x)) =1, fFW)(f(x;)) =0, as f is
L-open map. Since (¥, s) is L — Ry (ii), then 3v € s such that v(f(x;)) =
0,v(f(x,)) = 1. This implies that f~1(v)(x;) =0, f 1 (v)(x,) =1 and
f~1(v) € T as f is L-continuous and v € s. Now it is clear that 3 f~1(v) €
7 such that f~1(v)(x;) =0, f~1(v)(x,) = 1. Hence the L-topological

space (X, 1) is L — Ry (ii).

Similarly (a), (c), (d), (e), (), (g), (h) can be proved.
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Chapter-6

On R, Space in L-Topological Spaces

6.1: Introduction

The concept of Ri-property first defined by Yang [87] and there after
Murdeshwar[56], Dorset[15], Dude[17], Caldas[10], Ekici[18], as earlier
Keskin[38] and Roy[62] defined many characterizations of R;-properties. The
concepts of fuzzy R;-propertise are established and discussed by
Hutton[31,32], Srivastava[76], Ali[8], Khedr[40], Kandil[36], Hossain[28] and

many other fuzzy topologist.

In this chapter we define possible seven definitions of R; space in L-
topological spaces. All these definitions satisfy ‘good extension’ property and
we establish some implications among them. Finally we show that all these
definitions are hereditary, productive and projective and preserved under one-

one, onto and continuous maps.
6.2 R,-property in L-Topological Spaces
We now give the following definitions of R;-property in L-topological

spaces.
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6.2.1 Definition: An Its (X, 7) is called-

(a)

(b)

(©)

(d)

(©)

®

L—Ry (i) if Vx,y€X,x # ywhenever 3w €t with w(x) #
w(y)then Ju,v €t such that u(x)=1,u(y) =0,v(x) =0,
v(y)=1landunv =0.

L—Ry(ii) if Vx,y €X,x # ywhenever 3w € 1 with w(x) #
w(y) then for any pair of distinct L-fuzzy points x,., y; € S(X) and
Ju,v€E€tsuchthatx, Eu,y; €uandx, € v,y Ev,unv=_0.

L — R, (iii) if Vx,y € X,x # ywhenever 3w € 7 with w(x) #
w(y) then for all pairs of distinct L-fuzzy singletons x,,y €
S(X),x,qys; and 3 u, v € 7 such that x,, € u, y,qu and y; S v, x,.qv
andunv=0.

L—R(iv) if Vx,y € X,x # ywhenever 3w € 7 with w(x) #
w(y) then for any pair of distinct L-fuzzy points x,., y; € S(X) and
Ju,v € tsuch that x,, € w,uqy, and y; € v,vgx, andunv = 0.
L—R;(v) if Vx,y € X,x # ywhenever 3w €t with w(x) #
w(y) and for any pair of distinct L-fuzzy points x,,ys € S(X) and
Ju,v € tsuch that x,, € u € coy,, ys € v € cox, and u S cov.
L—R;(vi) if Vx,y € X,x #y whenever 3w € 7 with w(x) #
w(y) then 3 u,v € T such that u(x) > 0,u(y) =0 and v(x) =

0,v(y) >0.
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(g) L—Ry(vii) if Vx,y € X,x # y whenever 3w € T with w(x) #

w(y) then 3 u, v € T such that u(x) > u(y) and v(y) > v(x).
Here, we established a complete comparison of the definitions
L — R, (ii), L — R, (iii), L — R,(iv),L — R,(v),L — R, (vi) and
L — R, (vii) with L — R, (7).
6.2.2Theorem: Let (X, 7) be an Its. Then we have the following
implications:

L — R, (iv) — R, (i)
. N /

L—R,(viiye—L —R,(vi) «— L —R,(i)

\L —R,(v) / \L — R, (iii)
The reverse implications are not true in general except L — R, (vi) and
L — R, (vii).
Proof: L — R,(i) = L — R,(ii) ,L — R{(i) = L — R, (iii)can be proved easily.
Now L — R,(i) = L — R,(iv)and L — R,(i) = L — R,(v), since L — R, (ii) &
L—R,(iv)and L—-R,(iv) o L—-—R,(v). L—R,(i)=>L—R,(vi); It is
obvious. L — R, (i) = L — R, (vii), since L — R, (vi) = L — R, (vii).
The reverse implications are not true in general except L — R,(vi) and

L — R, (vii), it can be seen through the following counter examples:
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Example-1: Let X = {x,y}, T be the L-topology on X generated by {a:a €
L} U {u,v,w} where w(x) = 0.6,w(y) =0.7,u(x) = 0.5,u(y) =0 v(x) =

0,v(y) = 0.6, L ={0,0.05,0.1,0.15, .........0.95,1} and r = 0.4,5 = 0.3.

Example-2: Let X = {x,y}, T be the L-topology on X generated by {a:a €
L} U {u,v,w} where w(x) = 0.8,w(y) = 0.9,u(x) =0.5uly) =0 v(x) =

0,v(y) = 0.4, L = {0,0.05,0.1,0.15, ... ......0.95,1} and r = 0.5, s = 0.4.

Proof: L — R, (ii) # L — R,(i): From example-1, we see that the Its (X, 1) is
clearly L — R,(ii) but it is not L — R;(i). Since there is no L-fuzzy set in T

which grade of membership is 1.

L — R, (iii) # L — R,(i): From example-2, we see the Its (X,7) is clearly
L — R, (iii) but it is not L — R,(ii). Since L — R,(iii) # L — R,(ii) and

L —R,(ii) # L — R.(i) so L — R, (iii) # L — R, ().

L — R,(iv) # L — R, (i): This follows automatically from the fact that

L — R,(ii) ©® L — R,(iv) and it has already been shown that L — R, (ii) #
L—Ry(i)soL —R,(iv) # L — R, (D).

L—R,(v) #L—R,(i): Since L—R,(iv) ©L—R;(v)and L — R,(iv) #

L—R,(i)soL —R,(v) # L —R,(i). ButL — R,(vii) = L — R,(vi) =

L — R, (i) is obvious.
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6.3 “Good extension”, Hereditary, Productive and Projective Properties in

L-Topology
We show that all definitions L — R, (i), L — R, (ii), L — R, (iii),

L —R,(iv),L — R{(v), L — R,(vi) and L — R, (vii) are ‘good extensions’ of

R; — property, is shown below:

6.3.1Theorem: Let (X,T) be a topological space. Then (X,T) is R, iff

(X ,w(T))is L — R,(j), where j = i,ii, iii, iv, v, vi, vii.

Proof: Let (X,T) be R,. Choose x,y € X, x # y. Whenever 3 W € T with
xeEW,ygWorx&W,y €W then AU,V €T such that x € U,y € U and
yeV,x¢&V and UNV =0@. Suppose x e W,y € W since W €T then
1, € w(T) with 1,(x) # 1,,(y). Also consider the lower semi continuous
function 1y,1,, then 1,,1, € w(T) such that 1,(x) =1,1,(y) =0 and
1y(x) =0,1,(y) =1l andsothat 1, N1y, =0asU NV = @. Thus (X, w(T))

iS L - Rl(l).

Conversely, let (X,w(T)) be L — R,(i). To show that (X,T) is R;.
Choose x,y € X with x # y. Whenever 3w € T with w(x) # w(y) then
Ju,v € w(T) such that u(x) = 1, u(y) =0,v(x) =0,v(y) =1l andunv =
0. Since w(x) # w(y), then either w(x) < w(y) or w(x) > w(y). Choose
w(x) < w(y), then 3s € L such that w(x) < s <w(y). So it is clear that

wl(s,11 €T and x € wi(s,1], yew (s, 1]. Let U =u"{1}andV =
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v {1}, thenU, V€T andisx €U,y ¢ U ,x¢V, y€V,andUNV =0 as

unv=0.Hence (X,T)isR;.

Similarly, we can show that L — R, (ii), L — R, (iii), L — R,(iv),

L —R,(v),L — R,(vi), L — R,(vii) are also hold ‘good extension’ property.
6.3.2 Theorem: Let (X,7) beanlts, A € X and t, = {uld: u € 7}, then

@@ (X,7)isL—Ry(i) = (4,14)is L — Ry (0).
(b)  (X,7)is L — Ry(ii) = (4,14) is L — R, (id).
(©  (X,7)is L —Ry(iii) = (4,14) is L — Ry (iii).
d)  (X,1)isL—Ry(iv) = (A,7,) is L — R, (iv).
e (X,7)isL—R,(v) = (4,1,)isL—R,(v).
O  (X,7)isL—R,(wi) = (4,14) is L — R, (vi).

(g0 X,7)isL—R(vii) = (A,14) is L — R, (vii).

Proof: We prove only (a). Suppose (X, 1) is L-topological space and is also
L — R,(i).We shall prove that (4,7,) is L — R;(i). Let x ,y € A with x #y
and 3w € 17, such that w(x) # w(y), then x,y € X with x #y as A € X.
Consider m be the extension function of w on X, then m(x) # m(y), Since
(X,t)isL—Ry(i),3u,v € Tsuchthat u(x) = L,u(y) = 0,v(x) = 0,v(y) =
landunv =0.For A C X, we find ,ul4d, vlA € 7, and ulA(x) = 1, ulA(y) =
0 and vlA(x) =0,vlA(y) =1 and ulAnNviA=(unv)IA=0 as x,y € A.

Hence it is clear that the subspace (A4, T4) is L — R, (i).
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Similarly, (b), (c), (d), (e), (), (g) can be proved.

6.3.3Theorem: Given {(X;,7;):i € A} be a family of L-topological space. Then
the product of L-topological space (I1X;,I17;) is L — R, (j) iff each coordinate
space (X;,7;) is L — R{(j), where j = i, ii, iii, iv, v, vi, vii.

Proof: Let each coordinate space {(X;,7;):i € A} be L — R, (i). Then we show
that the product space is L — R, (i). Suppose x,y € X withx # yandw € Il 1;
with w(x) # w(y), again suppose x = Ilx;, y = Ily; then x; # y; for some
j € A.But we have w(x) = min {w;(x;): i € A}, and w(y) = min {w;(y;): i €
A}. Hence we can find at least one w; € 7; with w; (x]) * W; (yj), since each
(X;,7):i €A be L —R,;(i) then u;,v; € 7; such that uj(xj) = 1,u]-(yj) =
O,Uj(x]-) =0, vj(yj) =1 and u; N v; = 0. Now take u = Iu';, v = Iv’; where
uj =u;,v; =v; and u; = v; = 1 for i # j. Then u, v € Ilr; such that u(x) =

1,u(y) = 0,v(x) = 0,v(y) = land u N v = 0. Hence the product of
L-topological space is also L-topological space and (I1X;, I 7;) is L — R, (i).

Conversely, let the product L-topological space (I1X;, I1 ;) is L — R, (i).
Take any coordinate space (Xj,Tj), choose x;,y; € X;,x; # y; andw; € Ilt;
with w;(x;) # w;(y;). Now construct x,y € X such that x = Ix';,y = IIy’;

where x; =y; for i #j and x; =x;,y; =y;. Then x # y and using the

product space L —R,(i), Nw; €llr; with Tw;(x;) # Ow;(y;), since
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(IXx;,Mt;) is L—Ry(i) then Fu,v €llr; such that u(x) =1,u(y) =
0,v(x) =0, v(y) =1 and u N v = 0. Now choose any L-fuzzy point x, in u.

Then 3 a basic open L-fuzzy set Iu; € Ilz; such that x, € Ilu; S u which

implies that < ITuj (x) or that 7 < inf;u] (x])
and hence r < l'[ujr(x]f)Vj EA.... (i) and

u(y) =0= Nu;(y) =0 ... (ii).

Similarly, corresponding to a fuzzy point y; € v there exists a basic fuzzy open
set I[Iv; € TIt; such that y; € Ty € v which implies that
s<v(VjEA.... (iii) and

v/ (y) =0.... (iv). Further, Muj(y) =0=u;(y;) =0, since for j #

1A
[, X]

= y; and hence from (i), u] (y;) = uj (x;) > r. Similarly, v (x) = 0 =
v (x;) = 0 using (iii).
Thus we have uj(x;) >r,uj(y;) =0 and v;(y;) >s,v/(x;) =0. Now

consider sup,uj = u;, sup;,v; =v;, then u;(x;) =1,u;(y;) =0,v;(x;) =

0,v;(y;) = 1 and u; N v; = 0, showing that (X;, t;) is L — R, ().
Moreover one can easily verify that
(X;,1;),i € Ais L — R, (ii) & (I1X;, I t;) is L — R, (ii).

(X;,7)),i € Ais L — R, (iii) & (11X, 11 7,) is L — Ry (iii).
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(X, 7.),i € Ais L — R,(iv) & (X, [ 7,) is L — R, (iv).
(X;,1),i € AisL — R,(v) & (IIX;, 11 7;) is L — R, (v).

X;, ), i €ANisL — R,(vi) & (IIX;, T ;) is L — R, (vi).

(X, 7.),i € Ais L — R, (vii) & (X, T 7,) is L — Ry (vii).
Hence, we see that L — R, (i), L — R, (ii), L — R, (iii), L — R,(iv),

L — R,(v),L — R,(vi),L — R, (vii) Properties are productive and projective.

6.4 Mapping in L-topological spaces

We show that L — R;(j) property is preserved under one-one, onto and

continuous mapping for j = i, ii, iii, iv, v, vi, vii.

6.4.1Theorem: Let (X,7) and (Y,s) be two L-topological space and

f:(X,7) = (Y, s) be one-one, onto L-continuous and L-open map, then-

@  (X,7)isL—R, (i) > (¥,s)is L — R, (i).
(b)  (X,7)isL— Ry (i) = (Y,s) is L — R, (ii).
©  (X,7)isL— Ry (iii) = (¥,s) is L — Ry (iif).
d)  (X,7)isL—R,(iv) = (¥,s) is L — R, (iv).
e  (X,0)isL—R,(v)=(Y,s)isL— R, (v).
®  (X,7)isL—R,(vi) = (V,s)is L — R, (vi).

(2) (X,1)is L — R, (vii) = (Y,s) is L — R, (vii).
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Proof: Suppose (X, 1) is L — R, (i).We shall prove that (Y,s) is L — R, (i). Let
V1,Y2 €Y with y; # y, and w € s with w(y;) # w(y,). Since f is onto then
3 x,, x, €X such that f(x;) =y, and f(x,) =y,, also x; # x4, as f is
one-one. Now we have f~1(w) € , Since f is L-continuous, also we have

f W) (xy) = wf(xy) = w(yy) and f T (W) (x2) = wf(x,) =
w(y,).Therefore f~(w)(x;) # f~1(w)(x,). Again since (X,7) is L — R, (i)

and 31 (w) € T with f71(W)(xy) # f (W) (x,) then I u, v € T
such that u(x;) =1, u(x,) =0, v(x;) =0,v(x,) =1landunv =0.
Now

f@)(y1) = {supulxy): f(x;) = y1} =1

f@)(y2) = {supulxz): f(x2) = y2} =0

f@)(y1) = {supv(x1): f(x1) =1} =0

fW)(2) = {supv(x,): f(x2) =y} =1

And

funv)(y) = {sup(unv)(x): f(x1) = y1

funv)(yz) = {sup(u N v)(xz): f(xz) = v,

Hence f(unv) =0= fn fw) =0

Since f is L-open, f(u), f(v) € s. Now it is clear that 3 f(u), f(v) € s such

that fW)(y1) =1, fW2) = 0.f(v)(y1) = 0, f(W)(y;) = 1 and
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f(u) N f(v) = 0. Hence it is clear that the L-topological space (Y, s) is
L — R, (D).
Similarly (b), (c), (d), (e), (f), (g) can be proved.

6.4.2Theorem: Let (X,7) and (Y,s) be two L-topological spaces and

f:(X,7) = (Y, s) be L-continuous and one-one map, then-

@@  (Y,s)isL—R,()) = (X,1) is L — R, (i).

(b)  (Y,s)is L —R,(ii) = (X, 1) is L — R, (ii).

)  (Y,s)is L —Ry(iii) = (X,7) is L — Ry (iii).

d)  (Y,s)isL—R.(iv) = (X,7) is L — R, (iv).

e  (Y,s)isL—R,(v) = (X,7)is L — R, (v).

)  (Y,s)isL—R,(wi) = (X,7) is L — R, (vi).

(@  (Y,s)is L — R,(vii) = (X,7) is L — R, (vii).
Proof: Suppose (Y, s) is L — Ry (i).We shall prove that (X,7) is L — R, (i). Let
X1,X, € X with x; # x, and w € T with w(x;) # w(x;), = f(x;) # f(x;) as
f is one-one, also f(W) €s as f is L-open. We have f(w)(f(x;)) =
sup w(x))} and  fW)(f(x)) =sup{w(r)} and fW)(f(x) #
Fw)(f(x). Since (Y,s) is L—Ry(i),3u,v€s such that u(f(x;)) =
Lu(f(x,)) = 0,v(f(x1)) = 0,v(f (xz)) = 1 and u N v = 0. This implies that
frG) =1L W) = 0.f 7 (w)(x) = 0,f 71 (v)(xz) = 1and
ffflunv)=0= f'wn f(v) =0.
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Now it is clear that 3 f~'(uw),f *(v) €t such that f~'(u)(x;) =1,
fr0e) =0, f (@) (x) =0, f ' (W)(xx) =land fH ) N f~H(v) = 0.

Hence the L-topological space (X, 7) is L — R (i).

Similarly (b), (¢), (d), (e), (f), (g) can be proved.
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