University of Rajshahi Rajshahi-6205 Bangladesh.

RUCL Institutional Repository http://rulrepository.ru.ac.bd
Department of Mathematics PhD Thesis
2013

Asymptotic Method for Time
Dependent Nonlinear Differential
Systems with Slowly Varying Coefficients

Roshid, Harun-Or-

University of Rajshahi

http://rulrepository.ru.ac.bd/handle/123456789/694
Copyright to the University of Rajshahi. All rights reserved. Downloaded from RUCL Institutional Repository.



Asymptotic Method for Time Dependent
Nonlinear Differential Systems with Slowly
Varying Coefficients

A dissertation Thesis Submitted to the Department of

Mathematics, University of Rajshahi, Rajshari-6205,

Bangladesh, for the Degree of Doctor of Philosophy in
Mathematics

By

Harun-Or-Roshid

Department of Mathematics
University of Rajshahi
Rajshahi-6205, Bangladesh

July, 2013



STATEMENT OF ORIGINALITY

I declare that the contents in my Ph. D Thesis entitled “Asymptotic Method for Time
Dependent Nonlinear Differential Systems with Slowly Varying Coefficients” is
original and accurate to the best of my knowledge. I also declare that the materials
contained in my research work have not been previously published or written any

person for degree or diploma.

(Harun-Or-Roshid)
Ph. D Research Fellow
Rajshahi University

June, 2013



ACKONOWLEDGEMENT

I would like to convey an immense grateful to a number of individuals for
their Rind advices, directions, suggestions and co-operation, which have
enabled me to complete my thesis successfully.

I am bound to express my deepest vespect and thanks to my respected
supervisor professor Dr. M. Zulfikar Ali, Department of Mathematics,
University of Rajshahi, Bangladesh for his day-to-day monitoring,
supervision and maximum assistance for the completion of the present
study successfully. I also thankful to Dv. Pinaki Day, Assistant professor,
Department of Mathematics,.................. , for providing wme some
important source of information and materials about my study.

I wish to thank the Chairman, Department of Mathematics, University of
Rajshahi, for providing facilities during the course of thesis work.

I am thankful to Dr. M All Akbar, Associate professor, Department of
Applied Mathematics, University of Rajshahi, Bangladesh, for providing
me the source of information and materials about my study. I also wish to
express my Ssincerve admiration, appreciation and gratitude to all the
teacher of the Department of Mathematics, University of Rajshahi,
Bangladesh, for providing me invaluable suggestions during the period of
my research work.

A special thank will go to the shoulders of my colleagues and friends at
Pabna university of Science and Technology, Pabna, for friendly support
to overcome the hurdles during the Ph.D program.

Finally, I am ever grateful to my parents, beloved daughter and wife for
their moral and constant blessing, good advice and encouragement.

(Harun-Or-Roshid)
Department of Mathematics

June, 2013



CERTIFICATE

Certified that the Ph.D. thesis entitled “Asymptotic Method for Time
Dependent Nonlinear Differential Systems with Slowly Varying
Coefficients” submitted by Harun-Or-Roshid in fulfillment of the
requirement for the degree of Ph.D. in Mathematics, University of Rajshahi,
Rajshahi-6205, Bangladesh has been completed under our supervision. We
believe that the research work is an original one and it has not been submitted

elsewhere for any degree.

We wish him a bright future and every success in life.

Prof. Dr. M. Zulfikar Ali

Supervisor
Department of Mathematics
University of Rajshahi
Rajshahi-6205, Bangladesh.

Dr. Pinakee Dey

Co-Supervisor
Assistant Professor (Department of Mathematics and Statistics)
Mawlana Bhashani Science and Technology University
Santosh, Tangail-1902, Bangladesh.



Abstract

Almost all perturbation methods are developed to find periodic solutions of nonlinear
system where transients are not considered. First Krylov and Bogoliubov introduced a
perturbation method which is well known as “asymptotic averaging method” to discuss the
transients in the second order autonomous systems with small nonlinearities. Later, this
method has been amplified and justified by Bogoliubov and Mitropolskii. Mitropolskii has
extended the method for slowly varying coefficients to determine the steady state periodic
motions and transient process. In this dissertation, we have modified and extended the
KBM method to investigate some fifth order and second order nonlinear systems in both

cases with constant and slowly varying coefficients.

At first, a fifth order damped nonlinear autonomous differential system is considered and a
perturbation solution is developed. Then a procedure is developed for the same system
with damped taking three of eigenvalues are real. After then we considered fifth order
systems for over damped with small nonlinearity to obtain the transient response. We also
developed a formula for fifth order critically damped nonlinear systems to control micro
vibration, in micro and nano-technological industries that bring the system to equilibrium
as quickly as possible without oscillating. After then we presented an analytical technique
based on the extended Krylov-Bogoliubov-Mitropolskii method (by Popov) to determine
approximate solutions of nonlinear differential systems whose coefficients change slowly
and periodically with time. Furthermore, a non-autonomous case also investigated in
which an external force acts in this system. At last, Krylov-Bogoliubov-Mitropolskii
(KBM) method has been extended to certain damped-oscillatory nonlinear systems with
varying coefficients. The implementations of the methods are illustrated by several

examples.
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Introduction

Nonlinear physical science and nonlinear mathematics focuses on recent advances of
fundamental theories and principles, analytical and symbolic approaches, as well as
computational techniques with engineering applications. Almost all nonlinear phenomena
can be modeled by dynamical system. Dynamical system although is very complicated to
study but very interesting both mathematically and physically. It is complicated because of
nonlinearity of the equation but physically interesting because we can easily visualize how
changes occur due to the variation of the parameters. In nonlinear dynamical system, we
mainly deal with nonlinear differential equations of the governed system. In this system, it
is very difficult to get an exact solution other than some special cases. In general,
approximate solutions are obvious to accept but attempt should be made to get more
accurate solutions. Most of the nonlinear oscillating systems show complex behavior such
as strong attractor’s chaos and bifurcations. Recently, people have been trying to solve
various types of dynamical system by different methods and having to find the graphs for
different parametric values in the equation, through which they can comment on the nature

of the system.

To find analytical approximate solutions to the nonlinear oscillator equations many
methods are established by many researchers. The common methods for finding analytical
approximate solutions to the nonlinear oscillator equations are the perturbation methods.
The Lindstedt method [66], Poincare method [88], WKB method [18, 60, 126], Multi-
time-scale method [47, 74], the Krylov-Bogoliubov-Mitropolskii method [22, 63] etc. are
some well known perturbation methods to obtain analytical approximate solutions of non-
linear systems. Among the above methods KBM method is the particularly convenient and

is the widely used technique to obtain analytical approximate solution of non-linear



Introduction

systems. Krylov and Bogoliubov [63] originally developed a perturbation method for
obtaining periodic solutions that was amplified and justified by Bogoliubov and
Mitropolskii [22] and later Popov [91] and Mendelson [69] extended the method for
damped nonlinear oscillations. Murty [74] has presented a unified KBM method for
solving second order nonlinear systems in the cases un-damped, under-damped and over-
damped system with constant coefficients. Sattar [99] studied a third order over damped
nonlinear system and Bojadziev [24] studied the damped oscillations modeled by a three
dimensional nonlinear system. Shamsul and Sattar [103] have presented a method for
critically damped nonlinear systems and Islam and Akbar [55] obtained a new solution of
more critically damped third order nonlinear systems. Shamsul and Sattar [109] presented
a unified KBM method for solving third order nonlinear systems. Akbar et al. [4] has
presented a method for solving the fourth order over damped nonlinear systems which is
easier, simple and less laborious than Murty et al. [75]. Later, Akbar et al. [6] pull out the
method presented in [4] for the damped oscillatory systems. Akbar [5] investigated the
solutions of fourth order more critically damped differential systems. Rahman et al. [93]
obtained fourth order nonlinear oscillatory systems when two of the eigenvalues are real
and negative and the other two are complex numbers. Akbar and Siddique [9] presented a

method to obtain solutions of fifth order weakly nonlinear oscillatory systems.

The purpose of this dissertation is to introduce some new extended KBM method in
nonlinear physics to explore different nonlinear dynamical systems in both case of
oscillatory and non-oscillatory differential systems with constant and slowly varying
coefficients. Some of their equivalent formulations along with various new
characterizations and results concerning the existing ones are presented here. The
implementation of the presented methods is illustrated by its applications via cubic

nonlinear Duffing type oscillator. Figures are provided to compare validation and
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usefulness of the solutions obtained by the presented method for different initial
conditions with the corresponding numerical solutions obtained by the fourth order Runge-

Kutta method.

We aim to develop formulae based on KBM method of nonlinear dynamical systems with
constant and slowly varying coefficients for both oscillators with and without damp. We
also tried to extend some formulae on non-oscillatory systems in both over damp and
critical damp cases. In our work, the materials have been divided into seven chapters, a

brief scenario of which we present as follows.

In the first chapter, we incorporates Gauge functions, Order symbols , Expansions of
functions and their convergence conditions, some of the basic definitions, and some
existing perturbation techniques for analytical approximate solutions to nonlinear

dynamical systems whose results are available in given references.

Our work starts from second chapter. In this chapter, we tried to find an analytical periodic
solutions by constructing a formula for a fifth order Duffing type oscillatory systems in the
presence of damping effects with small non-linearity, using a perturbation method. The
implementation of the work is illustrated by giving a suitable example. We have also
provided some figures to test the correctness of our results in contrast with corresponding

numerical results and have computed the Pearson correlation between the results.

In third chapter, we add a formula to explain a different type of natural damp oscillatory
system. This investigation of hereditary, productive and projective formula is good
extension to non linear physics. Here we solved an example to show that the proposed
method is quite efficient. Accuracy of this formula is examined providing some figures of
our results in contrast with corresponding numerical results and strongly correlated is

corroborated by computing the Pearson correlation between the results.
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A procedure is presented in the fourth chapter to solve a non oscillatory nonlinear
differential systems which is over damped. We employed the proposed method to an
example. Some figures are provided here and also correlation between our results and

numerical results are calculated in this chapter.

In fifth chapter, an analytical approximate procedure is investigated for obtaining the
transient response of a system in the case of pair wise equal eigenvalues. We solved an
example to show the implementations of our method. Three sets of results (depicted by
figures) are given here between perturbation and corresponding numerical results to show

reliability and advantages of the proposed technique.

In the previous chapter, we established some procedure with classical KBM method but
from this chapter we start with the differential equations with slowly varying coefficients.
We have presented an analytical technique based on the extended Krylov-Bogoliubov-
Mitropolskii method (by Popov) [91] to determine approximate solutions of nonlinear
differential systems whose coefficients change slowly and periodically with time.
Furthermore, a non-autonomous case also explored in which an external force acts in this

systems.

In seventh chapter, we have given a procedure which is simpler than other classical KBM
method to solve nonlinear damp oscillatory differential systems with slowly varying
coefficients. To show the reliability and advantages of the proposed technique, we have
applied it to an example. We also delivered three figures of our results comparing with

corresponding numerical results to test exactitude of our solutions.



Chapter-One

Mathematical Preliminaries

1.1 Introduction:

Perturbation theory comprises mathematical methods that are used to find an approximate
solution to a problem which cannot be solved exactly, by starting from the exact solution
of a related problem. Perturbation theory is applicable if the problem at hand can be
formulated by adding a small term to the mathematical description of the exactly solvable

problem.

Perturbation theory leads to an expression for the desired solution in terms of a formal
power series (1. €. asymptotic series) in some small parameter known as a perturbation
series that quantifies the deviation from the exactly solvable problem. The leading term in
this power series is the solution of the exactly solvable problem, while further terms
describe the deviation in the solution, due to the deviation from the initial problem.
Formally, we have for the approximation to the full solution x, a series in the small
parameter (here called ¢), like the following:
x=x, &, +&7x, +oo

In this example, x, would be the known solution to the exactly solvable initial problem
and x,, x,,--- represent the higher-order terms which may be found iteratively by some
systematic procedure. For small & these higher-order terms in the series become
successively smaller. An approximate "perturbation solution" is obtained by truncating the
series, usually by keeping only the first two terms, the initial solution and the "first-order"
perturbation correction

X=X, + &,
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Perturbation is important tool for describing nonlinear systems, as it turns out to be very
difficult to find exact solutions to the Duffing equation, Schrédinger equation for
Hamiltonians of even moderate complexity etc. The Hamiltonians to which we know exact
solutions, such as the hydrogen atom, the quantum harmonic oscillator and the particle in a
box and different oscillatory systems, are too idealized to adequately describe most
systems. Using perturbation theory, we can use the known solutions of these simple

Hamiltonians to generate solutions for a range of more complicated systems.

In this chapter, we have describe asymptotic expansions of a function and when the
expansion is uniformly convergent. Finally, we tried to explain some well-known exist
perturbation techniques such as Van Der Pol’s [122] technique, Krylov-Bogoliubov [63]

method and Krylov-Bogoliubov-Mitropolski (KBM) [22, 63] method.

1.2 Gauge Functions and Order Symbols:
Let f(¢)be a function of the real parameter & . If the limit of f(&) exists as¢ — 0, then

there are three possibilities f(g) > 0, f(g) > 4, f(g) > cowith 0< |A| < o0, In the first

and second cases we may express the rates at which f(¢) >0 and f(¢) > A by

comparing f(¢)with known functions called Gauge Functions. The simplest and most

useful gauge functions are members of the set[¢”], where n is an integer. Other gauge
functions often used are sin¢g, loge etc. The behavior of a function f(¢) as & — o, may

be compared with a gauge function g(¢) by employing the Landu symbols: O and o.

The symbol O:

The symbol O (big ‘O’) is defined as follows: Let f(&) be a function of the parameter &

and let g(¢) be a gauge function. Let there exists a positive number A independent of &

and &, >0, such that |f(g)| < A|g(g)| for all |{;‘| <&, (1.1)
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then f(g)=0[g(¢)] as € >0 (1.2)
The condition given in (1.2) may be replaced by

lim

/(&)
g(&)

< ®
c—0

(1.3)

Let f(x,&) be a function of the variable x as well as the parameter £, and let g(x,&)be a

gauge function. We write f(x,¢) =0[g(x,&)] as € >0 (1.4)

if there exists a positive number A independent of ¢ and ¢, > 0 such that

[f(x,8)| < dlg(x,&)| forall |¢| <&, (1.5)

If Aand ¢, are independent of x, the relationship is said to hold uniformly.

The symbol o:

The symbol o (small ‘0’) is defined as follows: Let f(¢) be a function of the parameter &
and let g(&) be a gauge function. Let there exists an positive &, > 0 and let for every

positive number ¢ independent of &, the following condition hold

f(&)|<d|g(e)| forall |g|< g, (1.6)
|/ (2)| < Sle(2) 1

then f(¢)=o0[g(g)] as € >0 (1.7)

The condition given in (1.7) may be replaced by
lim f(e)

=0 1.8
g(&) (1)

c—0

Let f(x,&) be a function of the variable x as well as the parameter £, and let g(x,&)be a

gauge function. We write f(x,&) =o[g(x,g)] as € >0 (1.9)

If for every positive number & , independent of ¢ there exists an ¢, such that

|f(x,8)| < 5|g(x,¢)| forall | < &, (1.10)

If § and ¢, are independent of x, the equation (1.10) is said to hold uniformly.
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1.3. Asymptotic Expansions:

Let [, (¢)]be a sequence of functions such that 6, (¢) =0[0, ,(¢)]as € >0 (1.11)

Such a sequence is called an asymptotic sequence.

Consider the series Zamém (&) (1.12)

m=0

where a,, are independent of &, and[0, (¢)] is an asymptotic sequence. We say that this

expansion is an asymptotic expansion and denote it by

y=>Y a,b,(&)as >0 (1.13)
m=0
n—1
ifand only if y= Zam5m (e)+0[0,(¢)] as e —>0 (1.14)
m=0

The expansion given by (1.13) may diverge. However, if the series is an asymptotic
expansion, then although (1.13) may diverge, for fixed n the first n terms in the expansion
can represent y with an error that can be made arbitrarily small by taking & sufficiently
small. Thus the error committed in truncating the series after n terms is numerically less

than the first neglected term, namely the (n + 1) th term.

Given a function y(¢), the asymptotic expansion of y(g)as &€ — 0, is not unique. In fact,

y can be represented by an infinite number of asymptotic expansions because there exists
an infinite number of asymptotic sequences that can be used. However, once we choose a

particular asymptotic sequence [J,,(&)], the representation of y in terms of this sequence
is unique. Thus, if y(g)is an asymptotic expansion, for the given sequence[d, (¢)], we

have
y = Zan5n(5) as € >0
n=0

lim

¥e) -3 a8, ()
e—>0 0,(&)

where the coefficient a,are given uniquely by a, = (1.15)
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1.4. Uniform Expansions:

Let ybe a function of the variable xas well as the parameter& and develop yin an

asymptotic expansion in terms of the asymptotic sequence [J, (¢)], we have

y(x, &)= iam(x)ém(g) as € >0 (1.16)

m=0

where the coefficients a, are the function of x only. This expansion is said to be uniformly

valid if  y(x,&) = ni: a,(x)0,(e)+R, (x,¢)] (1.17)
where R, (x,&)=0[0,(¢)] (1.18)

Uniformly, for all x of interest. If these conditions do not hold, then the expansion is said
to be non-uniformly valid. For the expansion to be uniformly valid, the term
a, (x)o, (&) must be small compared with the preceding term a,,_,(x)0,, (&) for each m .

Since o6, (g) =0[0, ,(¢)] as € >0

We require that a, (x) be no more singular than a, ,(x), for all values of x of interest , if

a,(x)

a,(x)

the expansion is to be uniform. In practical terms, this means that is bounded.

Thus each term in the expansion given by (1.17).

where a, are independent of ¢, and[J,, ()] is an asymptotic sequence. We say that this
expansion is an asymptotic expansion and denote it by (1.16) must be a small correction to
the preceding term irrespective of the value of x.

For a real valued function f'(x) of real variable x containing a number x, in its domain of

definition , there is a power series expansion of the form Z a,;(x—x, ) (1.19)
J=0
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With nonzero radius of convergence which provides a valid representation for f on 7, the
interval of convergence of the series if f(x) has uniformly bowled derivatives of all

orders at each pointin /.

Further, the power series is uniformly determined and

f(j) (xy)
J! (1.20)

a;, =

where £ (x,) denotes the j-th derivative of f(x)evaluated at x,, . In this case the power
series expansion (1.19) is called the Taylor series of the function f(x)about the point
x, and is uniquely determined. Also, if x, < x,, the closed interval [x,, x,]is in the domain
of f(x)and £ (x)exists for all x €[x,,x,], then the Taylor theorem states that there is

anX € (x,,x,)such that

f)= Z%(x ~x,) +R, (121)
U@ e
where R, = (i 1)! (X, —x,) (1.22)

Let B be the uniform bound for £ (x)on (x,,x,)i.e,

f("+1) (X)‘ < Bforall xe (xoaxl)'

Then from (1.22)

f(n+1) ()NC/)
1 il PN

(x, _xo)n+1 < :

(n+1)! (n+1)!

1 _ xo)n+l

(x, = x, )n+1

(n+1)( )‘ 1)'

and thus the error introduced by using only n terms of the Taylor series for f(x,) is of the

same order of magnitude as the first term in the series which is neglected.

Unfortunately, the theoretical and computational use of a Taylor series representation
often posses serious problems. Suppose for example, that we are given the Taylor series
for f(x)about x,and a point a > x,in both the domain D of fand the interval of

convergence [ of the power series.

10
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Consider the computational problem: Using relation (1.21), compute f(a)where n in
(1.21) is an integer such that |Rn| <& <<1 . The constant ¢ >0 gives a bound on the

allowable error. At the k-th stage of numerical procedure, we must thus compute a bound

)
for |R | If |R |<g inserting n =k in (1.21) and hence|f(a) — Zf (x,)
J!

Jj=0

(a— xo)j <€

(1.23)

On the other hand, if |Rk| > &, we must compute at least one additional term in the Taylor

series. If a—x, is large, it may be necessary to compute a large number of terms in the

Taylor series before satisfying condition (1.23). This may not be practical even with the
aid of a modern high speed computer. In such cases, it is natural to seek a different

representation for f(x)which makes the computational problem more manageable.

Often, such an alternative representation takes the form of an asymptotic expansion

Zané‘n (x), where the function g, (x)are determined by the nature of the computational

problem.

1.5. General description of the perturbation method

Perturbation method is a technique in which the solution can be expanded of a power
series in a small parameter. This approximation method will be applied to obtain periodic
solutions to second-order nonlinear differential equation of the form

F+y+eF(y.y)=0 (1.24)
where over dot represent derivative with respect to ¢, ¢ is a small parameter and F is
assumed to be analytic nonlinear function of y and y .
Let us assume that a periodic solution of the equation (1.24) can be written as a power

series in terms of the small parameter & of the form

11
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WO)=rs () + &, (1) + &7, () +-ovevve 8"y, )+ (1.25)

where the coefficients of the powers of the parameter ¢ are functions of the independent
variable . If ¢ is sufficiently small, the series in equation (1.25) converges. The functions

v, (t) are found by substituting equation (1.25) into the equation (1.24) and equating the

coefficients of like powers of ¢. This leads to an infinite set of linear non-homogeneous

differential equations that may be solved recursively.

To illustrate this perturbation method, we consider a nonlinear differential equation of the

form
j)+y+5y2:0,t>0 (1.26)
with 0 < e <1.

Consider initial condition
»(0)=4, y(0)=0 (1.27)

Substituting equation (1.25) into the equation (1.26), we get

+8( + +(C,‘2 + ......... )2 =
Yot&yité )V, = (1.28)
Simplifying the equation (1.28), we get

(j}0+y0)+g(j}1 +y1+y§>+‘92(j}2 +y2+2y0y1)+ """ =0 (1.29)

Since the equation (1.29) is a power series in ¢ that is identically equal to zero, the

coefficients of the various power of & must be zero. Thus we obtain

12
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Vo +¥,=0
P +yi=-v
Yy +12==2y0y
........................ (1.30)
R ).
where F, is apolynomialin y ,y - Vot

Under substitution the initial conditions (1.27) of the equation (1.25) translate into the

following initial conditions on y, (¢):

y,(0)=4, ,(0)=0 fori>1, y,(0)=0 for k>0 (1.31)

The genearal solution of the first equation of (1.27) is
y,(t)=c, cost+c, sint (1.32)

where ¢, and ¢, are arbitrary constants.
Differentiating (1.32) with respect to t , we get

yo(t)=—c] sint +c, cost (1.33)
Using (1.31) in (1.32) and (1.33), we get

¢, =4 and ¢, =0.
Thus the solution for the first equations of (1.27) becomes

y,(t) = Acost (1.34)

The equation for y, is

2 2

$,(t)+y,=—y2 = —(4cost) :—A?—?cos% (1.35)

13
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This is the linear second-order non-homogeneous differential equation with constant

coefficients. So the complementary function of (1.35) is

yi(t)=c| cost+cysint, where ¢| and ¢} are arbitrary constants

and the particular solution of this equation is

2 2
ylp(l): —7+?C052t

Therefore the complete solution of (1.35) is

2 2
y,(t)=c| cost+c} sint—7+?cos2t (1.36)

Differentiating (1.36) with respect to t , we get

2
»,(t)=—c/sint + ¢, cost—A?sin2t (1.37)

The initial condition y,(0)= 0 implies that ¢/ = 4> /3 and y,(0)=0 implies that ¢} =0.

Therefore the equation (1.36) becomes

2 2 2

yl(t):Tcost—7+A?cos2t (1.38)

Thus to order ¢, the solution of the equation (1.26) is

2

y(t):Acost+g%(cos2t+2cost—3) (1.39)

1.6 . Secular Terms

The calculation of section 1.5 has shown that we cannot try a solution of the form in
equation (1.25) to obtain a periodic solution of the equation (1.24) if we remain only a

finite number of terms. This is because the resulting approximation may be aperiodic. This

14
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lack of periodically comes about because even if y is a periodic function of ¢, the retention
of only a finite number of terms in equation (1.25) may give a functions that is not

periodic. Such a situation occurs for the expansion of the periodic function sin(l+ &)f.

That is

2.2

sin(1+ &)t =sint + &t cost — SINE A eeveeese (1.40)

From the right hand side of equation (1.40), we have seen that the retentions of a finite
numbers of terms gives rise to be a function that not only a periodic but also unbounded as

{— 0.

Terms like ¢" cost or t"sin¢ are called secular terms. Secular terms arise because the
series solution given by equation (1.25) is non-uniformly valid. It is clear that the
existence of such expressions, which become unbounded asz — o, destroys the
periodicity of the expression, equation (1.25), when we keep only a finite number of its
terms. In applications, calculations or time considerations usually force us to consider only
a small numbers of terms. Therefore, to obtain a uniformly wvalid solution, an

approximation is needed that will eliminates the secular terms.

1.7. Poincaré-Lindstedt method

In perturbation theory, the Poincaré¢ Lindstedt [66, 88] method or Lindstedt Poincaré
method is a technique for uniformly approximating periodic solutions to ordinary
differential equations, when regular perturbation approaches fail. The method removes
secular terms when terms growing without bound and arising in the straightforward
application of perturbation theory to weakly nonlinear problems with finite oscillatory

solutions. The method is named after Henri Poincaré, and Anders Lindstedt. This
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approximation method will be applied for obtaining uniformly valid solutions of the

nonlinear differential equation

d’y dy
+y+éeF| y,—|=0 1.41
Y (y dt] (1.41)

where ¢ is a small parameter and F' is assumed to be analytic nonlinear function of y and
dy/dt.

The essence of the method is to introduce a transformation of the independent variable.
This transformation will allow us to avoid the occurrence of the secular terms in the
perturbation series solution of the equation (1.41).

The fundamental idea comes from the astronomer Lindstedt and is based on the
observation that one of the effects of the nonlinear term in equation (1.41) is to change the

frequency of the system from the nonlinear value @, =1 to a)(g) To account for this
change in frequency, a new variable & = @ ¢ is introduced and both y and @ are expanded

in power series of ¢ of the form

(1.42)

where @, are unknown constants.

If we substitute (1.42) into (1.41) and equate the coefficient of the various powers of &

equal to zero, then we obtain the equations for y, :

Vot+y,=0
Yy =—20,), _F(yoayo)
Vit y, ="2m) _(a)12 +2602)j}0 _Fy(yOJ.)./O)yl +F;r(J’o,)>o)(a’1J>o +J>1)

(1.43)
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where
. d d?
R
do do
and
-\ OF(vy,3,0) -\ 0F(vy,7,)
Fy(yano):#’Fy(yo’yo):#'

If F, (y, dy/dt) is a polynomial function of y and dy/dt, then G, is also a polynomial

function of its arguments.

Now the periodically condition in the new variable can be written as
n(6)=y(6+27).

The corresponding condition for y, (@) is

v,(0)=y,(0+27)

If the equation (1.42) is to be a periodic solution of (1.41), then the right hand side of the
equations in (1.43) must contain no multiple of either sin@ or cos@; otherwise secular

terms would arise. Thus to be able to choose any given y, (9) periodic involves satisfying

conditions and consequently at each step of the procedure two free parameters are needed.

It is easy to seen that in equation for y, (6?) one of the constant is @, . The only other place
from where a second constant can come is from the initial conditions on y, ,. This means

that the initial conditions take of the following form as

)_ (1.44)

17
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where A, ’s are unknown constants. The periodicity requirement turns second equation in
(1.43) into pair of equations linear in @, and nonlinear in A4,. Likewise, it is easily to seen
that for n > 1, the periodicity condition on y, (6?) became a pair of linear equations for o,
and A, ,. This, at a given step in our calculations, we may determine simultaneously @, ,
A, ,andy, (H) In this way we can determine a series solution of the form given in (1.42)

for in generally infinite many solutions of (1.41).

To illustrate this method, consider the undamped, unforced nonlinear Duffing equation be

2

d’y
dt?

+y+e° =0 (1.45)

with initial conditions y(0)=1 and dy(0)/dt =0.

If we change to the new independent variable 6 = @ tand expand in power of ¢, we

obtain the following inhomogeneous linear differential equations to solve:

Yo+, =0 sYO(O):l’J}o(O):O (1.46)
W+ =—2a)lj}0—y3 eyl(o)zj’l(o)zo (1.47)
Yy +y, =20, _(6‘)12 +2(02)j}o —3y§y1,y2(0)=)'/2(0)=0 (1.48)
5 . dy . d’y ) ) )
where weused F=y”, y=—— and y = This can be used directly of the equations

do do*’
in (1.43) to obtain the proceeding relation.

Equation (1.46) can be solved easily, giving y, (49) =cos@. If we substitute y, (0) =cosf

into the equation (1.47), the resulting equation becomes

Yty = (2(01 —%)cos@—%cow@ (1.49)

18
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The secular term may be eliminated if the coefficient of cosé is zero. This implies that

o, = % Equation (1.49) can be solved subject to the initial conditions y, (0)= b2 (O)= 0.
. 1
The solution is thus y,(6)= 5(— cos @ +cos36).

Again if we substitute y, (6?) s Y (9) and o, zg into the equation (1.49), the resulting

equation becomes

21 3 3
V.o +y, =| —+2m, |cos@+-—cos30 ———cos50 1.50
SRRt (128 2} 16 128 (1.50)

21

No secular term requires @, = ———.
256

The solution for y,(6) subject to the initial conditions y,(0)= y,(0)=0 is

1
y,(60)= @(23 cos @ —24¢os36 + cos56).

Thus to the third approximation, the solution of the equation (1.41) is

2
y(9,6)=cos6’+3%(—cos€+cos36’)+lgjx (1.51)

(23cos@ —24c0s36 + cos 50) + 0(33 )

2
where 0 = ¢ and w()=1+% - 2le +0(83).
8 256

1.8 Van Der Pol’s Technique

Van der Pol [122] devised a technique to investigate the periodic solutions of the equation

¥+ @, x=g(1—x%)x + kA cos At (1.52)

where the over-dots denote differentiation with respect to t. In eq.(1.52) ¢ is assumed to
be small, and A (the frequency of the excitation) is assumed to differ from @, (the natural
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frequency) by a small quantity which is of the order of ¢. Under these assumptions the
solution of the eq.(1.52) is assumed to have the form

x(t)=a,(t)cos At + a, (t)sin At (1.53)

where a,(¢) and a,(¢) are assumed to be slowly varying functions of time; that is,
a,=0(e) and d, = 0(g”).

Differentiating (1.53) two times and substituting these into eq.(1.52), neglecting terms of
order higher than ¢, keeping in mind that @, = O(¢) while d, = O(¢”) and equating the

coefficients of cos A¢r and sin Af on both sides, we obtain

7 -w,
2d4,+5 2 4 —ea (1- p)=0 (1.54)
2 2
2d, —ﬂ“T")Oa1 —ea,(1- p) = &k (1.55)
a®> a’+a,’
where p=—=—"1—"2_ 1.56
=7 2 (1.56)

To analyze the periodic solutions of (1.52), we note that they correspond to the stationary

solutions of the form eq. (1.54) and eq. (1.55); i.e., they correspond to the solutions of

20a,, —a,,(1-p,) =0 (1.57)
—20u,, —ay,(1-p,) =k (1.58)
. . o A-w,
where o is the detuning factor, and it is given by o = (1.59)
g

Terms of O(¢?) in (1.54) and (1.55) have been neglected. By adding the squares of (1.57)

and (1.58) and using (1.56), we obtain the frequency response equation

k2
poldo’ +(1-py)1=" (1.60)
1.9. The Krylov-Bogoliubov Technique

Here we discuss this technique in connection with the general weakly nonlinear second-

order equation of the form
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X+, x = & (x,X) (1.61)

where ¢ is a sufficiently small parameter so that the nonlinear term &f (x, x) is

respectively small.

When ¢ =0 the equation reduces to linear, then the solution of (1.61) can be written as
x =acos(w,t +6) (1.62)

where a and @ are constants. To determine an approximate solution to eq.(1.61) for ¢
small but different from zero. Krylov and Bogoliubov [63] assumed that the solution is
still given by eq. (1.62) but with time varying a and @, and subject to the condition

X=—aw,sing, ¢=w,+0 (1.63)

If £=0 but sufficiently small, one might reasonably assume that the nonlinear equation
(1.61) also has a solution of the form Eq. (1.62), provided that ¢ and 6 now be regarded
as functions of t rather then constants. This is precisely what we shall do in applying the
Krylov-Bogoliubov [63] Technique. That is, we assume a solution of Eq. (1.62) of the

form
x=a(t)cos(w,t +6(1)) (1.64)

Thus, this technique is similar to Vander Pol’s [122] technique which was discussed in the

previous section. The only difference is in the first term.
Differentiating eq. (1.62) with respect to t gives x = —aw, sin¢ + acos¢ — absing.

Hence dcos@—a@sing =0 (1.65)

on account of (1.63). Differentiating eq. (1.63) with respect to t, we obtain

X=-a 0)02 cos¢ —w,asing — aa)oé cos ¢ . Substituting this expression into (1.61)
and using (1.62), we obtain
wodsin¢+aw06?cos¢5=—f,f[acos¢, —am,sing] (1.66)
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Solving (1.65) and (1.66) for ¢ and @ yields

d:—isin¢f[acos¢, —aw, sing] (1.67)
W

6 =——5—cosg flacosd, —aw, sin g] (1.68)
aw,

Thus the original second-order differential equation (1.61) has been replaced by the two
first-order differential equations (1.67) and (1.68) for the amplitude a and the phase 8.

To solve (1.67) and (1.68) , we note that the right-hand sides of these equations are
periodic with respect to the variable ¢, hence d=0(g) and 8 =O(¢). Thus a and @ are
slowly varying functions of time because ¢ is small; hence they change very little during
the time 7 =27/w, (the period of the terms on the right-hand sides of these equations).
Averaging (1.67) and (1.68) over the interval [z, + T], during which a and € can be taken

to be constants on the right-hand side of these equations, we obtain

&

a=-

Si(a) (1.69)

2w,

O=_

200, % (a) (1.70)

T

where f,(a) = %J.sin¢f[a cos@,—aw, singldt

0

:lfsin¢f[acos¢,—aa)0 sin@|d g (1.71)
T 0

g (a)= 1 fcos¢f[a cos@,—aw,singld¢ (1.72)
4 0

Note that f,and g, are simply two coefficients of the Fourier series expansion of f .

1.9.1 Example:
As an example, let us consider Duffing’s equation X + x = —&x’, x(0) =a, x(0) =0 in
which

f(x,%) =—x° (1.73)
Hence according to the above process, we have
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fila)=0, gl(a)=—%a3 (1.74)

2
Consequently, a = a constant from (1.69), and € = gga—t +0) i (1.75), from
@,

(1.70). Therefore, to first approximation

2
u:acosw0[1+§g“—2]z+0(g) (1.76)
8 o,

1.10. The Krylov-Bogoliubov-Mitropolski Technique
In the course of refinement of the first approximation for X + a)ozx =¢&f (x,X), (1.77)

Krylov and Bogoliubov [63] developed a technique for determining the solution to any
approximation. This technique has been amplified and justified by Bogoliubov and
Mitropolski [22] and extended to non-stationary vibrations by Mitropolski [73].They

assumed an asymptotic expansion of the form

N+1)

N
X=acosy + zg"xn (a, )+ O0(e
nel (1.78)

where each x, is a periodic function of y with a period 27, and a and y are assumed to

vary with time according to

a:ﬁgun(a)m(gw)
= (1.79)

N
and y =, + Y &'y, (a)+O(e"") (1.80)

n=1

where the function x, ,4 and y, are chosen such that (1.78) through (1.80) satisfy the
differential equation (1.63). In order to uniquely determine 4, and y, , we require that no

contains cosy . The derivatives are transformed according to

d_dao dy 0

dt dt oa dt oy

2 2 A2 2 2 Y 2

d _(@j a_2+d_?g+2@dy/ 0 +(dl//j az+dlé/ 3
dt) éa® dt* éa dt dt cady \ dt ) Oy’ dt* Oy

dr*
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2 N
o _dfde) dad(de) do o dh o
dt= dt\ dt dt da dt = d da

dt a
2 N
d ‘f:i(_d'/’j:@i(_dwjzﬁzgn_d% Py dy, +0(&Y)
dt dt\ dt dt da\ dt dt += da da

For convenience the calculation is omitted.

1.11 Conclusion

We have discussed some method. Among these the KBM is the most accurate and suitable

for approximate solutions of nonlinear problems. Thus we would like to use this method

for my dissertation.
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Chapter-Two

Perturbation Solutions for Fifth Order Nonlinear System with Damping

Effects

2.1 Introduction

The world around us is inherently nonlinear and nonlinear differential equations are
widely used as models to describe the complex physical phenomena. The approximate
solutions of nonlinear differential equations play a vital role in nonlinear science and
engineering. Nonlinear Physical Science focuses on recent advances of fundamental
theories and principles, analytical and symbolic approaches, as well as computational
techniques with engineering applications. Topics of interest in nonlinear physical Science
include but are not limited to new findings and discoveries in nonlinear physics and
mathematics, nonlinearity, complexity and mathematical structures in nonlinear physics,
nonlinear phenomena and observations in nature and engineering, lie group analysis,
stability, bifurcation, chaos and fractals in physical science and engineering, nonlinear
chemical and biological physics.

We investigate the master nonlinear fifth order partial differential equation that governs
the evolution of shear-free spherically symmetric charged fluids. By making
dimensionless the fifth order partial differential equations can be converted to fifth order
ordinary differential equations. Some of the converted equations reduce in the forms of
nonlinear differential equation with damping effects. The common methods for finding
analytical approximate solutions to these nonlinear oscillator equations are the
perturbation methods. The Krylov-Bogoliubov-Mitropolskii [22, 63] etc. are well known

perturbation methods to obtain analytical approximate solutions of non-linear systems and
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is the widely used technique to obtain analytical approximate solution of non-linear
systems with damping effects. Krylov and Bogoliubov (KB) [63] originally developed a
perturbation method for obtaining periodic solutions was amplified and justified by
Bogoliubov and Mitropolskii [22] and the KB method has been extended by Kruskal [61].
Later Popov [91] and Mendelson [69] extended the method for damped nonlinear
oscillations. Volosov [123, 124], Zebreiko [130] also obtained higher order
approximations. Most probably, Osiniskii [79] first extended the KBM method to a third
order nonlinear differential equation. Making use of KBM method, Bojadziev [25] has
invastigated nonlinear damped oscillatory systems with small time lag. Bojadziev [30] has
also studied the damped forced nonlinear vibrations with small time delay. Bojadziev [31]
applied the Krylov- Bogoliubov-Mitropolskii method to models of Population dynamics.
Bojadziev and Chan [32] has found asymptotic solutions of differential equations with
delay in population dynamics. Bojadziev [33] presented a damped oscillating processes in
Biological and Biochemical systems. Shamsul and Sattar [109] presented a unified KBM
method for solving third order nonlinear systems. Later, Akbar et al. [6] extended the
method presented in [4] for the damped oscillatory systems. Akbar and Siddique [9]

presented a method to obtain solutions of fifth order weakly nonlinear oscillatory systems.

In this chapter, we employ the perturbation method to obtain analytical approximate
solutions. Even, many engineering problems and physical phenomena arise in the nature
of fifth degrees of freedom are oscillatory and their governing equations are fifth order
nonlinear differential systems with damping effects. For this reason, we have extended the
KBM method, an approximate technique to obtain the analytical solutions of fifth order
nonlinear oscillatory systems with damping effects. Figures are provided to compare the
solutions obtained by the presented method with the corresponding numerical solutions
obtained by the fourth order Runge- Kutta method.
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2.2. The Method

Since by making dimensionless the fifth order partial differential equations can be
converted to fifth order ordinary differential equations or in the couple system of
pendulum lead to higher degrees of freedom, let us consider a governing equation of a

fifth order nonlinear damped oscillatory system,

5 4 i
f{t§+20i%+csx=—ef(x,t) (2.1)
i=l

where ¢ is a small parameter, f(x,?) is the given nonlinear function, c,;i=1,2,..,5 are

5 5
the characteristic parameters of the system defined by ¢, =Z}Ll., c, = leﬂj,

i=1 i,j=1
i#]

5 5 5
cy = Zﬂiﬂ,jﬁ.k , €, = Zﬂiﬂjlkﬂ., and c, :H/L where —A4,,-4,,—4,,—4,,— 45 are the

i,j,k=1 i,j,k,I=1 i=1
i#j#k i#j#k#l

eigenvalues of the unperturbed equation of (2.1).

When ¢=0 i.e, the equation (2.1) lead to linear or unperturbed equation and then the

solution is

5 At
x(1.0)= Y a, e, 2.2)
=i

where @, j=1,2....,5 are arbitrary constants.

When & #0, the powerful perturbation approximant solutions will be investigated in
which amplitude and phase are not arbitrary but time varying functions. First, we will
discuss the construction of approximants for functions and polynomials. Next, we will
explore the implementation of approximants with initial value problems. Polynomials are
frequently used to approximate power series. However, polynomials tend to exhibit
oscillations that may produce an approximation error bounds and this makes the

singularities. To overcome these difficulties, the Taylor series is best manipulated by our
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certain approximants for approximations. We seek a solution in accordance with Shamsul

[108] or Murty and Deekshatulu [76] or the KBM [22, 63] method, of the form

5
X(f,g) = Za‘j(t)eiljl +5u1(a1,a2,---,a5,t)+--- (23)
J=1

where each a;;j=1,2,---,5, satisfies the equations

da (1)

dt (2.4)
Confining our concentration to the first some terms 1,2,---,m in the series expansions of

:Mj(al’a2’“.’a5’t)+“.

equations (2.3) and (2.4), we calculate the functions u,and 4,;j=12,---,5 such that

a;;j=12,---,5, appearing in eq. (2.3) and eq. (2.4), satisfy the differential equation (2.1)

m+1

with an accuracy of &”" . Though the solution can be obtained up to the accuracy of any
order of approximation, but to avoid the rapidly-growing algebraic complexity for the

derivation, the solution, in general, confining to first order [74]. In order to determine

these unknown functions, it is assumed that the function u, exclude fundamental terms
which are included in the series expansion (2.3) at order g’

Differentiating x(¢,¢) five times with respect to ¢ and substituting x(¢,¢)and their

derivatives in the eq. (2.1), using the relations in eq. (2.4) and equating the coefficients

of ¢, we obtain

5

d S R
H(E-i-ij)ul +Ze K ( H (E_/Ij + A4, :_f(O)(anazs"':asot) (2.5)
=1

j=1 k=1, j#k

5
where £ = f(x,)and x, = Zaj (e ™
=l
The function f* can be expanded in a Taylor series (see Murty and Deekshatulu [76] for

details) as:

0.....00 5
0) _ m; _—(mA+mydy+ - +msds )t
f - Z le,---mszai €
My =—00- - 15 =—00 i=1
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To obtain the solution of eq.(2.1), it has been proposed that u,exclude the fundamental

terms. To do this, we have to separated the eq.(2.5) into six equations for unknown

functions u, and A4;;j=12,......5 (see [108] for details ).

Substituting the functional values and equating the coefficients of ¢ *';j=12,...,5, we

obtain
5 d 0.....00 5
e—ﬂ.lt (_ _ /1 + /I)A - _ F a(n,ef(mll] +mydy+e+msds )t (26)
dt 1 i 1 my,ems i
=2 My =—00,:++, M5 =—00 i=1
my=my,m=m,+1
5 d 0.....0 5
e*izf Z (__12 +ﬂ“i )A2 —_ Z )a | Za;n,- e—(m]/i]+mzﬂz+-~-+msﬂs)z (27)
i=1,i#2 dt My =—00,+++, Mg =—00 b i=1
my=my,m=m,—1
2 5 d 0.....00 5 B 2 2
e Y (=M HA)A =~ ), F Y ale Ak (2.8)
2 dt M=oy g0 ]
my=my,my=my+1
e 4 Eul : Jytmy 2
e 4t z (__14 +/»{i )A4 - _ z F Zaimie—(ml 1 FMy A+ +msAs)t (29)
s dt m=—omg=—n =l
| =My, my=my—1
4 d ®.....0 5
e—lstz(__ﬂs + /I)AS - _ Z F amie—(m]l]+mzlz+ ......... +msAs )t (210)
- dt i myoms 4 - i
i— Iy =—00- 1 =—0 i=
my=my,my=my
and
5 d 0.....00 5 2 B A
Z(z‘l'ﬂvl)ul - _ Z F Zaimle—(ml R DY o +msAs )t (211)
t my,---ms )

i=l1

My =—00++ 15 =—00,

where u, avoid the terms for m, =m, £1, my =m, £1, m, =m,, my =m,.

Solving Eq. (2.6) to Eq. (2.11), we obtain 4, 4,,...,4; and u,.
For the suitable form of the result we can transform equation (2.3) to the exact formal

KBM [4, 6,9, 108] solution by inserting a, :ge"‘", a, = , a, =%e”"2 and

b . . . : .
a, =—e ' . Herein a,bare amplitudes and ¢,, ¢, are phase variables which are time
2

dependent 1. e, slowly varying function of time.
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2.3. Example

As an example of the above procedure, we are going to consider the Duffing type equation

of fifth order

d’x & d'x
S + E ci—i+csx=—6‘x3
e T dt

here f(x,t)=x".

(2.12)

5
Wehave f* =0 ae™)’

i=1

or
0 3,32 2 QA+ 2 ~(Jy+22 3 34
f( ) =a,e it +3Cll a,e @AA )i +3a1aze Ak +ase g
~QA+is)t
+3a’age

(A + A+ A4t

2 —(2A+43)t 2 24+,
+3a1a3e( 1+43) +3ala4e( 1+ 41

W+ A+t i+ +is)
+6a,a,a,e +6a,a,a,e +6a,a,a;e

—(2Ay+25)t
—(2Ay+ )t Qi) 3a22ase

2 2
+3aa,e +3aja,e

—(4+225)t
(422t SAA 1 3q.ale

2 2
+3a1aae +3a1a46

(A A A (A4 At A (A 424+
+6a,a,a,e (st +6a,a;ase (e +6a,a,ase (s

—(Ay+225)t (2.13)

(A4 +24 2
(A2+22,)1 +3a,ase

2 2 _—(A4+22,
+3a2a36 +3a2a4e(z+ 4t

YNNG RY (A +Ag+As5)t (At A+ As)t
+6a,a,a,e +6a,a,a5e +6a,a;ae

-3 (2544 - 24 —34
+aje” +3aia,e” P 1 3a,aie BT - qle M

YY) ST Y) —(2Ay+ 2
+3a;a,e” ) BT 1 Bagage T

—3A4t
3
+3ase

+6a,a,a;e

—~(A3+225)t (A4 +275)t

2 2
+3a,a’e +3a,ase
5

Thus the equations (2.6) to (2.11) takes the form

S
e_llt z(% - jv1 + /11‘ )Al = _3a12aze_(22]+/12)t - 6ala3a4e_(}q*—}Lﬁi“)t (2 14)

i=2

5
e Z (%_ﬂz +4,)4, = —3a,aje” ) _6aza3a4e_(lz+%+mt (2.15)

i=1,i#2

5 d
et D (oA Ay = Baae T —6aayaze R (2.16)

i=1,i#3

5
e Z (%_ Ay + A4, = Bayaie” Y —6aa,a,e ! (2.17)

i=1,i#4
td
e_%t Z (E N /15 + ﬂl‘ )As = 6alazase_(ll+lz+/15)t - 66136146156_(}%HLA-%S)t (2 1 8)
i=1
and
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2 d
(—+ A, =—(aie™™ +ale™ +3ala,e™ ™ +3a’a,e” ) £ 3a’a e
dt i 1 1 2 1%3 1%4 1%5
i=1

2
+3aja,e

—(224,+A3)t

2
+3asa,e

—(22+A)t

—(24,+45)t

—(22,+25)t

2
+3a,ase

(A +275)t

—( 221

2
+3a,ae

+3a1afe

2
+3a,a5e

+6a,a;a,e

—(h+A+a5)t

+6a,a,a.e

—(A+Ag+45)t

—(A+24
+3a2afe (h+24:)t

—(Ay+ A4+ A
+6a,a,a,e” )
myw Yy

3 3
+aje ™ +ae

—(A3+245)t

+3a,a’e
4

2
+3ajase

—(Ay+244)t

—(Ay+ A3+ A
+6a,a,a,e )
—(223+45)t

—(A4+225)t

2
+3a,a;

2
+3a,ase

+3a,a’e
5

2
+3a,a5e

+3ale

—(A4+245)1

(A +245)t
e

—(224+A5)t

35t

) (2.19)

Again solving the equations (2.14) to (2.18) and inserting A, =k, —iow,, A, =k +io,,
A=k, —iw,, 4, =k, +iw, and A, =&, we obtain
B 3ala,e

Al - _Z(kl _ia)l){(3k1 _kz)_i(a)l _a)z)} {(3k1 _kz)_i(wl +(02)}{(3k1 _5)_1.(01}

—2kyt

B 6a,a,a,e
2(k2 _iwl){(kl +k2)_i(a)l _wz)} {(kl +k2)_i(a)1 +a)2)} {(kl +2k2 _65)_1.(01}

2 2kt
_ 3a,aje

T2k i)k k) + i@, + 0,)HGk —k,) + (0, - 0,)HGk, — &)+ i}

=2kt

3 6a,a,a,e
2k, i)k, + k) + i@ + @) {(k + k) +io, —0,)} ((ky + 2k, = &) +im}

2yt

4o 3ala,e
P2k, — i) {3k, — k) +i(@, — 0,)} {3k, — k) —i(o, + @,)} {3k, — &) —im,}

=2kt

B 6a,a,a,e
Z(kl _ia)z){(k1 +k2)+i(a)1 _wz)}{(k1 +k2)_i(a)1 +w2)}{(2k1 +k2 _§)_iw2}

2kt

3a,aje
o 2(k2 +ia)2){(3k2 _k1)+i(a)1 +a)2)} {(3k2 _kl)_i(a)l _a)z)} {(3k2 _é)"'ia)z}

2kt

3 6a,a,a,e
2k tiw) ik + k) +i(o + @) ik + k) i@ - @)} {2k + K, = &) i,

2kt 2yt

_ 6a,a,ase B 6a,a,ase
(K +8) + o) 2k, —ky + &)’ + @) Ak, +8)” + @)} {2k, —k + &) + 0y}

A, =

Now, inserting 4;; j =1,2,..,5 in the equations (2.4) and using
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4 1 1,
,a, =—ae ", a, =—be'” ,a, =Ebe 2 and a; = c, to convert

2 2 2

actual form of KBM solution, we obtain the differential equations for amplitudes and

phases are
d _ _ db _ _
a_ e(la’e”™™ +Lab*e") o e(nb’e”™ +nya’be")
t
d _ _ d _ _
@ =€(m1aze 2t +m2bze 2k2t) %3 =6‘(p1bze 2yt +p2aze 2k1t)
dt dt
and
d _ _
70 =¢e(gq,a’ce”™ +q,b*ce™™") (2.20)
t
where @Bk’ —kk, -0 —00,)Ok’ -3kk,-3kéE+kE-0 +o0,)-

_é (4kla)l +k]0)2 _k2w1)(6k1a)1 _kza)l _3k1a)z _a)1§+w2§)
C 8 + o)) Bk —k) + (0, +0,) Bk k) +(0,—0,) HBk — &) + o]}

(kk, "'kz2 _a)lz + 0 0)){(k, +k,)(k, +2k, _5)_6‘)12 +0,0,} -
/ 3 ko, —k,0, +k,0,)) 2k 0, +3k,0, +k o, +2k,0, —0,&-0,5)
’ 4 (k22+w12){(k1+k2)2+((01 _wz)z}{(kl+kz)2+(w1+a)2)2}{(k1+2k2_§)2+(012}

(Bk; —kk, — @; — o,0,)%; =3k k, =3k,& +ké - o) +o,0,) -
3 4k 0, — k0, + k,0,)(6k,0, — ko, -3k,0, + 0, - 0,¢&)

m =-=2 2 2 2 2 2 2 2 2
8 (kz +wz){(3k2_k1) +(a)1 _a)z) }{(3k2_k1) +(a)1+a)2) }{(3](2_5) +a)2}
(k12 +kk, _0)22 - 0,0,){(k, + k,)(2k, +k, _5)_0)22 +o0,} -
" __E (kyo, + 2k 0, + k,0,)2k,0, + 3k o, -2ko -ko +0é-0,f)
Ak o))k, k) + (o —0,) (ke +h) (0 +0,) 2k, +ky - &) + o)

Gk = kky — 0f — 0,0,)(6k,0, - ky0, =3k 0, - 0,5 + ©,5) +
L3 (4k, @, + k0, — k,0,)Ok} =3k k, —=3k,é+k,E — o +w,0,)
1 8 (kl2 +w12){(3k1 _k2)2 +(a’1 +w2)2}{(3k1 _kz)z +(a)1 _wz)z}{(3k1 _5)2 +a)12}

(k,k, +k22 —a)12 +0,0,)2k o, +3k,0, + ko, +2k,0, -0, -0,5) -
n __E (2/(2601 _kza)z +k1w1){(k1 +k2)(k1 +2k2 _5)_(012 _wlwz}
, =
4|k + o))k + k) + (0 —@,) 3 {(ky + k)" + (@ + @,)" H(k, +2k, = &) + o}

(Bk; —kk, — 0] — w,0,)(6k,0, - ko, -3k o, +0,¢-0,E) -
_é (4k,0, — k0, +k2w1)(9k22 =3kk, =3k, + k& —a)22 + w,0,)
8 (kz2 +w22){(3k2 _kl)z +(w1 _wz)z}{(?’kz _kl)z +(w1 +w2)2}{(3k2 _f)z +w22}

b=
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(kl2 +k1k2 _0)22 —a)la)z)(2kza)2 +3k1a)2 _2k1(01 _kza)l +a)1§_w2§)
3 — (k,@, +2k,0, +k,0,) {(k, +k,) 2k, +k, — &)~ 0; +0,0,}

P T (e T 0 ey 150 + (@, —,) )} (ks +K0) + (@, + @)} (2K, +hy —E) 10}
_ 3 1
T+ &+ o) (2 —k, + &) + )
and
3 1
q, =

2k, + &) + @) {2k, —k, + &) + @}

Equations  (2.20) are nonlinear and have no exact solutions. We can solve (2.20)

considering a,b,c,p, and ¢, are constants in the right-hand sides of (2.20) (as & is small)

da db dc do, and %are slowly varying function of time. This assumption was used

dt’ dt’dt’ dt

by Murty et al. [75, 76] to solve the similar nonlinear equations. The solution is thus

2kt 2kt
at)=a,+ g, = e 1ap U0
1 2
s(1—e™) (1-e™")
b =by + ol may b )
1-— e’2k1t 1— e*Zkzt
P =¢ 0+ g(mla02 % + mzbo2 (271‘7))
1 2
1—e 2kt 1= 2kt
0, () =@y + ‘9(p1b02 ( 222 ) + pzaoz ( 2ekl ))
and
1-— efzklf 1— e—2kzt
c(t)=c, +&(qa,’c, (Zk) +q,bc, (Zk)) (2.21)
1 2

Here, we neglect the calculation of u, for small contribution in our solutions.

Finally, we obtain the solution in the form

x(¢) = acos(wyt +¢,)+bcos(m,t +¢,)+ce " . (2.22)

Here eq. (2.22) 1s the first order approximate solution of eq. (2.12), where a,b,c,p, and

@, are given by the eq. (2.21).
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2.4 . Results and Discussions

On the basis of KBM method, an approximate solution of fifth order time dependent
damped nonlinear system with constant has been found. Theoretically, the solution can be
obtained up to the accuracy of any order of approximation. Here we obtained the
approximate solution to the first order of accuracy. In contrast with the numerical
solution, one can easily verify accuracy of approximate solution obtained by a certain
perturbation method. We have compared our obtained results (by perturbation) to those
obtained by the fourth order Runge-Kutta method for different sets of initial conditions as
well as different sets of eigenvalues in this chapter. We have also computed the Pearson
correlation between the perturbation results and the corresponding numerical results. From
provided the figures, we observed that our perturbation solution agree with numerical

results nicely for different initial conditions.
At first, for k, =0.15, k, =0.25, @, =2.0, @, =1.35, £ =0.005 and £=0.1, x(¢,&) has

been computed (2.22), in which a,b,c,p, and ¢, by the equation (2.21) with initial

conditions
2 V4
a, =0.05,b, =0.08,c, =0.0075,¢, , = Y and @, = By
2
ie, [x(0)=-0.0175, (0 _ 4 190893, dLEO) —0.1794134,
dt dt
3 4
O _ o 472052, 90 _ 7833157
dt di

Then the perturbation results obtained by the solution (2.22) and the corresponding
numerical results obtained by a fourth order Runge-Kutta method with a small time

increment .05, are plotted (Fig. 2.1). The correlation between the results is 0.999999995.
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Fig.2.1. Perturbation solution plotted by solid line and numerical solution plotted dotted line.
Secondly, for k, =0.25 , k, =0.35, o, =1.89,w, =2.0, £ =0.25 and £=0.1, x(¢,¢) has

been computed (2.22), in which a,b,c,p, and ¢,by the equation (2.21)with initial

conditions
a, =0.25,b, =0.35,¢, = 04,0, =% and o, , =%
2
[i.e., x(0) = 0.575, @ _ 1246161, & xEO) = 0.046513,
t t

3 4

d XEO) _ 4549864, & XEO) = -3.011512]
dt dt

Then the perturbation results obtained by the solution (2.22) and the corresponding
numerical results obtained by a fourth order Runge-Kutta method with a small time

increment .05, are plotted (Fig. 2.2). The correlation between the results is 0.9999975.
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Fig. 2.2. Perturbation solution plotted by solid line and numerical solution plotted dotted line.
Finally, for k£, =0.5, k, =02, o, = \/5, W, = \/g, =04 and £=0.1, x(¢,¢)has been
computed (2.22), in which a,b,c,p, and ¢, by the equation (2.21)with initial conditions

a, =0.44,b, =0.25,¢, =0.36,¢p,, = 0.0 and ¢,, =3.12

dx(0) d’x(0)

[i.e., x(0)=0.550058, =-323975, < 5= = 0033432,
3 4

X0 _ 81419, 7O _ 1 608891
di dt

Then the perturbation results obtained by the solution (2.22) and the corresponding
numerical results obtained by a fourth order Runge-Kutta method with a small time

increment .05, are plotted (Fig. 2.3). The correlation between the results is 0.999999673.
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Fig. 2.3. Perturbation solution plotted by solid line and numerical solution plotted dotted line.
2.5. Conclusion

In this chapter, a procedure is founded to obtain the analytical approximate solution of
fifth order nonlinear differential systems based on the KBM [22, 63] method. The
correlation has been calculated between the results obtained by the perturbation solution
and the fourth order Runge-Kutta method of the same problem. The results obtained for
different initial conditions, show a good coincidence with corresponding numerical results

and they are strongly correlated.
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Chapter-Three

Perturbation Solutions for Fifth Order Damped-oscillatory Nonlinear

Systems with Only One Pair of Eigen Values are Complex

3.1. Introduction

Oscillation is the rhythmic variation, usually in time, of some measure about a central
value (often a point of equilibrium) or between two or more different states. Common
examples include a swinging pendulum and AC power. The term vibration is sometimes
used more narrowly to mean a mechanical oscillation but sometimes is used to be
synonymous with "oscillation" which arise not only in physical systems but also in
biological systems and in human society. The harmonic oscillator and the systems it
models have a single degree of freedom but more complicated systems have more degrees
of freedom, for example two masses and three springs (each mass being attached to fixed
points and to each other). In such cases, the behavior of each variable influences that of
the others and leads to a coupling of the oscillations of the individual degrees of freedom.
This phenomenon was first observed by Christiaan Huygens in 1665[123]. The apparent
motions of the compound oscillations normally come out very complicated but a more
economic, computationally simpler and conceptually deeper description is given by
resolving the motion into normal modes. More special cases are the coupled oscillators

where the energy alternates between two forms of oscillation.

As the number of degrees of freedom becomes arbitrarily large, a system approaches
continuity; examples include a string or the surface of a body of water. Such systems have
(in the classical limit) an infinite number of normal modes and their oscillations occur in
the form of waves that can characteristically propagate. Most of their dynamical equations
are nonlinear with higher degrees of freedom.
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In the last few decades, many efficient and powerful methods have been developed by a
diverse group of researchers to construct the analytical approximate solutions of physically
important non-linear equations arise in many phenomena in physics and engineering
branches. Among the methods used to study nonlinear systems with a small nonlinearity,
the Krylov-Bogoliubov-Mitropolskii (KBM) (Bogoliubov and Mitropolskii [22], Krylov
and Bogoliubov, [63] method is a vastly used technique to investigate an analytical
approximate solutions. However, the process was devised for obtaining the periodic
solutions of second order nonlinear differential systems with small nonlinearities, Popov
[91] extended the method to explore the solutions of damped oscillatory nonlinear
systems. Owing to physical significance, Mendelson [69] rediscovered Popov’s results.
Murty [74] offered a unified KBM method for obtaining approximate solutions of second
order nonlinear systems, which covers the un-damped, damped and over-damped cases.
Bojadziev and Hung [35] employed the KBM method to search approximate solutions of
damped oscillations modeled by a 3-dimensional time dependent system. Shamsul [111]
proposed a new perturbation technique to find the analytical approximate solution of
nonlinear systems with large damping. Shamsul and Sattar [109] presented a unified
method for obtaining solution of third order damped oscillatory and over-damped
nonlinear systems. Later, Akbar et al. [6] extended the technique for damped oscillatory
nonlinear systems in the case when the four eigen-values are complex conjugates. Rahman
et al. [93] investigated solution of fourth order nonlinear systems in which two of the
eigen-values are real, negative and the rest of the two are complex conjugates. Recently,
Akbar and Siddique [9] investigate a technique on the basis of KBM Method to obtain the
analytical approximate solutions of fifth-order weakly nonlinear oscillatory systems by

extending the KBM method. Siddique and Akbar [115] also investigated an asymptotic
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solution of fifth-order over-damped symmetrical nonlinear system based on the KBM
method and the work of Akbar et al. [6].

In the previous chapter, we consider fifth order damped oscillatory which has two pair of
roots are complex and one is real. But the purpose of this chapter is to investigate solutions
of fifth order damped oscillatory nonlinear systems [51] when two of the eigen-values are
complex conjugates and the other three are real and negative. The presented method is
illustrated by its applications via cubic nonlinear Duffing type damped-oscillatory
differential system which are used to model different nonlinear phenomena. The results
obtained by the presented technique agree with the numerical solutions obtained by means

of the fourth order Runge-Kutta method nicely.

3.2. Materials and Methods

Consider a fifth order weakly nonlinear damped-oscillatory ordinary differential system

d’x &, d'x
o +Z‘ki?+k5x=—gf(x,t) (3.1)

where ¢ is a small parameter, f(x,#) is the nonlinear function, k,;i=12,..,5 are the

S5 5
characteristic parameters of the system defined by & = lei , k= leiij ,
=

i=1 L=
i#]

5 5 5
ky= Y AA A, ky= D A4 and ks=[]4  where —A4,-4,,~4;,~4,,— s are
i=1

i) k=1 i,j k=1
i#j#k i#jzk#l

the eigenvalues of the unperturbed equation of (3.1). We consider three of the eigen-values

say —A4,, —4,, — A, are real and negative and the other two say —A4,, — A4, are complex

conjugates.

The unperturbed solution (when £ =0 ) of the Eq. (3.1) is:
> A
x(1,0)=>a, e (3.2)
Jj=1
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where a 700 J =12....,5 are constants of integration.

If € #0, following, we seek a solution in accordance with Shamsul [108] or Murty and
Deekshatulu [76] or the KBM [22, 63] method, of the form:
> —Ajt
x(t,g)=2aj(t)e ! +gu](a1’a25“'aa55t)+“'
J=1 (3.3)

where each a;;j=1,2,---,5, satisfies the conditions

d _ 2
@O =edy(a.ar, a5+ & (3.4)

The analytical approach is very difficult to determine a higher approximation of
equation (3.3). However, a first approximate solution gives the satisfactory results.

Confining our attention to the first few terms 1,2,---,m in the series expansions of

equations (3.3) and (3.4), we calculate the functions w,and A4,;j=12,---,5 such that
a;;j=12,---,5, appearing in eq. (3.3) and eq. (3.4), satisfy the differential equation (3.1)

with an accuracy of &™'. Theoretically most of the perturbation methods can be
proceeded to any order of approximation. But for rapidly growing algebraic complexity of
the derivation of the formulae, the methods usually confined to a low order specially the
first. It is noted that the determination of higher approximation is also laborious according

to Shamsul’s [110] and Sattar’s [98] techniques. In order to determine these unknown

functions, it is obvious that the function u, contain secular type terms fe ' which are

included in the series expansion (3.3) at order&’. However, it is customary in KBM

t

method that #, does not contain secular type terms like 7cos?, ¢sint as well as fe™" etc.

Differentiating x(z,&) five times with respect to ¢ and substituting x(z,&)and their

derivatives in the eq. (3.1), using the relations in eq. (3.4) and equating the coefficients of
&, we obtain
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5

d S0 o d
H(E'i'ij)ul +Ze 4j ( H (E—ﬂj +lk))Aj Z—f(o)(al,az,“',as,t) (3.5)
=1

j=1 k=1, j#k
5
where £ = f(x,)and x, = Zaj (e ™
j=1

The function f'” can be expanded in a Taylor series (see Murty and Deekshatulu [76] for

details) as:

a .mi e—(mlll +my A+ +ms5A5)t

1

fO= 2 Fopns

0.....00 5
mlz_oo...msz_oo i=1

To obtain the solution of equation (3.1), it has been proposed in Ref. [108] that u, exclude
the fundamental terms. To do this, we have to separated the equation (3.5) into six

equations for unknown functions u, and 4,;j=12,.....,5 ( see [108] for details ).

Substituting the functional values and equating the coefficients of e *';j=12,...,5, we

obtain
e, d Rl ; H+md 2
N R D L T D Y (3.6)
=2 t M| =—00,: -, M§=—00 i=1
m3=m4,m=my+1
B 5 d 0.....0 5 4 B B
e Y (= A+A)A, =~ F aeT ARSI (3.7)
dt 2 i 2 my,---ms i
i=1,i#2 M| =—00,: -+, M&§=—00 i=1
m3=my4,my=my—1
B 5 d 0.....00 5 2 B B
e Y (ot A == Y F, > alte MRl (3.8)
i=1,i#3 M| =—00,:++, M5 =—00 i=1
my=mp,m3=m4+1
A 5 d 0.....00 5 h B 2
e 4t Z (__14 + ﬂui )A4 - _ z le e Zaimle—(ml 1+moA) +.e +msgA5 )t (39)
i=l,i#4 m| =—00,ms5 =—0 ’ i=l
1=mp,m3=m4-1
2 4 d 0.....00 5 h 2 2
e 5t (__/1 + /’i,)A - _ F a(n,e—(ml 1+mRAY +.e +ms A5 )t (310)
dt 5 i S my,--ms i
i=l1 m] =—00-+ Mg =—00 i=l1
my=mp,m3=m4
and
5 d 0.....00 5 h B 2
Z(_‘i'//ll-)ul - _ Z F Zaim,e—(ml 1+moAp +..c +msA5 )t (311)
i=1 dt m]=—00-+-m5=—00 TS i=1

where u, keep away from those terms for m, =m, 1, my =m, £1, m, =m,, m; =m,.

42



Perturbation Solutions for Fifth Order Damped-oscillatory Nonlinear Systems with Only One Pair of
Eigen Values are Complex

Solving Eq. (3.6) to Eq. (3.11), we attain A4, 4,,...,4; and u,.
For the suitable form of the solution, we shall be able to transform Eq. (3.3) to the exact

formal KBM [4, 6, 9, 108] solution by substituting a, :%e“", a, :ge"”‘ ,d, :gei“’z

and a, = ge’i"’z . Herein a,bare amplitudes and ¢,, ¢, are phase variables.

3.3. Example
To clarify the fact, we apply the method in Duffing type equations: a important in
mathematical physics and related to engineering problem. As an example of the above

procedure, we consider the Duffing type equation of fifth order

5 4 i

d x+2kd—)_c+kx:—3x3

dt’ a7

roG=m o at (3.12)

Here f(x,t)=x".

5
And therefore, [ = a,e™)’

i=1
or
0 3 34 2 -2 +4 2 —(4+24 3 34
O =a’ e +3ala,e PN 1 3a,ale NP L aje

(24 +A5)t

—QA+Aa) )
(24+43) +3a;ase

2 —(2A4+ A,
+3ala,e P!

—(M+A+3)t

2
+3a; a,e

—(M+A+2y)t (M +Ap+45)t

+6a,a,a,e +6a,a,a,e +6a,a,ase
—(2Ap+25)t
+3aja,e
(A +25)t
+3a,ale

~QAg+M3)t (2 + i)t

2 2
+3a;a,e +3aja,e

—(Q+223)t —(A1+224)t

2 2
+3a,a e +3a,a e

e—(/ll +A3+24 )t (M1 +A3+45)1 —(A +A4+A5)t

+6a,a;a, + 6a,a,a;e +6a,a,ase

~(2g+205)t (3.13)

“(g+203)t 2
(22+243) +3a,aie

2 2 _—(Ap+224)t
+3a,a e +3a,ae

—(Ag+A3+A4)t —(Ag+A4+A —(Ao+13+A
+6a2a3a4e(2+ 3+44) +6a2a4ase(2+ 4+45)1 (A2 +A3+45)t

—(2A3+A44)t

+6a,a,ase

2 _—(A3+24 3 _-34
+3agae” B 4 gl M

—(A3+A4+45)t

33t 2
+3aja,e

—(223+5)t

3
+ase
2 —(244+4
+3a;a,e” )
-3 st
3
+3a:e

Thus, for Eq. (3.13), the Egs. (3.6) to (3.11) acquire the form

2
+3ajase +6a,a,ase

—(A3+245)t —(A4+225)t

2 2
+3a;a e +3a,ase
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> d
! 2 (2 —(A 423+
e MY (=X + )4, =-3alae 1 —6a,a,a,e” BT (3.14)
i dt
> d
At _ 2 (Y +24p)t —(Ap+A3+A4)t
e > (==, +A)A4, =-3aaze —6a,a,a,e (3.15)
i=1,i%2
> d
—A3t _ 2 —(223+24)t (M +Ap+A43)t
e Z (——4; +4,)4;, =-3aja,e —6a,a,a,e (3.16)
i=1,i#3
> d
— A4t _ _ 2 —(A3+224)t —(M+Ap+A4)t
e Z (——-A, +4,)4, =3a,a e 6a,a,a,e (3.17)
i=1,i#4
td
) —(Ag+ 2+ —(A3+ 24+
e Y (o= A + A)As = —6a,a,ase” ) —6aia,a,e7 BTSN (3.18)
o dt
and
> d 5 —(A1+45)1
(—+ A, =—(a’e +ale™ +3ala,e™ ™ +3ala,e” P £ 3a’ae
i 1 1 2 1*3 1 %4 1*5
o dt
—(22p+A5)t
+3ala,e " 1 3ala,e P 3alage
—(A1+245)t
+ 3a1a§e’“””3)’ +3alaie"“‘+u“)’ +3a,ale
(3.19)
+6a,a,a,e” M 1 6a,a,a,e” NS
—(Ap+245)t
+3ayaie” 2 4 3a,a’ e 4 3a,4]e
+6a,a,a.e” 2 4 6a,a,a,.em )
+aje”™™ vaje”™ +3aiae” B 1 3alae )
-3 25t
+ 3a3a§e_”3+“5)’ +3a,ale M 1 3ale )

Inserting A, =k, —w,, 4, =k, +o,, 4, =k, —iw,, 4, =k, +iow, and A, =& and solving
the Eqs.(3.14)-(3.18), we obtain

2 2kt
3a;a,e

2k, — ) {Bk, —k, —@,)* + 02 HBk, - &) - o, }

—2kyt

=

6a,a,a,e

2k, —o) ik, +hy — @) + @)}k, +2k, —E)— o}

2 2k
3a,ase™™

2k, + )Gk, —k, + )" + 0]}k, —E) + o}

—2kyt

5 =

6a,a,a,e

2k, + o) ik, +k, +@,) + 02} (K, + 2k, — &) + o}
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2 2yt
3aja,e

T 2(k2 _iwz){(?’kz _k1)+(a)1 _iwz)} {(3k2 _kl)_(a’l +ia)2)}{(3k2 —5)—1'602}
6a,a,a,e”""

- Z(kl _iwz){(kl +kz)+(w1 _iwz )} {(kl +k2)_(w1 +iw2)} {(2k1 +k2 _é)_iwz}

2 2kt
B 3asaje

) _2(k2 +i0,)){3k, — k) + (@, +i0,)} {3k, — k) — (@, —iw,)} {3k, = &) +iw,}

kyt

B 6a,a,a,e”’
2k, + i, ) {(ky +ky) + (o +i@,) i {(ky +ky) = (@ —i@,); {2k, +k, = &) +im, }

2kt —2k,t
_ 6a,a,ase 3 6a,a,a.e
[ =

{(k+8) -k -k, + &) + @y} {(ky+8) + @)} {2k, —k +&) — @)}

Here, contribution of the term u, in the solution of the considered problem is very small i.
e., small correction term, but it is laborious task to solve (3.19) for u,. So, we ignore u,

since it is proportional to small parameter &£. Now inserting A;;7=12,..5 into the

. o 1 1 | 1, .
equations (3.4) and substituting a, = Eae"" , a,=—ae ™, a, =Ebe””2 , a, = Ebe*"”2
and a; = c, we obtain

a=e(la’e™ +1,ab’e™") b=e(mb e +m,a’be "

1 2 1 2

¢1 — g(n]a2672k1t + n2b2€72k2t) ¢2 — g(qlb2672k2t + q2a2€72k1t)
and

¢=e(pa’ce”™ + p,b*ce™?) (3.20)
where

[y =~ > 2 2

16(k1 _a)l){(3kl _kz _a)l) +a)2)} {(3k1 _é)_wl}
3

160k + @) {Bk, —k, + @) + @)} {3k, - &) + @}

3
L Rl k-0 + (6 + 26— D) -1}
3
80k, + @) {(k, +hy + @) + D) (K + 2k, — &) + @}
I 3
UU16(k + @) {3k —ky + @) + 02)} {Gk — &) + @)
3

160k — @) {3k —ky @)’ + @) HGk - ) - o}
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3
n, =
8k, + o)k, + @) + @)k +2k, —E) + o))
3
8(k2 _a)l){(kl +k2 _a)l)z +a)22)}{(k1 +2k2 _‘f)_a)l}
3] {kGk = &) -3 {3k, — k)’ — o — 0]} — 20, 3k, — k) (4k, = &)
b 8 (kz2 +w22){(3k2_k1 +w|)2 +a)22}{(3k2 _kl _wl)z +a)22}{(3k2 _5)2 +w22}
m _§ {k1(2k1+k2 _g)_a’zz}{(kl+k2)2_a)12_wzz}_za)zz(kl+k2)(3k1+k2_§)
A o)k +h + o) + @)k +ky — @) + 0] 2k + K, — &) + 0]}
_ 3] 0,(4k - O{Bk — k)’ — o -} + 20,3k, — k) k,3k, - &) — '}
TR+ o) Gk —k + 0 + 0} Gk, —k — ) + 01 Gk, — &) + )
_E wz(3k1 +kz _5){(1‘71 +k2)2 _a)]2 _w22}+2w2(k1 +kz){k1(2k1 +k2 _é:)_wzz}
4 (k12+w22){(k1 +k2+w1)2+w22}{(k1 +k2_w1)2+w22}{(2k1+k2_§)2+w22}
p :_é 1
L2+ o)k —ky +£) + @]}
and
3 1
P> =

2 {(ky + ) + @)k, —k + &) — ]}

Equations in (3.20) are nonlinear and therefore have no exact solutions. Since a,b,¢, o,
and ¢, are proportional to the small parameter &, therefore, they are slowly varying
function of time ¢. Therefore, we may assume that a,b,c,¢, and ¢, are constants in the

right-hand sides of (3.20). This assumption was used by Murty et al. [75, 76] to solve the

similar nonlinear equations. The solution is thus

a(t)=a, +&(la,’ (l_ze‘k_fklt)+12010b02 (1_26](_:1{2[))
b(t) = b, + e(mb,’ (1_2‘3]:2) +mya, b, (1—;];%))
o )=, + €(n1a02 (l_zekiklt) + r12b02 (1_26]:(2[))
9.(0) = 0, + (g’ (1—;1:2) + 4,0, (l_ze:”))
d
h c(t) = c, +&(pa,’c, (l_zekjklt) + p,b, ¢, (1—261:(”)) (3.21)

Therefore, the solution of Eq. (3.12) is
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x(¢) = acosh(w,t + @,) +bcos(w,t + @,) +ce ™" . (3.22)

Here Eq. (3.22) is the first order approximate solution of Eq. (3.12), where a,b,c,p, and

@, are given by the Eq. (3.21).
3.4. Results and Discussions

It is customary to compare the perturbation results obtained by a certain perturbation
method to the numerical results (considered being exact) to test the accuracy of the
method. Two this end, computed x(¢,¢) by (3.22) in which a,b,c,¢, and ¢, are computed
by the equation (3.21) by the fourth order Runge-Kutta method for different sets of initial
conditions and plotted these results. Beside this, we have also computed the Pearson
correlation between the perturbation results and the corresponding numerical results and
shows that they are strongly correlated. From the figures we observed that our perturbation

solution agree with numerical results suitably for different initial conditions.
At first, for k, =1/3, k, =025, @, =0.15,0, =~/5, £=0.5 and £=0.1, x(s,¢) has

been computed by (3.22) in which a,b,c,¢, and ¢, are computed by the equation (3.21)

with initial conditions a, =025, b, =025 ¢, =025 g, =% and o, =%

2 3
[or x(0) = 0.751566 , $=—0.550235, d xEO) 082637, ¢ xg‘” ~2.101099
t X
4
and ddxg(” —3.655849].
t

The perturbation results obtained by the solution (3.22) and the corresponding numerical
results obtained by a fourth order Runge-Kutta method with a small time increment 0.5,

are plotted (Fig. 3.1). The correlation between the results is 0.999037.
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Fig. 3.1. Perturbation solution plotted by solid line and numerical solution plotted by dotted line.
Again, for k =1/3,k,=0.25, o, :%,a)2 :%, £=05 and £=0.1, x(t,&)has been
computed by (3.22), in which a,b,c,§ and ¢, by the equation (3.21) with initial
- V4 Vs
conditions a, =0.5, b, =0.5, ¢, =0.5, ¢, % and ¢, , s [or x(0)=1.503132,

3 4
4XO) _ 4132355 and ddx(o) = 7.362476].

dx(0) d*x(0) B
P o

=-1.203219, =-1.556837,
dt d

Z‘2

The perturbation results obtained by the solution (3.22) and the corresponding numerical
results obtained by a fourth order Runge-Kutta method with a small time increment 0.5,

are plotted (Fig. 3.2). The correlation between the results is 0.998661.
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0.1 d 1
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Se'r;iesl ------- Series2 2>

Fig. 3.2. Perturbation solution plotted by solid line and numerical solution plotted dotted line.

3.5. Conclusion

An analytical approximate solution based on the theory of KBM [22, 63] method for fifth
order damped-oscillatory nonlinear differential systems is developed in this chapter. This
study shows that the proposed method is quite efficient and practically well suited to be
used in finding approximate solutions. The results obtained by the presented technique
show good coincidence with those obtained by the fourth order Runge-Kutta method. The
correlation between the results has also been calculated and it is seen that they are strongly

correlated. The solution can also be used for over-damped systems replacing w, by —iw,.

This is the importance of this technique.
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Chapter-Four

Perturbation Solutions to Fifth Order Over-damped Nonlinear Systems

4.1. Introduction

Repetitive back-and-forth movement through a central, or equilibrium, position in which
the maximum displacement on one side is equal to the maximum displacement on the
other. Every entire vibration takes the same time, the period; the reciprocal of the period is
the frequency of vibration. The force that causes the motion is always directed toward the
equilibrium position and is directly proportional to the distance from it. A pendulum
displays simple harmonic motion; other examples include the electrons in a wire carrying
alternating current and the vibrating particles of a medium carrying sound waves. When
the spring is first released, most likely it will fly upward with so much kinetic energy that
it will, quite literally, bounce off the ceiling. But with each transit within the position of
equilibrium, the friction produced by contact between the metal spring and the air, and by
contact between molecules within the spring itself, will regularly reduce the energy that
gives it movement. In time, it will come to a stop.

If the damping effect is small, the amplitude will gradually decrease, as the object
continues to oscillate, until eventually oscillation ceases. On the other hand, the object
may be "overdamped," such that it completes only a few cycles before ceasing to oscillate
altogether. In the spring illustration, overdamping would occur if one were to grab the
spring on a downward cycle, then slowly let it go, such that it no longer bounced.

Many researchers work on over-damp nonlinear differential systems for different order
using different conditions. Murty , Deekshatulu and Krishna [75] established an
asymptotic method following the Krylov-Bogoliubov [63] for overdamped nonlinear

systems. Murty and Deekshatulu [76] has also offered method of variation of parameters


http://www.answers.com/topic/overdamping-physics
http://www.answers.com/topic/grab

Chapter-Four: Perturbation solutions to fifth order over damped nonlinear system

for over-damped nonlinear systems. A unified KBM method to solve second order
nonlinear systems which covers under-damped, over-damped and periodic system with
constant coefficients was presented by Murty [74]. Sattar [99] studied a third order over
damped nonlinear system. Akbar et al. [4] presented a method to solve fourth order over
damped nonlinear systems which is easier, simple and less laborious than Murty et al.
[75]. Shamsul [106] used special condition to find solution of third order over-damped
nonlinear systems. Shamsul [113] has studied second order nonlinear systems both for
over-damped and critically damped. Siddique and Akbar [115] has found an asymptotic
solutions of fifth order over-damped nonlinear systems with cubic nonlinearity. In this
chapter, we aim to obtain the analytical approximate solutions of fifth order over-damped
nonlinear systems [52] extending the KBM method for obtaining the transient response in
which the eigen values are in integral multiple. The results obtained by the presented
technique show good coincidence with numerical results obtained by the fourth-order
Runge-Kutta method. Figures are also provided to compare validation and usefulness of

the solutions obtained between the results for different initial conditions.

4.2. The Method
Let us consider a fifth order nonlinear symmetrical over damped system governed by the

fifth order differential equation

d’x d*x d’x d*x d x
+k +k +k +k +kx=—-¢ f(x,t 4.1
a®  ldatt Cde Cdar tdar S =0 (4.1)

where ¢ is a small parameter, f(x,#) is such a nonlinear function that the system (4.1)

becomes symmetrical, k,, i=1,2,..,4 are the characteristic parameters of the system

5 5 5 5 5
defined by k, =Y A, ky =D A4, ky= Y A4, k,= D AA A and k=] ],
i=1

i=1 i,j=1 i,j,k=1 i,7,k,0=1
i#j i#j#k i# j#k#l

where - 4,,—4,,-4,,—4,,— A5 are the five eigenvalues of the equation (4.1).

51



Chapter-Four: Perturbation solutions to fifth order over damped nonlinear system

When & =0, the equation (4.1) becomes linear, the above five eigenvalues for over

damping forces are represented by the real and negative eigen values. In this case, the

5
solution of the linear equation is: x(¢,0) = Za j’oe%’t (4.2)
Jj=1

where a o, j=12..5 are arbitrary constants.

When £#0, we seek a solution in accordance with Shamsul [108] or Murty and

Deekshatulu [76] or the KBM [22, 63] method, an asymptotic expansion of the form:

5
x(t,e) =Y a, (e " +eu(a,ay, -, as,t)+ (4.3)
Jj=1

where each a =125, satisfies the first order equations

d
E(a.f(t)):5’4./(“1’“2""’“5’t)+"' (4.4)

Keeping our concentration to some first terms 1,2,---,m in the series expansions of

equations (4.3) and (4.4), we calculate the functions u,and 4;;;=12,---,5 such that

a,;j=12,---,5, appearing in equation (4.3) and (4.4), satisfy the differential equation

m+1

(4.1) with an correctness of ™" . Though the solution can be obtained up to the accuracy
of any order of approximation, owing to the rapidly growing algebraic complexity for the

derivation of the formulae, the solution in general confine to lower order [74]. In order to

determine these unknown functions, it is assumed that the function u, exclude

fundamental terms which are included in the series expansion (4.3) at order g’

Differentiating x(z,¢) five times with respect to ¢ and substituting x(¢,¢)and their

derivatives in eq. (4.1), using the relation in eq. (4.4) and finally extracting the coefficients

of ¢, we obtain
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. d d d d
e (E_/’Ll +2’2)(E_/11 +ﬂz)(5_ﬁ~1 +2’4)(E_/11 +45)4,
. d d d d
e (E_lz +/11)(E_ﬂ~2 +/13)(E_/12 +ﬂ4)(5_/12 +A5)4,

.. d d d d
e M(E—% +/11)(E—/13 +/12)(E—/13 +/14)(E—/13 +A5)4,

4.5)
. d d d d
e (E—ﬂq+/11)(E—ﬂ4+ﬂz)(5—/14+ﬂ3)(5—/14+ﬂs)/l4
e d d d d
e (Z_AS+l])(5_ﬂ“5+/12)(E_2“5+/13)(Z_/15+l4)145

= _f(O)(al’az""aaS’t)

5
where f© = f(x,)and x, =D a;(t) e
=
The function f'” can be expanded in a Taylor series (see Murty and Deekshatulu [76] for

details) as:

©.....00 5
0) _ m; _—(mAj+mpAp+-+msis5)t
f - le,---ms ai €
i=1

M| =—00- + -5 =—00

Since the order of the equation (4.1) is finite, therefore, it is possible to choose, but in our

method it is not necessary to keep any conditionon A, (i=1,2,---,5).

Therefore, in order to solve equation (4.5) for the unknown functions 4,, 4,, 4;, 4,,
As;and u,, it is assumed that u, does not contain terms fundamental terms. This is a
significant assumption, since, under this assumption the coefficients of the terms of u, do

not become large as well as u, does not contain secular type terms fe ' .Thus, in
accordance with this assumptions(see [76, 108] for details). Therefore, Eq. (4.5) can be

separated into six equations for unknown functions u, and A;57=12,...5 ).

Substituting the functional value and equating the coefficients of e_)"f[; j=12,..5, we

obtain

53



Chapter-Four: Perturbation solutions to fifth order over damped nonlinear system

e d d d d
e (E_ﬂ“l +lz)(5_ﬂ~1 +ﬂ*3)(5_}“1 +ﬂ“4)(5_ﬂq +A5)4,

_ m; _—(my Ay +mydy+etmsds )t
o Z E"1a"'m5 Zai €

My =—00,:++, M5 =—00 i=1
my=my ,my=n,+1

. d d d d
e (E_ﬂz +2’1)(5_ﬂ“2 +ﬂ3)(5_12 +2’4)(E_2’2 +15)A2

5
- _ z F zamie—(mlll+m2/12+~~+m5/15 )t
my,-ms o i

My =—00,:++, M5 =—00 i=l1
my=my,m=m,—1

o d d d d
e (E‘ﬂ@ +21)(E_ﬂ~3 +ﬂ“2)(5_l3 +l4)(5_/13 + 45)4,

5
- _ Z F Z ami e—(mlﬂl+mzﬂz+---+m515)t
my,--m i

My =—00,"+, M5 =—00 i=1
my=my,my=my+1

,,.d d d d
e M(E_ﬂ% +/11)(E_l4 +Az)(5_/14 +/13)(E_ﬂ“4 +A5)4,

5
= Z F Z aml ef(mqu +mydy+o +ms s )t
my,ems i

1y =—00,Mms=—0 i=1
| =My, my=my—1

. d d d d
e (E—ﬂs +/11)(E—/15 mz)(Z—zs +ﬂ3)(5—,15 + A,) A4

5
_ m; _—(mA+mydy+......... +msAs )t
2 F . 2ale
i=1

My =—00+ 115 =—00
my=my,my=my

and

d d d d d
— 4+ A (—+AN(—+A)N(—+A)N(—+ 1
(dt l)(dt 2)(dt 3)(6111 4)(dt s U,

0.....00 5
i =(m A +tmy Ay . +msAs )t
—— F Z 'm, (m 2y +my 2, 545
z mp,-ms al €
M) =—00- - 15 =—00. i=1

where u, avoid the terms for m, =m, £1, m, =m, £1, m, =m,, m; =m,.

Solving Eqgs. (4.6) to (4.11), we obtain the unknown functions 4,, 4, ,...,4; and u,.

(4.6)

4.7)

(4.8)

(4.9)

(4.10)

4.11)

It is possible to transform solution Eq. (4.3) to the exact formal KBM [4, 6, 9, 108]

b

a

. e a - _
solution by substituting a, =5e¢" , a,=—e ", a;=—e", aq, =§e ” and a,=c.

2 2
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Herein a, bare amplitudes and ¢,, ¢, are phase variables which are slowly varying

function of time ¢.
4.3 Example

To demonstrate the applicability of the proposed method for solving the fifth order over
damped nonlinear differential system type (4.1), we considered an example here. As an

illustrating example, we consider the following Duffing type equation:

5 4 3 2
d’x dx+k2Z;+k3i;+k4dd;+k5x:—gx3

(4.12)

5
Here f(x,f)=x’. Therefore, /¥ =D a,e™)’

i=1

or

0 RV 2 -24+4 2 —(4+2 3 32
O =dle” +3ala,e” M 1 3a,aie MR +aje™

—2A+ At —Q@A+A)t o At

2
+3a;a;
—(M+A+A4)t

+3a’a,e
(A + A+ 43)t

2
+3aa,e

(A +Ay+A5)t
+6a,a,a,e +6a,a,a,e +6a,a,a;e

2 - -2
QA+t +3a22a4e QA+t +3a22 ase (22, +45)t

(4 +22)t

2
+3a,a,e

2 —(4+24 2 2 —(4+2A
+3aa’e” M +3a,a’e +3a,al e

—(A4+ A+ A, —(A A —(A4+Ay+A
+6a,a,a,e” " L 6aa,a.e” M L 6aa,a.e” T

_ _ _ 4.13
+3a2a32e (h+24s)t +3a2a42e (B2 4 3a, al e (4.13)

+6a.a.,a e_(/12+/13+/14)t +6a.a.a e_(/lz*'/lzx‘*'ﬂs)’ —(Ay+A3+A5)t
2 d3dy 28445

o~ (PhatAnt

+6a,a,ase

=y ~(A 4221 32t

+3aia,

—(223+25)t

3 2 3
+ase +3a,a,e +a,e

2 —(A3+Ay+45)t 2 —(224+A5)t
+3a;ase +6a,a,a.e +3a,ase ’

—(Ay+25)t —(Ag+245)t —3t

2 2 3
+3asa’e +3a,ase +3a:e

Thus the equation (4.6) to (4.11) takes the outward appearance

e d d d d
==+ ) (=4 +A)(——-A, +A,)(——-A +1)A4
e (dl‘ | 2)(dt | 3)(dt 1 4)(dt | 5) | (4.14)

2 (2 (WA At
=-3ala,e " —6a,a,a,e” M
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e d d d d
e (E‘ﬂ“z +l1)(z_lz +l3)(5_/12 +/14)(E_12+/15)A2

— Ba,ale WY 6 a.q,e
. d d d d
e M(E_;% +/11)(E—/13 +/12)(E—Z3 +/14)(E—/13 + A5) A4,
— _3a§a487(2ﬂg+l4)t _ 6a1a2a367(ﬂl+ﬂz+ﬂg)t
a..d d d d
e '1“[(——2,4 + AN —=A + ) (A, + A)N(——- A, + )4,
dt dt dt dt
_ —3a3a267%+u“)t _ 6a1a2a467(l‘+%”“)t
.. d d d d
e ASI(E—ZS +ll)(5—ﬂ,5 +12)(E—/15 +l3)(z—15 + A4) A4,
=—6a,a,a.e " _6a.a,ae” )
125 3¥ 45
and
d d d d d
(E + ﬂ’l)(E + /12 )(E + 13 )(E + 14)(5 + /15 )ul =
—(22,+5)t
—(@le™ vale™ +3ala,e™ ) +3ala,e M +3ala.e
-2 A
3020 Rt {3520 o PRt | 3,2 (Ao
+3a;a,e +3aja,e +3a5a,e
—(+245)t
+3a,a’e” " 1 3g,a%e™ M) 1 3a,ake o
3 4
+6a,a,a,e” B L 6 g g e e (4.19)
yNEYRY
+3a,a’e” ) 13,0’ e Y 1 3a,ale 5
3 4 5
+6a,a,a,e” ) 1 6a,a,a,e” )
+aje”™ +aje”™™ +3aiae P +3alae P
325
+3a,a’e” B 4 3a,ale” M 1 3ale )

Now we have to solve equations (4.14)-(4.18) and inserting A, =k, —o,, 4, =k, + @, ,
A =k,—w,, A, =k, +®, and A, =¢ . To do this, using the symbolic computation

software, like, Maple, Mathematica, Matlab etc. are utter simple. In this work, to solve

equations (4.14)-(4.18), we have used Maple 13, we attain
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_ 3ala,e”
1 Z(kl - a)l){(3kl - kz) - ((01 - (1)2)} {(3k1 - kz) - (0)1 + o, )} {(3k1 - g) - wl}
6a,a,ae”*

2k, = @) ik, + k) = (0 = @,)} {(ky + k) = (@ +0,)3{(ky + 2k, = &)~ @

4 3a,ale™
L2k + o) Gk, —ky) + (0 + 0,)} Gk, — k) + (@, — @,)} {3k, - &) + o}
B 6a,a,a,e "
2(ky + o) {(k, +ky) + (0, + @)} (k) + k) + (0, — o)} {(k, + 2k, = &)+ o)}
_ 3aia,e™
: 2(k2 _0)2){(3k2 _k1)+(w1 _wz)}{(?’kz _kl)_(a)l +wz)}{(3k2 _‘f)_wz}
~ 6a,a,ae”"
2(k1 _a)z){(kl +k2)+(a)1 —0)2)}{(/{1 +k2)_(a)1 +a)2)}{(2k1 +k2 _5)_(‘]2}
4 - 3a,ae”
P2k, + @) {3k, — k) + (@, + @) Bk, — k) — (@, - 0,)} {3k, — &) + ,}
6a,a,a,e”"

20k + @) (k) + (@ + @)K +Ey) — (0, - 0,)H2k + K, &)+ o,

2kt 2kt

B 6a,a,ase _ 6a,a,a.e
{(+8) -k —k +8) o) {(k+8) - o) H(2k, —k + &) - o)}

5=

Now inserting 4,;7=12,.,5 in the Eq. (4.4) and using a, =ae” /2, a,=ae " /2

a,=be” /2, a,=be ™ /2 and a, =c we obtain

a=¢g(la’e™" +1,ab*e™") b=g(nb’e™ +nya’be™")
¢1 — é‘(mlazeizk't + mzbzeizkzt) ¢2 — 8(p1b2€72k21 + pzazeizk't)
¢=e&(qa’ce”™ +q,b’ce™") (4.20)
where
Bk} —kk, + & + @,0,) Ok’ —3kk, -3k &+ kE + @ — w0,)+
] =— 3 (4k,o, + ki@, — k,0,)(6k,o, — k0, =3k, — 0.& + ,5)
TR — o) Gk -k — (@, + @) Gk — k) — (0 -’} {3k - &) )
(kke, + kz2 + 6‘)12 = 0,0,){(k, + k,)(k + 2k, - &) + w12 - oo} +

L= 3 ko, — k0, + ko) 2k o, +3k,0, + ko, + 2k,0, — 0, — 0,8)
2

4 (k22 _wlz){(k] + kz)2 - (a)l _wz)z} {(kl +k2)2 _(w] + a)z)z} {(kl + 2k2 - 5)2 - a)]z}
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(Bk: —kik, + @} + w,0,)9k3 =3k k, = 3k,& + k& + @) —w,0,)+
3 4k, 0, — k0, + k,0,)(6k,0, —k o, -3k,0, + 0, -0,

m ==
L8| (R 0Bk, — k) (@ — 0,7} {3k, k) — (@, +,)*} {Bk, —)° — @2}
(klz +kk, +6‘)22 +w,0,){(k, +k,)(2k, +k, _§)+sz - 0,0,}+
. = 3 ko, + 2k 0, + k,0,)2k,0, + 3k 0, -2k o -ko, + 0, —-0,5)
, =

_Z (k12 _wzz){(kz +k1)2 _(a)1 _wz)z}{(kz +k1)2 _(w1 +w2)2}{(2k1 +k2 _5)2 _wzz}

Bk — kk, + @ + 0,0,) 6k, - ko, — 3kw, — 0, & + ©0,E) +
3 4k, + ko, - kza),)(9kl2 =3kk, -3kE+E,E+ a),2 - 0,0,)
8 (kl2 - wf){(3k1 _k2)2 - (wl + wz)z} {(3k1 _k2)2 - (wl - wz)z} {(3k1 - ;)2 - a)lz}

n =

(kfe, + &} + @ — 0,0,)2k,0, + 3k, 0, + ko, + 2k,0, — 0. — 0,E) —

o = 3 ko, - kyw, + k) {(k, + k,)(k, + 2k, — &) + o] + w,0,}

’ 4 (kz2 _wlz){(kl +k2)2 _(wl - wz)z}{(kl +k2)z _(a)] + wz)z} {(k] + 2kz _5)2 _wlz}

(3k; - ke, + @} + w0,0,)(6k,0, — ki, — 3k, 0, + 0,& — 0, &) —

b= 3 (bk,, — k@, + k,,)(9k3 — 3k, — 3k,E + k& + 0} — o,0,)

TR (K - 0Bk~ k) — (@ — @) 1Bk, — k) (@, + @,)'H Bk, - ) — i}

(k} + ke, + @2 + w,0,)(2k,0, + 3k,0, — 2k 0, — k0, + ©,& — ©,&)

D, = 3 — (k@ + 2k, + k0 ) {(k + k) 2k +k, = &) + 0, — 0,0,

2T 4| (K - oD, k) (@ — @) H(k, k) — (@, + @)} {2k +k, ~ &) — i)
g, = 3 1

[ =—=

2 {(k, +&) —@! ) {2k, ~k, + &) @}
and
3 1

q, =

24k, + ) — @)k, —ky + &)’ —wl}
Equations in (4.20) are nonlinear and have no exact solutions. We can solve (4.20) by

considering a,b,c,¢, and ¢, are constants in the right-hand sides of (4.20). Since & is

small, d,b, ¢, ¢, and @, are slowly varying function of time, therefore, this consideration
is applicable. This assumption was used by Murty et al. [75, 76] to solve the analogous
nonlinear equations. The solution is thus

2y Dyt
) =a, +e(a; LD v g p 2 42D

2k, 2k, )
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Y ke
g )+”2a02bo d-e ))
2k, 2k,

(1 _ e*Zklt)

(1 _e—Zkzt)
(1) = Pt g(mlaoz T + mzbo2 T

b(t) = b, +£(n,b,

)

(1 _ e*Zk:t) (1 _ e*Zklt)
0, =p, 0+ “;(plbo2 2%, + pzao2 2k,

)

and

1— 2kt 1— —2kyt
d-e’?) + q2b0260 d-e )

) 4.21)
2k, 2k,

2
c(t)=c, +&(q,a, c,

Therefore, the first order solution of Eq. (4.12) is
x(¢) = acosh(at + ¢,) + beosh(w,t + @,) +ce . (4.22)

where a,b,c,p, and ¢, are given in the Eq. (4.21).

4.4 Results and Discussions

In order to test the correctness of an approximate solution obtained by a certain
perturbation method, we contrast the approximate solution to the numerical solution. With
regard to such a comparison concerning the presented technique of this chapter, we refer
to the work of Murty et. [75, 76]. Here, we have compared our obtained outcome to those
obtained by the fourth order Runge-Kutta method for different sets of initial conditions as
well as different sets of eigenvalues. Beside this, we have also computed the Pearson
correlation between the perturbation results and the corresponding numerical results. From
the figures we observed that our perturbation solution agree with numerical results

suitably for different initial conditions.

At first, for k, = 2.05, k, =3.09, o, =1.414,w, =2.57, £ =0.03 and £=0.1, x(¢,&) has
been computed by solution (4.22), in which a,b,c,p, and ¢, are computed by the

equation (4.21) with initial conditions a, =0.63, b, =0.52, ¢, =0.3, ¢, =1375and
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2
0r0=05708 [i. e x(0)=223253 PO _ 5144580, 4O _ 6275333,
dt dt
3 4
d deO) — _30.274223 and % —162.2777256.]
t t

For the above mentioned initial conditions, the perturbation results obtained by the
solution (4.22) and the corresponding numerical results obtained by a fourth order Runge-
Kutta method with a small time increment Af=0.05, are plotted in Fig. 4.1. The

correlation between the results is 0.999593.

2.5
2 \
1.5 .
>< \ ierles
1 \ - - - -Series
0.5

Fig. 4.1. Perturbation results are plotted by solid line and numerical results plotted dotted line.

Secondly, for k =1, k, =2, o, =081, w,=1.5704, £=0.09 and £=0.1, x(¢,&)has
been computed (4.22), in which a,b,c,p;, and @, by the equation (4.21)with initial

conditions @, =0.15,h, = 0.15,¢, = 0.20,p,, =1.25664 and  ¢,, =03927 [i. e,

2 3
2(0)=0646581, PO 33408 L0 45605, LD 5430806 and
dt t dt
4
4 xO0) _g 461052 ]
di

In this section, the perturbation results obtained by the solution (4.22) and the

corresponding numerical results obtained by a fourth order Runge-Kutta method with a
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small time increment Az = 0.05, are plotted Fig. 4.2. The correlation between the results

is 0.99965.

0.7

0.3 - S eries

1
0.2 - - - - -Series

0.1 -

Fig. 4.2. Perturbation solution plotted by solid line and numerical solution plotted dotted line.

Finally, for k, =0.5, k, =0.47, w, =0.237, w, =0.321, £ =0.003 and &=0.1, x(¢,&)has

been computed (4.22), in which a,b,c,p,and ¢,by the equation (4.21) with initial

conditions g, =0.02,b, =0.02,¢, =0.008, ¢, , =.7/2 and 0, =0414 [il. e
2 3
2(0)=0079922,  FO_ 001770, L0 _g 000020, LMD _ 05127 and
dt dr’ dt
4
4XO) _ 003545 ]
dt

The perturbation results obtained by the solution (4.22) and the corresponding numerical

results obtained by a fourth order Runge-Kutta method with a small time increment

At =0.05 are plotted Fig. 4.3. The correlation between the results is 0.999953.
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0.09 -
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0.07 -
0.06 -

0.05 -
0.04 - S eries

1
0.03 - - - - -Series

0.02 -
0.01 -

Fig. 4.3. Perturbation solution plotted by solid line and numerical solution plotted dotted line.

From Fig. 4.1 to fig.4.3 it is noteworthy to observe that perturbation results show a good

agreement with those obtained by the fourth order Runge-Kutta method.

4.5. Conclusion

In this chapter, a procedure is formulated to find the first order analytical approximate
solution of fifth order over damped nonlinear differential systems with small nonlinearities
based on the KBM [22, 63] method. The correlation has been deliberated between the
results acquired by the perturbation solution and the fourth order Runge-Kutta method of
the same problem. The results obtained for different initial conditions, show a good fluke

with corresponding numerical results and they are strongly correlated.
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Chapter-Five
Perturbation solutions for fifth Order Critical-damped Nonlinear

Systems

5.1. Introduction:

Springs are a most important part of our everyday life which can be found in everything
from the shock-absorber legislative body of a motor vehicle to the supports of a
trampoline fabric, and in both cases, springs blunt the force of impact. Spring produces
vibration and vibration is sometimes used more closely to mean a mechanical oscillation
but sometimes is used to be identical with oscillation. There is a type of damping less
forceful than over-damping, but not so gradual as the slow dissipation of energy due to
frictional forces alone. This is called critical damping. In a critically damped oscillator, the
oscillating material is made to return to equilibrium as quickly as possible without

oscillating.

Over time, obviously, the friction in the springs would wear down their energy and bring
an end to their oscillation, but by then, the car would most likely have hit another bump.
Therefore, it makes sense to apply critical damping to the oscillation of the springs by

using shock absorbers.

The control of micro vibration has become a growing research field due to the demand of
high-performance systems and the advent of micro and nanotechnology in various
scientific and industrial fields, such as semiconductor manufacturing, biomedical
engineering, aerospace-equipments, and high-precision measurements. In micro and
nanotechnology, a small vibration may be the cause to make the product defective. So, in

these fields vibration is not desirable. But vibration is unavoidable and arise in different
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ways, such as, earth quake, direct disturbance etc. Thus, vibration control in micro and
nano-technological industries is very essential. In micro and nano-technological industries
we keep watch that vibrations come to its equilibrium position in minimum time. The
critically damped systems come to equilibrium position in minimum time. So, critically
damped systems play an important role in micro and nano-technological industries.

The well-situated and widely used technique to obtain analytical approximate solutions to
the nonlinear equations is the perturbation methods. To investigate the transient behavior
of vibrating systems the Krylov-Bogoliubov-Mitropolskii (KBM) [22, 63] method is an
extensively used method which was developed for obtaining the periodic solutions of
second order nonlinear differential systems with small nonlinearities. Sattar [99] studied a
third order over damped nonlinear system. Shamsul and Sattar [103] presented a method
for critically damped and Islam and Akbar [55] for more critically damped third order
nonlinear systems. Akbar et al. [4] presented a method to solve fourth order over damped
nonlinear systems which is easier, simple and less laborious than Murty et al. [75]. Later,
Islam et al. [56] investigated the solutions of fourth order more critically damped
nonlinear systems where Akbar [5] examined a different type solution for the same. Akbar
and Siddique [23] amplified the KBM method to obtain solutions of fifth order weakly
nonlinear oscillatory systems.

The aim of this chapter is to obtain the analytical approximate solutions of a fifth order
nonlinear differential system modeling a non-oscillatory process that characterized by
critical damped. A perturbation technique based on the Krylov-Bogoliubov-Mitropolskii
method [22, 63] is developed for obtaining the transient response of the systems. Here, we
will consider fifth order differential nonlinear systems because the combination of a

second and a third order dynamical systems lead to a fifth order dynamical system which
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occurs some complex nonlinear physical phenomena like as nano-technological tables. An
example is solved to give the illustration of the method.
5.2. The Method

Consider a fifth order weakly nonlinear ordinary differential system :

5 4 i
d X+Zc[fl—:+csx:—5f(x,t) (5.1
i=1

dr’
where ¢ is a small parameter, f(x,7)is the nonlinear function, c,;;i=12,.,5 are the

5 5
characteristic parameters of the system defined by ¢ :zli , €= 2/1,./1‘]. ,

i=1 i,j=1
i#j

5 5 5
es= D AAA, cp= D AA A and cs =] [A  where —4,-4,,~A;,~ A,,— A are the

i,j,k=1 ik, =1 i=1
i#j#k i#j#k#l

eigenvalues of the unperturbed equation of (5.1). As the equation is of fifth order and we
are considering a critical damped system , so there are five real negative eigenvalues and
two pairs of the eigenvalues are equal (for critically damped). Suppose the roots are

/11:/12:&13:}“4:/%/15:5

When ¢ =0 the equation (5.1) becomes linear and the solution of the corresponding linear
equation is

x(2,0) = (a,, +1a, Ye ' + (ayy +ta,y)e ™ + as,oe_é’ (5.2)

where a,,, j=12....,5 are arbitrary constants.

But if ¢ # 0, following Shamsul [108] , an asymptotic solution of eq.(5.1) is of the form
x(t,&) = (a, +ta,)e ™ +(a, +ta)e ™™ +ae™ +cu,(a,a,, -, as,t)+- (5.3)

where each a =125, satisfies the equations

dj(t):&4]»(611,(12,"',615,1)4"" (54)
The Eq.(5.4) are known as variational equations, and KBM [22, 63] assumed that they are

functions of amplitude only. But Akbar et al. [8] showed that if they are only functions of
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amplitude, sometimes the solution gives incorrect results and thus they are functions of
both amplitude and phase. But in the case of non-oscillatory systems they are functions of
amplitude only.

By considering only the first few terms in the series expansions of (5.3) and (5.4), we

calculate the functions u,and 4;, where j =1,2,---,5, such that a,;j=1,2,---,5 appearing

in (5.3) and (5.4) satisfy the given differential Eq. (5.1) with an accuracy of order&"*' . In
order to determine these unknown functions, it is customary in the KBM method that the
correction terms u#, must exclude secular terms, which make them large. Theoretically, the
solution can be obtained up to the accuracy of any order of approximation. However,
owing to the rapidly growing algebraic complexity for the derivation of the formulae, the

solution is in general confined to a lower order, usually the first-order because , is very

small (Murty [74]).

In order to determine the unknown functions A 5 =L2,-,5, we differentiate the

proposed solution (5.3), five times with respect to t. Substituting the values of x and its
derivatives in the original Eq. (5.1), utilizing the relations presented in (5.4) and finally

equating the coefficients of ¢, we obtain:

2
) +yj (ﬁ—mgj(%ﬂ%mg}
ot ot or o
0 (o 04 0A
—ut| Y iy — — u+ —3—|—t—4+2A +
S P j (at H §j{ or ot 4}
0 (e 04
i 0 MN__ s J_s+ 5.5
ot d ot SHu ot °

0 0 04

—+A | —+u | —+
(ar j(@t H j( ot 5)”1
:_f(O)(a19a27"'7a55t)

where £ = f(x,)and x, =(a, +ta,)e”™ +(a, +ta,)e ™ +ae”"
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The function f” can be expanded in a Taylor series (see Murty and Deekshatulu [76] for

details) as:

£O th i Fq,kef(ihjmlé)t (5.6)

q=0 i,j,k,l=1
Here the values of i, j,k,/ have definite values for particular problem. Thus using eq.(5.6),

Eq.(5.5) becomes:

(0 V(0 s, )
e Py §+/1j (at §+yj Y + (5.7)

[&2la)

& & —(iA+ juHE)t
=—2t" ¥ Fq,k(alsaza"'aas)e !

g=0 i,jkl=1
Following the KBM method, Murty and Deekshatulu [76], Shamsul [108], imposed the
condition that u, does not contain the fundamental terms of f*. Therefore,
To do this, eq. (5.7) can be separated for unknown functions 4,; j =1,2,---,5and u, in the

following way:
e ——/1+ (ﬁ—ﬂwéj[ 6A2+2A2j+
ot ot

2—y+§)(ai+t&4 2A4j+

/ﬁ\

or ot or | o (5.8)
0 20 oA

o L e[ 2= 9

“Na° j o ° J@t

and
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() Eon)osh
" : ! (5.9)
:_th z Fqk(al,az’...’as)e*(ilﬁ/ulcf)z

=2 ijki=l

Now, equating the coefficients of ¢° and ¢' from both sides of Eq. (5.8), we obtain
G (o o4
eﬂ’[——/1+ J (——/1+ j L1424, |+
ot #) o “\or 2

2
’”(g—;wlj (g—y+§j[%+2/14]+
o o o (5.10)

Q

0 . .
- z Fo’k (al ,az o .’as )e—(ll+jy+l§)t

i) he,l=1
e ﬂa jaA2
— A1+ ——A+E|—+
¢ (at AN a5
0 ’(d 04
T —— Ut A | |t |+ 5.11
¢ [Gt " Mat # gj ot 11

0
— —(id+j u+ié)t
=- 2 F,a.a,, -, a;5)e
Ljkl=1

Here, we have only two eq. (5.10) and (5.11) for determining the unknown functions

A;5j=12,---,5. Thus, to obtain the unknown functions 4,;j=1,2,---,5, we need to

impose some conditions between the eigenvalues. Different authors imposed different
conditions according to the behavior of the systems. In this study, we have investigated

solutions for the case A~3u, u~3&. Therefore, we shall be able to separate the eq.
(5.11) for two unknown functions 4, and 4, and solving them for 4,and 4, substituting
the values into the Eq. (5.10) and applying the condition A ~3u, u~3&. We can separate
the eq. (5.10) for two unknown functions 4,and 4;; and solving them for 4,and A4,.
Since a;;j=1,2,---,5are proportional to small parameter , they are slowly varying

functions of time t and for first approximate solution, we may consider them as constants
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in the right hand side. This assumption was first made by Murty and Deekshatulu [76].

Thus the solutions of the eq. (5.4) become:
t
aj(t):aj(O)+8IAj(al,a2,~~-,a5,t)dt; j=12,5. (5.12)
0

Now, solving eq.(5.9) for u, and substituting a;j=12,--5 and u, in the eq.(5.3), we
shall get the complete solution of (5.1).
5.3. Example

As an example of the above procedure, we are going to consider the Duffing type equation

of fifth order
fhx ﬁl fl tex=—ex
(5.13)
Here f(x,t)=x".
Wehave £© =((a, +1a,)e™ +(a, +1a,)e ™ +ae")’
or
O = afe_Mt +aze ™ +ale” +3ala,e” M +3a,aie” M
+3a’a,e” " +6a,a,a,e” ) +3aiae )
+3a1a52€’(’“25)’ +3a3a52e’(’”25)’ +t(3a12aze’3’“ +3a2a32€7(/1+2,u)t
+ 3a2a52€—(/1+2§)t + 6a1a2a3e—(2/1+,u)t + 6a1a2ase—(u+§)t
+6a,a,a.e” " +3ala,e M 1 3aia,e
+3aia,e” " +6a,a a4e’(“2")’ +6a,a,a,e” (5.14)
+6a,a,a.e (2y+§)t)+t (3a az +3a2a PRyl
+3aia,e +3ala4e_” P4 3a,ake ™ + 3alage
+6a,a,a,e” M +6a,a,a,e” " +6a,a,a.e” ")

+(aze +3aia,e” P v aje +3a,ae” ")

Thus the equations (5.9) to (5.11) takes the form
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d d o4,
(5%5@(5*5)‘“

=—{t’Ba,a;e”" +3aiae >

+3aja,e” " +3a,a;e” " +3aja e +3ajae (5.15)
+6a,a,a,e” M +6a,a,a,e” M + 6a,a,a.e” )

+(aze” +3aia,e P v aje ™ +3a,aie )

B (o oA
2 ﬂ, — + 4
¢ [Gt a Maz # 5) ot

2 =34 2 —(A+2
=—{3a’a,e" +3a,aie”**H"

+3a,aie” " +6a,a,a,e” " +6a,a,a,e” P

(5.16)
+6a,a,a.e” " +3ala, e +3alae
+3ala,e” ) +6a,a,a,e” M + 6a,a,a,e” )

+6a,a,a,e” "

a0 0 j( 04, j
—— A+ ——A+& || —+24
Na ) a M e

0 0 04,
N ——pu+ A | | ——u+é | —>+24
“\a” a M 5)( ot j

2
& O s (5.17)
e ==&+ ——g
o

— _{ale At +a§’e’3‘” +a53€—3§t +3a12a3e—(2&+,u)t +3a1a32€—(1+2/1)t

+3ala,e” " +6a,a,a,e” Y +3alae P

+3a,a’e” Y +3aa5e7 )

when A =3u;u~3&, then from (5.16), we obtain:

0 (0

Ry Y N
(81‘ # ) (az f} ot
=-3ala,e" —(6a,a,a, +3a a,)e” " (5.18)
—(3a,a; +6a,a,a,)e"" —6a,a,a,e” "

—(6a,a,a, +6a,a,a;)e” " —3a,ale" —3aia,e

and
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0 (a 04
P iy b e Y

(at # Mat " 5] ot (5.19)
=-3ala,e”™ —6a,a,ae” "

The solution is thus

_ 2 =2t 2 —(A+u)t
A, =rna;ae" +r,(2a,a,a, +a;a,)e

+r,(a,a; +2a,a,a,e)e” " +r,a,a,a.e”" ) (5.20)

—(u+o)t 4 (A=3u)

2 _-2&t 2
+r(a,a,as +a,asa;)e +ra,ase " +raa,e

where 7 = 3 5 S 3 ,
201 =32)" (5 =34) AL (A+ (& =24~ )

3 -3
BTG E—a—2m) T A E(u—24-8)

-6 -3

r = b r = b

(A OA+E A+ T 28(u-A-28) (A+)

-3
r,=—
Adp(A=3u)(&-3u)

and

A, =S,aia,e™ +S,a,a,a,e”“ " (5.21)
where S, = =3 -3

. S,=

25(A-u=35)"(u+¢) C(urHuA-2u-&)

Putting the values of 4, and A4, in eq. (5.17) and performing some calculations and then
eq.(5.17) can be separated in the following way(following the condition A ~3u; =3¢

exists among the eigen-values):

2
(g—ﬂﬁu) (g—/i + fj(%j =—a,e”* -3ala,e” " —3a,aie

ot ot ot
2 (A 2 -2&t (Ut 3“12% 2
—3a;ase —3aa_e ™ —6ba,a,ase —Te
5 5 (5.22)

B 6(2a,a,a, +a;a,) o _ (a,a; +2a,a;a,) B 12a,a,a, Y

A+u A A+&

2 2
12(a,a,a;5 + a,a;a;) Lurey 30,05 g 3 o 0430, Gy

- e —-———e "~ —aje -—— "¢

H+g 4 A=3u
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(5] s )

=—a;e“ " —3aiae™ """ —3ajaie ! (5.23)
B 3a5 a, o2kt _ 12a,a,a; e
g U+é
0 ? 0A,
and ——E+A| | == 0 5.24
(Gren (G [5)- 629
Now, solving (5.22), (5.23) and (5.24), we get
4= plafe_Mt +p2alzase_(ﬂ+ﬂ)t + P3a a3 +p4al ase ey +p5alafe_2§’
+ p6a1a3ase_(”+é)’ + ps(Qa,a,a, +aja, Ye (A + po(a,a; +2a,a,a,)e ! (5.25)
+praiaye” M + poayayase” " + p(aga,a5 + ayazas)e” " + payase ™
+p13a33 s +p14a32a4e(l_3#)t
1 3
Where pl = 2 ] p2 = 2 s
24 =324)"(&-34) A (A+p)(&—24—p)
B 3 D, = -3
2u(A+ )’ (E-A-2u)" Tt 204+ E(u-24-E&)
-3 -6
pS = 20 p6 = 2 4
285(A+ &) (u—A-28) (u+EA+E) (A+p)
B 3 B 3
PR snw-sy PTG E—2i-p
Py = & Do = ~6
Tyl (w320 (E-3)7 T AA+E (u-24-8)
- ~12 . -3
(A A’ T 28 A+ (u—-A-28)
Pis= —6 D= &
PAA+E (u-24-8) A3t (E -3
4, = llafase_(’”é)t +lza3asze_2§t (5.26)

+Lala,e™" +La,a,a.e” " + Laje

-3 -3
5 lz = 20
2u(p+E)A-2u=§) 25(u+ ) A-u=25)

[, =

72



Chapter-Five: Perturbation solutions for fifth Order Critical-damped Nonlinear Systems

. -3 ;- -6
P28 (u+EA-p-28Y7 7w+ E’(A-2u-&)7

1
[, = 5
285(1=35)(A-33)

and A4, =0 (5.27)
and the solution of the equation

2, 2 34 2 2 —(4+2
u =aa,(qt” +q,t+q;)e ' +(a,a; +2a,a5a,)(q,t" +qst+q4)e (A

+(2a,a,a, +a22a3)(q712 +qgt + %)e_(zlﬂm +asa§(%012 +q11t+q12)e_3’”
+a§a5 (q13t2 + g4t + ‘]15)67(2“5” +aia5 (‘]16t2 +Q17I+Q18)ei(2ﬂ+§)t (5 28)
+a,a,a; (‘1’19t2 +Q2ot+Q21)e_(M#+§)t +a§(‘]22t3 +%3t2 TGl + 4> )e—m
+ai(f126f3 +%7t2 +‘]zst+%9)e_3ﬂt +a22a4(q30t3 ‘Hlal’:2 +‘132t+‘133)e_(u+#)t
+a2aj (51342‘3 + %stz + g3t + 45, )ei(mzﬂ)l
where
B 3 3 (£+ 2 N 4 )
D a2 Ga-prGa-g) TN e T )
3 2 2 4
—+ L+ +
28 (BA-¢8) wBA-¢&) (BA-w(BL1-9¢)
q3 :ql >
6 6
+ —+
GBA-p)” ABA-p)
3 3 B i—l— 4 N 2
LG o2u-e T avn av2u-é)
6 4 2
-+ +
_ |G+ w(At ) p(A+2u-9)
o 4 2 3 0
+ + R
A+w(A+2u=E8) (A+2u-8&)° 2u7)
- 3 _ (2,4 2
O PG u) QA4 =8 B= D T A+ =g )
3 4 6 2
2 + + 3 +
24 A A+pu) (A+p) AQRA+u-<¢)
q9 :q7 4 3 >

+ + 5
A+ w)Q2A+pu=¢8) QA+p=2)
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_ 3 (2,4 2
T S P Gu- ) Gu-6) R 7R VI Ry b

3 4 6 2
2 T + 2t
o 2p wBu-24) QBu-4)y uQBu-<)
91, =40 4 2 >

+ +
Bu-2)Bu-8) GBu-%)’

3 1 4 4
= 5 == —+ + )
I A+ &Y QA -+ &) T q”(/l A+ 2/1—,u+§j

1 2 2 6
>t + 7t 2
20 AA+E) ARA-u+d)” (A+9)
415 =413 8 6 >

+ + -
(A+S)CA-p+8) QA-u+3)

3 1 4 4
= 5 = ——+ + )
e QU E= A (&) o ql{u 2u+E-A u+§)

1 2 2 6
+ + +
20 pQuAé=2) w(u+é)? Qu+é-2)
N 8 L6
(U+EQRu+E-2) (u+é)

6 [ 4 4 2 J
49 = 2 2 ) 920 =419 + + s
(U+E) (A+E) (A+p) u+é A+éE A+p

415 =416

b

6 8 6 4

O E) AHE At d)
9> =49 4 2

+ - 5
A+m)(A+S) (A+u)

b

_ 1 _ (3+ 6 , 3
A2CA—p)Ga—g T T T T

q:» )>

9 12 18 6
7 T + 2t
2 ABA-p) BA-w) ABA-E)

9 =42 12 5 )

+ + 5
BA-wBi-¢) (B4-9)
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3 9 18 24
—+ - +
2 22@A-p) AGA-p)Y  (BA-u)
9 12 18
+— + + >
2V(38A=8) AGBA-u) BA-u) (3A-9)
6 12 6
+ 2 + 2 + 3
ABA=E) BA-w)(BA-8)" (B1-9)

s =42

1
A4 Bu-A)Gu-¢)’

6 3
+ ),
3u—4 3u-¢

3
9 Gy =G (—+
u
9 12 18 6
7t + 2 T
2p7 uQ@Bu—-24) QGu-4)y uBu-:<)
12 6
+ + ;
CBu-ABu-¢5) Bu-:~)

423 =45

5

3 9 18 24
ERE + 7t 3
woo WP Bu=2) pGBu-2)7? (Bu-2)
9 12 18
+ + +
20°Bu—8&) puBu-ABu-&) GBu-1)*Gu-~)
6 12 6
+ 2 + 2 + 3
uBu-38)y" Bu-A)Bu-35)° GBu-:3)

929 =45

3 36 3
= 5 = —+ + P}
AP+ 1) QA+ u—&) R Ty F=)

930

9 12 18 6

> T + > T 2
28 AA+p) A+ QRA+u-9)
43 =43 12 6 )

+ -
A+)Q2A+p=28) AQ2A+p-2)

3 9 18 12
T + >t 2
A AA+p) MA+p)” (A+pQ2A+u=E)
9 18 6
+ 2 + 2 + 2
2VBA+u=8) (A+u) QA+u—=38) AQ2A+u—9)
12 24 6
+ + T+ 3
AA+)2A+u-8) (A+u)y QA+u-9)

433 =43

-

6 3

3
+ ),
A+u A+2u—-§&

T4 () (AH2u—-E)

3
qs4 G35 =G5 (—+
U
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9 12 18 6

2 + + 2 + 2
| 2p p(A+p) A+ (A+2u=9)
936 =934 12 6 >

+ +
(A+)(A+2pu=¢) A+2u=3)

3 9 18 12
=t + > T 2
oAt ) p(A+p)? A+ ) (A+2u=E)
9 18 6
+ 2 + 2 + 2
2 (A+2u-8) (A+pu)y (A+2u-8) p(A+2u-9%)
12 24 6
+ + +
pA+ ) A+2u=8) (A+p) (A+2u-¢&)

437 =434

When we Substituting the values of 4,, 4,, 4, A, and A4, from the eq. (5.20), (5.21),

(5.25), (5.26) and (5.27) into eq. (5.4) , then eq. (5.4) reduces to

C o 3 2 2 (A 2 o 2 (A 2 28
a,(t) =e(paje™™ + p,a;aze + psaaze T+ paase +psaae

()t —(A+m)t

+ ps(2a,a,a, +a12a4)e + P, (aza32 +2a,a,a, )e’z‘”

—(A+E)t

+ pea,asase

)e—(#+§)t —25t

2 on 2
+ piara,e T+ ppaa,ase + pa,ase

3 (A3u)
+ psase

+py(@,a,a5 +ayazas
2 (A3u)
T Puasae )
. _ 2 21t 2 —(A+u)t
a,(t)=¢e(na;a,e”" +r,(2a,a,a,+a;a,)e
2 -2 —(4
+r(a,a; +2a,a,a,e)e” " +r,a,a,a.e”" )

—(u+o)t 2,726t 2 (A=3p)
+r(a,a,as +a,a,as)e +ra,ase " +raja,e )

a,(t)=e(l,aiae™"" +Layale™"
+Lalae™" +1,a,a,a,e”" +Laie™)

a,(t)=e(S,ala,e” " +S,a,a,a,e” ")

and
as(t)=0 (5.29)

These all of the eq. (5.29) are nonlinear and have no exact solutions. But since

a;; j=1,2,---,5 are proportional to the small parameter ¢, so they are slowly varying
functions of time 7. Thus, we can solve (5.29) by considering a,; j=1,2,---,5 are

constants in the right-hand sides of (5.29). This assumption was used by Murty et al.

[75,76] to solve the similar nonlinear equations. The solution is thus
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p a3 l_ef2lt +p aza l_ef(/lﬂl)t +p . az 1_872/11 +p aza l_ef(?#u)t +p . a2 1_67251
4T 213/1_’_/1 30,43 2 415/“_# 51525
_ef(;Hf)l 5 _ef(/ﬂy)l 5 _672;4!
+ petayas ————+ py(2a,a,a; + a a4)/17+p9(a2a3 +2aya;a,)
a,(t)=a,,+¢ pto TH
1 1,0 , 2t (e _e—(u+5)f
+p,a,a, ) + D1p@,a,0a;5 /17_’_4:'*1711(‘1104“5 +a2a3a5)W
oo e g 1 — pU3un Ny 1 — eU3un
Ppayas 2 Pi3as 3u-1 Puasa, 3u-1
_pH 1_e—(ﬂ.+/1)t
2 2
na,a,———+rn,(2a,a,a, +a;a,)
24 A+u
_,2ut 1_e—(/1+§)t
a,(t)=a,,+¢&| +r, (a2a32 +2a,a,a,e)———+r,a,a,a, —————
2u A+&
| — g - L 1ot
+r(a,a,as + a2a3a5)—/u ve +r,a,a; —2§ +raja, —3ﬂ —
, 1- Pl ,1- e !
e(llaja,———+La,a{ ———
u+s 28
a;(t)=a,,+¢
’ 1— =24t 1— —(u+é)t 1— =24
) e e ;1—e
+lLaia,———+1,a,a,a +La )
3¥5%4 25 4%3%4%5 ﬂ+§ 55 25
1- 6*2@ 1- e*(/ﬁé)t
a,(t) = ay, +&(S,a3a,————+S,a,a,a; —————)
’ 28 H+<
and
as(1) =as, (5.30)

Finally, we obtain the solution in the form

x(t,€) = (a,(t) +ta,(t))e ™ +(a,(t) +ta, (t))e ™ +as(t)e " +eu,(a,(t),a,(t), -, as(t),t)
(5.31)

Here eq. (5.31) is the first order approximate solution of eq. (5.13), where

a,(t), a,(t), a;(t), a,(¢t) and a,(¢) are given by the eq. (5.30) and the value of u, is given

by the eq. (5.28).

5.4. Results and Discussions

In order to check the accuracy of an analytical approximate solution obtained based on

KBM method, we compare the approximate solution to the numerical solution. In this

chapter, we have compared our obtained results (by perturbation) to those obtained by the

fourth order Runge-Kutta method for different sets of initial conditions as well as different

sets of eigenvalues.

77



Chapter-Five: Perturbation solutions for fifth Order Critical-damped Nonlinear Systems

Firstly, for A =4.6, u=1.6, £=0.6 and £=0.1, x(¢,&)has been computed (5.31), in

which a,(?), a,(t), a;(¢), a,(¢) and a,(¢) by the equation (5.30) with initial conditions

a,,=0.20,a,,=0.15,a,, =0.20,a,, = 0.13, a;, =0.15

1.€,
2
x(0) =1.0107571, dx(to) — 32072265, L9 _ 13 0002677,
3 4
d;g‘” = 5634212365, L9 _246.9637919.
t t

In this section, the perturbation results obtained by the solution (5.31) and the
corresponding numerical results obtained by a fourth order Runge-Kutta method with a

small time increment 0.5, are plotted (Fig. 5.1). The correlation between the results is

0.998762.

1.2

DRI Y

....... Serjies] e———-Series?

Fig. 5.1. Perturbation solution plotted by solid line and numerical solution plotted by dotted line.

Finally, for 1=3.8, u=1.3, £=0.5 and £=0.1, x(¢,¢)has been computed (5.31), in
which a,(?), a,(t), a;(¢), a,(¢) and a,(¢) by the equation (5.30) with initial conditions

a,,=0.15,a,, =0.04,a, , =0.15,a, , = 0.04, a; , = 0.03

1.€,
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2
x(0) =1.113555, d’;fto) = —3.700838, &g‘)) =13.5102566,
3 4
ddjg(” =-50.629624, @ =191.0510405 .

In this section, the perturbation results obtained by the solution (5.31) and the
corresponding numerical results obtained by a fourth order Runge-Kutta method with a
small time increment 0.5, are plotted (Fig. 5.2). The correlation between the results is

0.999469.

1.2

0.8 \
x 06 X
0.4 x

0.2 \

Serigsl  ssesees Series2

Fig. 5.2. Perturbation solution plotted by solid line and numerical solution plotted by dotted line.

Finally, for 1 =22, £=0.8, £=0.3 and £=0.1, x(¢z,&)has been computed (5.31), in
which a,(?), a,(t), a;(¢), a,(¢) and a,(¢) by the equation (5.30) with initial conditions

a,=0.l1a,,=0.07,a,,=0.La,,=0.07,a;,=0.1

1.€,
2
x(0) =1.020423, dx(to) — —1.8230321, 2O _ 3 810971,
3 4
d;g‘” = 8221826, X9 _17655039.
t t

In this section, the perturbation results obtained by the solution (5.31) and the

corresponding numerical results obtained by a fourth order Runge-Kutta method with a

79



Chapter-Five: Perturbation solutions for fifth Order Critical-damped Nonlinear Systems

small time increment 0.5, are plotted (Fig. 5.3). The correlation between the results is

0.999816.

1.2

0.8
x (.6 \
0.4 \

------- Serigs] — em——Series?

Fig. 5.3. Perturbation solution plotted by solid line and numerical solution plotted by dotted line.

3.5. Conclusion

A procedure is formulated to find the analytical first order approximate solution of fifth
order critical damped nonlinear differential systems extending the KBM method to obtain
transient response in this chapter. The results show good coincidence with numerical

results for different sets of initial conditions as well as for different damping forces.
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Chapter-Six

Asymptotic Solutions of Second Order Nonlinear Vibrating Systems with
Slowly Varying Coefficients

6.1. Introduction:

Vibrations occur in almost all spring related things and their physical model are nonlinear
Differential systems whose coefficients change slowly and periodically with time. The
most common methods for constructing the analytical approximate solutions to the
nonlinear oscillator equations are the perturbation methods. Most of the perturbation
methods are based on an assumption that small parameter must exist in the equations.
Krylov and Bogoliubov [63] originally developed a perturbation method to obtain an
approximate solution of a second order nonlinear differential system. Then the method
was amplified and justified by Bogoliubov and Mitropolskii [22]. Mitropolskii [73] has
extended the method to nonlinear differential system with slowly varying coefficients.
Following the extended KBM method , Arya and Bodadziev [15], Bojadziev and Edwards
[34] studied some damped oscillatory and purely non-oscillatory systems with slowly
varying coefficients. Murty [74] presented a unified KBM method for both under-damped
and over-damped system with constant coefficients. Shamsul [110] presented a unified
formula to obtain a general solution of an n-th order ordinary differential equation with
constant and slowly varying coefficients. Hung and Wu [55] obtained an exact solution of
a differential system in terms of Bessel’s functions where the coefficients varying with

time in an exponential order.

In the previous chapter, we established some procedure with classical KBM method but
from this chapter we start with the differential equations with slowly varying coefficients.

The aim of this chapter is to find an approximate solution of such nonlinear differential
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systems [49] based on the extended KBM (by Popov [91]) method in which the
coefficients change slowly and periodically with time. Furthermore, a non-autonomous

case also investigated in which an external force acts in this system.
6.2. The Method:
Let us consider the nonlinear differential system
X+(c, +c,cosT+cysin7)x =—¢ f(x,7), T=¢&t (6.1)

where the over-dots denote differentiation with respect to ¢, € is a small parameter,

¢ ,c,and ¢, are constants, ¢, =c; =0(¢g), f is a given nonlinear function. Setting

() = (¢, + ¢, cos7 +c,sint), w(r) is known as frequency.
For ¢ =0 and 7 =r,= constant, A,(7,)=iw(r,), 4,(r,) =—iw(r,) are two eigen values
of the unperturbed equation of (6.1) and has the solution

2
x(t,0)=Y a, e (6.2)
j=0

When £#0 i. e, for unperturbed equations, we seek a solution in accordance with

Shamsul [108] or Murty and Deekshatulu [76] or the KBM [22, 63] method, of the form

2
x(t,g) = Zaj,o (t,0)+eu,(a,,a,,t)+&u,(a,,a,,7)+..., (6.3)
j=1

where a, and a, satisfy the differential equations

a, =A,(7)a, + &4, (al,az,r)+82..., 6.4)
a, =A,(t)a, + €4, (al,az,r)+52...,

Taking our interest to the earliest few term 1,2,...,m in the series expansion of (6.3) and

(6.4), we estimate functions u,,...,4,,4,,...,such that a, and a, appearing in (6.3) and
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(6.4) gratify (6.1) with an accuracy of ¢”*'. In order to resolve these unknown functions it

was early assumed that the functions u,,...keep out all fundamental terms, since these are

incorporated in the series expansion (6.3) at order &° .

Differentiating x(¢,¢) two times with respect to ¢, substituting for the derivatives X and x

in the original equation (1) and equating the coefficient of ¢, we get a hold

Ala, +Aa, — A, A4 — A A, + [/1161, 8i

a,

0
+4,a, 5)(141 + Az)
2

0 0 0 0
+(/11a1$+22a2£—/11j(/11a1£+ﬂzaza—lzjul (65)
1 2 1 2

=—/"(a,,a,,7),

d,

where A/ = A —62—/12, 9= f(x,,%,,7) and x,=a,(t,7)+a,(t7).

It is assumed that both ¥ can be expanded in Taylor’s series (Murty [74], Shamsul

[110])

A Z (D as (6.6)

1, =

To obtain this solution (6.1), it has been proposed in (Shamsul [110]) that u,,u, eliminate

the terms a'a? of ', where 7, —r, =+1. This limitation guarantees that the solution
always excludes secular-type terms or the first harmonic terms (see Shamsul [110] for

details). According to our assumption, u, does not contain the fundamental terms,
therefore equation (6.5) can be divided into three equations for unknown functions #, and

A,, 4, . we obtain

r=0,r,=0

[/Lal —+,a, 82 lszl +Ala,= Z El Lt ay ), if rp=r+l1 (6.7)
1 2
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(ﬂ,lal + Aa, 8?1 A]Az +Aa, = OZ oF”’Z (a',ay? ), ifr,=r+1 (6.8)
a 2 =0n=
and
0 0 0
21“1 7 a 20> —A M’ﬁaJr%azg—ﬁz u= OZ F o, (aay ), (6.9)
aQ 2 1 2 2=

where Z F, , (a',a; ) exclude those terms for r, =r, 1.

=0,r,=0

Thus the particular solutions of (6.7)-(6.9) give the values of the unknown functions
A,,A4, and u,. We have already mentioned that equation (6.1) is not a standard form of
KBM method. We shall be able to transform (6.3) to the exact form of the KBM [4, 6, 9,
108] solution by substituting a, =ae’”/2 and a, =ae /2. Herein, a and ¢ are
respectively amplitude and phase variables (see Shamsul [110]). Under this assumption,
we shall able to find the unknown functions u, and A4,,4, which completes the

determination of the solution of a second order non-linear problem (6.1).
6.3. Examples:
6.3.1. A second order nonlinear problem without external force

We consider a second order nonlinear system with constant and slowly varying coefficient
¥+ (¢l +c,c08T +c,sin7)x =—&x’, (6.10)

Here over dots denote differentiation with respect to ¢, ¢, c,and c; are constants,

=0(¢), x, = a, +a, and the function f*” becomes,
O =—(a’ +3a’a, +3a,a; +al). (6.11)

Following the assumption (discussed in section 6.2) u, excludes the terms 3a/a,, 3a,a; .
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We stand-in in (6.5) and break up it into two parts as

0 0
a,—+Aa —A, |4, + Aa, +| La,—+ L,a - |4, +Aa
(ﬂq 1 a, 2aa2 2) 1+ A {/11 1 a, 26612 1] 2 T A0, 6.12)
=—(3aja, +3a,a;)
and
a 3 3
(ﬂ'lal +22a2__21j£/11 a——+Aha,— a /12}"1 =—(a; +a;) (6.13)
l 2
The particular solution of (6.13) is
3 3
__ a, _ % (6.14)

u
L2464 -4) 24032,-4)
Now, we have to solve (6.12) for two functions 4, and 4,. According with the unified

KBM method 4, contains the term 3a’a, and A4, contains the term 3a,a; (Shamsul

[110]) obtain the following equations
a a ' 2
Aa,—+Aa,——A, |4 +Ala, =-3a;a, (6.15)
oa, oa,
and
5 a ' 2
Aa,—+Aa,——A |4, + Aa, =-3a,a; (6.16)
oa, oa,

The particular solutions of (6.15)-(6.16) are

' 2 ' 2
Aa,  3aja, Aa, 3aa,

4, =22 (6.17)

and 4 =- , 5
A=A 24 =4 24

Substituting the functional values of 4, and 4, (6.17) into (6.4) and rearranging, we

obtain

and
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i 2 ’ 2
i = Aa, + g[— ;1“1/1 3 ‘2’1:2 J i, = Aa, + g[ ﬂjtza; - 3;’1/1‘2‘2 J (6.18)
M M

The variational equations of a and ¢ in the real form (a and ¢ are know as amplitude
and phase) which transform (18) to

’ 2
and  a=-32  pope (6.19)
20 8w

where o = \/cl +c,C08T+c,ysInT

The variational equation (6.19) is in the form of the KBM solution. The variational
equations for amplitude and phase are usually appeared in a set of first order differential
equations and solved by the numerical technique (see Shamsul [110]).
Therefore, the first order solution of the equation (6.10) is

x(t,e)=acos@p+¢eu, (6.20)
where a and ¢ are the solution of the equation (6.19).
6.3.2. Let us consider another form of the nonlinear differential problem (6.10)

X¥+cx=—Cc,c08STX—C,SinTx—&" =—¢£c(cosT+sin7)x—ax’, (6.21)
where (¢, +¢;)=&c and ¢, = @’ . Here,

O =~(a +3ala, +3a,a; +a;)—c(cost+sin7)(a, +at,) . (6.22)

In our statement, u, excludes the terms 3a/a,,3a,a; and c(cost +sinz) (e, +a,). The

equations of u,, 4, and 4, become (discussed in Section 2)

ae =i aa, i | aa v ia, L4y =~ + ) (6.23)
o, oa, oq, oa,

and

86



Chapter-Six: Asymptotic Solutions of Second Order Nonlinear Vibrating Systems with Slowly
Varying Coefficients

(210:1 % +Aa, % - /12}41 =-3a/a, —ca,(cost +sin7),
1 2

(6.24)
(ﬂqal 2 +,a, 9 A jAz = 3o, a; —ca,(cost +sin7)
oa, oa,
Solution of Egs. (6.24)-(6.25) are
3 3
w=— (6.25)
2434 -4) 24064, -4)
4 3afa, cay(cosT+sinT)
1 ’
2 _
and 8 hh (6.26)
PR a; | cay(cosT+sin7)
2
24 A =4

Substituting the functional values of 4, and A4, (6.26) into (6.4) and rearranging, we

obtain
2 .
dl = ﬂ'lal + g[_ 33},?2 _ Cal (CZSTZSH‘I T) j’
2 . (6.27)
d2 = 2202 + 8[— 30{1 a2 + caz (COS 7 +SIn T)J
2 A

The variational equation of @ and ¢ in the real form (@ and ¢ are know as amplitude

and phase) which transform (6.27) to

a=0
3ea’® ec(cosT+sint) (6.28)

)=+ + ,
4 8w 2w

where 0’ =c¢,.
Therefore, the first order solution of the equation (6.10) is

x(t,e)=acosp+eu,, (6.29)
where ¢ and ¢ are the solution of the equation (6.27).

6.3.3. Let us consider a second order nonlinear differential system with an external

force
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¥+ (¢, +¢,c08T +c,co8T)x =—ax’ + gE cosvt (6.30)
Here, over dots denote differentiation with respect to ¢; ¢, ¢, and c;are constants,
¢, =¢,=0(¢), x, =a, +a, and the function

O =—(a] +3aja, +3a,a; +a; +£ e +e). 6.31
1 172 172 2 2

Under the limitation (discussed in Section 6.2) u, excludes the terms3a’a,, 3a,a;.

Moreover in our assumption u, excludes gE(e’” +e"”)/(2) .We substitute in (6.5) and

break up it into two parts as

0 0 , 0 0 :
[ﬂ’lal ——tha o /12}‘41 + A, + (ﬂﬂl o +Aa, o &jAz +Aa,
1

oa, 2 2 (6.32)
=—Baja, +3a,al) + %(e’” +e ),
and
(ﬁ,lal 8i1+ Aa, 81;2 - Z,IJ[/llal % +A,a, %— A, Jul =—(a’ +aj). (6.33)
The particular solution of (6.33) is
L @ a (6.34)

L 24GA-4) 24(4-4)
Now, we have to solve (6.32) for two functions 4, and 4,. According with unified KBM

method 4, contains the term 3a/a,, Ee™ /2 and A, contains the term 3a,a; , Ee ™ /2

obtain the following equation

(llal a%+/12a2 6%—2,2 }Al +Ala, =-3a}a, +§e’", (6.35)
1 2
and
(ﬂqal ai+/12a2 ai—ﬂl]Az +Aa, =-3a,a; +§e“” (6.36)
1 2
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The particular solutions of (6.35)-(6.36) are

_ Ma, 3ala, . Ee"™
YA -A 24 20v-4)
_ Aha, 3aa N Ee™

P-4, 24, =2(iv+Aa)

and (6.37)

Substituting the functional values of 4, and A4, (6.37) into (6.5) and rearranging, we

obtain (see Sub-section 6.3.1)
' 2 ivt
a, =Aa +él — Ao 344, + Fe ,
A=A, 24 2(iv-4,)

Aa, _3ala22+ Ee™
A=A, 21, =20v+4))/

and (6.38)

a, =Aa, +<{

The variational equation of a and ¢ in the real form (a and ¢ are know as amplitude
and phase), which transform (6.38) to

__auo'  eEsin(p—w)

2 +
and @ e (6.39)
i 3ea”  &E cos(p—wvt)
p=0-Vv+ -
8w a(v + w)
where o = \/cl +c,c08T+¢,sinT
Therefore, the first order solution of the equation (10) is
x(t,e)=acosp+eu, (6.40)

where ¢ and ¢ are the solution of the equation (6.39).

6.4. Results and Discussions:

In this chapter, an analytic technique has been presented to obtain the first order analytical
approximate solutions of a second-order time dependent nonlinear differential systems
with constant and varying coefficients based on the extended KBM method (by Popov
[91]). Theoretically, the solution can be obtained up to the accuracy of any order of

approximation. However owing to the rapidly growing algebraic complexity for the
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derivation of the function, the solution is in general confined to a low order, usually the
first. In order to test the accuracy of an approximate solution obtained by a certain
perturbation method, one can easily compare the approximate solution to the numerical
solution (considered to be exact). Due to such a comparison relating to the presented KBM
method of this paper, we refer to the works of Murty [74], and Shamsul [110] have been
compared to the corresponding numerical solution. In this chapter, we have also compared
the perturbation solutions (6.20), (6.29) and (6.40) of Duffing’s equation (6.10) and (6.30)
to those obtained by Range-kutta (Fourth-order) procedure.

First of all, we plot in Fig. 6.1, the first approximate solution of Eq. (10) for & =.1 with
initial condition [x(0) =1, x(0) =0] or a, =1.00000, a, =—-.000237. The corresponding
numerical solution has been computed by Runge-Kutta (fourth order) method. Seeing the
figure it is clear that the asymptotic solution (6.20) shows a good agreement with the
numerical solution of equation (6.10).

We have find the approximate solution of the same problem utilize the classical KBM
method (see Sub-section 3.2) for &=.1 with initial condition [x(0)=1, x(0)=0] or
a, =1., a, =0 presented in Fig.6.2. From the graph it is clear that the perturbation

solution (6.29) does not agree with the numerical solution after a short time interval. Thus
the extended KBM method is important.

In sub section 3.3, a perturbation solution (6.40) has been derived when an external force
acts and the solution has been presented in Fig.6.3 for ¢ =.1 v =.7, E =.5 with initial

condition[x(0) =1, x(0) = 0], or, a, =1.003719, a, =.086112. This solution also shows a

good coincidence with the numerical solution.
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Fig.1

WAWAWAWAWA

1.5 4

Fig 6.1: Perturbation solution (dotted line) with corresponding numerical solution (solid
line) are plotted with initial conditions a =1.00000, ¢ =—-.086112

[ x(0) = 1.00000, (0) = 0.00000] for e =.1, /=.05.

601

Fig 6.2: Perturbation solution (dotted line) with corresponding numerical solution (solid
line) are plotted with initial conditions a =1.00000, ¢ = 0.00000°

[ x(0) = 1.00000, (0) = 0.00000] for e =.1, & =.05.
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Fig.3
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Fig.6.3: Perturbation solution (dotted line) with corresponding numerical solution (solid
line) are plotted  with initial conditions a=1.003719, ¢ =-.086112

[ x(0) = 1.00000, £(0) = 0.00000] for e=.1, v =0.7, E=0.5, h =.05. .

6.5. Conclusion: An approximate solution of a second order nonlinear deferential system

with slowly varying coefficients has been found. This improved method gives better
results than classical KBM method. The solution for different initial condition shows good

coincidence with corresponding numerical solution.
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Chapter-Seven

Asymptotic Solutions of Second Order Damped-Oscillatory systems with
Varying Coefficients

7.1 Introduction

Changes occur in every things, variational causes take place in every phenomena both in
natural and artificial. Study in variation has been a hot tropics and the subject of active
research. These problems generally arise in mathematical modeling of visco-elastic flows,
physics, engineering, and other disciplines. Krylov and Bogoliubov [63] developed a
perturbation method to obtain an approximate solution of a second order nonlinear

differential system described by

d’x dx
% +a)§x=—éf(x,5), 0<e<l (7.1)

where @, is a positive constant and ¢ is a small parameter. This method was first

appeared in published form in 1937. This method has been extended and justified
mathematically by Bogoliubov and Mitropoisky. They are called the method asymptotic in
the sense thate — 0. Then the method was amplified and justified by Bogoliubov and
Mitropolskii [22]. Mitropolskii [73] has extended the method to nonlinear differential

system with slowly varying coefficients

2
% + 02 (7)x = —¢ f(x,%,r), = et (7.2)

The advantage of the method is that it not only enables us to determine the steady-state
periodic motions but also allows us to determine the transient process corresponding to
perturbations of these oscillations. A closely related technique is that of van-der Pol. who
proposed a method of slowly varying coefficients for the evaluation of periodic

oscillations of certain nonlinear phenomena in electron tube oscillator. The Krylov-
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Bogoliubov [63] method has been extended by Popov [91] and Mendelson [69] to the

analysis of transsient nonlinear differential equation of the form

d*x
dt*

dx dx
+2p—+qgx=&F| x,— |, O<e<xl 7.3
P4 ( dtj (7.3)

dx ) . . .
where p and q are real constants and F (x,?j is a nonlinear function.)
t

Following the extended Krylov-Bogoliubov-Mitropolskii (KBM) method [22, 63, 73]),
Bojadziev and Edwards [34] studied some damped oscillatory and non-oscillatory systems

modeled by

d*x
dt*

+ c(r).% +0’(t)x=—¢ f(x,%, 7), (7.4)

where ¢(t) and w(t) are positive.

In this chapter, we deliver a technique considering a nonlinear differential system of the

form

d*x
dt*

dx dx
+2k(7)—+ @ =- »—>T), =ét 7.5
(7) ” (7)x e f(x % 7) T=¢& (7.5)

where ¢ is a small parameter, 7 = ¢f is the slowly varying time, £(z) >0, f is a given
nonlinear function and @(7) is the frequency. In this system, the coefficients are slowly

varying with their time derivatives are proportional to&. The validity and advantages of

the method is illustrated by an example in this chapter.

7.2 The Method

To achieve our goal of studying the mathematical behavior, let us consider the nonlinear

differential system

¥4 2k(1)% + 0 (1)x = —¢ f(x,X,7), T=¢t (7.4)
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where the over-dots denote differentiation with respect to ¢, € is a small parameter,
7 = ¢t is the slowly varying time, k(7) >0, f is a given nonlinear function and @(7) is
the frequency. The coefficients in Eq. (7.4) are slowly varying in that their time
derivatives are proportional to .

For ¢ =0 and 7 =7,= constant, A,(7,) =iw(zr,), 4,(r,)=—iw(zr,) are two eigen values

of the unperturbed equation of (7.4) and has the solution
x(,0) = a, """ +a, e*", (7.5)

When &#0, we seek a solution in accordance with Shamsul [108] or Murty and
Deekshatulu [76] or the KBM [22, 63] method, of the form
x(t, .5') =a,(t,7)+a,(t,7)+su,(a,,a,,t, 7)+ P (7.6)

where a, and a, satisfy the differential equations

a, =A(t)a, + €4 (a,,a,,7)+ ...,
= A ¢ (@00 67 o
a, =A(1)a, +&d,(a,,a,,t)+& ...,

Keeping our attention to the first few term 1,2,...,m in the series expansion of eq.(7.6)

and eq.(7.7), we evaluate functions u,,...,4,,4,,...,such that 4, and a, appearing in

eq.(7.6) and eq.(7.7) satisfy eq.(7.4) with an accuracy of ”"'. In order to determine these
unknown functions it was early assumed by Murty [74], Shamsul [108] that the functions

u,,...exclude all fundamental terms, since these are included in the series expansion

eq.(7.6) at order&” .

Differentiating x(z,€) twice with respect to ¢, substituting for the derivatives X and x in the

original equation eq.(7.4) and equating the coefficient of ¢, we obtain
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1 a,

Aa, + Aa, = 2,4 — LA, + (21“1 ai‘F Aa, %j(/ll + Az)

0 0
(J,Ial + Aa, — ﬂ.lj(i‘ a,—+ Aa, — _/12]”1 (7.8)
a, oa, a, oa,
= _f(O) (al sy, T)a

where A/ :%, A :d—lz, 1O = f(x,,%,,7) and x,=a,(t,1)+a,(t1).
dr dr
It is assumed that both £” can be expanded in Taylor’s series [74, 76, 108]

SO = Z F. . (D)ala; , (7.9)

11,1, =0

To obtain this solution of eq.(7.4), it has been proposed in [110 ] that u,,u, exclude the

terms a/'a?of f'”, where 1, —r, =%1 . This restriction guarantees that the solution
always excludes secular-type terms or the first harmonic terms (see [110] for details).
According to our assumption, u, does not contain the fundamental terms, therefore
equation (7.8) can be separated into three equations for unknown functions u, and 4,, 4,

(see [110] for details). we obtain

(ﬂqal + A,a, 8(31 ﬂszl + Ala,= OZ oF" Lal,ay ), if r=r+1 (7.10)
a, 2 i=0n=
0 , .
(&al +Aa, — o llefi-/lzaz = OZ OFrlrz(al,az ), if r,=r+1 (7.11)
a, 2 n=0ns

and

(Aal + a2 Aj(&al oy - z) 3 F e, (1)
a a; a,

8(12 1=0,r,=

where Z F, , (a',a; ) exclude those terms for 1, =7, +1.

11=0,r,=0
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Thus the particular solutions of eq.(7.10)-(7.12) give the values of the unknown functions

A, A, and u, which completes the determination of the solution of a second order non-
linear problem eq.(7.4).

7.3 Example.

The simple procedure outlined above will be illustrated by discussing the following a
example. To demonstrate the applicability of the proposed method for solving the second
order damped nonlinear differential system type (7.1), we considered the example here.
This example has been chosen because either analytical or approximate solutions are
available in the literature and solutions obtained by the proposed method are compared

with the solutions obtained by the methods available in the literature.
We consider a second order nonlinear system with slowly varying coefficients
¥4 2k(7)% + @’ (1)x = —&x’, (7.13)

Here over dots denote differentiation with respect to ¢. In this case x, =a, +a, and the
function f” becomes,

[ =—(a +3a’a, +3aa; +a;). (7.14)
Following the assumption (discussed in section 7.2) u, excludes the terms 3a’a, and

3a,a; .

We substitute in eq. (7.8) and separate it into two parts as

' , 0 0
Aa, + ya, — A4 — A4, + [ﬂ’lal 5_ +Aa, a_)(Al + Az)

a a,

(7.15)

=—(3a’a, +3a,a’)

and
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(&al +A az——/LJ(/t a,—+A,a, 66 ﬂzJul = —(al3 +a§) (7.16)
a a, a, a,

The particular solution of eq. (7.16) is

U =— a _ a; (7.17)
211 (3/11 - j“2) 2j’z (312 - A’l)

Now, we have to solve eq.(7.15) for two functions 4, and 4,. According with the unified
KBM method 4, contains the term 3a/a, and A, contains the term 3a,a; (Shamsul

[110]) and thus we obtain the following equations

[ﬂ,,al + A,a, 6(2 -4 jAl +Aa, =-3ala, (7.18)
1 2
and
a ' 2
ﬂqal +A,a, — . -4 |4, + La, =-3a,a; (7.19)
l 2

The particular solutions of eq.(7.18) and eq.(7.19) are

' 2
PP TR U (7.20)
A=A 24
and
Aa,  3a a; (7.21)

2T A 2,
Substituting the functional values of 4,, 4, from eq.(7.20) and eq.(7.21) into eq.(7.7) and

rearranging, we obtain

' 2
a, = Aa, + g(— ;““lﬂ - 3;152 j (7.22)
1~ 2

and
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i 2
azzzﬂ2+gL;“3 —3;;2j (7.23)
7 2

Under the transformations, a, =ae /2 and a, =ae™” /2 together with A, =—k+iw,

A, = —k —i® equations (7.22) and (7.23) reduce to
a=cA(a)+¢&*.. and o= w+¢B,(a)+ ... (7.24)

We shall obtain the variational equations of @ and ¢ in the real form (a and ¢ are know

as amplitude and phase respectively) which transform eq.(7.24) to

' 3
i=—ka- 20, 3k (7.25)
20 8(k”+w7)
and

ek’ 3ea’w
— + —
200 8(k*+o°)

¢ = (7.26)

The variational equations (7.25) and (7.26) are in the form of the KBM solution. The
variational equations for amplitude and phase are usually appeared in a set of first order

differential equations and solved by the numerical technique (see Shamsul [110]).

Therefore, the first order solution of the equation (7.13) is

x(t,e)=acosp+¢su, (7.27)

where a and ¢ are the solution of the equation (7.25) and (7.26) respectively.

7.4 Results and Discussions.

Based on the extended KBM method (by Popov [91]) an asymptotic solution of second
order damped nonlinear systems has been found in this chapter. In order to test the
accuracy of an approximate solution obtained by a certain perturbation method, one

compares the approximate solution to the numerical solution (considered to be exact).
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With regard to such a comparison concerning the presented KBM method of this chapter,
we refer to the works of Murty [74], and Shamsul [110]. In our present paper, for different
initial conditions, we have compared the perturbation solutions (7.27) of Duffing’s
equations (7.13) to those obtained by Runge-Kutta Fourth-order procedure.

First of all, x is calculated by eq.(7.27) with initial conditions [x(0) =1, x(0) =0] or
a =1.000043, ¢ =—-.009277 for ¢=.1,w = a)om, k =.01cos7. Then corresponding

numerical solutions is also computed by Runge-Kutta fourth-order method. All the results
are shown in Fig.7.1. From Fig.7.1 it is clear that the asymptotic solution eq.(7.27) shows
a good coincidence with the numerical solution of equation (7.13). We have find the

approximate solutions of the same problem with initial conditions [x(0) =1, x(0) =0] or
a =1.001075, ¢ = —.046354 for &=.1, @ =w,/cosT, k=.05cosz and with initial
conditions [x(0) =1, x(0) =0] or a =1.004295, ¢ =-.092516 for
e=.1, 0=0, Jeosz, k =.1cost. The corresponding numerical solutions have also been

computed by Runge-Kutta fourth-order method. From Fig. 7.2 and Fig. 7.3 we observe

that the approximate solutions agree with numerical results nicely.

Fig.1

1.5 4
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Fig 7.1: Perturbation solution (dotted line) with corresponding numerical solution (solid

line) are  plotted  with  initial  conditions a =1.000043, ¢ =-.009277

[ x(0) =1.00000, %(0) = 0.00000] for e =.1,0, =1. h =.05., k =.0lcosz

Fig.2

1201

1401 1601 1801 200

Fig 7.2: Perturbation solution (dotted line) with corresponding numerical solution (solid

line) are  plotted  with  initial  conditions a=1.001075, ¢ =—.046354

[x(0) =1.00000, %(0) = 0.00000] for e =.1,0, =1. h =.05, k =.05cos7
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Fig.3
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Fig 7.3: Perturbation solution (dotted line) with corresponding numerical solution (solid

line) are  plotted  with  initial  conditions a =1.004295, ¢ =—-.092516

[ x(0) =1.00000, 5(0) = 0.00000] for e =.1,, =1. h=.05, k =.1cost

7.5 Conclusion.

In this chapter, we have modified the KBM method to find the approximate solution of a
second order time dependent nonlinear deferential system with slowly varying coefficients
under the action of damping forces. The preceding analysis has the virtue of utter
simplicity, and the illustrating example shows that the suggested method is very effective
and convenient in solving nonlinear equations. The objective of this chapter is to present a
simple and direct technique to solve a second order special slowly varying coefficients
problem. The solution is simpler than classical KBM method. Here it is found that if the

damping force is significant, the solution is stable.
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