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Abstract 

Almost all perturbation methods are developed to find periodic solutions of nonlinear 

system where transients are not considered. First Krylov and Bogoliubov introduced a 

perturbation method which is well known as “asymptotic averaging method” to discuss the 

transients in the second order autonomous systems with small nonlinearities. Later, this 

method has been amplified and justified by Bogoliubov and Mitropolskii. Mitropolskii has 

extended the method for slowly varying coefficients to determine the steady state periodic 

motions and transient process. In this dissertation, we have modified and extended the 

KBM method to investigate some fifth order and second order nonlinear systems in both 

cases with constant and slowly varying coefficients. 

At first, a fifth order damped nonlinear autonomous differential system is considered and a 

perturbation solution is developed. Then a procedure is developed for the same system 

with damped taking three of eigenvalues are real. After then we considered fifth order 

systems for over damped with small nonlinearity to obtain the transient response. We also 

developed a formula for fifth order critically damped nonlinear systems to control micro 

vibration, in micro and nano-technological industries that bring the system to equilibrium 

as quickly as possible without oscillating. After then we presented an analytical technique 

based on the extended Krylov-Bogoliubov-Mitropolskii method (by Popov) to determine 

approximate solutions of nonlinear differential systems whose coefficients change slowly 

and periodically with time. Furthermore, a non-autonomous case also investigated in 

which an external force acts in this system. At last, Krylov-Bogoliubov-Mitropolskii 

(KBM) method has been extended to certain damped-oscillatory nonlinear systems with 

varying coefficients. The implementations of the methods are illustrated by several 

examples. 
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Introduction 
 

Nonlinear physical science and nonlinear mathematics focuses on recent advances of 

fundamental theories and principles, analytical and symbolic approaches, as well as 

computational techniques with engineering applications. Almost all nonlinear phenomena 

can be modeled by dynamical system. Dynamical system although is very complicated to 

study but very interesting both mathematically and physically. It is complicated because of 

nonlinearity of the equation but physically interesting because we can easily visualize how 

changes occur due to the variation of the parameters. In nonlinear dynamical system, we 

mainly deal with nonlinear differential equations of the governed system. In this system, it 

is very difficult to get an exact solution other than some special cases. In general, 

approximate solutions are obvious to accept but attempt should be made to get more 

accurate solutions. Most of the nonlinear oscillating systems show complex behavior such 

as strong attractor’s chaos and bifurcations. Recently, people have been trying to solve 

various types of dynamical system by different methods and having to find the graphs for 

different parametric values in the equation, through which they can comment on the nature 

of the system.  

To find analytical approximate solutions to the nonlinear oscillator equations many 

methods are established by many researchers. The common methods for finding analytical 

approximate solutions to the nonlinear oscillator equations are the perturbation methods. 

The Lindstedt method [66], Poincare method [88], WKB method [18, 60, 126], Multi-

time-scale method [47, 74], the Krylov-Bogoliubov-Mitropolskii method [22, 63] etc. are 

some well known perturbation methods to obtain analytical approximate solutions of non-

linear systems. Among the above methods KBM method is the particularly convenient and 

is the widely used technique to obtain analytical approximate solution of non-linear 



Introduction 
 

2 
 

systems. Krylov and Bogoliubov [63] originally developed a perturbation method for 

obtaining periodic solutions that was amplified and justified by Bogoliubov and 

Mitropolskii [22] and later Popov [91] and Mendelson [69] extended the method for 

damped nonlinear oscillations. Murty [74] has presented a unified KBM method for 

solving second order nonlinear systems in the cases un-damped, under-damped and over-

damped system with constant coefficients. Sattar [99] studied a third order over damped 

nonlinear system and Bojadziev [24] studied the damped oscillations modeled by a three 

dimensional nonlinear system. Shamsul and Sattar [103] have presented a method for 

critically damped nonlinear systems and Islam and Akbar [55] obtained a new solution of 

more critically damped third order nonlinear systems. Shamsul and Sattar [109] presented 

a unified KBM method for solving third order nonlinear systems. Akbar et al. [4] has 

presented a method for solving the fourth order over damped nonlinear systems which is 

easier, simple and less laborious than Murty et al. [75]. Later, Akbar et al. [6] pull out the 

method presented in [4] for the damped oscillatory systems. Akbar [5] investigated the 

solutions of fourth order more critically damped differential systems. Rahman et al. [93] 

obtained fourth order nonlinear oscillatory systems when two of the eigenvalues are real 

and negative and the other two are complex numbers. Akbar and Siddique [9] presented a 

method to obtain solutions of fifth order weakly nonlinear oscillatory systems. 

The purpose of this dissertation is to introduce some new extended KBM method in 

nonlinear physics to explore different nonlinear dynamical systems in both case of 

oscillatory and non-oscillatory differential systems with constant and slowly varying 

coefficients. Some of their equivalent formulations along with various new 

characterizations and results concerning the existing ones are presented here. The 

implementation of the presented methods is illustrated by its applications via cubic 

nonlinear Duffing type oscillator. Figures are provided to compare validation and 
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usefulness of the solutions obtained by the presented method for different initial 

conditions with the corresponding numerical solutions obtained by the fourth order Runge- 

Kutta method. 

We aim to develop formulae based on KBM method of nonlinear dynamical systems with 

constant and slowly varying coefficients for both oscillators with and without damp. We 

also tried to extend some formulae on non-oscillatory systems in both over damp and 

critical damp cases. In our work, the materials have been divided into seven chapters, a 

brief scenario of which we present as follows.  

In the first chapter, we incorporates Gauge functions, Order symbols , Expansions of 

functions and their convergence conditions, some of the basic definitions, and some 

existing perturbation techniques for analytical approximate solutions to nonlinear 

dynamical systems whose results are available in given references.  

Our work starts from second chapter. In this chapter, we tried to find an analytical periodic 

solutions by constructing a formula for a fifth order Duffing type oscillatory systems in the 

presence of damping effects with small non-linearity, using a perturbation method. The 

implementation of the work is illustrated by giving a suitable example. We have also 

provided some figures to test the correctness of our results in contrast with corresponding 

numerical results and have computed the Pearson correlation between the results. 

In third chapter, we add a formula to explain a different type of natural damp oscillatory 

system. This investigation of hereditary, productive and projective formula is good 

extension to non linear physics. Here we solved an example to show that the proposed 

method is quite efficient. Accuracy of this formula is examined providing some figures of 

our results in contrast with corresponding numerical results and strongly correlated is 

corroborated by computing the Pearson correlation between the results.  
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A procedure is presented in the fourth chapter to solve a non oscillatory nonlinear 

differential systems which is over damped. We employed the proposed method to an 

example. Some figures are provided here and also correlation between our results and 

numerical results are calculated in this chapter. 

In fifth chapter, an analytical approximate procedure is investigated for obtaining the 

transient response of a system in the case of pair wise equal eigenvalues. We solved an 

example to show the implementations of our method. Three sets of results (depicted by 

figures) are given here between perturbation and corresponding numerical results to show 

reliability and advantages of the proposed technique. 

In the previous chapter, we established some procedure with classical KBM method but 

from this chapter we start with the differential equations with slowly varying coefficients. 

We have presented an analytical technique based on the extended Krylov-Bogoliubov-

Mitropolskii method (by Popov) [91] to determine approximate solutions of nonlinear 

differential systems whose coefficients change slowly and periodically with time. 

Furthermore, a non-autonomous case also explored in which an external force acts in this 

systems.  

In seventh chapter, we have given a procedure which is simpler than other classical KBM 

method to solve nonlinear damp oscillatory differential systems with slowly varying 

coefficients. To show the reliability and advantages of the proposed technique, we have 

applied it to an example. We also delivered three figures of our results comparing with 

corresponding numerical results to test exactitude of our solutions. 



Chapter-One 
 

Mathematical Preliminaries 
 

1.1 Introduction: 

Perturbation theory comprises mathematical methods that are used to find an approximate 

solution to a problem which cannot be solved exactly, by starting from the exact solution 

of a related problem. Perturbation theory is applicable if the problem at hand can be 

formulated by adding a small term to the mathematical description of the exactly solvable 

problem. 

Perturbation theory leads to an expression for the desired solution in terms of a formal 

power series ( i. e. asymptotic series) in some small parameter known as a perturbation 

series that quantifies the deviation from the exactly solvable problem. The leading term in 

this power series is the solution of the exactly solvable problem, while further terms 

describe the deviation in the solution, due to the deviation from the initial problem. 

Formally, we have for the approximation to the full solution x , a series in the small 

parameter (here called ε ), like the following: 

+++= 2
2

10 xxxx εε  

In this example, 0x  would be the known solution to the exactly solvable initial problem 

and 1x , ,2x   represent the higher-order terms which may be found iteratively by some 

systematic procedure. For small ε  these higher-order terms in the series become 

successively smaller. An approximate "perturbation solution" is obtained by truncating the 

series, usually by keeping only the first two terms, the initial solution and the "first-order" 

perturbation correction: 

10 xxx ε+=  
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Perturbation is important tool for describing nonlinear systems, as it turns out to be very 

difficult to find exact solutions to the Duffing equation, Schrödinger equation for 

Hamiltonians of even moderate complexity etc. The Hamiltonians to which we know exact 

solutions, such as the hydrogen atom, the quantum harmonic oscillator and the particle in a 

box and different oscillatory systems, are too idealized to adequately describe most 

systems. Using perturbation theory, we can use the known solutions of these simple 

Hamiltonians to generate solutions for a range of more complicated systems.  

In this chapter, we have describe asymptotic expansions of a function and when the 

expansion is uniformly convergent. Finally, we tried to explain some well-known exist 

perturbation techniques such as Van Der Pol’s [122] technique, Krylov-Bogoliubov [63] 

method and Krylov-Bogoliubov-Mitropolski (KBM) [22, 63] method.  

1.2 Gauge Functions and Order Symbols:  

Let )(εf be a function of the real parameterε  . If the limit of )(εf exists as 0→ε , then 

there are three possibilities 0)( →εf , ,)( Af →ε ∞→)(εf with .0 ∞<< A In the first 

and second cases we may express the rates at which 0)( →εf  and Af →)(ε  by 

comparing )(εf with known functions called Gauge Functions. The simplest and most 

useful gauge functions are members of the set ][ nε , where n is an integer. Other gauge 

functions often used are εε log,sin  etc. The behavior of a function )(εf  as ∞→ε , may 

be compared with a gauge function )(εg  by employing the Landu symbols: O and o. 

The symbol O: 

The symbol O (big ‘O’) is defined as follows: Let )(εf  be a function of the parameter ε  

and let )(εg  be a gauge function. Let there exists a positive number A independent of ε  

and 00 >ε ,  such that )()( εε gAf ≤  for all 0εε ≤          (1.1) 
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then )]([)( εε gOf =  as 0→ε             (1.2) 

The condition given in (1.2) may be replaced by  

∞<
→ )(

)(
0

lim
ε
ε

ε g
f

             (1.3) 

Let ),( εxf  be a function of the variable x as well as the parameter , and let ),( εxg be a 

gauge function. We write   )],([),( εε xgOxf =    as 0→ε          (1.4) 

if there exists a positive number A independent of ε  and 00 >ε such that 

),(),( εε xgAxf ≤  for all 0εε ≤            (1.5) 

If A and   0ε  are independent of x , the relationship is said to hold uniformly.               

The symbol o: 

The symbol o (small ‘o’) is defined as follows: Let )(εf  be a function of the parameter ε  

and let )(εg  be a gauge function. Let there exists an  positive 00 >ε  and let for every 

positive number δ  independent of ε , the following condition hold 

)()( εδε gf ≤  for all 0εε ≤            (1.6) 

then )]([)( εε gof =  as 0→ε             (1.7) 

The condition given in (1.7) may be replaced by  

0
)(
)(

0
lim

=
→ ε

ε
ε g

f              (1.8) 

Let ),( εxf  be a function of the variable x  as well as the parameter , and let ),( εxg be a 

gauge function. We write   )],([),( εε xgoxf =    as 0→ε                     (1.9) 

If for every positive numberδ , independent of ε  there exists an 0ε such that 

),(),( εδε xgxf ≤  for all 0εε ≤                     (1.10) 

If δ  and 0ε  are independent of x, the equation (1.10) is said to hold uniformly.    
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1.3. Asymptotic Expansions:   

Let )]([ εδ n be a sequence of functions such that )]([)( 1 εδεδ −= nn o as 0→ε              (1.11) 

Such a sequence is called an asymptotic sequence. 

Consider the series  ∑
∞

=0
)(

m
mma εδ                      (1.12) 

where  ma  are independent of   ε , and )]([ εδm  is an asymptotic sequence. We say that this 

expansion is an asymptotic expansion and denote it by 

 ∑
∞

=

≈
0

)(
m

mmay εδ as 0→ε                      (1.13) 

if and only if   )]([)(
1

0
εδεδ n

n

m
mm Oay += ∑

−

=

  as 0→ε                   (1.14) 

The expansion given by (1.13) may diverge. However, if the series is an asymptotic 

expansion, then although (1.13) may diverge, for fixed n the first n terms in the expansion 

can  represent y with an error that can be made arbitrarily small by taking ε  sufficiently 

small. Thus the error committed in truncating the series after n terms is numerically less 

than the first neglected term, namely the )1( +n th term. 

Given a function )(εy , the asymptotic expansion of )(εy as 0→ε , is not unique. In fact, 

y can be represented by an infinite number of asymptotic expansions because there exists 

an infinite number of asymptotic sequences that can be used. However, once we choose a 

particular asymptotic sequence )]([ εδm , the representation of y in terms of this sequence 

is unique. Thus, if )(εy is an asymptotic expansion, for the given sequence )]([ εδm , we 

have 

 ∑
∞

=

≈
0

)(
n

nnay εδ as 0→ε  

where the coefficient na are given uniquely by 
)(

)()(

0
lim

1

0

εδ

εδε

ε n

n

m
mm

n

ay
a

∑
−

=

−

→
=           (1.15)             
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1.4. Uniform Expansions:   

Let y be a function of the variable  x as well as the parameterε  and develop y in an 

asymptotic expansion in terms of the asymptotic sequence  )]([ εδm , we have                                                                              

 ∑
∞

=

≈
0

)()(),(
m

mm xaxy εδε as 0→ε                     (1.16) 

where the coefficients ma are the function of x only. This expansion is said to be uniformly 

valid if   )],()()(),(
1

0
εεδε xRxaxy n

n

m
mm += ∑

−

=

                              (1.17) 

where )]([),( εδε nn OxR =                       (1.18) 

Uniformly, for all x  of interest. If these conditions do not hold, then the expansion is said 

to be non-uniformly valid. For the expansion to be uniformly valid, the term 

)()( εδmm xa must be small compared with the preceding term )()( 11 εδ −− mm xa for each m .  

Since )]([)( 1 εδεδ −= mm o  as 0→ε  

We require that )(xam be no more singular than  )(1 xam− , for all values of x of interest , if 

the expansion is to be uniform. In practical terms, this means that  
)(

)(

1 xa
xa

m

m

−

  is bounded. 

Thus each term in the expansion given by (1.17).             

where ma  are independent of   ε , and )]([ εδm  is an asymptotic sequence. We say that this 

expansion is an asymptotic expansion and denote it by (1.16) must be a small correction to 

the preceding term irrespective of the value of x . 

For a real valued function )(xf of real variable x containing a number 0x in its domain of 

definition , there is a power series expansion of the form∑
∞

=

−
0

0 )(
j

j
j xxa                      (1.19) 
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With nonzero radius of convergence which provides a valid representation for f on I , the 

interval of convergence of the series if )(xf  has uniformly bowled derivatives of all 

orders at each point in I . 

Further, the power series is uniformly determined and  

 !
)( 0

)(

j
xf

a
j

j =
                                                                                                    (1.20) 

where )( 0
)( xf j denotes the j-th derivative of )(xf evaluated at mx . In this case the power 

series expansion (1.19) is called the Taylor series of the function )(xf about the point 

0x and is uniquely determined. Also, if 10 xx < , the closed interval ],[ 10 xx is in the domain 

of )(xf and )()1( xf n+ exists for all ],[ 10 xxx∈ , then the Taylor theorem states that there is 

an ),(~
10 xxx ∈ such that  

n
j

n

j

j

Rxx
j

xf
xf +−= ∑

=

)(
!

)(
)( 01

0

0
)(

1                     (1.21) 

where 1
01

)1(

)(
)!1(

)~( +
+

−
+

= n
n

n xx
n

xfR                      (1.22) 

Let B be the uniform bound for )()1( xf n+ on ),( 10 xx i.e, Bxf n ≤+ )()1( for all ),( 10 xxx∈ . 

Then from (1.22) 

1
01

)1(1
01

1
01

)1(

)(
)!1(

)~()(
)!1(

1)(
)!1(

)~( ++++
+

−
+

≤−
+

≤−
+

= nnnn
n

n xx
n

Bxfxx
n

xx
n

xfR  

and thus the error introduced by using only n terms of the Taylor series for )( 1xf  is of the 

same order of magnitude as the first term in the series which is neglected. 

Unfortunately, the theoretical and computational use of a Taylor series representation 

often posses serious problems. Suppose for example, that we are given the Taylor series 

for )(xf about 0x and a point 0xa > in both the domain D of f and the interval of 

convergence I of the power series. 
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Consider the computational problem: Using relation (1.21), compute )(af where n in 

(1.21) is an integer such that 1<<≤ εnR  . The constant 0>ε gives a bound on the 

allowable error. At the k-th stage of numerical procedure, we must thus compute a bound 

for .kR  If ε≤kR , inserting kn = in (1.21) and hence ε≤−−∑
=

j
k

j

j

xa
j

xf
af )(

!
)(

)( 0
0

0
)(

                   

   (1.23) 

On the other hand, if  ε>kR , we must compute at least one additional term in the Taylor 

series. If 0xa −  is large, it may be necessary to compute a large number of terms in the 

Taylor series before satisfying condition (1.23). This may not be practical even with the 

aid of a modern high speed computer. In such cases, it is natural to seek a different 

representation for )(xf which makes the computational problem more manageable. 

Often, such an alternative representation takes the form of an asymptotic expansion 

∑
∞

=0
)(

n
nn xa δ , where the function )(xg n are determined by the nature of the computational 

problem. 

1.5. General description of the perturbation method 

Perturbation method is a technique in which the solution can be expanded of a power 

series in a small parameter. This approximation method will be applied to obtain periodic 

solutions to second-order nonlinear differential equation of the form 

         ( ) 0, =++ yyFyy  ε                                                                                               (1.24) 

where over dot represent derivative with respect to t , ε  is a small parameter and F is 

assumed to be analytic nonlinear function of y and y . 

Let us assume that a periodic solution of the equation (1.24) can be written as a power 

series in terms of the small parameter ε  of the form 
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          ( ) ( ) ( ) ( ) ( )  +++++= tytytytyty n
nεεε 2

2
10                                    (1.25) 

where the coefficients of the powers of the parameter ε  are functions of the independent 

variable t. If ε  is sufficiently small, the series in equation (1.25) converges. The functions 

( )tyn  are found by substituting equation (1.25) into the equation (1.24) and equating the 

coefficients of like powers ofε . This leads to an infinite set of linear non-homogeneous 

differential equations that may be solved recursively. 

To illustrate this perturbation method, we consider a nonlinear differential equation of the 

form 

          02 =++ yyy ε , t > 0                                                                                            (1.26)      

with 10 ≤< ε . 

Consider initial condition 

         ( ) 0)0(,0 == yAy                                                                                                 (1.27) 

Substituting equation (1.25) into the equation (1.26), we get    

         

( ) ( )
( ) 02

2
2

10

2
2

102
2

10

=++++

+++++++





yyy

yyyyyy

εεε

εεεε

                                                (1.28) 

Simplifying the equation (1.28), we get 

     ( ) ( ) ( ) 02 1022
22

01100 =++++++++  yyyyyyyyy εε                                         (1.29) 

Since the equation (1.29) is a power series in ε  that is identically equal to zero, the 

coefficients of the various power of ε  must be zero. Thus we obtain 
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( )














110

1022

2
011

00

,,,

2

0

−=+

−=+
−=+

=+

nnn yyyFyy

yyyy
yyy

yy

                                                                          (1.30) 

where nF  is a polynomial in 110 ,,, −nyyy  . 

Under substitution the initial conditions (1.27) of the equation (1.25) translate into the 

following initial conditions on ( )tyn : 

          ( ) ( ) 0for0)0(,1for00,00 ≥=≥== kyiyAy ki                                                  (1.31) 

The genearal solution of the first equation of (1.27) is 

          ( ) tctcty sincos 210 +=                                                                                        (1.32) 

where 1c  and 2c  are arbitrary constants. 

Differentiating (1.32) with respect to t , we get 

       ( ) tctcty cossin 210 +−=                                                                                          (1.33) 

Using (1.31) in (1.32) and (1.33), we get 

        Ac =1  and 02 =c . 

Thus the solution for the first equations of (1.27) becomes 

        ( ) tAty cos0 =                                                                                                         (1.34) 

The equation for 1y  is 

          ( ) ( ) tAAtAyyty 2cos
22

cos
22

22
011 −−=−=−=+                                                     (1.35) 
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This is the linear second-order non-homogeneous differential equation with constant 

coefficients. So the complementary function of (1.35) is  

          ( ) tctcty c sincos 211 ′+′= ,  where 1c′  and 2c′  are arbitrary constants  

and the particular solution of this equation is 

        ( ) tAAty p 2cos
62

22

1 +−=  

Therefore the complete solution of (1.35) is 

        ( ) tAAtctcty 2cos
62

sincos
22

211 +−′+′=                                                               (1.36) 

Differentiating (1.36) with respect to t , we get 

         tAtctcty 2sin
3

cossin)(
2

211 −′+′−=                                                                      (1.37) 

The initial condition ( ) 001 =y  implies that 3/2
1 Ac =′  and ( ) 001 =y  implies that 02 =′c . 

Therefore the equation (1.36) becomes 

         ( ) tAAtAty 2cos
62

cos
3

222

1 +−=                                                                          (1.38) 

Thus to order ε , the solution of the equation (1.26) is 

         ( ) ( )3cos22cos
6

cos
2

−++= ttAtAty ε                                                              (1.39) 

1.6 . Secular Terms 

The calculation of section 1.5 has shown that we cannot try a solution of the form in 

equation (1.25) to obtain a periodic solution of the equation (1.24) if we remain only a 

finite number of terms. This is because the resulting approximation may be aperiodic. This 
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lack of periodically comes about because even if y is a periodic function of t, the retention 

of only a finite number of terms in equation (1.25) may give a functions that is not 

periodic. Such a situation occurs for the expansion of the periodic function ( )tε+1sin . 

That is 

         ( ) +−+=+ tttttt sin
2

cossin1sin
22εεε                                                  (1.40) 

From the right hand side of equation (1.40), we have seen that the retentions of a finite 

numbers of terms gives rise to be a function that not only a periodic but also unbounded as 

∞→t . 

Terms like tt n cos  or tt n sin  are called secular terms. Secular terms arise because the 

series solution given by equation (1.25) is non-uniformly valid. It is clear that the 

existence of such expressions, which become unbounded as ∞→t , destroys the 

periodicity of the expression, equation (1.25), when we keep only a finite number of its 

terms. In applications, calculations or time considerations usually force us to consider only 

a small numbers of terms. Therefore, to obtain a uniformly valid solution, an 

approximation is needed that will eliminates the secular terms.  

1.7.  Poincaré–Lindstedt method 

In perturbation theory, the Poincaré Lindstedt [66, 88] method or Lindstedt Poincaré 

method is a technique for uniformly approximating periodic solutions to ordinary 

differential equations, when regular perturbation approaches fail. The method removes 

secular terms when terms growing without bound and arising in the straightforward 

application of perturbation theory to weakly nonlinear problems with finite oscillatory 

solutions. The method is named after Henri Poincaré, and Anders Lindstedt. This 
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approximation method will be applied for obtaining uniformly valid solutions of the 

nonlinear differential equation  

        0,2

2

=





++

dt
dyyFy

dt
yd ε                                                                                       (1.41) 

where ε  is a small parameter and F is assumed to be analytic nonlinear function of y and 

dtdy / . 

The essence of the method is to introduce a transformation of the independent variable. 

This transformation will allow us to avoid the occurrence of the secular terms in the 

perturbation series solution of the equation (1.41). 

The fundamental idea comes from the astronomer Lindstedt and is based on the 

observation that one of the effects of the nonlinear term in equation (1.41) is to change the 

frequency of the system from the nonlinear value 10 =ω  to ( )εω . To account for this 

change in frequency, a new variable tωθ =  is introduced and both y and ω  are expanded 

in power series of ε  of the form 

         
( ) ( ) ( ) ( ) ( )
( ) 



++++=

+++++=

n
n

n
n yyyyy

ωεεωεω

θεθεθεθεθ

1

2
2

10

1

,
                           (1.42) 

where iω  are unknown constants. 

If we substitute (1.42) into (1.41) and equate the coefficient of the various powers of ε  

equal to zero, then we obtain the equations for ny : 

          

( )
( ) ( ) ( )( )

( )110110

1010010002
2
11122

000111

00

,,,;,,,

,,22
,2

0

−−=+

++−+−−=+

−−=+
=+

nnnn

yy

yyyyyyGyy

yyyyFyyyFyyyy
yyFyyy

yy













 ωωωω

ω

            (1.43) 
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where      

         2

2

,
θθ d

ydy
d
dyy ==   

and  

          ( ) ( ) ( ) ( )
y

yyFyyF
y

yyFyyF yy 





  ∂

∂
=

∂
∂

= 00
00

00
00

,,,,, . 

If ( )dtdyyFn /,  is a polynomial function of y and dy/dt, then nG  is also a polynomial 

function of its arguments. 

Now the periodically condition in the new variable can be written as  

         ( ) ( )πθθ 2+= yy .  

The corresponding condition for ( )θny  is  

        ( ) ( )πθθ 2+= nn yy  

If the equation (1.42) is to be a periodic solution of (1.41), then the right hand side of the 

equations in (1.43) must contain no multiple of either θsin  or θcos ; otherwise secular 

terms would arise. Thus to be able to choose any given  ( )θny  periodic involves satisfying 

conditions and consequently at each step of the procedure two free parameters are needed. 

It is easy to seen that in equation for ( )θny  one of the constant is nω . The only other place 

from where a second constant can come is from the initial conditions on 1−ny . This means 

that the initial conditions take of the following form as  

          
( )
( ) 00
0 2

2
10

=

+++=

θ

εε

d
dy

AAAy 

                                                                    (1.44) 
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where nA ’s are unknown constants. The periodicity requirement turns second equation in 

(1.43) into pair of equations linear in 1ω  and nonlinear in 0A . Likewise, it is easily to seen 

that for 1≥n , the periodicity condition on ( )θny  became a pair of linear equations for nω  

and 1−nA . This, at a given step in our calculations, we may determine simultaneously nω , 

1−nA  and ( )θny . In this way we can determine a series solution of the form given in (1.42) 

for in generally infinite many solutions of (1.41).  

To illustrate this method, consider the undamped, unforced nonlinear Duffing equation be 

           03
2

2

=++ yy
dt

yd ε                                                                                               (1.45) 

with initial conditions ( ) 10 =y  and ( ) 0/0 =dtdy . 

If we change to the new independent variable tωθ = and expand in power of ε , we 

obtain the following  inhomogeneous linear differential equations to solve: 

          ( ) ( ) 00,10,0 0000 ===+ yyyy                                                                  (1.46) 

         ( ) ( ) 000,2 11
3
00111 ==−−=+ yyyyyy  ω                                                     (1.47) 

 ( ) ( ) ( ) 000,322 221
2
002

2
11122 ==−+−−=+ yyyyyyyy  ωωω                                   (1.48) 

where we used 3yF = , 
θd

dyy =  and 2

2

θd
ydy = . This can be used directly of the equations 

in (1.43) to obtain the proceeding relation.  

Equation (1.46) can be solved easily, giving ( ) θθ cos0 =y . If we substitute ( ) θθ cos0 =y  

into the equation (1.47), the resulting equation becomes 

         θθω 3cos
4
1cos

4
32 111 −





 −=+ yy                                                              (1.49) 
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The secular term may be eliminated if the coefficient of θcos  is zero. This implies that 

8
3

1 =ω . Equation (1.49) can be solved subject to the initial conditions ( ) ( ) 000 11 == yy  . 

The solution is thus ( ) ( )θθθ 3coscos
32
1

1 +−=y . 

Again if we substitute ( )θ0y  , ( )θ1y  and 
8
3

1 =ω  into the equation (1.49), the resulting 

equation becomes 

        θθθω 5cos
128

33cos
16
3cos2

128
21

222 −+





 +=+ yy                                            (1.50) 

No secular term requires 
256
21

2 −=ω . 

The solution for ( )θ2y  subject to the initial conditions ( ) ( ) 000 22 == yy   is 

          ( ) ( )θθθθ 5cos3cos24cos23
1024

1
2 +−=y . 

Thus to the third approximation, the solution of the equation (1.41) is 

          
( ) ( )

( ) ( )3

2

5cos3cos24cos23
1024

3coscos
32

cos,

εθθθ

εθθεθθ

O

y

++−

×++−+=∈
                                                   (1.51) 

where tωθ =  and ( ) ( )3
2

256
21

8
1 εεεεω O+−+= . 

1.8 Van Der Pol’s Technique 

Van der Pol [122] devised a technique to investigate the periodic solutions of the equation  

         tkxxxx λλεεω cos)1( 22
0 +−=+                                                                         (1.52) 

where the over-dots denote differentiation with respect to t. In eq.(1.52) ε  is assumed to 

be small, and λ (the frequency of the excitation) is assumed to differ from 0ω (the natural 
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frequency) by a small quantity which is of the order of ε . Under these assumptions the 

solution of the eq.(1.52) is assumed to have the form  

ttattatx λλ sin)(cos)()( 21 +=                     (1.53) 

where )(1 ta  and )(2 ta  are assumed to be slowly varying functions of time; that is,  

)(εOai =  and )( 2εOai = . 

Differentiating (1.53) two times and substituting these into eq.(1.52), neglecting terms of 

order higher than  ε , keeping in mind that )(εOai =  while )( 2εOai = and equating the 

coefficients of tλcos  and tλsin on both sides, we obtain  

0)1(2 12

2
0

2

1 =−−
−

+ ρε
λ
ωλ aaa          (1.54) 

kaad ερε
λ
ωλ

=−−
−

− )1(2 21

2
0

2

2          (1.55)  

where 
44

2
2

2
1

2 aaa +
==ρ            (1.56) 

To analyze the periodic solutions of (1.52), we note that they correspond to the stationary 

solutions of  the form eq. (1.54) and eq. (1.55); i.e., they correspond to the solutions of  

0)1(2 01020 =−− ρσ aa           (1.57) 
kaa =−−− )1(2 02010 ρσ           (1.58)  

where σ  is the detuning factor, and it is given by 
ε
ωλ

σ 0−
=

      
(1.59) 

Terms of )( 2εO  in (1.54) and (1.55) have been neglected. By adding the squares of (1.57) 

and (1.58) and using (1.56), we obtain the frequency response equation  

4
])1(4[

2
2

0
2

0
k

=−+ ρσρ
          

(1.60) 

1.9. The Krylov-Bogoliubov Technique 

Here we discuss this technique in connection with the general weakly nonlinear second-

order equation of the form 
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),(2
0 xxfxx  εω =+                                                                                              (1.61) 

where ε  is a sufficiently small parameter so that the nonlinear term ),( xxf ε  is 

respectively small.  

When 0=ε , the equation reduces to linear, then the solution of (1.61) can be written as  

 )cos( 0 θω += tax                                                                              (1.62)        

 where a and θ  are constants. To determine an approximate solution to eq.(1.61) for ε  

small but different from zero. Krylov and Bogoliubov [63] assumed that the solution is 

still given by eq. (1.62) but with time varying a and θ , and subject to the condition  

θωφφω +=−= tax 00 ,sin           (1.63)  

If 0=ε  but sufficiently small, one might reasonably assume that the nonlinear equation 

(1.61) also has a solution of the form Eq. (1.62), provided that a  and θ  now be regarded 

as functions of t rather then constants. This is precisely what we shall do in applying the 

Krylov-Bogoliubov [63] Technique. That is, we assume a solution of Eq. (1.62) of the 

form   

 ))(cos()( 0 tttax θω +=           (1.64) 

Thus, this technique is similar to Vander Pol’s [122] technique which was discussed in the 

previous section. The only difference is in  the first term. 

Differentiating eq. (1.62) with respect to t gives φθφφω sincossin0
 aaax −+−= .                       

 Hence 0sincos =− φθφ  aa            (1.65)      

on account of (1.63).  Differentiating eq. (1.63) with respect to t, we obtain   

 φθωφωφω cossincos 00
2

0
 aaax −−−= . Substituting this expression into (1.61) 

and using (1.62), we obtain  

]sin,cos[cossin 000 φωφεφθωφω aafaa −−=+                                                (1.66) 
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Solving (1.65) and (1.66) for a  and θ  yields  

]sin,cos[sin 0
0

φωφφ
ω
ε aafa −−=

                    
(1.67) 

]sin,cos[cos 0
0

φωφφ
ω
εθ aaf

a
−−=

        
(1.68) 

Thus the original second-order differential equation (1.61) has been replaced by the two 

first-order differential equations (1.67) and (1.68) for the amplitude a and the phaseθ . 

To solve (1.67) and (1.68) , we note that the right-hand sides of these equations are 

periodic with respect to the variable φ , hence )(εOa =  and )(εθ O= . Thus a and θ  are 

slowly varying functions of time because  ε  is small; hence they change very little during 

the time 02 ωπ=T  (the period of the terms on the right-hand sides of these equations). 

Averaging (1.67) and (1.68) over the interval ],[ Ttt + , during which a and θ  can be taken 

to be constants on the right-hand side of these equations, we obtain  

)(
2 1

0

afa
ω
ε

−=
           

(1.69) 

)(
2 1

0

ag
aω
εθ −=

           
(1.70) 

where ∫ −=
T

dtaaf
T

af
0

01 ]sin,cos[sin2)( φωφφ  

         
∫ −=
π

φφωφφ
π

2

0
0 ]sin,cos[sin1 daaf

        
(1.71) 

∫ −=
π

φφωφφ
π

2

0
01 ]sin,cos[cos1)( daafag

        
(1.72) 

Note that 1f and  1g are simply two coefficients of the Fourier series expansion of f . 

1.9.1 Example:  

As an example, let us consider Duffing’s equation 0)0(,)0(,3 ==−=+ xaxxxx  ε  in 

which  

3),( xxxf −=             (1.73) 
Hence according to the above process, we have 
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  3
11 4

3)(,0)( aagaf −==
          

(1.74) 

Consequently, a = a constant from (1.69), and 0
0

2

8
3 θ

ω
εθ += ta ……………(1.75), from 

(1.70). Therefore, to first approximation  

)(]
8
31[cos 2

0

2

0 ε
ω

εω Otaau ++=
 
         (1.76) 

1.10. The Krylov-Bogoliubov-Mitropolski Technique 

In the course of refinement of the first approximation for ),(2
0 xxfxx  εω =+ ,            (1.77) 

Krylov and Bogoliubov [63] developed a technique for determining the solution to any 

approximation. This technique has been amplified and justified by Bogoliubov and 

Mitropolski [22] and extended to non-stationary vibrations by Mitropolski [73].They 

assumed an asymptotic expansion of the form 

 
)(),(cos 1

1

+

=

++= ∑ N
N

n
n

n Oaxax εψεψ
                   (1.78) 

where each nx is a periodic function of ψ with a period π2 , and a  and ψ are assumed to 

vary with time according to 

  
)()( 1

1

+

=

+=∑ N
N

n
n

n OaAa εε
          (1.79) 

and )()( 1

1
0

+

=

++= ∑ N
N

n
n

n Oa εψεωψ           (1.80) 

where the function nn Ax , and nψ are chosen such that (1.78) through  (1.80) satisfy the 

differential equation (1.63). In order to uniquely determine nA  and nψ , we require that no 

contains ψcos . The derivatives are transformed according to  

ψ
ψ

∂
∂

+
∂
∂

=
dt

d
adt

da
dt
d

 

ψ
ψ

ψ
ψ

ψ
ψ

∂
∂

+
∂
∂







+

∂∂
∂

+
∂
∂

+
∂
∂







= 2

2

2

222

2

2

2

22

2

2

2
dt
d

dt
d

adt
d

dt
da

adt
ad

adt
da

dt
d
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)( 31
1

2

1
2

2

εεε O
da
dAA

da
dA

dt
da

dt
da

da
d

dt
da

dt
da

dt
d

dt
ad n

N

n

n +==





=






= ∑

=  

)( 31
1

2

1
2

2

εψεψεψψψ O
da

dA
da

d
dt
da

dt
d

da
d

dt
da

dt
d

dt
d

dt
d n

N

n

n +==





=






= ∑

=  
For convenience the calculation is omitted.    

1.11 Conclusion 

We have discussed some method. Among these the KBM is the most accurate and suitable 

for approximate solutions of nonlinear problems. Thus we would like to use this method 

for my dissertation.  
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Chapter-Two 

Perturbation Solutions for Fifth Order Nonlinear System with Damping 

Effects 

 
2.1 Introduction 

The world around us is inherently nonlinear and nonlinear differential equations are 

widely used as models to describe the complex physical phenomena. The approximate 

solutions of nonlinear differential equations play a vital role in nonlinear science and 

engineering. Nonlinear Physical Science focuses on recent advances of fundamental 

theories and principles, analytical and symbolic approaches, as well as computational 

techniques with engineering applications. Topics of interest in nonlinear physical Science 

include but are not limited to new findings and discoveries in nonlinear physics and 

mathematics, nonlinearity, complexity and mathematical structures in nonlinear physics, 

nonlinear phenomena and observations in nature and engineering, lie group analysis, 

stability, bifurcation, chaos and fractals in physical science and engineering, nonlinear 

chemical and biological physics. 

We investigate the master nonlinear fifth order partial differential equation that governs 

the evolution of shear-free spherically symmetric charged fluids. By making 

dimensionless the fifth order partial differential equations can be converted to fifth order 

ordinary differential equations. Some of the converted equations reduce in the forms of 

nonlinear differential equation with damping effects. The common methods for finding 

analytical approximate solutions to these nonlinear oscillator equations are the 

perturbation methods. The Krylov-Bogoliubov-Mitropolskii [22, 63] etc. are well known 

perturbation methods to obtain analytical approximate solutions of non-linear systems and 
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is the widely used technique to obtain analytical approximate solution of non-linear 

systems with damping effects. Krylov and Bogoliubov (KB) [63] originally developed a 

perturbation method for obtaining periodic solutions was amplified and justified by 

Bogoliubov and Mitropolskii [22] and the KB method has been extended by Kruskal [61]. 

Later Popov [91] and Mendelson [69] extended the method for damped nonlinear 

oscillations. Volosov [123, 124], Zebreiko [130] also obtained higher order 

approximations. Most probably, Osiniskii [79] first extended the KBM method to a third 

order nonlinear differential equation. Making use of KBM method, Bojadziev [25] has 

invastigated nonlinear damped oscillatory systems with small time lag. Bojadziev [30] has 

also studied the damped forced nonlinear vibrations with small time delay. Bojadziev [31] 

applied the Krylov- Bogoliubov-Mitropolskii method to models of Population dynamics. 

Bojadziev and Chan [32] has found asymptotic solutions of differential equations with 

delay in population dynamics. Bojadziev [33] presented a damped oscillating processes in 

Biological and Biochemical systems. Shamsul and Sattar [109] presented a unified KBM 

method for solving third order nonlinear systems. Later, Akbar et al. [6] extended the 

method presented in [4] for the damped oscillatory systems. Akbar and Siddique [9] 

presented a method to obtain solutions of fifth order weakly nonlinear oscillatory systems. 

In this chapter, we employ the perturbation method to obtain analytical approximate 

solutions. Even, many engineering problems and physical phenomena arise in the nature 

of fifth degrees of freedom are oscillatory and their governing equations are fifth order 

nonlinear differential systems with damping effects. For this reason, we have extended the 

KBM method, an approximate technique to obtain the analytical solutions of fifth order 

nonlinear oscillatory systems with damping effects. Figures are provided to compare the 

solutions obtained by the presented method with the corresponding numerical solutions 

obtained by the fourth order Runge- Kutta method. 
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2.2. The Method 

Since by making dimensionless the fifth order partial differential equations can be 

converted to fifth order ordinary differential equations or in the couple system of 

pendulum lead to higher degrees of freedom, let us consider a governing equation of a 

fifth order nonlinear damped oscillatory system, 

∑
=

−=++
4

1
55

5

),(
i

i

i

i txfxc
dt

xdc
dt

xd ε
                     

(2.1) 

where ε  is a small parameter, ),( txf  is the given nonlinear function, 5,..,2,1; =ici  are 

the characteristic parameters of the system defined by ∑
=

=
5

1
1

i
ic λ , ∑

≠
=

=
5

1,
2

ji
ji

jic λλ , 

∑
≠≠
=

=
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1,,
3

kji
kji

kjic λλλ , ∑
≠≠≠
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=
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lkji
lkji
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and ∏
=

=
5

1
5

i
ic λ
 
where 54321 ,,,, λλλλλ −−−−−  are the 

eigenvalues of the unperturbed equation of (2.1). 

When 0=ε  i.e, the equation (2.1) lead to linear or unperturbed equation and then the 

solution is  

,)0,(
5

1
0,∑=

=

−

j

t
j

jeatx λ

                                                                                             
(2.2) 

where 5....,2,1,0, =ja j  are arbitrary constants. 

When 0≠ε , the powerful  perturbation approximant solutions will be investigated in 

which amplitude and phase are not arbitrary but time varying functions. First, we will 

discuss the construction of approximants for functions and polynomials. Next, we will 

explore the implementation of approximants with initial value problems. Polynomials are 

frequently used to approximate power series. However, polynomials tend to exhibit 

oscillations that may produce an approximation error bounds and this makes the 

singularities. To overcome these difficulties, the Taylor series is best manipulated by our 
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certain approximants for approximations. We seek a solution in accordance with Shamsul 

[108] or Murty and Deekshatulu [76] or the KBM [22, 63] method, of the form 

 ++= −

=
∑ ),,,,()(),( 5211

5

1
taaauetatx t

j
j

j εε λ

                  
(2.3)  

where each 5,,2,1; =ja j , satisfies the equations 

 += ),,,,(
)(

521 taaaA
dt

tda
j

j ε                      (2.4) 
Confining our concentration to the first some terms m,,2,1   in the series expansions of 

equations (2.3) and (2.4), we calculate the functions 1u and 5,,2,1; =jAj  such that 

5,,2,1; =ja j , appearing in eq. (2.3) and eq. (2.4), satisfy the differential equation (2.1) 

with an accuracy of 1+mε . Though the solution can be obtained up to the accuracy of any 

order of approximation, but to avoid the rapidly-growing algebraic complexity for the 

derivation, the solution, in general, confining to first order [74]. In order to determine 

these unknown functions, it is assumed that the function 1u exclude fundamental terms 

which are included in the series expansion (2.3) at order 0ε . 

Differentiating ),( εtx five times with respect to t  and substituting ),( εtx and their 

derivatives in the eq. (2.1), using the relations in eq. (2.4) and equating the coefficients 

ofε , we obtain 
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where )( 0
)0( xff = and t

j
j

jetax λ−

=
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5

1
0 )(  

The function )0(f can be expanded in a Taylor series (see Murty and Deekshatulu [76] for 

details) as: 
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To obtain the solution of eq.(2.1), it has been proposed that 1u exclude the fundamental 

terms. To do this, we have to separated the eq.(2.5) into six equations for unknown 

functions 1u  and 5,.....,2,1; =jAj ( see [108] for details ). 

Substituting the functional values and equating the coefficients of 5,...,2,1; =− je tjλ , we 

obtain 
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where 1u  avoid the terms for  43214321 ,,1,1 mmmmmmmm ==±=±= . 

Solving Eq. (2.6) to Eq. (2.11), we obtain 521 ,...,, AAA   and 1u .    

For the suitable form of the result we can transform equation (2.3) to the exact formal 

KBM      [4, 6, 9, 108] solution by inserting 1

21
ϕieaa = ,  1

22
ϕieaa −=  , 2

23
ϕieba =   and 

2

24
ϕieba −= . Herein ba , are amplitudes and 1ϕ , 2ϕ are phase variables which are time 

dependent i. e, slowly varying function of time. 
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2.3. Example 

As an example of the above procedure, we are going to consider the Duffing type equation 

of fifth order  

∑
=

−=++
4
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3
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                                                                     (2.12)          
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Thus the equations (2.6) to (2.11) takes the form 
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and 
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         (2.19)                                                                                                                                                                                                  
Again solving the equations (2.14) to (2.18) and inserting 111 ωλ ik −= , 112 ωλ ik += , 

223 ωλ ik −= , 224 ωλ ik +=  and ξλ =5 , we obtain 
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Now, inserting 5,..,2,1; =jAj in the equations (2.4) and using  



Chapter-Two: Perturbation Solutions for Fifth Order Nonlinear System with Damping Effects 
 

32 
 

caandbeabeaaeaaea iiii ===== −−
54321

2211

2
1,

2
1,

2
1,

2
1 ϕϕϕϕ , to convert 

actual form of KBM solution, we obtain the differential equations for amplitudes and 

phases are   
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Equations   (2.20) are nonlinear and have no exact solutions. We can solve (2.20) 

considering 1,,, ϕcba and 2ϕ are constants in the right-hand sides of (2.20) (as ε  is small) 

dt
d
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dt
da 1,,, ϕ  and 

dt
d 2ϕ are slowly varying function of time. This assumption was used 

by Murty et al. [75, 76] to solve the similar nonlinear equations.  The solution is thus 
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Here, we neglect the calculation of 1u for small contribution in our solutions. 

Finally, we obtain the solution in the form 

tcetbtatx ξϕωϕω −++++= )cos()cos()( 2211 .                             (2.22) 

Here eq. (2.22) is the first order approximate solution of eq. (2.12), where 1,,, ϕcba and 

2ϕ  are given by the eq. (2.21). 
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2.4 . Results and Discussions 

On the basis of KBM method, an approximate solution of fifth order time dependent 

damped nonlinear system with constant has been found. Theoretically, the solution can be 

obtained up to the accuracy of any order of approximation. Here we obtained the 

approximate solution to the first order of accuracy.  In contrast with the numerical 

solution, one can easily verify accuracy of approximate solution obtained by a certain 

perturbation method. We have compared our obtained results (by perturbation) to those 

obtained by the fourth order Runge-Kutta method for different sets of initial conditions as 

well as different sets of eigenvalues in this chapter. We have also computed the Pearson 

correlation between the perturbation results and the corresponding numerical results. From 

provided the figures, we observed that our perturbation solution agree with numerical 

results nicely for different initial conditions.  

At first, for 005.0,35.1,0.2,25.0,15.0 2121 ===== ξωωkk   and 1.0=ε , ),( εtx  has 

been computed (2.22), in which 1,,, ϕcba and 2ϕ by the equation (2.21) with initial 

conditions  

23
2,0075.0,08.0,05.0 0,20,1000

πϕπϕ ===== andcba  

 i.e.,  [ ,.17941340)0(,-0.190893)0(,0175.0)0( 2

2

==−=
dt
xd

dt
dxx  

 -0.783315)0(,.4722520)0(
4

4

3

3

==
dt
xd

dt
xd ] 

Then the perturbation results obtained by the solution (2.22) and the corresponding 

numerical results obtained by a fourth order Runge-Kutta method with a small time 

increment .05, are plotted (Fig. 2.1). The correlation between the results is 0.999999995. 
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 Fig.2.1. Perturbation solution plotted by solid line and numerical solution plotted dotted line. 

Secondly, for 25.0,0.2,89.1,35.0,25.0 2121 ===== ξωωkk   and 1.0=ε , ),( εtx has 

been computed (2.22), in which 21,,, ϕϕ andcba by the equation (2.21)with initial 

conditions  

32
,4.0,35.0,25.0 0,20,1000

πϕπϕ ===== andcba  

    [i.e., ,.0465130)0(,-1.246161)0(,.5750)0( 2

2

===
dt
xd

dt
dxx  

 -3.011512)0(,4.549864)0(
4

4

3

3

==
dt
xd

dt
xd ] 

Then the perturbation results obtained by the solution (2.22) and the corresponding 

numerical results obtained by a fourth order Runge-Kutta method with a small time 

increment .05, are plotted (Fig. 2.2). The correlation between the results is 0.9999975. 
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 Fig. 2.2. Perturbation solution plotted by solid line and numerical solution plotted dotted line. 

Finally, for 4.0,3,2,2.0,5.0 2121 ===== ξωωkk   and 1.0=ε , ),( εtx has been 

computed (2.22), in which 21,,, ϕϕ andcba by the equation (2.21)with initial conditions  

12.30.0,36.0,25.0,44.0 0,20,1000 ===== ϕϕ andcba  

[ i.e., ,.0334320)0(,-.323975)0(,.5500580)0( 2

2

===
dt
xd

dt
dxx  

-1.60889)0(,.814190)0(
4

4

3

3

==
dt
xd

dt
xd ] 

Then the perturbation results obtained by the solution (2.22) and the corresponding 

numerical results obtained by a fourth order Runge-Kutta method with a small time 

increment .05, are plotted (Fig. 2.3). The correlation between the results is 0.999999673. 
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Fig. 2.3. Perturbation solution plotted by solid line and numerical solution plotted dotted line. 

2.5. Conclusion 

In this chapter, a procedure is founded to obtain the analytical approximate solution of 

fifth order nonlinear differential systems based on the KBM [22, 63] method. The 

correlation has been calculated between the results obtained by the perturbation solution 

and the fourth order Runge-Kutta method of the same problem. The results obtained for 

different initial conditions, show a good coincidence with corresponding numerical results 

and they are strongly correlated. 
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 Chapter-Three  

Perturbation Solutions for Fifth Order Damped-oscillatory Nonlinear 

Systems with Only One Pair of Eigen Values are Complex 

3.1. Introduction 

Oscillation is the rhythmic variation, usually in time, of some measure about a central 

value (often a point of equilibrium) or between two or more different states. Common 

examples include a swinging pendulum and AC power. The term vibration is sometimes 

used more narrowly to mean a mechanical oscillation but sometimes is used to be 

synonymous with "oscillation" which arise not only in physical systems but also in 

biological systems and in human society. The harmonic oscillator and the systems it 

models have a single degree of freedom but more complicated systems have more degrees 

of freedom, for example two masses and three springs (each mass being attached to fixed 

points and to each other). In such cases, the behavior of each variable influences that of 

the others and leads to a coupling of the oscillations of the individual degrees of freedom. 

This phenomenon was first observed by Christiaan Huygens in 1665[123]. The apparent 

motions of the compound oscillations normally come out very complicated but a more 

economic, computationally simpler and conceptually deeper description is given by 

resolving the motion into normal modes. More special cases are the coupled oscillators 

where the energy alternates between two forms of oscillation.  

As the number of degrees of freedom becomes arbitrarily large, a system approaches 

continuity; examples include a string or the surface of a body of water. Such systems have 

(in the classical limit) an infinite number of normal modes and their oscillations occur in 

the form of waves that can characteristically propagate. Most of their dynamical equations 

are nonlinear with higher degrees of freedom. 

http://www.answers.com/topic/time
http://www.answers.com/topic/mechanical-equilibrium
http://www.answers.com/topic/pendulum
http://www.answers.com/topic/alternating-current
http://www.answers.com/topic/vibration-4
http://www.answers.com/topic/ecology-1
http://www.answers.com/topic/society
http://www.answers.com/topic/degrees-of-freedom-physics-and-chemistry
http://www.answers.com/topic/odd-sympathy
http://www.answers.com/topic/christiaan-huygens
http://www.answers.com/topic/normal-mode
http://www.answers.com/topic/continuum-mechanics
http://www.answers.com/topic/water
http://www.answers.com/topic/classical-limit
http://www.answers.com/topic/infinity
http://www.answers.com/topic/wave
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In the last few decades, many efficient and powerful methods have been developed by a 

diverse group of researchers to construct the analytical approximate solutions of physically 

important non-linear equations arise in many phenomena in physics and engineering 

branches. Among the methods used to study nonlinear systems with a small nonlinearity, 

the Krylov-Bogoliubov-Mitropolskii (KBM) (Bogoliubov and Mitropolskii [22], Krylov 

and Bogoliubov, [63] method is a vastly used technique to investigate an analytical 

approximate solutions. However, the process was devised for obtaining the periodic 

solutions of second order nonlinear differential systems with small nonlinearities, Popov 

[91] extended the method to explore the solutions of damped oscillatory nonlinear 

systems. Owing to physical significance, Mendelson [69] rediscovered Popov’s results. 

Murty [74] offered a unified KBM method for obtaining approximate solutions of second 

order nonlinear systems, which covers the un-damped, damped and over-damped cases. 

Bojadziev and Hung [35] employed the KBM method to search approximate solutions of 

damped oscillations modeled by a 3-dimensional time dependent system. Shamsul [111] 

proposed a new perturbation technique to find the analytical approximate solution of 

nonlinear systems with large damping. Shamsul and Sattar [109] presented a unified 

method for obtaining solution of third order damped oscillatory and over-damped 

nonlinear systems. Later, Akbar et al. [6] extended the technique for damped oscillatory 

nonlinear systems in the case when the four eigen-values are complex conjugates. Rahman 

et al. [93] investigated solution of fourth order nonlinear systems in which two of the 

eigen-values are real, negative and the rest of the two are complex conjugates. Recently, 

Akbar and Siddique [9] investigate a technique on the basis of KBM Method to obtain the 

analytical approximate solutions of fifth-order weakly nonlinear oscillatory systems by 

extending the KBM method. Siddique and Akbar [115] also investigated an asymptotic 
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solution of fifth-order over-damped symmetrical nonlinear system based on the KBM 

method and the work of Akbar et al. [6]. 

In the previous chapter, we consider fifth order damped oscillatory which has two pair of 

roots are complex and one is real. But the purpose of this chapter is to investigate solutions 

of fifth order damped oscillatory nonlinear systems [51] when two of the eigen-values are 

complex conjugates and the other three are real and negative. The presented method is 

illustrated by its applications via cubic nonlinear Duffing type damped-oscillatory 

differential system which are used to model different nonlinear phenomena. The results 

obtained by the presented technique agree with the numerical solutions obtained by means 

of the fourth order Runge-Kutta method nicely.  

3.2. Materials and Methods 

Consider a fifth order weakly nonlinear damped-oscillatory ordinary differential system 

∑
=

−=++
4

1
55

5

),(
i

i

i

i txfxk
dt

xdk
dt

xd ε
                      

(3.1) 

where ε  is a small parameter, ),( txf  is the nonlinear function, 5,..,2,1; =iki  are the 

characteristic parameters of the system defined by ∑
=

=
5

1
1

i
ik λ , ∑

≠
=

=
5

1,
2

ji
ji

jik λλ , 

∑
≠≠
=

=
5

1,,
3

kji
kji

kjik λλλ , ∑
≠≠≠
=

=
5

1,,,
4

lkji
lkji

lkjik λλλλ and ∏
=

=
5

1
5

i
ik λ    where 54321 ,,,, λλλλλ −−−−−  are 

the eigenvalues of the unperturbed equation of (3.1). We consider three of the eigen-values 

say 521 ,, λλλ −−−  are real and negative and the other two say 3λ− , 4λ−  are complex 

conjugates. 

The unperturbed solution (when 0=ε  ) of the Eq. (3.1) is: 

∑
=

−=
5

1
0,)0,(

j

t
j

jeatx λ

                       
(3.2) 
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where 5....,2,1,0, =ja j  are constants of integration.  

If 0≠ε , following, we seek a solution in accordance with Shamsul [108] or Murty and 

Deekshatulu [76] or the KBM [22, 63] method, of the form: 

 ++= −

=
∑ ),,,,()(),( 5211

5

1
taaauetatx tj

j
j εε λ

                    (3.3)  

where each 5,,2,1; =ja j , satisfies the conditions 

 2
521 ),,,,())(( εε += taaaAta

dt
d

jj                     (3.4) 
The analytical approach is very difficult to determine a higher approximation of 

equation (3.3). However, a first approximate solution gives the satisfactory results. 

Confining our attention to the first few terms m,,2,1   in the series expansions of 

equations (3.3) and (3.4), we calculate the functions 1u and 5,,2,1; =jAj  such that 

5,,2,1; =ja j , appearing in eq. (3.3) and eq. (3.4), satisfy the differential equation (3.1) 

with an accuracy of 1+mε . Theoretically most of the perturbation methods can be 

proceeded to any order of approximation. But for rapidly growing algebraic complexity of 

the derivation of the formulae, the methods usually confined to a low order specially the 

first. It is noted that the determination of higher approximation is also laborious according 

to Shamsul’s [110] and Sattar’s [98] techniques. In order to determine these unknown 

functions, it is obvious that the function 1u  contain secular type terms tte− which are 

included in the series expansion (3.3) at order 0ε . However, it is customary in KBM 

method that 1u does not contain secular type terms like tt cos , tt sin  as well as tte−  etc.   

Differentiating ),( εtx  five times with respect to t  and substituting ),( εtx and their 

derivatives in the eq. (3.1), using the relations in eq. (3.4) and equating the coefficients of 

ε , we obtain 
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),,,,())(()( 521
)0(

5

,1

5

1

5

1
1 taaafA

dt
deu

dt
d

j
kjk

kj
j j

tj
j −=+−++ ∏∏ ∑

≠== =

− λλλ λ

       
(3.5) 

where )( 0
)0( xff = and t

j
j

jetax λ−

=
∑=

5

1
0 )(  

The function )0(f can be expanded in a Taylor series (see Murty and Deekshatulu [76] for 

details) as: 

∑ ∑
∞∞

−∞=−∞=

+++−

=

=
.....

51

)552211(
5

1
5,1

)0(

mm
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i

im
imm eaFf






λλλ
 

To obtain the solution of equation (3.1), it has been proposed in Ref. [108] that 1u  exclude 

the fundamental terms. To do this, we have to separated the equation (3.5) into six 

equations for unknown functions 1u  and 5,.....,2,1; =jAj ( see [108] for details ). 

Substituting the functional values and equating the coefficients of 5,...,2,1; =− je tjλ , we 

obtain 

 ∑ ∑∑
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+==
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and 
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where 1u  keep away from those terms for  43214321 ,,1,1 mmmmmmmm ==±=±= . 
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Solving Eq. (3.6) to Eq. (3.11), we attain 521 ,...,, AAA   and 1u .    

For the suitable form of the solution, we shall be able to transform Eq. (3.3) to the exact 

formal KBM [4, 6, 9, 108] solution by substituting 1

21
ϕeaa = , 1

22
ϕ−= eaa  , 2

23
ϕieba =   

and 2

24
ϕieba −= . Herein ba , are amplitudes and 1ϕ , 2ϕ are phase variables. 

3.3. Example 

To clarify the fact, we apply the method in Duffing type equations: a important in 

mathematical physics and related to engineering problem. As an example of the above 

procedure, we consider the Duffing type equation of fifth order  

∑
=

−=++
4

1

3
55

5

i
i

i

i xxk
dt

xdk
dt

xd ε
                                                                     (3.12) 

          
 

Here 3),( xtxf = . 
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        (3.13)       

Thus, for Eq. (3.13), the Eqs. (3.6) to (3.11) acquire the form 
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  (3.19) 

 
Inserting 111 ωλ −= k , 112 ωλ += k , 223 ωλ ik −= , 224 ωλ ik +=  and ξλ =5  and solving 

the Eqs.(3.14)-(3.18), we obtain 
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Here, contribution of the term 1u  in the solution of the considered problem is very small i. 

e., small correction term, but it is laborious task to solve (3.19) for 1u . So, we ignore 1u  

since it is proportional to small parameter ε . Now inserting 5,..,2,1; =jAj  into the 

equations (3.4) and substituting 1
1 2

1 ϕaea = , 1
2 2

1 ϕ−= aea , 2
3 2

1 ϕibea = , 2
4 2

1 ϕibea −=  

and ca =5 , we obtain 
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Equations in (3.20) are nonlinear and therefore have no exact solutions. Since  1,,, ϕ cba  

and 2ϕ  are proportional to the small parameter ε , therefore, they are slowly varying 

function of time t . Therefore, we may assume that  1,,, ϕcba and 2ϕ are constants in the 

right-hand sides of (3.20). This assumption was used by Murty et al. [75, 76] to solve the 

similar nonlinear equations.  The solution is thus 
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Therefore, the solution of Eq. (3.12) is 
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tcetbtatx ξϕωϕω −++++= )cos()cosh()( 2211 .                  (3.22) 

Here Eq. (3.22) is the first order approximate solution of Eq. (3.12), where 1,,, ϕcba and 

2ϕ  are given by the Eq. (3.21). 

3.4. Results and Discussions 

It is customary to compare the perturbation results obtained by a certain perturbation 

method to the numerical results (considered being exact) to test the accuracy of the 

method. Two this end, computed ),( εtx by (3.22) in which 1,,, ϕcba and 2ϕ  are computed 

by the equation (3.21) by the fourth order Runge-Kutta method for different sets of initial 

conditions and plotted these results. Beside this, we have also computed the Pearson 

correlation between the perturbation results and the corresponding numerical results and 

shows that they are strongly correlated. From the figures we observed that our perturbation 

solution agree with numerical results suitably for different initial conditions.  

At first, for 5.0,5,15.0,25.0,3/1 2121 ===== ξωωkk   and 1.0=ε , ),( εtx  has 

been computed by (3.22) in which 1,,, ϕcba and 2ϕ  are computed by the equation (3.21) 

with initial conditions ,25.00 =a  ,25.00 =b  ,25.00 =c  
60,1
πϕ =  and 

60,2
πϕ =  

[or 751566.0)0( =x , ,550235.0)0(
−=

dt
dx  82637.0)0(

2

2

−=
dt
xd , 101099.2)0(

3

3

=
dx
xd  

and 655849.3)0(
4

4

=
dt
xd ]. 

The perturbation results obtained by the solution (3.22) and the corresponding numerical 

results obtained by a fourth order Runge-Kutta method with a small time increment 0.5, 

are plotted (Fig. 3.1). The correlation between the results is 0.999037. 
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 Fig. 3.1. Perturbation solution plotted by solid line and numerical solution plotted by dotted line. 

Again, for 5.0,
6

,
6

,25.0,3/1 2121 ===== ξπωπωkk   and 1.0=ε , ),( εtx has been 

computed by (3.22), in which 1,,, φcba  and 2φ by the equation (3.21) with initial 

conditions ,5.00 =a  ,5.00 =b  ,5.00 =c  
60,1
πφ =  and 

60,2
πφ =  [or ,503132.1)0( =x  

,203219.1)0(
−=

dt
dx  ,556837.1)0(

2

2

−=
dt
xd  132355.4)0(

3

3

=
dt
xd  and 362476.7)0(

4

4

=
dt
xd ]. 

The perturbation results obtained by the solution (3.22) and the corresponding numerical 

results obtained by a fourth order Runge-Kutta method with a small time increment 0.5, 

are plotted (Fig. 3.2). The correlation between the results is 0.998661. 
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 Fig. 3.2. Perturbation solution plotted by solid line and numerical solution plotted dotted line. 
 

3.5. Conclusion 

An analytical approximate solution based on the theory of KBM [22, 63] method for fifth 

order damped-oscillatory nonlinear differential systems is developed in this chapter. This 

study shows that the proposed method is quite efficient and practically well suited to be 

used in finding approximate solutions. The results obtained by the presented technique 

show good coincidence with those obtained by the fourth order Runge-Kutta method. The 

correlation between the results has also been calculated and it is seen that they are strongly 

correlated. The solution can also be used for over-damped systems replacing 2ω  by 2ωi− . 

This is the importance of this technique. 



Chapter-Four 

Perturbation Solutions to Fifth Order Over-damped Nonlinear Systems 

4.1. Introduction 

Repetitive back-and-forth movement through a central, or equilibrium, position in which 

the maximum displacement on one side is equal to the maximum displacement on the 

other. Every entire vibration takes the same time, the period; the reciprocal of the period is 

the frequency of vibration. The force that causes the motion is always directed toward the 

equilibrium position and is directly proportional to the distance from it. A pendulum 

displays simple harmonic motion; other examples include the electrons in a wire carrying 

alternating current and the vibrating particles of a medium carrying sound waves. When 

the spring is first released, most likely it will fly upward with so much kinetic energy that 

it will, quite literally, bounce off the ceiling. But with each transit within the position of 

equilibrium, the friction produced by contact between the metal spring and the air, and by 

contact between molecules within the spring itself, will regularly reduce the energy that 

gives it movement. In time, it will come to a stop. 

If the damping effect is small, the amplitude will gradually decrease, as the object 

continues to oscillate, until eventually oscillation ceases. On the other hand, the object 

may be "overdamped," such that it completes only a few cycles before ceasing to oscillate 

altogether. In the spring illustration, overdamping would occur if one were to grab the 

spring on a downward cycle, then slowly let it go, such that it no longer bounced. 

Many researchers work on over-damp nonlinear differential systems for different order 

using different conditions. Murty , Deekshatulu and Krishna [75] established an 

asymptotic method  following the Krylov-Bogoliubov [63] for overdamped nonlinear 

systems. Murty and Deekshatulu [76] has also offered method of variation of parameters 

http://www.answers.com/topic/overdamping-physics
http://www.answers.com/topic/grab
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for over-damped nonlinear systems. A unified KBM method to solve second order 

nonlinear systems which covers under-damped, over-damped and periodic system with 

constant coefficients was presented by Murty [74]. Sattar [99] studied a third order over 

damped nonlinear system. Akbar et al. [4] presented a method to solve fourth order over 

damped nonlinear systems which is easier, simple and less laborious than Murty et al. 

[75]. Shamsul [106] used special condition to find solution of third order over-damped 

nonlinear systems. Shamsul [113] has studied second order nonlinear systems both for 

over-damped and critically damped. Siddique and Akbar [115] has found an asymptotic 

solutions of fifth order over-damped nonlinear systems with cubic nonlinearity. In this 

chapter, we aim to obtain the analytical approximate solutions of fifth order over-damped 

nonlinear systems [52] extending the KBM method for obtaining the transient response in 

which the eigen values are in integral multiple. The results obtained by the presented 

technique show good coincidence with numerical results obtained by the fourth-order 

Runge-Kutta method. Figures are also provided to compare validation and usefulness of 

the solutions obtained between the results for different initial conditions.  

4.2. The Method 

Let us consider a fifth order nonlinear symmetrical over damped system governed by the 

fifth order differential equation 

),(542

2

33

3

24

4

15

5

txfxk
dt

xdk
dt

xdk
dt

xdk
dt

xdk
dt

xd ε−=+++++
                  

(4.1) 

where ε  is a small parameter, ),( txf  is such a nonlinear function that the system (4.1) 

becomes symmetrical, 4,..,2,1, =iki  are the characteristic parameters of the system 

defined by ∑
=

=
5

1
1

i
ik λ , ∑

≠
=

=
5

1,
2

ji
ji

jik λλ , ∑
≠≠
=

=
5

1,,
3

kji
kji

kjik λλλ , ∑
≠≠≠
=

=
5

1,,,
4

lkji
lkji

lkjik λλλλ and ∏
=

=
5

1
5

i
ik λ    

where 54321 ,,,, λλλλλ −−−−−  are the five eigenvalues of the equation (4.1). 
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When 0=ε , the equation (4.1) becomes linear, the above five eigenvalues for over 

damping forces are represented by the real and negative eigen values. In this case, the 

solution of the linear equation is: ∑
=

−=
5

1
0,)0,(

j

t
j

jeatx λ

                    
(4.2) 

where 5....,2,1,0, =ja j  are arbitrary constants. 

When 0≠ε , we seek a solution in accordance with Shamsul [108] or Murty and 

Deekshatulu [76] or the KBM [22, 63] method, an asymptotic expansion of the form:  

 ++= −

=
∑ ),,,,()(),( 5211

5

1
taaauetatx t

j
j

j εε λ

                  
(4.3) 

  
where each 5,,2,1; =ja j , satisfies the first order equations 

 += ),,,,())(( 521 taaaAta
dt
d

jj ε                       (4.4) 
Keeping our concentration to some first terms m,,2,1   in the series expansions of 

equations (4.3) and (4.4), we calculate the functions 1u and 5,,2,1; =jAj  such that 

5,,2,1; =ja j , appearing in equation (4.3) and (4.4), satisfy the differential equation 

(4.1) with an correctness of 1+mε . Though the solution can be obtained up to the accuracy 

of any order of approximation, owing to the rapidly growing algebraic complexity for the 

derivation of the formulae, the solution in general confine to lower order [74]. In order to 

determine these unknown functions, it is assumed that the function 1u exclude 

fundamental terms which are included in the series expansion (4.3) at order 0ε . 

Differentiating ),( εtx five times with respect to t  and substituting ),( εtx and their 

derivatives in eq. (4.1), using the relation in eq. (4.4) and finally extracting the coefficients 

of ε , we obtain 
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(4.5) 

 

where )( 0
)0( xff = and t

j
j

jetax λ−

=
∑=

5

1
0 )(  

The function )0(f can be expanded in a Taylor series (see Murty and Deekshatulu [76] for 

details) as: 

∑ ∑
∞∞

−∞=−∞=

+++−

=

=
.....

51

)552211(
5

1
5,1

)0(

mm

tmmm

i

im
imm eaFf






λλλ
 

Since the order of the equation (4.1) is finite, therefore, it is possible to choose, but in our 

method it is not necessary to keep any condition on )5,,2,1(, =iiλ . 

Therefore, in order to solve equation (4.5) for the unknown functions 1A , 2A , 3A , 4A , 

5A and 1u , it is assumed that 1u  does not contain terms fundamental terms. This is a 

significant assumption, since, under this assumption the coefficients of the terms of 1u  do 

not become large as well as 1u  does not contain secular type terms tet − .Thus, in 

accordance with this assumptions(see [76, 108] for details). Therefore, Eq. (4.5) can be 

separated into six equations for unknown functions 1u  and 5,.....,2,1; =jAj ). 

Substituting the functional value and equating the coefficients of 5,...,2,1; =− je tjλ , we 

obtain 
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and 
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where 1u  avoid the terms for  43214321 ,,1,1 mmmmmmmm ==±=±= . 

Solving Eqs. (4.6) to (4.11), we obtain the unknown functions 521 ,...,, AAA   and 1u . 

It is possible to transform solution Eq. (4.3) to the exact formal KBM [4, 6, 9, 108] 

solution by substituting 1

21
ϕeaa = , 1

22
ϕ−= eaa  , ,

2
2

3
ϕeba =  2

24
ϕ−= eba  and ca =5 . 
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Herein ba , are amplitudes and 1ϕ , 2ϕ  are phase variables which are slowly varying 

function of time t .  

4.3 Example 

To demonstrate the applicability of the proposed method for solving the fifth order over 

damped nonlinear differential system type (4.1), we considered an example here. As an 

illustrating example, we consider the following Duffing type equation:  

3
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24

4

15

5

xxk
dt

xdk
dt
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dt
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dt
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dt

xd ε−=+++++
                             (4.12)           
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Thus the equation (4.6) to (4.11) takes the outward appearance 
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Now we have to solve equations (4.14)-(4.18) and inserting 111 ωλ −= k , 112 ωλ += k , 

223 ωλ −= k , 224 ωλ += k  and ξλ =5 . To do this, using the symbolic computation 

software, like, Maple, Mathematica, Matlab etc. are utter simple. In this work, to solve 

equations (4.14)-(4.18), we have used Maple 13, we attain  
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Now inserting 5,..,2,1; =jAj  in the Eq. (4.4) and using ,2/1
1

ϕaea =  2/1
2

ϕ−= aea  

,2/2
3

ϕbea =  2/2
4

ϕ−= bea  and ca =5  we obtain 
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Equations in (4.20) are nonlinear and have no exact solutions. We can solve (4.20) by 

considering 1,,, ϕcba and 2ϕ  are constants in the right-hand sides of (4.20). Since ε  is 

small, 1,,, ϕ cba  and 2ϕ  are slowly varying function of time, therefore, this consideration 

is applicable. This assumption was used by Murty et al. [75, 76] to solve the analogous 

nonlinear equations.  The solution is thus 
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Therefore, the first order solution of Eq. (4.12) is 

tcetbtatx ξϕωϕω −++++= )cosh()cosh()( 2211 .                              (4.22) 
 

where 1,,, ϕcba and 2ϕ  are given in the Eq. (4.21). 

4.4 Results and Discussions 

In order to test the correctness of an approximate solution obtained by a certain 

perturbation method, we contrast the approximate solution to the numerical solution. With 

regard to such a comparison concerning the presented technique of this chapter, we refer 

to the work of Murty et. [75, 76]. Here, we have compared our obtained outcome to those 

obtained by the fourth order Runge-Kutta method for different sets of initial conditions as 

well as different sets of eigenvalues. Beside this, we have also computed the Pearson 

correlation between the perturbation results and the corresponding numerical results. From 

the figures we observed that our perturbation solution agree with numerical results 

suitably for different initial conditions. 

At first, for 03.0,57.2,414.1,09.3,05.2 2121 ===== ξωωkk  and 1.0=ε , ),( εtx  has 

been computed by solution (4.22), in which 1,,, ϕcba and 2ϕ  are computed by the 

equation (4.21) with initial conditions ,63.00 =a  ,52.00 =b  ,3.00 =c  375.101 =ϕ and 
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5708.002 =ϕ  [i. e, ,23253.2)0( =x  ,144589.2)0(
−=

dt
dx  ,275333.6)0(

2

2

=
dt
xd  

274223.30)0(
3

3

−=
dt
xd  and 2777256.162)0(

4

4

=
dt
xd .] 

For the above mentioned initial conditions, the perturbation results obtained by the 

solution (4.22) and the corresponding numerical results obtained by a fourth order Runge-

Kutta method with a small time increment 05.0=∆t , are plotted in Fig. 4.1. The 

correlation between the results is 0.999593. 
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Fig. 4.1. Perturbation results are plotted by solid line and numerical results plotted dotted line. 

Secondly, for ,11 =k  ,22 =k  ,81.01 =ω  ,5704.12 =ω  09.0=ξ  and 1.0=ε , ),( εtx has 

been computed (4.22), in which 1,,, ϕcba  and 2ϕ  by the equation (4.21)with initial 

conditions 25664.1,20.0,15.0,15.0 0,1000 ==== ϕcba and 3927.00,2 =ϕ  [i. e., 

,646581.0)0( =x  ,334486.0)0(
−=

dt
dx  ,745605.0)0(

2

2

=
dt
xd  439806.2)0(

3

3

−=
dt
xd  and 

461052.8)0(
4

4

=
dt
xd .] 

In this section, the perturbation results obtained by the solution (4.22) and the 

corresponding numerical results obtained by a fourth order Runge-Kutta method with a 
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small time increment 05.0=∆t , are plotted Fig. 4.2. The correlation between the results 

is 0.99965. 
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Fig. 4.2. Perturbation solution plotted by solid line and numerical solution plotted dotted line. 

Finally, for 003.0,321.0,237.0,47.0,5.0 2121 ===== ξωωkk  and 1.0=ε , ),( εtx has 

been computed (4.22), in which 1,,, ϕcba and 2ϕ by the equation (4.21) with initial 

conditions 2/.,008.0,02.0,02.0 0,1000 πϕ ==== cba and  414.00,2 =ϕ  [i. e. 

,079922.0)0( =x  ,021774.0)0(
−=

dt
dx  ,009020.0)0(

2

2

=
dt
xd  005127.0)0(

3

3

−=
dt
xd  and 

003545.0)0(
4

4

=
dt
xd .] 

The perturbation results obtained by the solution (4.22) and the corresponding numerical 

results obtained by a fourth order Runge-Kutta method with a small time increment 

05.0=∆t  are plotted Fig. 4.3. The correlation between the results is 0.999953. 

 



Chapter-Four: Perturbation solutions to fifth order over damped nonlinear system 
 

62 
 

 
 

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0 2 4 6 8 10 12

t

x S eries
1
S eries

 
Fig. 4.3. Perturbation solution plotted by solid line and numerical solution plotted dotted line. 

From Fig. 4.1 to fig.4.3 it is noteworthy to observe that perturbation results show a good 

agreement with those obtained by the fourth order Runge-Kutta method. 

4.5. Conclusion 

In this chapter, a procedure is formulated to find the first order analytical approximate 

solution of fifth order over damped nonlinear differential systems with small nonlinearities 

based on the KBM [22, 63] method. The correlation has been deliberated between the 

results acquired by the perturbation solution and the fourth order Runge-Kutta method of 

the same problem. The results obtained for different initial conditions, show a good fluke 

with corresponding numerical results and they are strongly correlated.  

 



Chapter-Five 

Perturbation solutions for fifth Order Critical-damped Nonlinear 

Systems  

5.1. Introduction: 

Springs are a most important part of our everyday life which can be found in everything 

from the shock-absorber legislative body of a motor vehicle to the supports of a 

trampoline fabric, and in both cases, springs blunt the force of impact. Spring produces 

vibration and vibration is sometimes used more closely to mean a mechanical oscillation 

but sometimes is used to be identical with oscillation. There is a type of damping less 

forceful than over-damping, but not so gradual as the slow dissipation of energy due to 

frictional forces alone. This is called critical damping. In a critically damped oscillator, the 

oscillating material is made to return to equilibrium as quickly as possible without 

oscillating.  

Over time, obviously, the friction in the springs would wear down their energy and bring 

an end to their oscillation, but by then, the car would most likely have hit another bump. 

Therefore, it makes sense to apply critical damping to the oscillation of the springs by 

using shock absorbers. 

The control of micro vibration has become a growing research field due to the demand of 

high-performance systems and the advent of micro and nanotechnology in various 

scientific and industrial fields, such as semiconductor manufacturing, biomedical 

engineering, aerospace-equipments, and high-precision measurements. In micro and 

nanotechnology, a small vibration may be the cause to make the product defective. So, in 

these fields vibration is not desirable. But vibration is unavoidable and arise in different 
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ways, such as, earth quake, direct disturbance etc. Thus, vibration control in micro and 

nano-technological industries is very essential.  In micro and nano-technological industries 

we keep watch that vibrations come to its equilibrium position in minimum time. The 

critically damped systems come to equilibrium position in minimum time. So, critically 

damped systems play an important role in micro and nano-technological industries. 

The well-situated and widely used technique to obtain analytical approximate solutions to 

the nonlinear equations is the perturbation methods. To investigate the transient behavior 

of vibrating systems the Krylov-Bogoliubov-Mitropolskii (KBM) [22, 63] method is an 

extensively used method which was developed for obtaining the periodic solutions of 

second order nonlinear differential systems with small nonlinearities. Sattar [99] studied a 

third order over damped nonlinear system. Shamsul and Sattar [103] presented a method 

for critically damped and Islam and Akbar [55] for more critically damped third order 

nonlinear systems. Akbar et al. [4] presented a method to solve fourth order over damped 

nonlinear systems which is easier, simple and less laborious than Murty et al. [75]. Later, 

Islam et al. [56] investigated the solutions of fourth order more critically damped 

nonlinear systems where Akbar [5] examined a different type solution for the same. Akbar 

and Siddique [23] amplified the KBM method to obtain solutions of fifth order weakly 

nonlinear oscillatory systems. 

The aim of this chapter is to obtain the analytical approximate solutions of a fifth order 

nonlinear differential system modeling a non-oscillatory process that characterized by 

critical damped.  A perturbation technique based on the Krylov-Bogoliubov-Mitropolskii 

method [22, 63] is developed for obtaining the transient response of the systems. Here, we 

will consider fifth order differential nonlinear systems because the combination of a 

second and a third order dynamical systems lead to a fifth order dynamical system which 
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occurs some complex nonlinear physical phenomena like as nano-technological tables. An 

example is solved to give the illustration of the method. 

5.2. The Method 

Consider a fifth order weakly nonlinear ordinary differential system :  

∑
=

−=++
4

1
55

5

),(
i

i

i

i txfxc
dt

xdc
dt

xd ε
                    

(5.1) 

where ε  is a small parameter, ),( txf is the nonlinear function, 5,..,2,1; =ici  are the 

characteristic parameters of the system defined by ∑
=

=
5

1
1

i
ic λ , ∑
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=
5

1
5

i
ic λ    where 54321 ,,,, λλλλλ −−−−−  are the 

eigenvalues of the unperturbed equation of (5.1). As the equation is of fifth order and we 

are considering a critical damped system , so there are five real negative eigenvalues and 

two pairs of the eigenvalues are equal (for critically damped). Suppose the roots are  

ξλµλλλλλ ===== 54321 ,,  

When 0=ε  the equation (5.1) becomes linear and the solution of the corresponding linear 

equation is 

ttt eaetaaetaatx ξµλ −−− ++++= 0,50,40,30,20,1 )()()0,(
                                           

(5.2) 

where 5....,2,1,0, =ja j  are arbitrary constants. 

But if 0≠ε , following Shamsul [108] , an asymptotic solution of eq.(5.1) is  of the form 

 ++++++= −−− ),,,,()()(),( 521154321 taaaueaetaaetaatx ttt εε ξµλ

      
(5.3)  

where each 5,,2,1; =ja j , satisfies the equations 

 += ),,,,()( 521 taaaAta jj ε            (5.4) 
The Eq.(5.4) are known as variational equations, and KBM [22, 63] assumed that they are 

functions of amplitude only. But Akbar et al. [8] showed that if they are only functions of 
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amplitude, sometimes the solution gives incorrect results and thus they are functions of 

both amplitude and phase. But in the case of non-oscillatory systems they are functions of 

amplitude only.  

By considering only the first few terms in the series expansions of (5.3) and (5.4), we 

calculate the functions 1u and jA ,  where 5,,2,1 =j , such that 5,,2,1; =ja j  appearing 

in (5.3) and (5.4) satisfy the given differential Eq. (5.1) with an accuracy of order 1+nε . In 

order to determine these unknown functions, it is customary in the KBM method that the 

correction terms 1u  must exclude secular terms, which make them large. Theoretically, the 

solution can be obtained up to the accuracy of any order of approximation. However, 

owing to the rapidly growing algebraic complexity for the derivation of the formulae, the 

solution is in general confined to a lower order, usually the first-order because , is very 

small (Murty [74]). 

In order to determine the unknown functions 5,,2,1; =jAj , we differentiate the 

proposed solution (5.3), five times with respect to t. Substituting the values of x  and its 

derivatives in the original Eq. (5.1), utilizing the relations presented in (5.4) and finally 

equating the coefficients of ε , we obtain: 
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where )( 0
)0( xff = and ttt eaetaaetaax ξµλ −−− ++++= 543210 )()(  
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The function )0(f can be expanded in a Taylor series (see Murty and Deekshatulu [76] for 

details) as: 
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Here the values of lkji ,,,  have definite values for particular problem. Thus using eq.(5.6), 

Eq.(5.5) becomes:  
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Following the KBM method, Murty and Deekshatulu [76], Shamsul [108], imposed the 

condition that 1u does not contain the fundamental terms of )0(f . Therefore,  

To do this, eq. (5.7) can be separated for unknown functions 5,,2,1; =jAj and 1u  in the 

following way:  
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and  
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Now, equating the coefficients of 0t  and 1t  from both sides of Eq. (5.8), we obtain 
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Here, we have only two eq. (5.10) and (5.11) for determining the unknown functions 

5,,2,1; =jAj . Thus, to obtain the unknown functions 5,,2,1; =jAj , we need to 

impose some conditions between the eigenvalues. Different authors imposed different 

conditions according to the behavior of the systems. In this study, we have investigated 

solutions for the case ξµµλ 3,3 ≈≈ . Therefore, we shall be able to separate the eq. 

(5.11) for two unknown functions 2A  and 4A   and solving them for 2A and 4A  substituting 

the values into the Eq. (5.10) and applying the condition ξµµλ 3,3 ≈≈ . We can separate 

the eq. (5.10) for two unknown functions 1A and 3A ; and solving them for 1A and 3A . 

Since 5,,2,1; =ja j are proportional to small parameter , they are slowly varying 

functions of time t and for first approximate solution, we may consider them as constants 
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in the right hand side. This assumption was first made by Murty and Deekshatulu [76]. 

Thus the solutions of the eq. (5.4) become: 

∫+=
t

jjj dttaaaAata
0

521 ),,,,()0()( ε ; 5,,2,1 =j .       (5.12) 

Now, solving eq.(5.9) for 1u  and substituting 5,,2,1; =ja j  and 1u  in the eq.(5.3), we 

shall get the complete solution of (5.1). 

5.3. Example 

As an example of the above procedure, we are going to consider the Duffing type equation 

of fifth order  
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Thus the equations (5.9) to (5.11) takes the form 
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when ξµµλ 3;3 ≈≈ , then from (5.16), we obtain: 
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and  
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The solution is thus 
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Putting the values of 2A  and 4A  in eq. (5.17) and performing some calculations and then 

eq.(5.17) can be separated in the following way(following the condition ξµµλ 3;3 ≅≈  

exists among the eigen-values): 
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Now, solving (5.22), (5.23) and (5.24), we get 
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When we Substituting the values of 1A , 2A , 3A , 4A  and 5A  from the eq. (5.20), (5.21), 

(5.25), (5.26) and (5.27) into eq. (5.4) , then eq. (5.4) reduces to  
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and   
 0)(5 =ta                  (5.29) 
These all of the eq. (5.29) are nonlinear and have no exact solutions. But since 

5,,2,1;  =ja j  are proportional to the small parameter ε , so they are slowly varying 

functions of time t . Thus, we can solve (5.29) by considering 5,,2,1; =ja j  are 

constants in the right-hand sides of (5.29). This assumption was used by Murty et al. 

[75,76] to solve the similar nonlinear equations.  The solution is thus  
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0,55 )( ata =                      (5.30) 

Finally, we obtain the solution in the form 

 )),(,),(),(()())()(())()((),( 521154321 ttatatauetaettataettatatx ttt εε ξµλ +++++= −−−  
   (5.31) 

Here eq. (5.31) is the first order approximate solution of eq. (5.13), where 

)(),(),(),( 4321 tatatata and )(5 ta  are given by the eq. (5.30) and the value of 1u  is given 

by the eq. (5.28). 

5.4. Results and Discussions 

In order to check the accuracy of an analytical approximate solution obtained based on 

KBM method, we compare the approximate solution to the numerical solution. In this 

chapter, we have compared our obtained results (by perturbation) to those obtained by the 

fourth order Runge-Kutta method for different sets of initial conditions as well as different 

sets of eigenvalues.  
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Firstly, for 6.0,6.1,6.4 === ξµλ   and 1.0=ε , ),( εtx has been computed (5.31), in 

which )(),(),(),( 4321 tatatata and )(5 ta by the equation (5.30) with initial conditions  

 

15.0,13.0,20.0,15.0,20.0 0,50,40,30,20,1 ===== aaaaa   
 i.e,     

,0002677.13)0(,2072265.3)0(,0107571.1)0( 2

2

=−==
dt
xd

dt
dxx  

34212365.56)0(
3

3

−=
dt
xd ,  9637919.246)0(

4

4

=
dt
xd . 

In this section, the perturbation results obtained by the solution (5.31) and the 

corresponding numerical results obtained by a fourth order Runge-Kutta method with a 

small time increment 0.5, are plotted (Fig. 5.1). The correlation between the results is 

0.998762. 

  

 Fig. 5.1. Perturbation solution plotted by solid line and numerical solution plotted by dotted line. 

Finally, for 5.0,3.1,8.3 === ξµλ   and 1.0=ε , ),( εtx has been computed (5.31), in 

which )(),(),(),( 4321 tatatata and )(5 ta by the equation (5.30) with initial conditions  

03.0,04.0,15.0,04.0,15.0 0,50,40,30,20,1 ===== aaaaa   
 i.e,     
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,5102566.13)0(,700838.3)0(,113555.1)0( 2

2

=−==
dt
xd

dt
dxx  

629624.50)0(
3

3

−=
dt
xd ,  0510405.191)0(

4

4

=
dt
xd . 

In this section, the perturbation results obtained by the solution (5.31) and the 

corresponding numerical results obtained by a fourth order Runge-Kutta method with a 

small time increment 0.5, are plotted (Fig. 5.2). The correlation between the results is 

0.999469. 

  

 Fig. 5.2. Perturbation solution plotted by solid line and numerical solution plotted by dotted line. 

Finally, for 3.0,8.0,2.2 === ξµλ   and 1.0=ε , ),( εtx has been computed (5.31), in 

which )(),(),(),( 4321 tatatata and )(5 ta by the equation (5.30) with initial conditions  

1.0,07.0,1.0,07.0,1.0 0,50,40,30,20,1 ===== aaaaa   
 i.e,     

,810971.3)0(,8230321.1)0(,020423.1)0( 2

2

=−==
dt
xd

dt
dxx  

221826.8)0(
3

3

−=
dt
xd ,  655039.17)0(

4

4

=
dt
xd . 

In this section, the perturbation results obtained by the solution (5.31) and the 

corresponding numerical results obtained by a fourth order Runge-Kutta method with a 
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small time increment 0.5, are plotted (Fig. 5.3). The correlation between the results is 

0.999816. 

  

 Fig. 5.3. Perturbation solution plotted by solid line and numerical solution plotted by dotted line. 

3.5. Conclusion 

A procedure is formulated to find the analytical first order approximate solution of fifth 

order critical damped nonlinear differential systems extending the KBM method to obtain 

transient response in this chapter. The results show good coincidence with numerical 

results for different sets of initial conditions as well as for different damping forces.  

 

 

 

 

 

 

 



Chapter-Six 
 

Asymptotic Solutions of Second Order Nonlinear Vibrating Systems with 
Slowly Varying Coefficients 

 
.  

6.1. Introduction:  

Vibrations occur in almost all spring related things and their physical model are nonlinear 

Differential systems whose coefficients change slowly and periodically with time. The 

most common methods for constructing the analytical approximate solutions to the 

nonlinear oscillator equations are the perturbation methods. Most of the perturbation 

methods are based on an assumption that small parameter must exist in the equations. 

Krylov and Bogoliubov [63] originally developed a perturbation method to obtain an 

approximate solution of a second order nonlinear differential system. Then the method 

was amplified and justified by Bogoliubov and Mitropolskii [22]. Mitropolskii [73] has 

extended the method to nonlinear differential system with slowly varying coefficients. 

Following the extended KBM method , Arya and Bodadziev [15], Bojadziev and Edwards 

[34] studied some damped oscillatory and purely non-oscillatory systems with slowly 

varying coefficients. Murty [74] presented a unified KBM method for both under-damped 

and over-damped system with constant coefficients. Shamsul [110] presented a unified 

formula to obtain a general solution of an n-th order ordinary differential equation with 

constant and slowly varying coefficients. Hung and Wu [55] obtained an exact solution of 

a differential system in terms of Bessel’s functions where the coefficients varying with 

time in an exponential order.  

In the previous chapter, we established some procedure with classical KBM method but 

from this chapter we start with the differential equations with slowly varying coefficients. 

The aim of this chapter is to find an approximate solution of such nonlinear differential 
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systems [49] based on the extended KBM (by Popov [91]) method in which the 

coefficients change slowly and periodically with time. Furthermore, a non-autonomous 

case also investigated in which an external force acts in this system. 

6.2. The Method:   

Let us consider the nonlinear differential system      

),,()sincos( 321 τεττ xfxcccx −=+++ tετ =                                         (6.1) 

where the over-dots denote differentiation with respect to t, ε  is a small parameter,  

21 , cc and 3c  are constants, )(32 εΟ== cc , f is a given nonlinear function. Setting 

)sincos()( 321
2 τττω ccc ++= , )(τω  is known as frequency.  

For 0=ε  and 0ττ = = constant, )()(),()( 002001 τωτλτωτλ ii −==  are two eigen values 

of the unperturbed equation of (6.1) and has the solution  

∑
=

=
2

0

)(
0,

0)0,(
j

t
j

jeatx τλ .                                                                                              (6.2) 

When 0≠ε  i. e, for unperturbed equations, we seek a solution in accordance with 

Shamsul [108] or Murty and Deekshatulu [76] or the KBM [22, 63] method, of the form  

( ) ...,),,(),,(),(, 212
2

211

2

1
0, +++= ∑

=

τετετε aauaautatx
j

j                                         (6.3) 

where 1a  and 2a satisfy the differential equations 

            
...,),,()(

...,),,()(
2

212222

2
211111

ετετλ

ετετλ

++=

++=

aaAaa
aaAaa




                                                            (6.4) 

Taking our interest to the earliest few term m,,2,1   in the series expansion of (6.3) and 

(6.4), we estimate functions ,,,,, 211  AAu such that 1a  and 2a  appearing in (6.3) and 
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(6.4) gratify (6.1) with an accuracy of 1+mε . In order to resolve these unknown functions it 

was early assumed that the functions ,...1u keep out all fundamental terms, since these are 

incorporated in the series expansion (6.3) at order 0ε .   

Differentiating ),( εtx two times with respect to t, substituting for the derivatives x  and x 

in the original equation (1) and equating the coefficient of ε , we get a hold  

    

( )

),,,( 21
)0(

12
2

22
1

111
2

22
1

11

21
2

22
1

1121122211

τ

λλλλλλ

λλλλλλ
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u
a

a
a

a
a

a
a

a
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a
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aAAaa
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






−

∂
∂

+
∂
∂









−

∂
∂

+
∂
∂

+

+







∂
∂

+
∂
∂

+−−′+′

                   (6.5) 

where ),,(,, 00
)0(2

2
1

1 τ
τ
λ

λ
τ
λ

λ xxff
d
d

d
d

==′=′ and   ).,(),( 210 ττ tatax +=  

It is assumed that both )0(f  can be expanded in Taylor’s series (Murty [74], Shamsul 

[110]) 

∑
∞

=

=
0,

21,
)0(

21

21

21
)(

rr

rr
rr aaFf τ ,                                                                                          (6.6) 

To obtain this solution (6.1), it has been proposed in (Shamsul [110]) that 21,uu eliminate 

the terms 2
2

1
1

rr aa of )0(f , where 121 ±=− rr . This limitation guarantees that the solution 

always excludes secular-type terms or the first harmonic terms (see Shamsul [110] for 

details). According to our assumption, 1u  does not contain the fundamental terms, 

therefore equation (6.5) can be divided into three equations for unknown functions 1u  and 

21, AA . we obtain 

   1112
2

22
1

11 aA
a

a
a

a λλλλ ′+







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∂
∂

+
∂
∂ = ),,( 21

21
21 21

,

0,0
,

rr

rr
rr aaF∑

∞∞

==
  if 121 += rr              (6.7) 
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 2221
2

22
1

11 aA
a

a
a

a λλλλ ′+
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
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+
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∂ = ),,( 21
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 if 112 += rr             (6.8) 

and          

           12
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a 







−

∂
∂

+
∂
∂
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


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


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∂
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∂
∂ λλλλλλ = ),,( 21

21
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,
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,
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rr
rr aaF∑
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==
    (6.9) 

where ),( 21

21
21 21

,

0,0
,

rr

rr
rr aaF∑

∞∞

==
 exclude those terms for 121 ±= rr . 

Thus the particular solutions of (6.7)-(6.9) give the values of the unknown functions 

21 , AA  and 1u . We have already mentioned that equation (6.1) is not a standard form of 

KBM method. We shall be able to transform (6.3) to the exact form of the KBM [4, 6, 9, 

108] solution by substituting 2/1
ϕiaea =  and 2/2

ϕiaea −= . Herein, a  and ϕ  are 

respectively amplitude and phase variables (see Shamsul [110]). Under this assumption, 

we shall able to find the unknown functions 1u  and 21, AA  which completes the 

determination of the solution of a second order non-linear problem (6.1).  

6.3. Examples: 

6.3.1. A second order nonlinear problem without external force 

We consider a second order nonlinear system with constant and slowly varying coefficient 

  ,)sincos( 3
32

2
1 xxcccx εττ −=+++                                                              (6.10) 

Here over dots denote differentiation with respect to t , 21 , cc and 3c  are constants, 

)(32 εΟ== cc , 210 aax +=  and the function  )0(f  becomes, 

         )33( 3
2

2
212

2
1

3
1

)0( aaaaaaf +++−= .                                                                  (6.11) 

Following the assumption (discussed in section 6.2) 1u  excludes the terms 2
212

2
1 3,3 aaaa . 



Chapter-Six: Asymptotic Solutions of Second Order Nonlinear Vibrating Systems with Slowly 
Varying Coefficients 

 

85 
 

We stand-in in (6.5) and break up it into two parts as 
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            (6.12)                                  

and     
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The particular solution of (6.13) is  

  
)3(2)3(2 122

3
2

211

3
1

1 λλλλλλ −
−

−
−=

aau                                                                     (6.14)    

Now, we have to solve (6.12) for two functions 1A  and 2A . According with the unified 

KBM method 1A  contains the term 2
2
13 aa  and 2A  contains the term 2

213 aa  (Shamsul 

[110]) obtain the following equations  

 2
2
11112
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11 3 aaaA
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and   
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The particular solutions of  (6.15)-(6.16) are 

and  
2

2
21

21

22
2

1

2
2
1

21

11
1 2

3,
2

3
λλλ

λ
λλλ

λ aaaAaaaA −
−
′

=−
−
′

−=                                    (6.17)  

Substituting the functional values of 1A  and 2A  (6.17) into (6.4) and rearranging, we 

obtain 

and 
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λελ aaaaaaaaaa                       (6.18)   

The variational equations of a  and ϕ  in the real form ( a  and ϕ  are know as amplitude 

and phase) which transform (18) to  

and ,
8

3,
2

2

ω
εωϕ

ω
ωε aaa +=
′

−=                                                                               (6.19) 

where  ττω sincos 321 ccc ++=  

The variational equation (6.19) is in the form of the KBM solution. The variational 

equations for amplitude and phase are usually appeared in a set of first order differential 

equations and solved by the numerical technique (see Shamsul [110]).    

Therefore, the first order solution of the equation (6.10) is  

1cos),( uatx εϕε +=                          (6.20)   

where a   and  ϕ    are the solution of the equation (6.19).  

6.3.2. Let us consider another form of the nonlinear differential problem (6.10) 

     33
321 )sin(cossincos xxcxxcxcxcx εττεεττ −+−=−−−=+ ,                (6.21) 

where ccc ε=+ )( 32  and 2
1 ω=c . Here, 

))(sin(cos)33( 21
3
2

2
212

2
1

3
1

)0( αατταααααα ++−+++−= cf .                               (6.22) 

In our statement, 1u  excludes the terms 2
212

2
1 3,3 αααα  and ))(sin(cos 21 ααττ ++c . The 

equations of 1u , 1A  and 2A  become (discussed in Section 2) 
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and   
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Solution of  Eqs. (6.24)-(6.25) are  
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Substituting the functional values of 1A  and 2A  (6.26) into (6.4) and rearranging, we 

obtain 

       









−
+

+−+=









−
+

−−+=

21

2

2

2
21

222

21

1

1

2
2
1

111

)sin(cos
2

3

,)sin(cos
2

3

λλ
ττα

λ
ααελα

λλ
ττα

λ
ααελα

ca

ca





                                                   (6.27) 

The variational equation of  α  and  ϕ  in the real form (α  and  ϕ  are know as amplitude 

and phase) which transform (6.27) to 
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
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                                                                    (6.28) 

where 1
2 c=ω . 

Therefore, the first order solution of the equation (6.10) is  

1cos),( utx εϕαε += ,                               (6.29)   

where α   and  ϕ    are the solution of the equation (6.27).  

6.3.3. Let us consider a second order nonlinear differential system with an external 

force 
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tExxcccx νεεττ cos)coscos( 3
321 +−=+++                                           (6.30)        

Here, over dots denote differentiation with respect to t ; 21, cc  and 3c are constants, 

)(32 εΟ== cc , 210 aax +=  and the function  
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Under the limitation (discussed in Section 6.2) 1u  excludes the terms 2
212

2
1 3,3 aaaa . 

Moreover in our assumption 1u  excludes ( ) )2/(titi eeE ννε −+ .We substitute in (6.5) and 

break up it into two parts as 

),(
2

)33( 2
212

2
1

2221
2

22
1

111112
2

22
1

11

titi eeEaaaa

aA
a

a
a

aaA
a

a
a

a

ννε

λλλλλλλλ

−+++−=

′+







−

∂
∂

+
∂
∂

+′+







−

∂
∂

+
∂
∂

          (6.32)                                  
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The particular solution of (6.33) is  
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Now, we have to solve (6.32) for two functions 1A  and 2A . According with unified KBM 

method 1A  contains the term 2/,3 2
2
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The particular solutions of (6.35)-(6.36) are  
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Substituting the functional values of 1A  and 2A  (6.37) into (6.5) and rearranging, we 

obtain (see Sub-section 6.3.1) 
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The variational equation of a  and ϕ  in the real form ( a  and ϕ  are know as amplitude 

and phase), which transform (6.38) to  
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where ττω sincos 321 ccc ++=  

Therefore, the first order solution of the equation (10) is  

1cos),( utx εϕαε +=                        (6.40)   

where α   and  ϕ    are the solution of the equation (6.39).  

6.4. Results and Discussions:  

In this chapter, an analytic technique has been presented to obtain the first order analytical 

approximate solutions of a second-order time dependent nonlinear differential systems 

with constant and varying coefficients based on the extended KBM method (by Popov 

[91]). Theoretically, the solution can be obtained up to the accuracy of any order of 

approximation. However owing to the rapidly growing algebraic complexity for the 
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derivation of the function, the solution is in general confined to a low order, usually the 

first. In order to test the accuracy of an approximate solution obtained by a certain 

perturbation method, one can easily compare the approximate solution to the numerical 

solution (considered to be exact). Due to such a comparison relating to the presented KBM 

method of this paper, we refer to the works of Murty [74], and Shamsul [110] have been 

compared to the corresponding numerical solution. In this chapter, we have also compared 

the perturbation solutions (6.20), (6.29) and (6.40) of Duffing’s equation (6.10) and (6.30) 

to those obtained by Range-kutta (Fourth-order) procedure. 

First of all, we plot in Fig. 6.1, the first approximate solution of Eq. (10) for  1.=ε  with 

initial condition ]0)0(,1)0([ == xx   or 000237.,00000.1 21 −== aa . The corresponding 

numerical solution has been computed by Runge-Kutta (fourth order) method. Seeing the 

figure it is clear that the asymptotic solution (6.20) shows a good agreement with the 

numerical solution of equation (6.10). 

We have find the approximate solution of the same problem utilize the classical KBM 

method (see Sub-section 3.2) for 1.=ε  with initial condition ]0)0(,1)0([ == xx   or 

.11 =α , 02 =α  presented in Fig.6.2. From the graph it is clear that the perturbation 

solution (6.29) does not agree with the numerical solution after a short time interval. Thus 

the extended KBM method is important. 

In sub section 3.3, a perturbation solution (6.40) has been derived when an external force 

acts and the solution has been presented in Fig.6.3 for 1.=ε  5.,7. == Eν  with initial 

condition ]0)0(,1)0([ == xx  , or, 086112.,003719.1 21 == aa . This solution also shows a 

good coincidence with the numerical solution. 
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Fig 6.1:  Perturbation solution (dotted line) with corresponding numerical solution (solid 
line) are plotted with initial conditions 086112.,00000.1 −== ϕa  
[ 00000.0)0(,00000.1)0( == xx  ] for .05.,1. == he       
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Fig 6.2:  Perturbation solution (dotted line) with corresponding numerical solution (solid 
line) are plotted with initial conditions `00000.0,00000.1 == ϕa  
[ 00000.0)0(,00000.1)0( == xx  ] for .05.,1. == he  
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Fig.3
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Fig.6.3: Perturbation solution (dotted line) with corresponding numerical solution (solid 
line) are plotted with initial conditions 086112.,003719.1 −== ϕa  
[ 00000.0)0(,00000.1)0( == xx  ] for .05.,5.0,7.0,1. ==== hEe ν .  
 
6.5. Conclusion: An approximate solution of a second order nonlinear deferential system 

with slowly varying coefficients has been found. This improved method gives better 

results than classical KBM method. The solution for different initial condition shows good 

coincidence with corresponding numerical solution. 

 



Chapter-Seven 

Asymptotic Solutions of Second Order Damped-Oscillatory systems with 
Varying Coefficients 

 
7.1 Introduction 

Changes occur in every things, variational causes take place in every phenomena both in 

natural and artificial. Study in variation has been a hot tropics and the subject of active 

research. These problems generally arise in mathematical modeling of visco-elastic flows, 

physics, engineering, and other disciplines. Krylov and Bogoliubov [63] developed a 

perturbation method to obtain an approximate solution of a second order nonlinear 

differential system described by  

        10),,(2
02

2

≤<−=+ εεω
dt
dxxfx

dt
xd                                 (7.1) 

where 0ω  is a positive constant and ε  is a small parameter. This method was first 

appeared in published form in 1937. This method has been extended and justified 

mathematically by Bogoliubov and Mitropoisky. They are called the method asymptotic in 

the sense that 0→ε . Then the method was amplified and justified by Bogoliubov and 

Mitropolskii [22]. Mitropolskii [73] has extended the method to nonlinear differential 

system with slowly varying coefficients  

        t
dt
dxxfx

dt
xd εττετω =−=+ ),,,().(2

02

2

                                                     (7.2) 

The advantage of the method is that it not only enables us to determine the steady-state 

periodic motions but also allows us to determine the transient process corresponding to 

perturbations of these oscillations. A closely related technique is that of van-der Pol. who 

proposed a method of slowly varying coefficients for the evaluation of periodic 

oscillations of certain nonlinear phenomena in electron tube oscillator. The Krylov-
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Bogoliubov [63] method has been extended by Popov [91] and Mendelson [69] to the 

analysis of transsient nonlinear differential equation of the form  

10,,2 2
2

2

<<<





=++ εε

dt
dxxFxq

dt
dxp

dt
xd                                                (7.3) 

where p and q are real constants and 







dt
dxxF ,  is a nonlinear function.) 

 Following the extended Krylov-Bogoliubov-Mitropolskii (KBM) method [22, 63, 73]), 

Bojadziev and Edwards [34] studied some damped oscillatory and non-oscillatory systems 

modeled by   

),,,().().( 2
2

2

τετωτ
dt
dxxfx

dt
dxc

dt
xd

−=++                                                          (7.4) 

where )(τc  and )(τω  are positive.   

In this chapter, we deliver a technique considering a nonlinear differential system of the 

form 

 ),,,()()(2 2
2

2

τετωτ
dt
dxxfx

dt
dxk

dt
xd

−=++ tετ =                                       (7.5) 

where ε  is a small parameter,  tετ =  is the slowly varying time, ,0)( ≥τk  f  is a given 

nonlinear function and )(τω  is the frequency. In this system, the coefficients are slowly 

varying with their time derivatives are proportional toε . The validity and advantages of 

the method is illustrated by an example in this chapter. 

7.2 The Method 

To achieve our goal of studying the mathematical behavior, let us consider the nonlinear 

differential system   

 ),,,()()(2 2 τετωτ xxfxxkx  −=++ tετ =                                (7.4) 
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where the over-dots denote differentiation with respect to t, ε  is a small parameter,  

tετ =  is the slowly varying time, ,0)( ≥τk  f  is a given nonlinear function and )(τω  is 

the frequency. The coefficients in Eq. (7.4) are slowly varying in that their time 

derivatives are proportional toε . 

For 0=ε  and 0ττ = = constant, )()(),()( 002001 τωτλτωτλ ii −==  are two eigen values 

of the unperturbed equation of (7.4) and has the solution  

tt eaeatx )(
0,2

)(
0,1

0201)0,( τλτλ += ,                                                                             (7.5) 

When 0≠ε , we seek a solution in accordance with Shamsul [108] or Murty and 

Deekshatulu [76] or the KBM [22, 63] method, of the form  

( ) ...,),,,(),(),(, 2
21121 ετεττε +++= taautatatx                                               (7.6) 

where 1a  and 2a satisfy the differential equations 

...,),,()(
...,),,()(
2

212222

2
211111

ετετλ

ετετλ

++=

++=

aaAaa
aaAaa




                           (7.7) 

Keeping our attention to the first few term m,,2,1   in the series expansion of eq.(7.6) 

and eq.(7.7), we evaluate functions ,,,,, 211  AAu such that 1a  and 2a  appearing in 

eq.(7.6) and eq.(7.7) satisfy eq.(7.4) with an accuracy of 1+mε . In order to determine these 

unknown functions it was early assumed by Murty [74], Shamsul [108] that the functions 

,...1u exclude all fundamental terms, since these are included in the series expansion 

eq.(7.6) at order 0ε .   

Differentiating ),( εtx twice with respect to t, substituting for the derivatives x  and x in the 

original equation eq.(7.4) and equating the coefficient of ε , we obtain  
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                                 (7.8) 

where ),,(,, 00
)0(2

2
1

1 τ
τ
λλ

τ
λλ xxff

d
d

d
d

==′=′ and   ).,(),( 210 ττ tatax +=  

It is assumed that both )0(f  can be expanded in Taylor’s series [74, 76, 108] 

          ∑=
∞

=0,
21,

)0(

21

21

21
)(

rr

rr
rr aaFf τ ,                       (7.9) 

To obtain this solution of eq.(7.4), it has been proposed in [110 ] that 21,uu exclude the 

terms 2
2

1
1

rr aa of )0(f , where 121 ±=− rr  . This restriction guarantees that the solution 

always excludes secular-type terms or the first harmonic terms (see [110] for details). 

According to our assumption, 1u  does not contain the fundamental terms, therefore 

equation (7.8) can be separated into three equations for unknown functions 1u  and 21, AA   

(see [110] for details). we obtain 

   1112
2

22
1

11 aA
a

a
a

a λλλλ ′+
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
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and          
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where ),( 21

21
21 21

,

0,0
,

rr

rr
rr aaF∑

∞∞

==
 exclude those terms for 121 ±= rr . 
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Thus the particular solutions of eq.(7.10)-(7.12) give the values of the unknown functions 

21 , AA  and 1u  which completes the determination of the solution of a second order non-

linear problem eq.(7.4).   

7.3 Example. 

The simple procedure outlined above will be illustrated by discussing the following a 

example. To demonstrate the applicability of the proposed method for solving the second 

order damped nonlinear differential system type (7.1), we considered the example here. 

This example has been chosen because either analytical or approximate solutions are 

available in the literature and solutions obtained by the proposed method are compared 

with the solutions obtained by the methods available in the literature. 

We consider a second order nonlinear system with slowly varying coefficients 

            ,)()(2 32 xxxkx ετωτ −=++          (7.13) 

Here over dots denote differentiation with respect to t . In this case 210 aax +=  and the 

function )0(f  becomes, 

)33( 3
2

2
212

2
1

3
1

)0( aaaaaaf +++−= .                         (7.14) 

Following the assumption (discussed in section 7.2) 1u  excludes the terms 2
2
13 aa  and 

2
213 aa . 

We substitute in eq. (7.8) and separate it into two parts as 

  
( )

)33( 2
212

2
1

21
2

22
1

1121122211

aaaa

AA
a

a
a

aAAaa

+−=

+







∂
∂

+
∂
∂

+−−′+′ λλλλλλ
                 (7.15)                                  

and     
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The particular solution of eq. (7.16) is  

    
)3(2)3(2 122

3
2

211

3
1

1 λλλλλλ −
−

−
−=

aau                                                      (7.17)    

Now, we have to solve eq.(7.15) for two functions 1A  and 2A . According with the unified 

KBM method 1A  contains the term 2
2
13 aa  and 2A  contains the term 2

213 aa  (Shamsul 

[110]) and thus we obtain the following equations  

 2
2
11112

2
22

1
11 3 aaaA

a
a

a
a −=′+








−

∂
∂

+
∂
∂ λλλλ                                          (7.18) 

and   

        2
212221
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11 3 aaaA
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






−

∂
∂

+
∂
∂ λλλλ                                                     (7.19) 

The particular solutions of  eq.(7.18) and eq.(7.19) are 

1

2
2
1

21

11
1 2

3
λλλ

λ aaaA −
−
′

−=                                  (7.20) 

and     

2

2
21

21

22
2 2

3
λλλ

λ aaaA −
−
′

=                       (7.21)           

Substituting the functional values of 1A , 2A  from eq.(7.20) and eq.(7.21) into eq.(7.7) and 

rearranging, we obtain 



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
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1
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and 
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


−

−
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2
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21

22
222 2

3
λλλ

λελ aaaaa                     (7.23)                                                               

Under the transformations, 2/1
ϕiaea =  and 2/2

ϕiaea −=  together with ωλ ik +−=1 , 

ωλ ik −−=2  equations (7.22) and (7.23) reduce to  

 ...)(~ 2
1 εε += aAa  and ...)(~ 2

1 εεωϕ ++= aB                   (7.24)                                                    

We shall obtain the variational equations of a  and ϕ  in the real form ( a  and ϕ  are know 

as amplitude and phase respectively) which transform eq.(7.24) to  

)(8
3

2 22

3

ω
ε

ω
ωε

+
+
′

−−=
k

kaakaa                      (7.25) 

and 

)(8
3

2 22

2

ω
ωε

ω
εωϕ

+
+
′

−=
k

ak
                      (7.26) 

The variational equations (7.25) and (7.26) are in the form of the KBM solution. The 

variational equations for amplitude and phase are usually appeared in a set of first order 

differential equations and solved by the numerical technique (see Shamsul [110]).    

Therefore, the first order solution of the equation (7.13) is  

1cos),( uatx εϕε +=                                                        (7.27)   

where a   and  ϕ    are the solution of the equation (7.25) and (7.26) respectively.                                                                                                                                               

7.4 Results and Discussions.  

Based on the extended KBM method (by Popov [91]) an asymptotic solution of second 

order damped nonlinear systems has been found in this chapter. In order to test the 

accuracy of an approximate solution obtained by a certain perturbation method, one 

compares the approximate solution to the numerical solution (considered to be exact). 
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With regard to such a comparison concerning the presented KBM method of this chapter, 

we refer to the works of Murty [74], and Shamsul [110]. In our present paper, for different 

initial conditions, we have compared the perturbation solutions (7.27) of Duffing’s 

equations (7.13) to those obtained by Runge-Kutta Fourth-order procedure. 

First of all, x  is calculated by eq.(7.27) with initial conditions ]0)0(,1)0([ == xx   or 

009277.,000043.1 −== ϕa  for ττωωε cos01.,cos,1. 0 === k . Then corresponding 

numerical solutions is also computed by Runge-Kutta fourth-order method. All the results 

are shown in Fig.7.1. From Fig.7.1 it is clear that the asymptotic solution eq.(7.27) shows 

a good coincidence with the numerical solution of equation (7.13). We have find the 

approximate solutions of the same problem with initial conditions  ]0)0(,1)0([ == xx   or 

046354.,001075.1 −== ϕa  for ττωωε cos05.,cos,1. 0 === k  and with initial 

conditions ]0)0(,1)0([ == xx   or 092516.,004295.1 −== ϕa  for 

ττωωε cos1.,cos,1. 0 === k . The corresponding numerical solutions have also been 

computed by Runge-Kutta fourth-order method. From Fig. 7.2 and Fig. 7.3 we observe 

that the approximate solutions agree with numerical results nicely.  

Fig.1
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Fig 7.1:  Perturbation solution (dotted line) with corresponding numerical solution (solid 

line) are plotted with initial conditions 009277.,000043.1 −== ϕa  

[ 00000.0)0(,00000.1)0( == xx  ] for τω cos01..,05..1,1. 0 ==== khe   

 

Fig.2

-1

-0.5

0

0.5

1

1.5

1 201 401 601 801 1001 1201 1401 1601 1801 2001

t

x

 

Fig 7.2:  Perturbation solution (dotted line) with corresponding numerical solution (solid 

line) are plotted with initial conditions 046354.,001075.1 −== ϕa  

[ 00000.0)0(,00000.1)0( == xx  ] for τω cos05.,05..1,1. 0 ==== khe   
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Fig.3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 201 401 601 801 1001 1201 1401 1601 1801 2001

t

x

 

Fig 7.3:  Perturbation solution (dotted line) with corresponding numerical solution (solid 

line) are plotted with initial conditions 092516.,004295.1 −== ϕa  

[ 00000.0)0(,00000.1)0( == xx  ] for τω cos1.,05..1,1. 0 ==== khe   

7.5 Conclusion.  

In this chapter, we have modified the KBM method to find the approximate solution of a 

second order time dependent nonlinear deferential system with slowly varying coefficients 

under the action of damping forces. The preceding analysis has the virtue of utter 

simplicity, and the illustrating example shows that the suggested method is very effective 

and convenient in solving nonlinear equations. The objective of this chapter is to present a 

simple and direct technique to solve a second order special slowly varying coefficients 

problem. The solution is simpler than classical KBM method. Here it is found that if the 

damping force is significant, the solution is stable.  
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