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PREFACE

The thesis entitled “Study on Motion of Fibers in Turbulent Flow” is
being presented in partial fulfillment of the Requirements for the degree
of Master of Philosophy.

This thesis is mainly divided into six chapters. The first one is an
introductory chapter. Fundamentals of turbulence and concepts of fiber
have been discussed here. Some results and theories, which are needed in
the subsequent chapters, have been included in this chapter. A brief
review of the past researches related to this thesis has also been given.
The numbers inside brackets [] refer to the references, which are
expressed alphabetically at the end of the study. In the second chapter
some equations of turbulent motion has been derived which are
applicable in the next chapters.

In the third chapter, the equation of motion for turbulent flow of fiber
suspensions has been derived in terms of correlation tensors of second
order. Mathematical modeling of fiber suspensions in the turbulent flow
is discussed including the correlation between the pressure fluctuations
and velocity fluctuations at two points of the flow field, where the
correlation tensors are the functions of space coordinates, distance

between two points and the time.

In chapter four, the equation of motion for turbulent flow has been
derived in terms of correlation tensors of second order in a rotating
system. Due to rotation the coriolis force plays an important role in the
rotating system of turbulent flow. The results are obtained by taking
correlation between the pressure fluctuations and velocity fluctuations at
two points of the flow field, where the correlation tensors are the
functions of space coordinates, distance between two points and the time.

In the fifth chapter, the equation of fiber motion in dusty fluid turbulent
flow has been derived in terms of correlation tensors of second order. In
presence of dust particles, mathematical modeling of fiber suspensions in
the turbulent flow is discussed including the correlation between the
pressure fluctuations and velocity fluctuations at two points of the flow
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field, where the correlation tensors are the functions of space coordinates,
distance between two points and the time.

Finally, in the last chapter, the equation of fiber motion for dusty fluid
turbulent flow has been derived in a rotating system in terms of
correlation tensors of second order, where the correlation tensors are the
functions of space coordinates, distance between two points and the time.
The system includes the effect of coriolis force due to rotation in the fluid
flow with the correlation between pressure fluctuations and velocity
fluctuations at two points of the flow field.

The following research papers which are extracted from this thesis have
been accepted and communicated for publication in the different reputed
Journals:

1. Motion of Fibers in Turbulent Flow in a Rotating System
(Accepted for publication in the Journal, Rajshahi University Journal
of Science).

2. Fiber suspensions in Turbulent Flow with Two-Point Correlation
(Presented in the 5" Asian Mathematical Conference held on Putra
World Trade center, Kuala Lumpur, Malaysia and this paper is
considered for publication in the proceedings).

3.Fiber Motion in Dusty Fluid Turbulent Flow with Two-Point
Correlation (Communicated for publication).

4.Fiber Motion in Dusty Fluid Turbulent Flow in a Rotating System
(Communicated for publication).

et

Department of Applied Mathematics (Shal}ls Forruque Ahmed)
University of Rajshahi
Rajshahi-6205, Bangladesh.
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CHAPTER ONE

General Introduction

1.1. Introductory to Turbulent Flow

Turbulence means agitation, commotion and disturbance. This definition is,
however too general and does not suffice to characterize turbulent fluid
motion in the modern sense. Osborn Reynolds in the study of turbulent flows,
named this type of motion “sinuous motion”. The use of the word “turbulent”
1s to characterize a certain type of flow, namely the counterpart of streamline
motion. In fluid dynamics, turbulence or turbulent flow is a fluid regime
characterized by chaotic, stochastic property changes. This includes low
momentum diffusion, high momentum convection, and rapid variation of

pressure and velocity in space and time.

Turbulence occurs nearly everywhere in nature. It is characterized by the
efficient dispersion and mixing of vorticity, heat, and contaminants. In flows
over solid bodies such as airplane wings or turbine blades, or in confined
flows through ducts and pipelines, turbulence is responsible for increased
drag and heat transfer. Turbulence is therefore a subject of great engineering
interest. On the other hand, as an example of collective interaction of many
coupled degrees of freedom, it is also a subject at the forefront of classical

physics.

Origin of turbulence is a central role in determining the state of fluid motion
played by the Reynolds number. In general, a given flow undergoes a
succession of instabilities with increasing Reynolds number and, at some
point, turbulence appears more or less abruptly. It has long been thought that
the origin of turbulence can be understood by sequentially examining the

instabilities.



In 1937, Taylor and Von Karman [29] gave the definition,

“Turbulence is an irregular motion which in general makes
its appearance in fluids, gaseous or liquid, when they flow past solid surfaces
or even when neighboring streams of the same fluid flow past or over one

another.”

According to this definition, the flow has to satisfy the condition of
irregularity. This irregularity is a very important feature. Because of
irregularity, it 1s impossible to describe the motion in all details as a function
of time and space coordinates. But turbulent motion is irregular in the sense
that it is possible to describe it by the laws of probability. It appears possible
to indicate distinct average values of various quantities, such as velocity,
pressure, temperature etc. If turbulent motion were entirely irregular, it would
be inaccessible to any mathematical treatment. Therefore, it is not sufficient

to say that turbulence is an irregular motion.
According to J.O. Hinze [11], the turbulent flow is

“Turbulent fluid motion is an irregular condition of flow in which the various
quantities show a random variation with space and time coordinates, so that

statistically only distinct average values can be discerned.”

The addition “with space and time coordinates” is necessary; it 1S not
sufficient to define turbulent motion as irregular in time alone. For instance,
the case in which a given quantity of a fluid is moved bodily in an irregular
way; the motion of each part of the fluid is then irregular with respect to time
to a stationary observer, but not to an observer moving with the fluid. Again,
turbulent motion is not irregular in space alone, because a steady flow with an

irregular flow pattern might then come under the definition of turbulence.

According to the definition of Taylor and Von Karman [29] there are two

distinct types of turbulence, wall turbulence and free turbulence.



Wall Turbulence: Turbulence generated by a viscous effect due to presence

of a solid wall is designated by wall turbulence.

Free Turbulence: Turbulence in the absence of wall generated by the flow of

layers of fluids at different velocities is called free turbulence.

Turbulent flow occurs in our daily life. If we observe the smoke rising out of
a chimney of a factory or a cigarette, we find that upto a certain length from
the chimney or the cigarette, the smoke has a regular shape and after that its
shape becomes irregular and if we see still farther then the smoke becomes
completely irregular. Again, if a drop of ink is dropped in a glass of water, we
find a similar phenomenon, i.e, a regular ink thread falling for a short
distance after which it spreads and a vortex type motion can be observed.
Ultimately the thread splits into several vortices and motion becomes
irregular. The flows with such irregular motions are usually called turbulent
flows. Turbulent flow also occurs in large arteries at branch points, in

diseased and narrowed (stenotic) arteries and across stenotic heart valves.

Laminar
flow

Turbulent flow

Effects of turbulence on the pressure-flow relationship

Osborne Reynolds [21] was first systematically investigated the transition
from laminar to turbulent flow. In his experiments, Reynold used a glass tube
with flowing water from a reservoir and observed the flow pattern by
injecting a thin stream of dye into the main stream. We find that if the

velocity of the water is small, then there is a regular thread of dye moving



throughout the tube. As the velocity of the fluid is increased, the thread of
dye after a short distance from the point of injection becomes irregular. This
irregularity in the shape of the thread increases with the increase of the
velocity. We also find that the length of the thread of the dye, which is
regular decreases with the increase of velocity, indicating that irregular
motion starts developing at a smaller distance if the fluid velocity is
increased. We also find that if the viscosity of the fluid in the pipe or the
channel is small then the irregular motion develops much quicker than when
the viscosity is high. All these observations can be combined to say that the

turbulent flow sets in if the Reynolds number is sufficiently high.

The origin of the idea of statistical approach of turbulence traced by Taylor
[27] in which he has advanced the concept of Lagrangian correlation
coefficient that provides a theoretical basis for turbulent diffusion. The most
important work done by Taylor [28] is that he gives up the old theories of
turbulence based on the kinetic theory of gases and introduces the idea that
the velocity of the fluid in turbulent motion is a random continuous function
of position and time. He introduces the concept of correlation between

velocities at two points.

The flows which occur in practical applications are turbulent. The study of
turbulent flows is very important both from theoretical as well as practical
points of view, because most of natural phenomena connected with fluid
flows involve turbulence. As for example, the flows in rivers, natural
streams, the winds in the atmosphere, the motion of clouds in the rainy
season, flow in water supply pipe, flow in fluid machinery such as fans,
pumps, turbines etc. are turbulent flows occurring in our daily life. This flow
usually differs from the streamline flow or the laminar flow of a viscous fluid
and occurs at a high Reynolds number. The occurrence of the turbulent flow

will depend on the values of the non-dimensional number called critical



Reynolds number and this number varies from 2,000 to 2,300. If the Reynolds

number ( R,) is greater than the critical Reynolds number (Rcr) then the flow

will be turbulent and if the Reynolds number is less than the critical
Reynolds number then the flow will be laminar. Transition normally takes

place at Reynolds number 2,000 to 4,000.

The transition mechanism is rather complicated and is still not fully
understood. For examples, when extreme preconditions were taken in
minimizing the initial disturbances in pipe flow. Transition could be delayed
until a Reynold number of 50,000 has been attained. Thus the transition
Reynold number seems to depend partly on the degree of turbulence in the

flow, its numerical value always increases with decrease in turbulence.

Transition phenomenon has been associated with the stability of laminar
flow. The stability of laminar boundary layer with zero pressure gradient was
investigated by Toltman, using small perturbation. It is found that laminar

boundary layer is completely stable with respect to small disturbance at the

value of Re=£< 575, where &'is the displacement thickness. Since,
v

5 =1.731/%, it implies that the laminar flow is stable for the value of

R, . 1.1x10°. Hence Reynolds number below 1.1x10°, disturbances are
L

damped and flows retain its laminar form. At high Reynolds number
disturbance may be amplified and the transition process is only initiated by
amplification of the disturbance, it follows that transition must occurs

downstream of the point for which Reynolds number is 1.1x10°.

The stability of laminar flow is greatly affecting transition from laminar flow

to a turbulent flow in presence of pressure gradient. For accelerated flow



dP du . ) : . .
(d—<0,g>0), the critical Reynolds number increases, i.e, increases in
X

stability where as far related flow (%D> O,C;—U<O), critical Reynolds number
X

decreases, i.e, transition to turbulent flow much more easily provoked.

Mean Motion and Fluctuations:
To describe a turbulent motion quantitatively it is necessary to introduce the
notion of scale of turbulence; a certain scale in time and space. It is not

sufficient to characterize a turbulent motion by its scale alone.

Since, in a turbulent flow the dependent variables have random behavior
besides some mean behavior; we can only describe the flow in terms of some
average quantities. In the analysis we usually take two-types of averages; one
is the average with respect to time and the second is average with respect to

space.

In mathematical description of turbulent flow, it is convenient to consider an
instantaneous velocity, such as uis the sum of the time-average part »and

momentary fluctuation part «', i.e, u =u+u',

where, the quantity with bar denotes the mean value or average value and the
quantity with prime denotes the fluctuating value. The mean value and the

fluctuating value can be shown in the following figure:

v

) t

Figure-1.1: Time averaging for a statistically steady flow



In a steady flow u» does not change with time. Average values can be
determined in various ways. If the turbulent flow field is quasi-steady or
stationary random, averaging with respect to time can be used. In the case of
homogeneous turbulence flow field, averaging with respect to space can be
considered. It is not always possible to take time-mean and space-mean
values if the flow field is neither steady nor homogeneous. In such a case we
may assume that an average [19] is taken over a large number of experiments
that have the same initial and boundary conditions. We then speak of an

ensemble-mean value.

An averaging procedure can be carried out only if certain conditions are
satisfied. There are various methods of averaging may be expressed in
mathematical form. If we use the Eulerian description of the flow field, one
of the three methods of averaging may have to be applied to a varying

quantity at any point in the flow field.

The methods of averaging are:

i) Time average for a stationary turbulence at a point of the flow field
N
[u(x,t)l = }1333 o L_u(x,s)d.s
In practice the scale used in averaging process determines the value of the

period 27.

ii) Space average for homogeneous turbulence in which we take the average

over all the space at a given time

(.0, = Jim - [ (s,

Vy —w V

In practice the volume scale used in averaging process determines the volume

of the spaceV, .



iii) Space-time average in which we take the average over a long period of

time and over the space and is defined as
[u(x,I)Lr T_m V,,_m 277, f _[/ uls.y)dsdy

In practice the values of 7 and ¥, are determined by the scale used.

iv) Statistical average in which we take the average over the whole collection

of sample turbulent fluctuations for a fixed point in space and at a fixed time

is defined as
)l = [t i)

over the whole Q space of w, the random parameter. The measure is
[ dulw)=1

A random scalar function u(x,,w) is a function of the spatial coordinates x
and timers. The parameter w is chosen at random according to some
probability law in the space Q. If the flow is unsteady, time average cannot be
used and must be replaced by ensemble averaging and the ensemble average

of N identical experiments are defined as
N
[un(xst)L = %ﬂggﬁ_’t)

where, N is the numbers of members of ensemble which must be large
enough to eliminate the effect of fluctuations. This type of averaging can be
applied to any kind of flow. For stationary homogeneous turbulence we may

except and assumed that the three averaging lead to same result
i), = fulx 1)), = [l )l

This assumption is known as the ergodic hypothesis.



For an unsteady flow, the ensemble averaging can be shown by the following

figure:

Figure-1.2: Ensemble averaging for unsteady flow

Actual turbulent flows are neither really stationary nor homogeneous.
Therefore for practical reason, we cannot carry out the averaging procedure
with respect to time or space for infinite values of 7 and X respectively but
only for a finite values. For instance, consider averaging with respect to time
of the Eulerian velocity of turbulent flow. The flow may contain very slow
variation that we do not wish to regard as belonging to the turbulent motion
of the flow. In taking average with respect to time, we have to take some

suitable time scale. Let ¢ be the velocity at any point. Then we define the

time average velocity or simply the mean velocity at a time ¢, as
e
=—|" 2
“TF fg 9t

where, T is the time scale of the average.
The time interval 7 must be taken sufficiently large compared with the time
scale of turbulent fluctuations, but small compared with time scale of any

slow changes in the flow field, which are not associated with turbulence.



Thus, the average value of ¢ will depend uponT. For T — o, we define the

time average velocity or simply the mean velocity at time 7, as

Similarly, we can define the time average of the variables as density,

pressure, temperature and also the space average of the variables.

1.2. Reynolds Rules of Averaging

The process of averaging [21] is that the velocity consists of two parts; one is
the mean velocity ¢ and the other is the fluctuating velocity¢’. The same
notation is used for other variables. Suppose, ¢(u,v.w)p and p be the

instantaneous velocity, pressure, and density respectively. Reynolds was
introduced elementary statistical motion into the consideration of turbulent
flow. In the theoretical investigations of turbulence, he assumed the physical

quantities in the flow field as
u=u+u,v=v+v, p=p+p ,p=p+p

In the study of turbulence we have to carry out an averaging procedure not

only on single quantities but also on product of quantities. Consider

three arbitrary statistically dependent physical quantities 4,Band C, each

containing two parts due to mean motion and fluctuation. Thus, these

quantities can be expressed as
A=A+A,B=B+B,C=C+C

where, 4,B,C are the average or mean part and 4',8.C"are the fluctuating
part of the quantity 4,B,C respectively and the mean of the fluctuating part

should be zero.i.e, A =0,B=0,C"=0

10



Now, the mean value of the product of any two quantities out of three, i.e,

AB = (E+ A’l§+B’)

— AB+ AB' + AB+ A'B'

—AB+AB + AB+ AB
—AB+AB + B+ 4B
- 4B

Consequently, AB = AB = 4B

It is noted that the average of a product is not equal to the product of the

averages. The terms such as 4'B' are called correlations. Average of the

product of these three quantities is

ABC = (E + A’I§+ B'XE + C’)

or, ABC = ABC + AB'C'+ BA'C'+CA'B' + A'B'C'

Also it can be shown that

oA _o4

oS oS
and [4ds = [4ds
Mathematical Analysis:

The time average of any fluctuating quantity ' is

.1 el 1
or, u'=lim—= | 2 wdt — lim—
T Rajshahi University Library

Documentation Section
Document No...D.. .3..2;.%3“

Date... .....é../.é../.f‘r...mm w00
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1 e -
or, :hm; "2 udt — lim—

U ot
=u _f[tlo-i
:E%T
=u-u=0
i.e, u=0
Similarly, v =w'=p' = p' =0

Although the time average of the fluctuating quantities are zero, the quantities

Wy, uw ete. are the time average of the product of any two fluctuation

components will not necessary equal to zero.

Now, we calculate the time average of the quantities wuv is

z
= A 1 +5
uv =lim— | 2 uvdt
Too T ey

y 1 ()‘*’1 iy Y ’
=lim—| # (u+uXv+v)dt

T T D—E

i) 1 +Z i 7!‘ f_
=lim— "2 (uwv+w +u'v+uy Yt
I'—)cUT 0—5

— o lger— 1 e =
or, wv=lim=| 2 wvdt+lim— | 7 w'ds
Tom T s T T 1=

. q el = L e g
+lim— |" 7 wvdt +lim— | 2 uVv'dt
T—o T vy oo T 075
T S
or, uwﬂm—rﬁm+Mh-fﬁw
0

T—ao T = T'-w [’ ¥

. A4 0+£ b . 1 0‘*‘£ '
+lim— | 2 u'dt+lim—=| 2 uVdt
Too T - S s

0 0
2

or, uv = uv+uv +vu' +u'v'

12



Since, the time average of any fluctuating quantity is zero then u' =0,/ =050
that the above equation gives
wv = uv+uv'
Similarly, vw=v w+vw and ww=u wtu'w
The time average of the time derivative of a variablev, i.¢,
5 v 1 ()+£ 3 v 1 o"’l
— llm-_r £ —vdt:llm—[vI 2 (1.1.1)
ot I 07y ot T—w T fo=y
_ ,
Also, O _ 2 Lyt L f? vt
ot Ot |T—= 07y
ov 10 o+ Lrt =
or, 2 gim={= "2 vdr} = lim—|v]" 2 1.1.2
ot Too T {83‘ 'l‘u_‘L } T T [ ’(J_% ( )

Therefore, from equation (1.1.1) and (1.1.2) we can write

5 _o
ot ot

Similarly, the time average of the space-derivative of a variable v,

A T
o i ] i
ox r>ew Uy

It is useful here for several rules of operating on mean-time averages, as they
will be required for reference. The feature which is of fundamental
importance for the turbulent motion consists in the circumstance that the

fluctuations «',v,»' increase the mean motion u,v,w in such a way that the

later exhibits an apparent increase in the resistance.

2



1.3. Homogeneous and Isotropic Turbulence

In the case of real viscous fluids, viscosity effects will result in the
conversion of kinetic energy of flow into heat; thus turbulent flow, like all
flow of such fluids is dissipative in nature. If there is no continuous external
force of energy for the continuous generation of the turbulent motion, the
motion will decay. Other effects of viscosity are to make the turbulence more
homogeneous and to make it less dependent on direction. In the extreme case,

there are two types of turbulence, homogeneous and isotropic.

Homogeneous Turbulence: The turbulence that has quantitatively the same

structure in all parts of the flow field is called homogeneous.

Isotropic Turbulence: The turbulence is called isotropic, if its statistical
features have no preference for any direction and minimum number of

quantities and relations are required to describe its structure and behavior.

We imagine an infinite uniform body of fluid, which can be characterized in

the usual way by a density p and molecular coefficient of viscosity x. This

body of fluid can be set into different kinds of motion. It is a well-known fact
that under suitable conditions the kinematic viscosity v be sufficiently small,
some of these motions are such that the velocity at any given time and space
in the fluid is not found to be the same. In these motions the velocity takes
random values, which are not determined, although we believe that the
average properties of the motion are determined uniquely. Fluctuating
motions of this kind are said to be turbulent. Our concern is with
homogeneous turbulence, which is a random motion whose average
properties are independent of position in the fluid. The problem is to
determine analytically the average properties and to understand the

mechanics of this kind of motion.

14



The conception of homogeneous turbulence is idealized; there is no known
method of realizing this kind of motion exactly. To produce turbulent motion
in a laboratory or in nature we can apply various kinds of methods involving
discrimination between different parts of the fluid, so that the average
properties of the motion depend on position. From exact independence of
position this departure can be made very small in certain circumstances and it
is possible to get a close approximation to homogeneous turbulence. For
instance, if a uniform stream of fluid passes through a regular array of holes
in a rigid sheet, or a regular grid of bars, held at right angles to the stream, the
motion downstream of the sheet consists of the same uniform velocity
together with a superimposed random distribution of velocity. This random
motion dies away with distance from the grid and is not statistically
homogeneous, but the rate of decay is found to be so small that the
assumption of homogeneity of the turbulence is valid for most purposes. A
convenient laboratory method of producing turbulence is available there

which is approximately homogeneous.

The kinds of turbulent motion which are encountered in nature, hydraulics
and chemical engineering, are usually more complicated than homogeneous
turbulence. These turbulent motions are such that there is a variation of the
mean velocity with position in the first place and there is a variation of the
average properties of the turbulent or fluctuating velocity with position in the
second place. Thus there will occur some kind of interaction between the
fluctuating and mean components of the motion which is difficult to handle
mathematically and there will also be transport effects produced by the
different intensity of the fluctuating motion at different points. As a
preliminary, it seems appropriate to consider homogeneous turbulence that

has neither of the two properties mentioned above.

15



In the simplest case, the turbulence is statistically homogeneous and isotropic
so that depends neither the position nor the direction of the axis of reference.
The possibility of this further assumption of isotropy exits only when the
turbulence in already homogeneous. It has been found that in addition to
being the simplest possible case of turbulent motion, isotropic turbulence is
already generated in the laboratory. Whatever the initial directional properties
of a field of homogeneous turbulence, it appears to settle down to an
approximately isotropic state and the laboratory method of generating
homogeneous turbulence by passing a uniform stream through a regular
array, in fact turbulence which is very nearly isotropic and thus most of the
available data concerns isotropic turbulence. However, sometimes there are
some definite and important results for non-isotropic homogeneous

turbulence.

Finally, if we collect the reasons for studying homogeneous turbulence, we
should add that it is a interesting physical phenomenon which still defies
satisfactory mathematical analysis. Again, if we study on isotropic turbulence
then it is observed that this is the simplest type of turbulence, since no
preference for any specific direction occurs and a minimum number of
quantities and relations are required to describe its structure and behavior.
However, it is also a hypothetical type of turbulence, because no actual
turbulent flow shows true isotropy, though conditions may be made such that
isotropy is more or less closely approached. The theoretical and experimental
results of such a study of more practical value than one might believe. By
theoretical considerations and experimental evidence it is known that the fine
structure of most actual non-isotropic turbulent flows is nearly isotropic or
simply local isotropy. So, many features of isotropic turbulence may apply to
phenomena in actual turbulence that is determined mainly by the fine scale

structure.

16



If we consider the non-isotropic turbulence through an essential part of its
spectrum, it is often possible to treat such turbulence for purposes of a first
approximation as if it were isotropic. Differences between results based upon
the assumed isotropy and actual results are often sufficiently small to be
negligible in a first approximation and may be even smaller than the spread in
the experimental data. Because of its relative simplicity, isotropic turbulence
has been studied most theoretically as well as experimentally. The kinematic
and geometric relations involved in turbulence have been studied through

correlations and spectrum functions.

1.4. Photographs of Turbulent Flow

The study on photographs of turbulent flows or on oscillograms of velocity
fluctuations will reveal that it is not permissible to speak of the quasi
periodicity or the scale of turbulence. Turbulence consists of many
superimposed quasi-periodic motions. We also say that turbulence consists of
the superposition of eddies of ever-smaller sizes, since a periodicity in
velocity distribution involves the occurrence of velocity gradients which
correspond to a certain vortex motion. All various-sized eddies of which a
turbulent motion is composed have a certain kinetic energy determined by
their vorticity or by the intensity of the velocity fluctuation of the

corresponding frequency.

We have spoken about turbulent motion, which can be assumed to consist of
the superposition of eddies of various sizes and vortices with distinguishable
upper and lower limits. The upper size limit of the eddies is determined by
the size of the apparatus, whereas the lower limit is determined mainly by
viscous effects and decreases with increasing velocity of the average flow,
other conditions remaining same. Within these smallest eddies the flow is no

longer turbulent but viscous and molecular effects are dominant. These
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smallest eddies might not become so small that the flow within them could no

longer be treated as a continuum flow.

For moderate flow velocities, i.e, not much greater than 100 m/sec,say, the

smallest space scale or eddy will hardly be less than about1 mm. This value is
still very large compared with the mean free path in gases under atmospheric
conditions of order10™ mm. Under atmospheric conditions, one cubic
millimeter of air contains roughly 2.7x10"molecules. Thus under these
atmospheric conditions, gases and liquids also may be treated in the study of
turbulent flow of moderate speed. Relevant values of turbulent fluctuations
are roughly 10 percent of average velocity and are between 1 and

1,000 em/sec. For air, these values must be compared with mean velocity of
molecules of orders50,000 ¢m/sec. Frequencies of turbulence vary from 1

and10,000 sec’, whereas molecular-collision frequencies for air are

about5x10° sec’.

From the domain of molecular magnitudes, the domain of turbulent
magnitudes is sufficiently far. By discussing a few photographs of fluid
motion we will conclude first introduction. The following figures help us to
convey an idea about the size of these smallest eddies compared with the
mean free path of the molecules. The general flow pattern is so regular that it
hardly falls within the definition of real turbulence. At most this might be
considered pseudo turbulence. The flow pattern just downstream of a circular

cylinder at low values of the Reynolds number shows in Figure-1.6 [13]
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Figure-1.6: Flow pattern downstream of a cylinder

Figure-1.7 [13] shows a similar flow pattern, but one pertaining to a higher
value of the Reynolds number. Up to downstream distances 30 to 40 times
the cylinder diameter, the general flow pattern is still fairly regular; the more
detailed patterns and beyond this distance, the general flow pattern also

gradually become more and more turbulent.

Figure-1.7: Flow pattern downstream of a cylinder

The detailed patterns become more turbulent as the Reynolds number
increases is clearly shown in Figure-1.8 [13] which shows a close-up of the
flow pattern close behind the cylinder. Within the region of the large regular
eddies the flow pattern is distinctly turbulent; with a space scale much
smaller than those of the large regular eddies. The regularity and irregularity
of the flow in the wake of a cylinder are well illustrated by velocity

oscillograms taken at different locations in the wake flow.

19



Figure-1.8: Flow pattern close behind a cylinder
at high Reynolds number

An oscillogram taken at a point on the line through the centers of the vortices
of each row shows a preference for a distinct frequency. Again an
oscillogram taken centrally behind the cylinder also shows a preference for a
distinct frequency equal to twice the previous frequency which is the effect of

the vortices are separated from either side of the cylinder alternately.

1.5. Concepts on Fiber

The word ‘Fiber’ comes from Latin fibra. Various kinds of definitions of

fiber are as follows:

A fiber is

i) a fine thread or thread-like cell of a natural such as cellulose, fruits,
vegetables etc. or artificial substance such as nylon, cord, filament etc. Fibers
composed of some natural and artificial substances, e.g. texture, grain, tissue,

nap, grit, surface etc.

ii) the indigestible parts of edible plants or seeds that helps to move
food quickly through the body. As for example, dietary fiber.
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iii) one of the delicate, threadlike portions of which the tissues of plants

and animals are in part constituted; as, the fiber of flax or of muscle.

iv) a general name for the raw material such as cotton, flax, hemp, etc.,

used in textile manufactures.

Fiber helps in the digestive process and is thought to lower cholesterol and
help control blood glucose. There are two types of fiber in food. They are
soluble and insoluble. The soluble fiber found in beans, fruits, and oat
products, dissolves in water and is thought to help lower blood fats and blood
glucose. Soluble fiber substances are effective in helping reduce the blood
cholesterol. This is especially true with oat bran, fruits, psyllium and
legumes. High soluble fiber diets may lower cholesterol and low-density
lipoproteins by 8% to 15%. The insoluble fiber found in whole-grain
products and vegetables, passes directly through the digestive system, helping
to rid the body of waste products and possibly prevent diseases such as colon
cancer. Insoluble fiber retains water in the colon, resulting in a softer and
larger stool. It is used effectively in treating constipation resulting from poor

dietary habits. Bran is particularly rich in insoluble fiber.
There are some useful fibers using in our daily life:

Fiber Gun: A kind of steam gun for converting, wood, straw, etc., into fiber.
The material is shut up in the gun with steam, air, or gas at a very high
pressure, which is afterward relieved suddenly by letting a lid at the muzzle

fly open, when the rapid expansion separates the fibers.

Fiber Planets (Bot.): plants capable of yielding fiber useful in the arts, as

hemp, flax, ramie etc.

Optical Fiber: Optical fibre is a very thin fibre made of glass that functions

as a waveguide for light; used in bundles to transmit images. Optical fibre is
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less susceptible to external noise than other transmission media, and is

cheaper to make than copper wire, but it is much more difficult to connect.

Fiber Channel: Serial data transfer architecture developed by a consortium
of computer and mass storage device manufacturers. The most prominent
Fiber Channel standard is Fiber Channel Arbitrated Loop, briefly (FC-AL).
Fiber Channel was designed for new mass storage devices and other

peripheral devices that require very high bandwidth.
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CHAPTER TWO
EQUATIONS OF TURBULENT MOTION

2.1. Introduction

We see that the physical nature of turbulence and its development is far from
understandable; however, it can be studied both experimentally and
theoretically as a statistical phenomenon. By this approach it is hoped that
some important aspects of the structure of turbulent flows might be revealed.
On the basis of these hypotheses, we have derived the equations of motion

according as Reynolds, Navier-Stokes.

Osborn Reynolds derived an equation with viscosity and apparent or virtual
stresses of turbulent flow or Reynolds stresses. Stresses are due to turbulent
fluctuation and are given by the time mean values of the quadratic terms in
the turbulent components. Since these stresses are added to the ordinary
viscous terms in laminar flow and have a similar influence on the course of
the flow, it is often said that they are caused by eddy viscosity. In vorticity
transport theory, we take the conservation of vorticity instead of
conservation of momentum so that the vorticity is taken to be transferable
property of the fluid in this theory. The coriolis force due to rotation plays an
important role for an equation of motion in a rotating system of turbulent

flow, while the centrifugal force can be observed in the pressure gradient.
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2.2. Reynolds Equation of Motion for Ordinary Turbulent
Flow

To obtain the equations governing any turbulent flow, we take the Navier-
Stokes equation of motion governing the flow and then take the time average

of this equation.

For simplicity, we take the fluid to be incompressible, rather of constant
density. The object is to derive the equations of motion that must be satistied

by the time averages of the velocity components u,v,w and of the pressure p .

We consider the Navier-Stokes equation of motion for incompressible fluid

with no body force,
ov 5
pa—; + p@.V)z =-Vp+uV'y (2.2.1)
The x-component of this equation is

U—+v—+ i (2.2.2)

ou  Ou ou Ou ap &u
P W |t .
& Oy Oz Ot ox ax

Now using u=u+u,v=v+v,w=w+w,p=p+p in equation (2.22) we
obtain-

p(v,_: + u’)i(; + u’)+ p(; + v’)%(ﬁ + u’)+ p(; 0 w’)i(ﬂ + u')+ pg(; o u)

ox oz I3

2

- _ai(; £ )+ ﬂ(f?(@r ) (2.23)

We take the time average to each term of equation(2.2.3).

The first term on the left-hand side can be expressed as
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—  NOf{ [\ -0u -ou ou ,ou
P(“”)a(”*“)zpuaJrPuax+ma+mg

(2.2.4)

The first term on the right-hand side of equation (2.2.4) cannot be changed

by the time average, because the time average quantities remain constant in

the interval T,

e o2, i
& pu——= pu
. ou' .
In the second term, the time average of ; is zero,
X

. — o'
I.C, U— = O

p ox

Similarly, the third term

pu’a—u:O, since pu’ =0
ox

’

The last term pu'(;—u is the product of two fluctuating components, its time
X

average is not zero,

i ,au'¢0
o ’Wax

Thus equation (2.2.4) becomes

,0(; +u')§(; + u’): p;(;—;{ s pu'(;_i
Similarly, p(; + v)% (; & u,) _ p;% . pv" -(Z;
and plov+ )2 )= o2 2
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Since — =0, 5 =g =0 then
o2 furu)= p 2
- %i—(—“%

Hence equation (2.3) becomes

T O \jé+ D e 2 @——@+ 0'u
£ Ox # Ox £ oy & ay & oz a Oz # ot Ox & ox*
~du -0u —ou ou  op ou' ou o
or, plu—+v—+w— — = + o' — 4+ ——
X Oy 0z ot 0. % Oy 0.
or 08 g, il O O O i
’ e e s ox ay oz

It is verified that

G ey

Thus equation(2.2.5) becomes

T e L e 225)

In similar way, y and z components of equation of motion are
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oo ) o o
. E(_ pu,v,) . 5(_ —,z)+ 82( W) (2.2.7)

and ,o{f; 22 ﬁ%g]_—aa—f uZ
2 e

The additional terms over Navier-Stokes equation are called the Reynolds
stress or eddy stress due to turbulent fluctuation in the flow field and the

equations (2.2.6), (2.2.7)and(2.2.8) are known as Reynolds equation of motion

for incompressible turbulent flow.

In vector tensor form, the nine eddy or Reynolds stress form the components

of a second order tensor 7 which is defined as

5,0 & @ 7 ©
1O O 5@
— _pu;z *pH'Vr _purwl

12

—pu, represents eddy normal stress and 7' =—puu (i % ;)

where, o) =

represents eddy shearing stress.
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The nine eddy stress terms are also called virtual stress of turbulent flow.
Since, the stresses are added to the ordinary viscous terms and have a similar
influence on the course of the flow so that it is said to be eddy viscosity.
Therefore, the stress terms are added to the Reynolds equation may be

written in the following form
v 2 (¢)
P 5+ V.V)y =-Vp+uV g+[V.T ]
dy 2 ()
or, pg =-Vp+uViv+ [V.T ]

which is the summarized form of the equation in vector tensor form.

2.3. Vorticity Equation for Ordinary Turbulent Flow

The equation of motion for incompressible fluid with viscous effect can be expressed as

dq I 5
—=F--Vp+LVg
dt yo, =
oq 1 3
or, a—;-&—(q.V)q = F——Vp+uVig (2.3.1)
g¥ P q

where, the symbols have their usual meaning;

In vector analysis,

Vlga)=laVk+laVi+ax(Vxa)+ax(Vxq)

or, V(g.g): 2(@.V}z+2gx (ng)

o,  (¢V)g= V[‘I;J— gx(vxgq)

Substituting the above expression in equation(2.3.1), we have
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5 2
—€+V(?J—qx(qu):£—le+UV2q (2.3.2)
4 1 P 1

If the body force Fis conservative then there exists a potential function ¢
such that F =-Vg¢

Hence, equation (2.3.2) becomes

oq q 1
= +V| = |-gx@=-Vo—-—Vp+vV’
ot (2] et 4 o) P 1

where, o = Vxg¢1s the vorticity of the fluid,;

Taking curl on both sides, we obtain

%(VXQ)VX(QXQ)ZUVG(VXQ)

or, Z—?—Vx(qxg)=uvzg
Or; 68_(?0 - [(Q.V)g +(Vo)g - (V'QL_) - (Q.V):r_)] =Vl

Since, V.o = V.(V xg)=0and for an incompressible fluid V.g =0then the

above equation becomes

O (QV)Q 4 (Q.VE =uwWV’w

o
or, %—Q + (q.VE =(@V)g+vVie
y 2 4
do 5
or, cT_ =(@V)g+vVie (2.3.3)
/ 4

This is known as the vorticity equation.
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The first term on the right hand side of the equation (2.3.3) represents the
with the fluid, the strength of the vortex remaining constant. For slow

motion, the term (@.V)g is negligible and the equation (2.3.3)becomes

—= =V’ (2.3.4)

This equation is called diffusion of vorticity.
In the case of two dimensional motion,
g=uitvj

J

i k
Therefore, @ =V xg = g 4 0 =k ov_ou
- ox oy
0

u v

Now, (QV)Q = fg{% = %J[gi + JLEJE =i(}

Thus for three-dimensional motion or two-dimensional motion, the equation
(2.3.4) describes the way in which the vorticity is transmitted through a

viscous fluid.

This equation resembles equation of heat conduction in a liquid. Thus, we
conclude that vorticity diffuses through a liquid in such the same manner as
heat does. So vorticity cannot be generated within the interior of a viscous
fluid. It is infact transmitted from the boundaries into the fluid. As for

example, a sailing ship will generates vortices in its way arising from a hull
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which is a moving boundary with the passage of time, the disturbance is

soon damped out as the vortices diffuses through the water.

2.4. Equation of Motion in a Rotating System

The velocities and accelerations are measured referred to the Newton’s
second law of motion relative to an inertial axis. The rate of change of any
vector is equal to its rate of change relative to the axes plus the rate of
change due to rotation of axes. When the motion is referred to axes which
rotate steadily, the coriolis force and centrifugal force must be supposed to
act on the fluid. If © be the angular velocity then the centrifugal force may
be written as Qx(Qxr) which can be observed in the pressure gradient force.
Here, we consider the ordinary turbulent flow in a rotating system. The main
object is to derive an equation for ordinary turbulent flow as Navier-Stokes

equation of motion in a rotating system.

For angular velocity Q, a point with position vector r in the rotating system

has the velocity Qxras shown in the following figure:

0 Figure-2.1 A4 X

From the figure-2.1, when the particles goes from A to B relative to the axis
OX which rotates to OX’, at the same time the absolute replacement is

therefore 4'B'.



When the point » is moving relative rotating system, its velocity relative to

the fixed system is given by

[ﬂ;) :(g—ij +er=(d+§2x]r
dt jp ANdt )y — T \dt T

or, (ﬂ) :d—£+er
/

where, dd—f is the velocity of rotating system;
t

The acceleration is given by

i ﬂj = i+QxJ d—E+er

de\dt ), \dr — 2/

5 r f
or, d.f =i ar +i(9><[)+9>< d—K+Qx[
ac ), di| dt dt d

d’r

:[ = ]+9xcf+§2x@+9x5)
t

dr?

’
d’r
2

B dt”
d2

+Qxv+Qxv+Qx(Qxr)

d*r rr
Thus, (dl‘;}i = dl; +2 ng)%—@x@xz)

When Q is constant then the Navier-Stokes equation of motion in a rotating

system gives %-ﬁ—Z(va)-&—Qx@x[):E]VerUVEE
Yo,

Since the centrifugal force can be absorbed in the pressure gradient, the

Navier-Stokes equation of motion in a rotating system is given by
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2£—+2@x2):£—LVp+UV2V
Dt P -
Thus, the Coriolis force due to rotation plays an important role in a rotating

system of turbulent flow, while the centrifugal force incorporated into the

pressure.

2.5. Momentum and Induction Equation for MHD Turbulent
Flow

We consider a conducting incompressible fluid for which there is no charge
of accumulation at internal points. If we neglect the external force then the

Navier-Stokes equation of motion can be expressed as

d
p??:—Vp+ix§+pUV2g (2.5.1)

where, u is the velocity vector; p,the density of fluid particles; p,the
pressure of the fluid; B = uH,the magnetic induction vector; J, the current

density vector; v,the kinematic coefficient of viscosity and ris the time.

From Maxwell’s relation, we have
VxH=4rJ

or, J =—(VxH)

1
4

Using these expressions in equation(2.5.1), we obtain



,oﬂ =-Vp +i(Vxﬁ)xH+ pUVZu
dt 4rx .
du 1 7 2
or, —=——Vp+—(Vx§)x£+uV u
dt ye, drp
o, i(wVlu=-1Vp+t(VxH)xH+0Vu (2.5.2)
ot yo) drp

But in vector calculus, the term (Vx H)x H can be written as

};2J+(H.V)H (2.5.3)

(Vx H)x H = —V[
Substituting equation (2.5.3) in equation (2.5.2), we get

2
‘;ﬁ @V =-—Vp+ L{— V[HT] + @-V)ﬂ} +uViu
‘ p

4rp

5 9 s A m e et [H_j + oV (2.5.4)
ot dxp pe) 4p 2

In the case of magneto-hydrodynamics, Chandra Sekhar extended invariant

theory of turbulence. He introduced a variable defined as [9]

1
B (J‘_JZH
il v B4

If we use the variable in equation (2.5.4) then we have

2

o (V) - (hV)h = —V{ﬂ - ft—] +uViu
ot 3 2
or, % (V= (B = ~Vp, + 0V (2.5.5)
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2

where, p, -yl
p 2

For the vector u = (u,u,,u;) and h = (h,h,,4,), in components form the

equation (2.5.5) is given by

%, + @V, - (hV)h = Py Vi, (i=12.3)
ot Ox

o 3 | 3 3 3 2
or, i+Zuk%—2hk i J A o
a[ k=1 axk k=1 axk Ox, k=1 axkaxk

By using summation convention, the above equation becomes

! i

Oy, Ou oh, ap, 0u
L+ =——"4p

Upra M = ey
ot Ox, Ox, ox, Ox,0x,
2
or, %+i(uiuk ~hh)= Py, O (2.5.6)
ot Ox, ' Ox, 0x,0x,,

Equation (2.5.6) is the momentum equation for incompressible MHD

turbulent flow in components form in presence of viscous effects.

From magneto-hydrodynamics, the induction equation can be written as

ﬂ_vx(_xH)Jr V:H
ot Amop
or, %—VXLXH) AV’ H (2.5.7)

where, 1 = (47ou)"

From vector calculus, we have
Vx(ux H)=(HN)u+(V.Hu~ V) - (Va)H

Therefore, equation (2.5.7) becomes
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% AHVu+(VH - @V)H - (Vu)H) = AV’ H

From Maxwell’s relation, we write V.H =0and for an incompressible fluid,

we obtain V. =0 so that the above equation gives

D (- @9} = 2V

Now, if we introduce the Chandra Sekhar variable @z{

equation (2.5.8) becomes

% + @)= (hV) = AV
In components form,
the vectors u = (u,,u,,u;)

and h = (b, h,,h,),

Then the equation (2.5.9) is given by

- 412

oh & oh

& 3 7]
or, —6t—+2uk——’—ihk%:li oh

= O 5o X, o e G

(2.5.8)

i]"H then the
4rp | —

(2.5.9)

By using summation convention, the above equation becomes

I

oh, oh Ou, o°h,
+ A

— uk i i P
ot ox, 0x,, Ox,0x,
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2
or, o +_éi—(h,u,f —uh)=A il (2.5.10)
ot oOx, ax, 0%,

Equation (2.5.10) is the induction equation of incompressible fluid for MHD

turbulent flow in components form in presence of viscous effects.
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CHAPTER THREE

Fiber Suspensions in Turbulent Flow with
Two-Point Correlation

3.1. Introduction

The turbulent flow of fiber suspensions can be found in many areas of
industry, such as the production of the composite materials, environmental
engineering, chemical engineering, textile industry, paper making and so on.
Fiber suspensions property has a significant effect on the quality of the
products. So the fiber suspensions in a turbulent flow would be a better
discussion. The interaction between the fluid and the fiber in a flow is
complicated and it is more complicated if the flow is turbulent. The motion
between a fluid particle and suspended fibers in order to behavior of
turbulence with the correlations between pressure fluctuations and velocity
fluctuations based on the basic fluid dynamics. The fiber orientation is an
important physical quantity and do not only refer to rheology of fiber
suspensions. Hinze [11] derived an expression for turbulent motion with the
correlation between pressure fluctuations and velocity fluctuations at two
points of the flow field. Anderson [2] discussed on some observation of fiber
suspensions in turbulent motion. Batchelor [3] obtained the equations of
motion of fiber suspensions in the flow. Zhang and Lin [32] studied on the
motion of particles in the turbulent pipe flow of fiber suspensions. Lin et al
[16] derived the new equation of turbulent fiber suspensions and its solution.

They also verified the equations and their solutions by applying to a
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turbulent pipe flow of fiber suspensions. However, there are few studies
relevant to the turbulent fiber suspension although it is prevalent in the
industry. The main aim of this study is to derive an equation of motion for
turbulent flow of fiber suspensions with two-point correlation between

pressure fluctuations and velocity fluctuations.

3.2. Mathematical model of the problem

The equations of motion and continuity for turbulent flow of a viscous

incompressible fluid are

2
ou, ., 0w __10p 0Oy (3.2.1)
o Toax, pox,  oxox,

L=0 (3.2.2)

For fiber suspensions into the flow, the equation of motion is given by [16]

ou, ou, 1 Op o%u,
U, e m— T
ot * 0%, p Ox, Ox ,0x
Hy O 1
+bax|:ai,f.‘mgfm —E(Iija,’m )E:'m:| (323)
J

where, u, are the fluid velocity components,
p1s the unknown pressure field,
v 1s the kinematical viscosity of the suspending fluid,

1, 1s the apparent viscosity of fiber suspensions,

p is the density of the fluid particle,



1( 0 0 : .
g, =—| —L +Zn | is the tensor of strain rate,
2hex. ¥

1, is the turbulent intensity of suspensions,

a, and g, are the second and fourth-orientation tensors of the fiber

ijlm

respectively and t is the time.

We assume that the mean velocity U, is constant throughout the region

!

considered and independent of time and we put
(U[- — 5; +ur-)A,
(Uj i [_]j +u‘j)B :

The value of each term can be obtained by using the equations of motion for

u, at the point B and for u, at the point4. The equation of motion for u, at

the point 4, obtained from equation (3.2.3) takes the following form

aui + (Uk + uk )au, = —-léﬂ + Uﬂ“_ +ii|:alkimg.’m _.l(f]kah" )gl‘.'”} (3‘2'4)
o ox, pox,  oxox, p ox, 3

Ou,

Since, for an incompressible ﬂuid(u,
i

) =0, then the equation (3.2.4) can
A

be written as

2u), +[o +(uk)ﬁ[axikl ), { %} :‘é(a%] . +u[ — }A(u,-),,

Ml 0O 1
bE _f[—J I:ark.'mgt‘m = 5 (I:k al’m )81':1: :| (3 2 5)
e A

P\ 0%
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Multiplying equation (3.2.5) by («, ), , we obtain

k

b G0+ [ ] @l +) [ ) o),

I o’ (8 1
) _; [ng{ pA (uj )5 " {@Ck @Ck ]A (u,. )A (uj )B * ; (&C}(JA |:aikfmgfm - 5 (I{k an’m )81'.'11:|A (uj )}3 (3 2 6)

1

Where, (u,)ﬁ can be treated as a constant in a differential process at the

point 4.

Similarly, the equation of motion for », at the point B is given by

u e Ou 0%u ,
4"__{_ (U’,( +uk) ; = _i ap tov . +#7j a |:ajkfmgl‘m _l(jjkalm )glmjl (327)
ot ox, p Ox, ox,0x, p Ox, 3
Since, for an incompressible fluid [uj ZﬂJ =0 then the equation (3.2.7)can
Xy 5

be written as

0 = 0 1% o’
g(uj )}; +[U* +(Mk )H{gxk_l,(ui)ﬁ +(“1‘ axL:}H :_%{ai JHPB +U(axkaxk ]H(uf),g

M| O 1
+ _f {_J I:ajk.'mg.'m - 5 ([jk at‘m )e.’m i| (3 2"8)
B

ox,

Multiplying equation (3.2.8) by(y,),, we get

) o), 0+, [ 2] )+ ] @)yt

k B

1( 8 &’
) sl
u( 8 1
G _f[aJ |:a}kim5|’m - E(Ijkalm )g-'m:| (uﬂ )A (3 29)
k /B

P B
where (), is a constant in a differential process at the point B.
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Addition of the equations (3.2.6) and (3.2.9) gives the result

) {[él@h(@%)ﬂ(y,)g {%L(%)A(uk)ﬁ(uj)ﬁ}+ECH§C1@)A(M)B +[§kl(ae)ﬂ(%)ﬂ}
R NSRS
+”_;Haxikl[ammg,m —%Lkaim&',ml(u ). +[£;J3(a o f%fjkajmg,mjﬁ(u, )A} (3.2.10)

To find the relation of turbulent fiber motions at the point B to those at

point 4, it will give no difference if we take one point as the origin of 4 or
B of the coordinate system. Let us consider the point 4 as the origin. In
order to differentiate between the effects of distance and location, we

introduce as new independent variables

e = (‘xk)B _(‘xk)/l

Then we obtain, [6] . , (_6_] e
ox, ), oG, ox, ), ¢,

0% ), B X 0% ) - 0C,0¢,

Using the above relations in equation (3.2.10) and taking ensemble average

on both sides, we obtain

( Jj (H | — | ;j (u } (u ) (”,)A(ukjg( ;)B__]:— o ﬂ_)h, ag TB_J)/J

A\ /g aéfk kAJB aé’k

g

3 lka!mg;’m)L JH

& My 8
20— (u) 1y, )H——-a—

A D&, [(@kf”ﬁm)/:ﬁ

/uf . l:( _;'kmf‘:im)g(“;),l _%(IjkafmgfmJB(%)Ail (3:2.11)

ra
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This equation represents the equation of mean motion of fiber suspensions in

turbulent flow with pressure-velocity correlation.

It is clear that the coefficient of U, has been vanished. The equation (3.2.11)
describes the turbulent motion of fiber suspensions, where the motions with

respect to a coordinate system moving with the mean velocity Uy .

Equation (3.2.11) contains the double velocity correlation (y, ),(u,),, double
correlations such as p,(u, ) , triple correlations such as (), ), ), where all

the terms apart from one another. The correlations p,(u, ), and p,(u), form

the tensors of first order, because pressure is a scalar quantity and the triple

correlations (x),(,),l,), and (,),(,),lx,), form the tensors of third order.

We designate the first order correlations by (&, ) ,,» second order

correlations by (0, , )A , and third order correlations by (s, j)A‘B :

Therefore, we set

(ki',p )A,B = (uf)ApB’ (kp,_: )A,B = P [HJ'JB’
(Qf, ] )A, s (“ijA [”.f )B d

(Szk,j)A,B =)\ )y e

(St'.lg‘),q,g =\ )\ Jp \U, B’

Where, the index p indicates the pressure and is not a dummy index like i or

j so that the summation convention does not apply to p.

Also the term (a &, iBiu, iA and (7 ,a,,5, iBiu,. iA form the correlation tensors of

third order, we designate these by D, , and H, , respectively.
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Thus we set (DL_,,, ) s, = (, L (aj‘k.'mglm )Bs
(D,k,j )A,B = (aik!mg.’m )A [uj )B ’
(H,‘ 7k )A (—zm;)}s’
(Hu’c,f )A,B - (Iikafmg,’m L {”f )3‘

If we use the above relations of first, second and third order correlations in

equation (3.2.11), then we obtain

5 0 0 I[ ¢ 0 &
3% a5 +%S,@=?[“4K ‘+—_K,p}+2v—g,

+ii|:(Dl,jk_Qk,_,ﬂ) ;(Hm; JHr;k):l (3-2-12)

where all the correlations refer to the two points 4 and B.

Now for an isotropic turbulence of an incompressible flow, the double

pressure-velocity correlations are zero,

that is,
(kp‘j‘),qﬁ = 0’ (ki!p)AIB =0.

In an isotropic turbulence it follows from the condition of invariance under

reflection with respect to point 4,

(), @ )ale, ), =), ), @),

or, (Sf,kj ),4713 = _(S"Q’\f)A,B

and hence (D, )A, 5= —(ka,f)A,H ’

(H.",_,ifc ),4_,9 = 7(H.fk‘f)A,B
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After substitution these above relations, equation (3.2.12) becomes

G G o’
é;Qi,j _Z(Su’(,j + Skj,!) = 20 agkagk Qx,j
M 0 1 ©
+;f[_a7;€ (]')jk,f +D, j)Jrg%(H:k,j +Hy, )} (3‘2’ 1 3)
0 5, %)
The terrna—é’k (S,.M +S,g.,,), o (D,.kw,. + D,.M) and E;Tg’;(H"k”’ + ij’,.) form the

tensors of second order, we designate these by S, . D, , and H,, respectively,

that is

é 5]
Sf»j = f(srm + Slg‘,f)i D:‘,,r = f (Djk,f + Dﬁk,j)

k k

and H,.,j = %(H,k,_f o ij,.i)'

Vo

Therefore equation (3.2.13) gives the result

) o’ My 1
= -8 =2v———0Q,,——|D,,——H,, 3.2.14
at Q!.j nJ agkagk Ql,] p [ [ 3 f.j] ( )

Equation (3.2.14) is the equation of motion for turbulent flow of fiber

suspensions in terms of correlation tensors of second order.
If there are no effects of fiber suspension in the flow then the apparent
viscosity of the fluid vanishes, that is,u, =0so that the equation (3.2.14)

takes the form

5, 5’

—Q -8 . =20
o9 = = g,

O, (3.2.15)

This equation represents the turbulent motion in terms of correlation tensors

of second order, which is the same as obtained by Hinze [11].
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3.3. Discussion and Conclusion

The equation of motion for turbulent flow of fiber suspensions has been
derived by averaging procedure, which includes the effect of fiber
suspensions and the correlation between the pressure fluctuations and
velocity fluctuations at two points of the fluid flow. The discussion provides
the equation of fiber mean motion, as well as for the resulting turbulent fiber
motion. The interaction between the turbulent fluid and the fiber based on
the Reynolds number. The occurrence of the turbulent flow will depend on
the values of the non-dimensional number known as critical Reynolds
number, which varies from 2000 to 2300. The flow will be turbulent if the

Reynolds number (Re) is greater than the critical Reynolds number (&, ), so

that the turbulent flow occurs at high Reynolds number. If the Reynolds
number increases from 1600 to 2500 then the flow converts to turbulent flow
from laminar flow, the orientation distribution of fiber changes in a range. It

is clear that turbulence has effect on the orientation distribution of fiber.

Fiber suspensions in a turbulent fluid undergo mean motion due to the mean
fluid velocity and random motion due to the fluctuating component of fluid
velocity. The velocity of fiber fluctuates around the mean velocity of flow.
Fluctuation velocity of turbulence at the two points 4 and B of the flow
field leads to a weakening of the concentration of the fiber orientation
distribution on small angle. This concentration leads to be weaker and
orientation distribution of fiber becomes more uniform as Reynolds numbers
increases and flow fluctuation velocity strengths. The velocity of fiber has
the same fluctuation property as fluid velocity due to the strong following
ability of fiber. The fluctuation velocity of fiber on flow direction is more

energetic than that on lateral direction. As Reynolds number increases, the
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intensity of fluctuation velocity enhances, flow velocity gradient becomes
more irregular and orientation distribution of fiber becomes wider. Thus the
resulting equation demonstrates that as Reynolds number increases, the
fluctuation velocity of turbulence at two points in the flow field becomes to
be weaker, fiber orientation distribution tends to be more uniform and

fluctuation velocity of fluid flow strengthens.
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CHAPTER FOUR

Fiber Motion in Dusty Fluid Turbulent Flow
with Two-point Correlation

4.1. Introduction

The behavior of dust particles in a turbulent fluid depends on the
concentration of the particles and on the size of the particles with respect
to the scale of turbulent fluid. A fiber suspension in a turbulent flow
affect the transport, rheology and light scattering properties of
suspensions that are of great interest in many areas of science and
industry. At great concentration there is an interaction between the
particles through collisions and through the effects on the flow of the
fluid in the neighborhood of the particles. Hinze [11] obtained an
expression for correlation between pressure fluctuations and velocity
fluctuations in turbulent motion. Saffman [22] observed the effect of dust
particles of an incompressible flow and derived an equation that
described the motion of a fluid containing small dust particles. Anderson
[2] discussed on some observation of fiber suspensions in turbulent
motion. Batchelor [7] obtained the equations of motion of fiber
suspensions in the flow. Agermann and kohler [1] studied on rotational
and translational dispersion of fibers in turbulent flow by assuming the
dimension of fibers to be less than that of smallest eddies in the flow.
Kishore and Abhilasha Sinha [13] derived an analytical expression for the
rate of change of vorticity covariance in dusty fluid turbulent flow. Lin et
al [16] derived the new equation of turbulent fiber suspensions and its

solution and application to the pipe flow. The main aim of this study is to
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derive an equation for fiber motion in dusty fluid turbulent flow with the

aid of pressure-velocity correlation.
4.2. Mathematical Model of the Problem

Let us assume that the fluid is to be incompressible. The equation of
motion and continuity for fiber suspensions in turbulent flow of viscous

incompressible fluid are [16]

0 o 18 o%u, d
TR RTINS o N Y —l(IU.a,m )5,} (4.2.1)
a  ox, poax,  oxox;, poox|° 3

—L=0 (4.2.2)

In presence of dust particles the equations of motion are given by

éu, o 1@ Su KN Ky 0 1

5 +u_.’ gc_’, = _;a' +U@ +'?(vi u:)+';faxa‘|:a{,u’mg"m _5( q,'a.‘m)g.’m:l (423)
ou

= 4.2.4

= (4.2.4)
i WAL 5 Sy (4.2.5)

where u,(x,¢) is the fluid velocity components,
v,(x,1), the solid particles (dust) velocity components

plx,1), the unknown pressure field

4 : . ’ ..
i, = EWR‘ p,, the mass of a single spherical dust particles of radius R,

v =constant is the molecular kinematic viscosity

K = 6xR pv, the Stoke’s drag formula

N, the number density of dust particles
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i /, has dimension of frequency
P

4, , the apparent viscosity of fiber suspensions
p, the density of the fluid particle

1{ & 0 . :
£, =— G @ | is the tensor of strain rate
2\ ox, Ox

I,, the turbulent intensity of suspensions

a, and a, are the second and fourth-orientation tensors of the fiber

ijim

respectively

and t is the time.

We assume that the mean velocity U, is constant throughout the region

1

considered and independent of time and we put

(U,. =6;‘ +ui)A,

The value of each term can be obtained by taking the equations of motion

for u, at the point B and for , at the point 4.
The equation of motion for «, at the point 4, obtain from equation (4.2.3),

o 2
L/ 7 L R AP AL I
ot ox, Poliérs! Ox,0x,

Ey @ 1
+ T —|:a1k.’m Em — 5 (I:k Ay )ghn } (426)
p Ox, 3
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- - . M .
For an incompressible fluid [u, . J = 0 so that equation (4.2.6) can be
A

o,

written as

0 — 0 ou 1{ 0 o
L _— A k - —
ot (u} )A i [ ‘ +(uk )’{ﬁxk l(“; )A J{ul Ox;, L 0(8}6 ]APA +U[ dx, Ox, l (u’)A

1
|:a1kz'm g!m - 5 (Irka.’m )gfm } (427)

A

Multiply equation (4.2.7) by («,), we obtain

), 20+ B[ 2] o)+ [ 2] @)

-2 ) ) k) s

i o 1
+ £ [ng/‘ |:aik.’mg.’m - 5 (Iikan’m )g.’m il/‘ (uj )3 (42 8)

where (x, )jf can be treated as a constant in a differential process at the

point 4.

Similarly, the equation of motion for u, at the point 3,

o, [— ou : :
E" + (U;( +u, )5: = —%% + Uﬁ +f(vj ~u, ) +%axi[a"“’"8“” % (Ijka,,,, )5,”}

k

Since, for an incompressible fluid {ul *] =0 then the above equation
B

can be written as

201 4 2 ) __1fo o
ot (u-l )B i [Uk " (uk )BIaxk )B(uf)s +(”J axk J}i R p[axf Jﬁpﬁ ! U{ axkaxk ]H(MJ)B
+ f(v_,' = u_,' )b’ g Ef—[iJ |:a;k!mg.’m = %(Iﬂ( Ay )glm} (429)
B

p \ 9%, B
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Multiplying equation (4.2.9) by (x,),, we get

ox, Pl ox

I

+{a:;cjﬂ( w) (), + /v, —u,) () +;[§Jiajﬂms,m—%(I}ka,m)g,mL(uf)A (4.2.10)

where (1), can be treated as a constant in a differential process at the

0. 20, B0 2 b, ) 2 bt =] | e

point B.

Addition of the equations (4.2.8) and (4.2.10) give the result

2] o[ 2] e (2 ) [T ) e 1
() ][] e (2] 20|
Rt o ot P B e Y

Hell @ 1 0 1
+ jl:[égl(%mgm - glfkalmg[m L (uj )h' & [a—xk_l[ajk:mgzm ~3 1,8, jB(uﬂ)A} (4.2.11)

To find the relation of turbulent fiber motions in presence of dust

particles at the point Bto those at point 4, it will give no difference if we
take one point as the origin of 4 or B of the coordinate system. Let us

consider the point 4 as the origin and can write

Gp = (xk)B = (xk )A

Then we obtain, _a—J = O ( aJ .
ox, J, og, \ ox, B oS,

& o o
ox,0x, L - (6‘xk6xkl " 8c,8¢,
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Using the above relations and taking ensemble average on both sides,

equation (4.2.11) becomes

a
5 U )4 u‘." o [ !]/{( k}A[uj]gj

O ) =L 2 aﬁ_
aéfk Ic B\"//g p a_(;p/l u.; H+%j p.’f ur’ A_

o,

Hy O i |
p:r aé—k |:(a;kmg!m )A (u_} )H - 5 (I;k a{!ng,'nz )A (u_f )3 - (a_,'klmg,'m JB (u, )A it 5 U;I{ahngnn )B (u[ )A |
8’ NN )
2[) 8g aé‘ H; ¥ uj B +f[(v1 )A (u," )H —2(1’[‘, ),»1 (Hj )h‘ +(I,{'.)A (vj )H] (4212)
k k

The equation (4.2.12) represents the mean motion equation of fiber
suspensions in turbulent flow in presence of dust particles and the

pressure-velocity correlation.

It is noted that the coefficient of Uy has been vanished. The equation
(4.2.12) describes the motions of fiber suspensions in turbulent flow in
presence of dust particles, where the motions with respect to a coordinate

system moving with the mean velocityU,. Equation (4.2.12) contains the

double velocity correlation(x,), i, ),» double velocity correlation between

dust particles and the fluid such as (v,),{«,) , double correlations such

!

asp,u, ),» triple correlations such as ), @,) ), where all the terms
apart from one another. The correlations p,[u, ), and p,(,), form the

tensors of the first order, because pressure is a scalar quantity and the

triple correlations (), (u, iA(u! )B and (u, iﬂiuk iﬁiuj ), form the tensors of third

order.
We designate the first order correlations by (k,,) . second order

correlations by (Q ; )

AB

Therefore, we set (k,!ﬂ )M =(u iApB, (kM )A,H = pA(u_} IR,

and third order correlations by (s, 3 )A -
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( Sik ;) E j [ j i :
( ka) [ j ( j ( ]
(QLJ)A,B - (M,-L [HJ )B ’(Es.f)A,B = WVida\¥, Jy

and (G,J)A’B = (), v, ),

where the index p indicates the pressure and is not a dummy index like i

or j so that the summation convention does not apply to p.

Also the term {a &, iBiui )A and (7,a,z, iﬂiu,. iA form the correlations of

third order, we designate these by D, , and H, , respectively.
Thus we set (Dj.,jk )A,B = (4,)\ 0 amin )5

(Di.'c,j )A,B = (aik:’mgr’m )A( ; )B s

(Hf,‘jk )A,,:; = (ui L (Ijkaimg,’m )B’

(H.‘fc,j),;’g = [fkan’m‘c"t’m Y )

=

If we use the above relations of first, second and third order correlations

in equation (4.2.12) then we obtain

0 0
=0, il # ==

1
oc, aé’ k P

i K, J—FQU i 0O
§ P,J a j P aé’ka@( J
+f( =20, 14, ) /uf[ 3

1 0 1
[D!k,j __Hff(,_f}—i_—__(Df,_jk __Ht,ﬂf]il
P 3 9z, 3

3 8 1 8 ?
or, EQﬂ',; = Sik,j & Sf,kf A _iKﬂf L) K’H” +2v ° fo
ot~ o, ac, p\ 065, 7 98¢, 0C,0¢,

15y 20,46, 2L (0, Je3lens, -1, | @21)
k

where all the correlations refer to the two points 4 and B.
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Now for an isotropic turbulence of an incompressible flow, the double

pressure-velocity correlations are zero, that is
(kﬂv.f ),{,}g = 0’(ki.ﬂ )A,b’ = O

In an isotropic turbulence it follows from the condition of invariance

under reflection with respect to point 4,

(”1 )A (”k jh‘ (uj )5 = _(u'k jA [u,; ],1 (u; )B

or (Sf,kj )A,h‘ = _(Skf-’ )A,H

and hence (DU,( )A’B = —(Djk,,)A,H,(Hm )A‘B = *(H.m,r),w-

Thus equation (4.2.13) can be written as

2
EQ'J a (Sik.j + S’{f"): 2v d Qf.,} +f(Fu _QQL_: +Gi\j)

a = ag, 86,06,
7 0 1 o0
+ ?f{— = (B, +85.)% ga(ffw +H,,)| (42.14)
Th ! ), o ) and ) form th
e term Sus TSy )s f D, +D, ;) an H, ,+H,, ) form the
k k k

tensors of second order, we designate these by S ,.D, and H,,

U

respectively, that is

2 (Sik.f JrSm),D. f= i(D

S EANFY I

L=

+D,,)andH, = a—(H,,(’

Therefore equation (4.2.14) gives the result

9 o’
5 =Sy =

; Hy I
F . -20 +G )J-—|D ——H, | \42.15
aé,kaé,k Qf_‘,l +f( i) Ql.j+ 1,‘;) p[ Fif 3 J',j] ( )

This is the equation of motion of fiber suspensions in dusty fluid

turbulent flow in terms of correlation tensors of second order.
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In absence of dust particles, /=0 then equation (4.2.15) reduces to

0 & U 1
agl‘]ﬁ‘g.-,j zzuag ag Q,‘J_?{D,“,_EH,J} (42.16)
Yok

The equation (4.2.16) describes the turbulent motion of fiber suspensions

in terms of the correlation tensors of second order.
[f there are no effects of fiber suspension in the flow field then x, =0, so
that the equation (4.2.16) takes the form

62

v i 0, (4.2.17)

0
EQ’J 7Sr,j = 2

The equation (4.2.17) represents the turbulent motion in terms of

correlation tensors of second order which is the same as obtained by J. O.

Hinze.

4.3. Discussion and Conclusion

The equation of motion of fiber suspensions in dusty turbulent flow has
been presented by taking the average procedure, which includes the effect
of dust particles and the correlations between the pressure fluctuations
and velocity fluctuations at two points of the flow field. The discussion
provides the equation of fiber mean motion, as well as for the resulting
dusty turbulent fiber motion. The interaction between the dusty turbulent
fluid and the fiber based on the Reynolds number. The occurrence of the
turbulent flow will depend on the values of the non-dimensional number
known as critical Reynolds number, which varies from 2000 to 2300. The

flow will be turbulent if the Reynolds number (R,) is greater than the
critical Reynolds number(R,, ), so that the turbulent flow occurs at high

Reynolds number. If the Reynolds number increases from 1600 to 2500

then the flow converts to turbulent flow from laminar flow, the
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orientation distribution of fiber changes in a range. It is clear that
turbulence has effect on the orientation distribution of fiber and dust

particles.

Fiber suspensions in a turbulent fluid undergo mean motion due to the
mean fluid velocity and random motion due to the fluctuating component
of fluid velocity. The velocity of fiber fluctuates around the mean
velocity of flow. Under the influence of dust particles, fluctuation
velocity of turbulence at the two points 4 and B of the flow field leads to
a weakening of the concentration of the fiber orientation distribution on
small angle. In presence of dust particles this concentration leads to be
weaker and orientation distribution of fiber becomes more uniform as
Reynolds numbers increases. The velocity of fiber has the same
fluctuation property as fluid velocity due to the strong following ability of
fiber. The fluctuation velocity of fiber on flow direction is more energetic
than that on lateral direction. As Reynolds number increases, the intensity
of fluctuation velocity enhances, flow velocity gradient becomes more
irregular and orientation distribution of fiber becomes wider. Thus the
resulting equation demonstrates that as Reynolds number increases, in
presence of dust particles the fluctuation velocity of turbulence at two
points in the flow field becomes to be weaker and fiber orientation

distribution tends to be more uniform.
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CHAPTER FIVE

Motion of Fibers in Turbulent Flow
in a Rotating System

5.1. Introduction

The dynamics of fiber suspension depends heavily on the nature and
magnitude of the fiber-fiber interactions. Long range and short range
hydrodynamic interactions between fibers, as well as mechanical
interactions, may affect the fiber suspension flow and the spatial
distribution and orientation distribution of the fibers. When the motion is
referred to axis which rotates steadily with the bulk of the fluid, the
Coriolis force and centrifugal force must be supposed to act on the fluid.
The centrifugal force is equivalent in its effect to a contribution to the
pressure. The coriolis force due to rotation plays an important role in a
rotating system of turbulent flow, while the centrifugal force with the
potential is incorporated into the pressure. The fiber orientation is an
important physical quantity and do not only refer to rheology of fiber
suspensions. Hinze [11] derived an expression for correlation between
pressure fluctuations and velocity fluctuations in turbulent motion.
Anderson discussed some observation of fiber suspensions in turbulent
motion. Batchelor [7] obtained the equations of motion of fiber
suspensions in the flow. Kishore and Sarker [15] discussed the rate of
change of vorticity covariance of MHD turbulence in a rotating system.
Olson and Kerekes [18] obtained the translational and rotational
dispersion coefficients on the assumption that the relative velocity

between the particle and fluid could be neglected. Zhang and Lin [32]
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studied on the motion of particles in the turbulent pipe flow of fiber
suspensions. Lin et al [16] derived the new equation of turbulent fiber
suspensions and its solution and application to the pipe flow. The main
aim of this study is to derive an expression for turbulent fiber motion in a

rotating system with pressure-velocity correlation.

5.2. Mathematical model of the problem

The equation of motion and continuity for fiber suspensions in turbulent

flow of viscous incompressible fluid are [16]

ou, " ou, _ 7la_p+ oy, +£La{ammglm —l(fyafm k,“l (5.2.1)
j

0 ul/ —_— o
ot ox, p Ox, ox,0x, p Ox; 3

ou

b B 5.2.2

In a rotating system, the equation of motion (5.2.1) becomes

ou, 0 : .
= +u, d =—lﬁ‘z+u&—2(£2,u,m)sm9
ot ' ox, p Ox, Ox ;Ox

J

My O 1
2 T |:a{,ifm Epy — E (Ig,t yy, )Efm } (523)
/

p Ox;
where, u,, the fluid velocity of the particle

I . . .
P %|Q x ul stands for the generalized pressure inclusive of
fe,

potential centrifugal force,

~2(Qun,)sin€ = —2(5x;) is the Coriolis force in which Q, is the
angular velocity,

v,the kinematical viscosity of the suspending fluid;

nis the unit vector perpendicular to Q and u,

6 is the angle between Q and u;
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#,, the apparent viscosity of the suspensions

p, the density of the fluid particle

g.’m - 5

1( Ou, Ou,
+ —_—
ox,  Ox

] 1s the tensor of strain rate

1, the turbulent intensity of suspensions

a, and a, are the second and fourth-orientation tensors of the fiber

ijlm

respectively

and t is the time.

We assume that the mean velocity U, is constant throughout the region
considered and independent of time and we put

(U, :5; +”;)A»
(UJ 267‘,- +uf)3

The value of each term can be taken by using the equations of motion for

u, at the point B and for #, at the point4.

The equation of motion for w» at the point4, following

i

equation (5.2.3)takes the form

= du, 14 E ;
% + (Uk + U, )i' = ___p + U& = 2(Qruinr)8ln g
ot axk P ax; axk axk

H, O 1
+ o |:ai'kt‘m Em T3 ([:k ap, )gl'm jL (524)
P 0x, 3

ou
For an incompressible fluid (ui . : J =0,
xk y

so that we can add this term to the equation (5.2.4) and thus equation

(5.2.4) becomes
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0 — 0 ou 1{ @ o
— . U = ) L S
8t (ur )A i [ k (uk )AIaxk JA(H!)A + [ur axk ]A p(ax[ JA pA o U( axj(axf( J;; (ur)A

= 2(quini )A Siﬂ 6 * &[—ai] |:ar'fdmgim - % (]tka!m )‘g.’mjl (5 25)
A A

P\ OX

Multiply equation (5.2.5) by, ), , we obtain

) 2t s [ ] o)+ [ 2] )b,

axk

_ _l[gl ) +U[ o J (), (1), - 2Qun,), (), sino

Myl 0 1
+ ;/ (_J l:aikn‘m gt‘m - 5 (Ih’c‘ aim )‘;"n‘m :| (M_,- )h’ (526)
A A

ox,

where (1), is constant in a differential process at the point 4.

Similarly, the equation of motion for «, at the point B, becomes

2

1 op au,

)—" =————+0
X, p Ox, O,

H, O 1
+ -_f Iiajkfm gn’m B (Ijk a.’m )glm jl (527)

pa 3

E;_ + (6* T, — 2(Q.Iu.f??.f)5in 0

Oty

Since, for an incompressible fluid (uj ] =0 then the equation (5.2.7)
B

ox,

can be written as

o = ¢ ’
E(M_, )B B [Uk e (uk)h(gth’(uJ)B o (u‘j 62:: ]b’

1[0 d’
=——| — + U U - 21 u sin @
p[@xj}ﬁpﬁ (axkaxkla( J‘)jj ( J »'77!),1;

Hql © 1
+ —f( a ) lia_jkt'fﬂg.’m =l (]jk aim )g!m i| (5 28)
Xy i 3

P B
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Multiply equation (5.2.8) by(x,),, we get

(), 2o+ + ) (ijg(u, ik ol )B[ijﬂ )

a ox, s 8

P\ Ox 0x,0x,

J

= _l[i] Py (ui )/l TU i ] (u,: )B (”i)A - 2(911’{177.! )Ii (uf )A sind

7% 1
+ L _J [a]kl‘.’ngl‘m = 5 (],I'k ayy, )g.’m:l (Mi‘ )/1 (529)
B

P\ %, B

where (1), can be treated as a constant in a differential process at the

A

point B.

Addition of the equations (5.2.6) and (5.2.9) gives the result

g(u,.)A(u,)ﬁ{[il(u,)ﬁ(ukx(uf),,+[§k (u;L(uk)ﬂ(”Js}+5"Kaxij,.(”’)”(”f)“}

ox, .

ol @) (i) o]

~l@un),w,), +(@un,), @), sino + UK aj;ﬂ l " {axf;xk M(u, ),,),

-l @ 1 0 1
+ Ff ngl [ar’k.’mgfm T3 Lyay, g, l (u j )H 2 (gkl {ajkfmglm 3 1, L (ui )A:| (5.2.1 0)

To find the relation of turbulent fiber motions in a rotating frame at the

point Bto those at point 4, it will give no difference if we take one point

as the origin of 4 or B of the coordinate system.

Let us consider the point 4 as the origin and can write

S = (xk)H —(xk)A
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Then we obtain, L =—_§_, Bl s
o, ), o \ox

62 } [ 82 J 62
oxox, ), \omdx, ), 04,8,

Using the above relations in equation (5.2.10) and taking ensemble

average on both sides equation (5.2.10) reduces to

a
—a—l u; ) \U; i E rjA( k]A[uf]B

o<,

1 o —(—) %}
( I)A( ) ( ) pl: a_gp/l U ly +%j p/i(”,),;j|

OC)

ol (—T(—) %) 1
F 20 u:‘ A uj B ﬂf |:(ar'klmgn‘m )A (u.j );; - 5 (]:ka:'mg!m )A (ul; )};}

04,08, P 0¢,

AGum), \ G ) ]smeﬁ_a_i{(aﬁ,”ﬁn, ). _l(;j.ka,mg,m)ﬁ(u,)/,} (52.11)

P a
This equation represents the mean motion equation of turbulent fiber
suspensions in a rotating system with pressure-velocity correlation.
It is noted that the coefficient of U; has been vanished. The equation
(5.2.11) describes the turbulent fiber motions, where the motions with

respect to a coordinate system moving with the mean velocity U .
Equation (5.2.11) contains the double velocity correlation(x,), [, ), double

correlations such asp,(u,) , triple correlations such as ), w,),lu, ), ete.

where all the terms apart from one another. The correlations p,{u, ), and

p,(,), form the tensors of the first order, because pressure is a scalar

quantity and the triple correlations (x,),(x,),{u, ), and (u,),(u, ihiu_; ), form

the tensors of third order. We designate the first order correlations

by(kp,])/q,” , second order correlations by (0 ) and third order

AB

correlations by (s,m )A -
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Therefore, we set (k,,p)m = (u, iApB,(km)M = ,UAiuJ s
(Qi,.f )A,B - Eu, jA [u.f )B ?

(S,k”, )A)B =\ ) )\, ), (S,Jg.)/w =)\ )p\u; ),

where the index p indicates the pressure and is not a dummy index like i

or j so that the summation convention does not apply to p.

Also the term (Qu7,) Ai”; )H and (Q ST )Biu, )A form the tensors of second

order, we shall designate these by M, , and N, respectively;(a &, iBIu,. iA
and (/,a,¢, iﬁiu,. }A form third order correlation tensor, we designate these

by D, , and H, , respectively.

Thus we set, (M,,, )A 5 (Qun, )A (”j)w
(N',_f )A,B N [Q.fu.lﬁ.f ]B [ufj,q
(D,”,'k )A,B = [H,— jA [ajfn’mg.’m ]5"

(Dik’j)ﬁ,ﬁ = alk[mgim A u,’ B

(Hl"jk )A,H = (Mi )A (]j."( Qi€ im JH 2

(B, = Ut

[f we use the above relations of first, second and third order correlations

in equation (5.2.11) then we obtain

2
2o 05 0o A 0, L0 K,,p]m Ly
o ¢, a¢, p ,.

_Z(Ml,j +Nu)sin9+ﬁ|:— 2 (D:k.} _lH:k.;J+i[D:,1k _lHuk]:|

P 7/
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or,iQ,‘j o S, ; < 5 —i( £ K ,+i K ]+20 ¢ 0

ar = aé’k k.. + aé’k ik = p _a—a p.J aé,f np aé,kagk i
. H; 0O 1
a Q(M!,f + Ni,_! )SIH 0+ 7@{(‘01,;}'{ - D!’k,j )Jr 5 (ka,_j o H:,ﬂc )} (5212)

where all correlations refer to the two points 4 and B.
Now for an isotropic turbulence of an incompressible flow, the double

pressure-velocity correlations are zero, thatis (k,,) , =0.(k,, )A , =0

For an isotropic turbulence the condition of invariance under reflection

with respect to point 4,

@), @), w,), =)l ) (),
or, (Sr,kf )A,H = _(Sk,i,-' )A,H
so that (Ds )iy =-Dss),

(#,0) = ~H ), 5

Thus equation (5.2.12) can be written as

G, 0 0’ ;
a Qi‘f - agk (ng"‘».f + S‘,g.J)Z 2U a;k agk Q"J . 2(M’J + N’-J’ )Sln 9
PR 1 8
&+ 4[_;‘ - agk (Dﬂc,f + le,,;' )+ g agk (Hik\.f i H.l‘”‘-’ ):| (5.2‘ I 3)

The termai;(S,,(‘J+Sm), (3Z((D'fk"+D”"f) and 6(; (]ﬁ];k)_;-i_H_,k‘;) form the

tensors of second order, we designate these by S .D 6 and H

respectively, that is

S, = ai(s,.k,j +S,.);

k

0
R a(Dﬂw + Di»’w)’

65



and H,, = ai(Hl,fJ +H,,).

k

Also, the term (MU +N,,) form the second order tensor, say W,
that is
pVi.f = (Mt,_f s N!,_l )

Therefore equation (5.2.13) gives the result

0 i iy I
—Q,,-S,, =2v O, —2W sin@——[D,]——H”] (5.2.14)
6[ ¥ ¥ agkagk v 2/ p . 3 .

This is the resulting equation of the turbulent fiber motion in a rotating

system in terms of the correlation tensors of second order.

For non-rotating system, %, =0 so that equation (5.2.14) takes the form

o’ :
Lo ~8,=2 s D”—lH”J (5.2.15)
at v N agkagk 3. p 2. 3 L

The equation (5.2.15) describes the turbulent fiber motion for non-rotating
system in terms of the correlation tensors of second order.
If there are no effects of fiber suspension in the flow field then x, =0and

hence the equation (5.2.15) takes the form

3, i o

T~ 2 —Si.i
ot o¢ .8,

0, (5.2.16)

The equation (5.2.16) represents the turbulent motion in terms of

correlation tensors of second order which is the same as obtained by

Hinze [11].
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5.3. Discussion and conclusion

Fiber motion in turbulent flow in a rotating system has been obtained
from the equation of mean fiber motion by taking the average procedure
and including the effect of coriolis force due to rotation and fiber
suspensions with the correlations between the pressure fluctuations and
velocity fluctuations at two points of the fluid flow. Turbulent fiber
motion has been discussed here with the aid of pressure-velocity
correlation in a rotating system, where the Coriolis force and centrifugal
force act on the fluid. Therefore, the Coriolis force due to rotation plays
an important role in a rotating system of fluid dynamics. The discussion
provides the equation of mean turbulent motion of fiber suspensions due
to rotation. Fiber suspensions in a turbulent flow undergo a mean motion
due to the mean fluid velocity and a random motion due to the fluctuating
component of fluid velocity. Fiber suspensions in a turbulent flow
undergo mean motion due to the mean fluid velocity and random motion
due to the fluctuating component of fluid velocity. The velocity of fiber
fluctuates around the mean velocity of flow. Fluctuation velocity of
turbulence at the two points 4 and B of the flow field leads to a
weakening of the concentration of the fiber orientation distribution on
small angle. This concentration leads to be weaker and orientation
distribution of fiber becomes more uniform as Reynolds numbers

increases and flow fluctuation velocity strengthens.

Because the fluctuation velocity is isotropic, the translation and rotation
of fiber are also isotropic in turbulence. The distribution function of fiber
@ changes in the range from 0°to90". In a rotating system angular
velocity plays also a vital role in the flow field. Since the fluctuation of
flow velocity gradient is random and changes around zero, then the

angular velocity of fiber fluctuates around zero.
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If we take the mean square deviation of fiber angular velocity for three

components are as

where, Q..Q,.Q. are the mean angular velocity in x,y and zdirection in
a circular cross section, N is the number of fibers, then the mean square

deviation of fiber velocity increases with the increase of Re, which means

that the fluctuation of angular velocity enhances.

For a turbulent pipe flow, the turbulent intensity of velocity gradient on
flow direction is stronger than that on lateral direction. Hence, velocity
gradient on the flow direction leads to the angular velocity of fiber on
xand y direction, while velocity gradient on the lateral direction leads to
that on z direction. Thus the angular velocity of fiber on xand y direction
is wider than that on zdirection. The resulting equation states that as
Reynolds number increases and fluctuation velocity of fluid enhances, the
fluctuation of flow velocity gradient strengthens, which results in a

stronger rotation of fiber.
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CHAPTER SIX

Fiber Motion in Dusty Fluid Turbulent Flow
in a Rotating System

6.1. Introduction

The turbulent flow of fiber suspensions can be found in many areas of
industry, such as the production of the composite materials,
environmental engineering, chemical engineering, textile industry, paper
making and so on. The fiber-fluid interaction depends heavily on the
nature and magnitude of the interactions. Long range and short-range
hydrodynamic interactions between fibers, as well as mechanical
interactions, may affect the fiber suspension flow and the spatial
distribution and orientation distribution of the fibers. The behavior of
fiber suspensions in presence of dust particles in a turbulent fluid depends
on the concentration of the particles and on the size of the particles with
respect to the scale of turbulent fluid. The fluid must be affected when the
motion is referred to axis which rotates steadily with the bulk of the fluid,
the Coriolis force and centrifugal force. The Coriolis force due to rotation
plays an important role in a rotating system of turbulent flow, while the
centrifugal force with the potential is incorporated into the pressure.
Saffman [22] observed the effect of dust particles of an incompressible
flow and derived an equation that described the motion of a fluid
containing small dust particles. Kishore and Sarker [15] discussed the rate
of change of vorticity covariance of MHD turbulence in a rotating
system. Anderson [2] discussed on some observation of fiber suspensions

in turbulent motion. Batchelor [7] obtained the equations of motion of
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fiber suspensions in the flow. Hinze [11] obtained an expression for
correlation between pressure fluctuations and velocity fluctuations in
turbulent motion. Agermann and kohler [1] studied on rotational and
translational dispersion of fibers in turbulent flow by assuming the
dimension of fibers to be less than that of smallest eddies in the flow.
Olson and Kerekes [18] obtained the translational and rotational
dispersion coefficients on the assumption that the relative velocity
between the particle and fluid could be neglected. Zhao et al.[33]
discussed the complexity of fiber suspension results from the effects of
particle. Lin et al. [17] investigated the effect of fibers on the turbulent
property of flow, where the effect of the fluid on the fibers was neglected.
Zhang and Lin [32] studied on the motion of particles in the turbulent
pipe flow of fiber suspensions. Lin et al. [16] derived the new equation of
turbulent fiber suspensions and its solution. They also verified the
equations and their solutions by applying to a turbulent pipe flow. The
main aim of this study is to derive an equation of fiber motion for dusty
fluid turbulent flow in a rotating system with the pressure-velocity

correlation.

6.2. Mathematical Analysis

Let us assume that the fluid is to be incompressible. Accordingly, the

derivation are based on the following set of equations

: 148 3 N :
%+uj%=—gg+ui+—f<—(v,—u,)—2(Qiu,?7,)sm¢9
o o, p Ox, ox;0x, p

Hy O 1
+—fT|: lﬂmg.’m ——( yaz‘m )g,‘mj| (621)

3

L=0 (6.2.2)

70



av ou, K

E Vj az—;(u{. —V]) (623)

where u,(x,7), the fluid velocity components

v,(x.1), the solid particles (dust) velocity components

= —12 = 1 .
p=L24 E]Q X u| stands for the generalized pressure inclusive of
yoj

potential centrifugal force

v,the kinematical viscosity of the suspending fluid

~2(Qu,)sinf = —2(§>< ;) is the Coriolis force in which Q, is the
angular velocity,

nis the unit vector perpendicular to ©Q and x,

6 is the angle between Q and x

W= %ER‘ P, , the mass of a single spherical dust particles of radius R,

v =constant is the molecular kinematic viscosity
K =6xR pv, the Stoke’s drag formula

N, the number density of dust particles;

- /, has dimension of frequency

Yo,

i, , the apparent viscosity of the suspensions

p , the density of the fluid particle

1 : ;
&, =— % + Oty is the tensor of strain rate
2\ox. ox

1,, the turbulent intensity of fiber suspensions

a, and a, are the second and fourth-orientation tensors of the

yim

fiber respectively and ¢ is the time.
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We assume that the mean velocity U, is constant throughout the region

considered and independent of time and we put
U =T +u),.lU, =T, +u,),

The value of each term can be obtained by using the equations of motion

for u, at the point B and for u, at the point4.

The equation of motion for u, at the point 4, obtain from equation(6.2.1)

G =  Vow 1@ Pu, |
a—r{+(Uk +Hk)'é;: = _paf[*'vg)a_a?k-".f(v; —“.)“2(94”;7%)51“9

Hy O 1
i ?f 5__]:: |:afkl‘fl? gl‘m - g ([.‘k a.’m )gfm }

Uy

&,

For an incompressible fluid (ui J = 0 so that we can add this term
A

to the above equation and thus above equation becomes

2 ), [0+, (a%}( ), {u, ZTJ - —%%] Pt u{ — J (),

i

+f(v{ —u{.)A —2(Q,u177,)A sin @

H 5, 1
+ ok {—J |:a,.k,'m Em — 5 (Iika,'m )51,,, j| (624)
: A

p \ 0%,

Multiply equation (6.2.4) by (u, )B we obtain

) 20| 2| Gl ot ) o), =2 2] )

ax,

+ V[ ; J (Ui )A (uj )g * f(V,- -, ),; (“j )B N 2(91‘”&?7* )A (u-’ )B e

(@ 1
=+ _j(gkj“{kiaﬂkfm Em — g([ﬂ{ a,, )g,‘m }A (u.l )H (625)
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where, (u,) can be treated as a constant in a differential process at the

point A4.

Similarly, the equation of motion for «, at the point B,

ou, (= ou, 14 o%u .
;J ( )%”‘;%"'VW;{;&Jrf(vf_”.1)—2(Q.r”.:?71)5m9

My 0 :
e == |:a,‘k!m g!m = 5 (].Ik a'[”! )5""” :|

Since, for an incompressible fluid (uf %] =0 then the equation (6.2.5)
B

ax;

can be written as

0 == 0 0 1{ o &
2B Z) (2] -2 2] o5 o)

J

+flv,—u,), ~2Qun,) sin6+ #_f[_a_J l:a!k',mg',m - %(]fkalm )g,,,i (6.2.6)
B b

P\ 0%,

Multiplying equation (6.2.6) by (y,),, we get

) 20, B[ 2 b o) 2 bt =2 | e

2 p\ ox

+V( 62 ] (u,') (ul)A +«f(vf _uj) (ul')/i _2(qufr?") (ui)A sing
axoxy ). 7 ' ’ T

il B 1
e _/ (87} |:aﬂn’m glm - 5 (]jkafm )g.’m jl (ur )A (627)
k /g

P B

where(1,), can be treated as a constant in a differential process at the

point B.
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Addition of the equations (6.2.5) and (6.2.7) give the result

5 H%( e )ﬁ} ] %ng bl o[ 2) e )}
) s

+f[(v, —U, )A (UJ— )B +(V_, —uj) U, _I 2[Q u, 7] ( ) +(Q,f”,:77,: )H (u[)A JSing
+ %Kal(am,&m —BI,ka,,,,g,mL (u ’ )ﬁ + (al[a"km&m _—ZS—]"kalmgf"'L (u, ) A} (6.2.8)

To find the relation of turbulent fiber motions in presence of dust

particles in a rotating system at the point Bto those at point 4, it will give
no difference if we take one point as the origin of 4 or B of the

coordinate system. Let us consider the point 4 as the origin and can write

bk = (xk )B - (xk )A

Then we obtain, [ij . [iJ .. 2
ox, 4 og, \ ox, B o,

& &’ o
[axkaxk JA B [a’fkaxk JH ) 9¢,0¢,

Using the above relations in equation (6.2.8) and taking ensemble average

on both sides, then equation (6.2.8) becomes

o) 0 o
5(“1‘11 (u; );; ( fjA (uij( ;)B ( :jA (“kjfa( 1‘)}3 = |: EPA (u_; )H +BZ Pr (”: ),4
i i

0C, Gy

P Bg(j;gk (u—img +f[(v: )A (“j )3 _Z(ui)A (u,.’ )B ¥ (u’)A (v-’ )B]

—~ 2[(9,14,?}, Y, (”_f ), +Qumn,) (u;.)A Jsin 6 (6.2.9)
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This equation represents the equation of mean motion of turbulent fiber
suspensions in a rotating system under the influence of dust particles with

pressure-velocity correlation.

It is noted that the coefficient of U, has been vanished. The equation

(6.2.9) describes the turbulent fiber motion in a rotating system in

presence of dust particles, where the motions with respect to a coordinate

system moving with the mean velocity Us.

Equation (6.2.9) contains the double velocity correlation(x,),{u, ) , double

velocity correlation between dust particles and the fluid such as

(v, iA(u}. ), ,double correlations such aSpA(u_l IB, triple correlations such as
u,),(u,),\u,), where all the terms apart from one to another. The

correlations p,{u, ), and p,(w,), form the tensors of the first order, because

pressure is a scalar quantity and the triple correlations (,),(x, ) A(u_, ), and
(u,),(,),{u,), form the tensors of third order.

We shall designate the first order correlations by (k,,) , , second order

correlations by (0, )

|, and third order correlations by (s )

JlaB”

Therefore, we set (k) , =), p,.(,,), , = P00 ),
(5, ), = @), ), ),
(500),0 = @), (0,,), , =),
(£,), =001),.(6.,),., = @), 1),

where the index p indicates the pressure and is not a dummy index like i

or j so that the summation convention does not apply to p.
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Also the term (Qun,),lu, ), and Qum, iﬂiu, iA form the tensors of second

order, we shall designate these by M, and N, respectively; (a &, ) (, i/1
and (7,a,¢, iﬁiu,- )A form third order correlations, we designate these by

D . and H.

i, jk i, jk

Thus we set (M;,_, )A‘B = (Q,“IU:)A (”.; )b"
(Ni,,; )A,ﬁ = (Q.Iu.fnf ]H [ufjA
(Dik,‘,i ),1! B (aikimg im jA (”f )3 ¢
(H;._,k )A,B = (”f )A Uﬂcam,gm: )B J

(Hik)_; )A,B = ([fkalmglm jA (uj ]B :

If we use the above relations of first, second and third order correlations

respectively.

in equation (6.2.9) then we obtain

—QQ,,—iS,.M+iSW:—L -ﬂKMJri K, |+20 sl 0,
o~ of, 7 0L, - pL &, " of; ~ 0¢,0g,

+fF,-20,,+G,,)-2M,  +N,, Jsin@

, 1
+_,U_f —i[Dm:_lH.kjj-F a[Dwkﬁ_hr'ff"}
A A S AT A G

2
o Dg . Pg 50 aellale w2l lbgat og
e, el e g, 3¢,0¢,

+flF, -20,+G,,)-2M,, + N, )sin6

where all correlations refer to the two points 4 and B.



Now for an isotropic turbulence of an incompressible flow, the double

pressure-velocity correlations are zero, that is

(kﬂsf )A,B =0,
k.,),,=o.

In an isotropic turbulence it follows from the condition of invariance

under reflection with respect to point 4

quul'fBujH_ ukﬂu}flu‘ﬁ
or (Si,fq ),4)3 = ﬁ(sk‘.',’ )A,H ?
SO that (D,>_;;( )A,B = _(D_,"k,i)/l;jj ?

(Hf,.fk )A,h‘ = __(H.ik,f)/z,ﬁ i

Thus equation (6.2.10) reduces to

0 0 o’ ;
a 0r oc, (Sﬁf\f +Skf‘,f): 2v oL 3¢, th +j(FiJ =20, + G!.j)
~2(M,, +N, Jsin@+ %”'[ﬂ %(Bm sl I % 82 (m,, +H,)| (62.11)
k k
5} 0 0
The term (Sm,,, 8 ), f(D”"’ - ka,,,) and % (Hm,_:‘ +H m.) form the
k k k

tensors of second order, we shall designate these by S, .D, and H

respectively, that is

0
S, = o, (S,.k_j. +8,, ),
0
i = a_gk(Dﬂr,i + Dl'k,J)
and H , = a? (H,.k,‘,. +Hﬂ(’,)
k
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Also, the term (M,J - N,’J) form the second order tensor, say ¥, so that
W, =M, +N,)
Therefore equation (6.2.11) gives the result

0 o’

ot Qs ' 8606

Ql“} +-f(f?l‘j _2Q,_, +Gr.f)

!,
oW, sin® —‘—-”[D, - ,.] (6.2.12)
24 p s 3 2

This is the resulting equation of the turbulent fiber motion in a rotating
system under the influence of dust particles in terms of the correlation

tensors of second order.

In absence of dust particles, /=0 then equation (6.2.12) reduces to

o o ey 1
—0,, -8, =2 Q,,-2W, sind--L| D, —~H, (6.2.13)
at s 75 agkaévk sJ s p 5 3 st

This equation describes the turbulent fiber motion in a rotating system in
terms of the correlation tensors of second order which is the same as

obtained earlier.

For non-rotating system, I, , =0 so that equation (6.2.13) takes the form

0 0’ Hy I
5 Qs =S =20 oc.or Q. ——p—[D,,, 3H'*f) (6.2.14)
k k

This equation describes the turbulent fiber motion for non-rotating system
in terms of the correlation tensors of second order which is the same as
obtained earlier.

If there are no effects of fiber suspension in the flow field then x, =0so

that the equation (6.2.14) gives

82
0¢,0¢,

2
B RS 0., (6.2.15)
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This equation represents the turbulent motion in terms of correlation

tensors of second order which is the same as obtained by Hinze [11].

6.3. Discussion and Conclusion:

The equation of fiber motion for dusty fluid turbulent flow in a rotating
system has been derived by taking average procedure, which includes the
effect of dust particles, Coriolis force due to rotation and pressure-
velocity fluctuations at two points of the fluid flow. The discussion
provides the equation of fiber mean motion in a rotating system as well as
for the resulting dusty turbulent fiber motion. The occurrence of the
turbulent flow will depend on the values of the non-dimensional number
known as critical Reynolds number, which varies from 2000 to 2300. The

flow will be turbulent if the Reynolds number (R,) is greater than the
critical Reynolds number(R,, ), so that the turbulent flow occurs at high

Reynolds number. If the Reynolds number increases from 1600 to 2500
then the flow converts to turbulent flow from laminar flow, the
orientation distribution of fiber changes in a range. It is clear that
turbulence has effect on the orientation distribution of fiber and dust
particles in a rotating system. Since, the fluctuation velocity is isotropic,
the translation and rotation of fiber are also isotropic in turbulence. The
distribution function of fiber # changes in the range from 0°t090". In a
rotating system angular velocity plays also a vital role in the flow field.
Since the fluctuation of flow velocity gradient is random and changes
around zero, then the angular velocity of fiber fluctuates around zero. If
we take the mean square deviation of fiber angular velocity for three

components are as
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Q = n=1
X N 2
i > (Qny _ﬁy)z
Q,,r = n=l ,
: N
N _
e, -
Q. = :

N

where, Q.,Q,.Q. are the mean angular velocity in x,y and zdirection in

a circular cross section, N is the number of fibers, then the mean square

deviation of fiber velocity increases with the increase of R,, which means

that the fluctuation of angular velocity enhances.

For a turbulent pipe flow, the turbulent intensity of velocity gradient on
flow direction is stronger than that on lateral direction. Hence, velocity
gradient on the flow direction leads to the angular velocity of fiber on

xand y direction, while velocity gradient on the lateral direction leads to
that on z direction. Thus the angular velocity of fiber on xand y direction

is wider than that on z direction.

Fibers suspensions in a turbulent fluid undergo a mean motion due to the
mean fluid velocity and a random motion due to the fluctuating
component of fluid velocity. Fiber suspensions in a turbulent fluid
undergo mean motion due to the mean fluid velocity and random motion
due to the fluctuating component of fluid velocity. The velocity of fiber
fluctuates around the mean velocity of flow. Fluctuation velocity of
turbulence at the two points 4 and B of the flow field leads to a
weakening of the concentration of the fiber orientation distribution on

small angle. In presence of dust particles this concentration leads to be
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weaker and orientation distribution of fiber becomes more uniform as

Reynolds numbers increases.

In a rotating system, Coriolis force and centrifugal force act on the fluid.
For a non-rotating system, the velocity of fiber has the same fluctuation
property as fluid velocity due to the strong following ability of fiber. The
fluctuation velocity of fiber on flow direction is more energetic than that
on lateral direction. Thus the resulting equation demonstrates that in
presence of dust particles the fluctuation velocity gradient strengths with

the increases of Reynolds number due to rotation of fiber.

81



REFERENCES

1. Agermann, H. K. and Kohler, W. (1984): Physica A., 116A, 178.
2. Anderson, O.(1966): Svensk papperstidn., 69 (2), 23.

3. Bachelor, G. K. (1967): The theory of homogeneous turbulence,
Cambridge University Press, Cambridge.

4. Batchelor, G. K. (1950): Proc. Camb. Phil. Soc., London, A201, 405.
5. Batchelor, G. K. (1951): Proc. Camb. Phil. Soc., London, 47, 359.

6. Batchelor, G. K. (1967): An introduction to Fluid Dynamics,
Cambridge University Press, London.

7. Batchelor, G. K. (1971): Journal of Fluid Mechanics, 46, 813.

8. Bernstein, O. and Shapiro, M. (1994): Journal of Aerosol Science,
25(1), 113-136.

9. Call, C. J. and Kennedy, J. M. (1992): Int. J. Multiphase Flow, 18(6),
891.

10.Chandrasekhar, S. (1951): A theory of turbulence, Proc. Roy. Soc.,
London, A229, 1.

11.Chandrasekhar, S. (1951): Proc. Roy. Soc., London, A204, 435.
12.Chandrasekhar, S. (1955b): Proc. Roy. Soc., London, A233, 322.

13.Hinze, J. O. (1959): Turbulence (McGraw-Hill Book Co. New York),
pp 30.

14.Jian-Zhong, L.; Jun, L. and Wei-Feng, Z. (2005): Chinese Physics,
14(12), 2529.

15.Kallio, G. A. and Reeks, M. W. (1989): Int. J. Multiphase Flow,
15(3), 433.

16.Kishore, N. and Sinha, A. (1988): J. Astrophysics and space science,
146, 53.

82



17.Kishore, N. (1977): J. Scientific Research, BHU, 2, 163.

18.Kishore, N. and Sarker, M. S. A. (1990): Astrophysics and space
science; 172, 279.

19.Lin, J. Z.; Li, J.; Zhu, Li and Olson, J. A. (2005): Chinese Physics, 14,
1185.

20.Lin, J. Z.; Lin, J. and Shi, X. (2002): Appl. Math. Mech, 23, 542.
21.0lson, J. A. and Kerekes, R.J. (1998): J. Fluid Mech., 377, 47.

22.Pai, S. 1. (1957): Viscous Flow Theory-II (turbulent flow), D. Van
Nostrand Company Inc.

23.Pisman, L. M. and Nir, A. (1978): Journal of Fluid Mechanics, 84(1),
193.

24 Rathy, S. K. (1976): An introduction to fluid dynamics, Oxford &
IBH. Pule co., New Delhi, Bombay, Calcutta.

25.Reynolds, O. (1883): Phil. Trans. Roy. Soc., London, 174, 935.
26.Saffman, P. G. (1962): J. Fluid Mech. 13, 120.

27.Sarker, M. S. A. (1997): Journal of Energy Research, 21, 1399.
28.Shimomura, Y. (1986): J. Phys. Soc. Japan, 55, 3388.
29.Sinha, A. (1988): J. Scientific Research, BHU, 38, 7.
30.Snyder, W. H. and Lumley, J. L. (1971): J. Fluid Mech., 48, 41.
31.Taylor, G. I. (1921): Proc. Lond. Mathematics. Soc., 20, 196.
32.Taylor, G. 1. (1935): Proc. Roy. Soc., London, A521, 421.

33.Taylor, G. I. and Von karman, T. (1937): J. Roy. Aeronaut. Soc., 41,
1109.

34.Townsend, A. A. (1956): The Structure of Turbulent Shear Flow,
Cambridge University press.

35.Yuan, S. W. (1969): Foundation of Fluid Dynamics, Prentice-Hall of
Indian Private Ltd., New Delhi.

83



36.Zhang, W. F. and Lin, J. Z. (2004): Applied Mathematics and

Mechanics, 25: 741.

37.Zhao, H. P.; Liu, Z. Y. and Liu, Y.Y. (2001): Chin. Phys., 10, 35.

38.Zhao, X. P. and Gao, D. (2001): Acta Phys. Sin., 50, 1115.

84

: Uni\ efsety lefm
Rajshabi S Saion

Documematio )
Document NO.. Rvitaiontes
Batené-’-b)u-u-ummm



