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ABSTRACT

After a short review of spacetime singularities , blackholes , we introduce one with
the laws of blackhole mechanics and the laws of ordinary thermodynamics. We
discuss the remarkable analogy between the laws of blackhole mechanics and the
laws of thermodynamics. By Bekenstein proposal we explain the flaws arises when
one attempts to draw an analogy between them. We study the Bekenstein-Hawking
entropy, evidence of blackhole entropy, interpretation of blackhole entropy, the
linearity of blackhole entropy with its horizon area , the problem of blackhole
entropy and using thermodynamic relation we obtain Bekenstein-Hawking entropy,
Hawking temperature and some intensive parameters of some different kinds of
blackholes.

In this thesis, we also study the Hawking radiation, its nature and a parallel
discussion with blackbody radiation. The luminosity and lifetime of blackholes are
also studied. By applying Parikh-Wilczek’s semi-classical tunneling method we
obtain the emission rate of massless uncharged particle and the massive charged
particles at the event horizon of blackholes. Finally, we obtain the emission rate at
the event horizon of some kinds of blackholes by applying a new method known as
Hamilton-Jacobi method.

Vi
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CHAPTER ONE

INTRODUCTION

The most exotic entities encountered in the present study of physics are
blackholes. The nature of blackhole spacetime is enough to make the
physics of blackholes more than science fiction. In the prologue to the
Mathematical Theory of Blackholes Subrahmanyan Chandrasekhar sums up
his views on blackholes in a sentence : “The blackholes of nature are the
most perfect macroscopic objects there are in the universe: the only elements
in their construction are our concepts of space and time.” Even more
astounding are the connections of blackhole physics with thermodynamics.
One of the most remarkable developments in theoretical physics that has
occurred in the past forty years, was undoubtedly the discovery of the close
relationship between the certain laws of the ordinary thermodynamics and
the laws of blackhole mechanics. The starting point of this remarkable
developments was the discovery of the four laws of blackhole mechanics by
Bardeen, Carter and Hawking [1]. It appears that the laws of blackhole
mechanics and the laws of thermodynamics are two major pieces of a puzzle
that fit together so perfectly that there can be little doubt that this ‘fit’ is of
deep significance. The existence of this close relationship between these
laws seem to be guiding us towards a deeper understanding of the
fundamental nature of spacetime, as well as understanding of some aspects
of the nature of thermodynamics itself [2].

[t was first pointed out by Bekenstein [3] that a close relationship might exist
between the certain laws satisfied by blackholes in classical general
relativity and the ordinary laws of thermodynamics. He noted that the area
theorem of classical general relativity is closely analogous to the statement
of the ordinary second law of thermodynamics. His proposal was confirmed
by Bardeen, Carter and Hawking[1], they proved that in general relativity,
the surface gravity , «, of a stationary blackhole must be constant over the
event horizon, which is analogous to the zeroth laws of thermodynamics.
The analogue of the first law of thermodynamics was also proved.

It is generally believed that classically a blackhole is nothing but a perfectly
dead star which have an absolute zero as a physical temperature. But it was




not so since Hawking has found a startling discovery that the blackholes
radiates thermally[4], whereas Bekenstein suggested that there is an entropy
associate with the blackhole [5]. However that the blackhole has an entropy
first arose from the realization that its event horizon surface area exhibits
remarkable tendency to increase when undergoing any transformation as
noticed by Floyd and Penrose[6] and later supported by Christodoulou [7].
Hawking [8] was the first to give a general proof that the surface area of the
blackhole cannot decrease in any process and additionally he showed that
when two blackholes coalesce, the area of the resulting blackhole cannot be
smaller than the sum of the initial areas. It is clear that the change in
blackhole generally occur in the direction of increasing area. This is
reminiscent of the second law of thermodynamics which states that the
changes of a closed thermodynamic system takes place in the direction of
increasing entropy. This comparison suggests that it might be useful to
consider blackhole physics from thermodynamic viewpoint, that something
like entropy may play a major role in it. However, physicist were not
convinced about the validity of blackhole entropy before Hawking radiation
was discovered.

An incredible outcome of the Einstein theory of gravity are blackholes. They
were thought that no matter inside could escape and so invisible from
outside. In 1970s, Hawking startled all the physical community by proving
that the blackholes are not actually black[4,9]. They can radiate thermally

like a blackbody with Hawking temperature T, = 2—'( where «is the surface
T

gravity of the blackhole. The surface gravity means the acceleration
measured at the spatial infinity that a stationary particle should undergo to
withstand the gravity at the horizon. Although the heuristric picture which
visualizes the source of radiation as tunneling was first proposed by
Hawking, but his calculation was completely based on quantum field
theory in curved spacetime which is independent of a tunneling process.

The classical ‘no hair’ theorem stated that all the information about the
collapsing body was lost except three conserved quantity: the mass, the
angular momentum and the electric charge. So the only solutions of
Einstein-Maxwell equations in four dimensions is the stationary and rotating
Kerr-Newman blackhole solutions. In classical theory , the loss of
information is not a serious problem since it could be thought that the
information is preserved inside the blackhole but just not very accessible.
Even , once Hawking thought that the loss of information never recovered.

<P




But recently he change his opinion about information loss paradox. However
, taking quantum effect into consideration , the situation is changed due to
Hawking discovery that blackholes radiates thermally[4,9]

Due to the emission of thermal radiation blackhole could loss energy, shrink
and eventually evaporate away completely. Since the radiation with a
precisely thermal spectrum carries no information , so the information
carried by a physical system falling toward blackhole singularity has no
away to be recovered after a blackhole has disappeared completely. This is
known as so called “ information loss paradox”[10] which means that pure
quantum states ( the original matter that forms the blackhole ) can evolve
into mixed states (the thermal spectrum at infinity ). This type of evolution
violates the fundamental principle of quantum theory, as these prescribe a
unitary time evolution of basis states[11].

The information loss paradox can perhaps be attributed to the semi-classical
nature of the investigations of Hawking radiation. However, researches in
string theory indeed support the idea that Hawking radiation can be
described within a manifestly unitary theory, but it still remains a mystery
how information is recovered. Although a complete resolution of the
information loss paradox might be within a unitary theory of quantum
gravity or string/ M-theory , it is argued that the information could come out
if the outgoing radiation were not exactly thermal but had subtle
corrections[10].

After Hawking’s discovery that blackholes radiate[4,9], there were
several approaches to study this effect. The Hawking discovery was
based on the general relativity and quantum mechanics. This is the key
link in spacetime quantization. In the last few decades , there were many
researches on the Hawking radiation and many methods to calculate
Hawking radiation were obtained.

There is some degree of mystery remains in the mechanism of blackhole
radiation. In the original derivation of blackhole evaporations, Hawking
described the thermal radiation as a quantum tunneling process created by
vacuum fluctuation near the event horizon [12]. In this process , the
radiation is like electron-positron pair creation in a constant electric field.
The energy of a particle can change its sign after crossing the event horizon.
So a pair created by vacuum fluctuations just inside or outside the horizon
can materialize with zero total energy, after one member of the pair has
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tunneled to the opposite side. But in [4] Hawking did not proceed in this

: . c K
way. He considered the creation of a blackhole in the cotext of a collapse
geometry, calculating the Bogoliubov transformations between the initial
and final states of incoming and outgoing radiation. However , there were
two difficulties to overcome this problem. The first was to find a well —
behaved coordinate system at the event horizon. The second was where is
the barrier.

Recently , a method to describe Hawking radiation as tunneling process was
developed by Krause and Wilczek [13] and elaborated by Parikh and
Wilczek[14,15,16,17]. It was suggested in the method that the barrier is
created by the tunneling particle itself. This method involves calculating the
imaginary part of the action for the (classically forbidden) process of s-wave
emission across the horizon, which in turns is related to the Boltzmann
factor for emission at the Hawking temperature. Using the

( Wentzel- Kramers —Brillouin ) WKB approximation' the tunneling
probability for the classically forbidden trajectory of the s-wave coming
from inside to outside the horizon is given by

[' wexp(-2ImS)

where S is the classical action of the trajectory to leading order in ¥(set
equal to unity).

Expanding the action in terms of the particle energy , the Hawking
temperature is recovered at linear order. In other words for

2S = BE +0(E?) this gives

I ~ exp(-2S) = exp(-BF)

which is the regular Boltzmann factor for a particle of energy E and g is
the inverse temperature of the horizon.

Besides treating the Hawking radiation as a tunneling process Krause-
Parikh-Wilczek also took the tunneling particles back reaction into account.
They obtained the corresponding modified spectrum.

[l For large values of the quantum numbers or of the masses of the particles in the system the quantum
mechanics gives results closely similar to classical mechanics. For intermediate cases it is found that the
old quantum theory often gives good results. It is therefore pleasing that there has been obtained an
approximation method of solution of the wave equation based on an expansion the first terrn of which leads
to the classical result , the second term to the old-quantum theory result , and the higher terms to
corrections which bring in the effects characteristic of the new mechanics. This method is usually called the
Wentzel-Kramers-Brillouin method ( precisely the WKB approximation method)]



The most interesting result was that they found this modified spectrum was
implicitly consistent with the unitary theory and could support the
conservation of information[13,14,15,16].

Following this tunneling method , there have been many generalizations ,
such as its application to other spacetimes. The Hawking radiation as
tunneling from various spherically symmetric blackholes were found in
[11,18,19,20,21,22,23,24,25,26,27,28,29,30]. There are some attempts to
extend this method to the case of stationary axisymmetric blackholes
[31,32,33,34,35,36,37,38,39]. Recently, some researchers investigated the
massive charged particles tunneling from the static spherically symmetric as
well as stationary axisymmetric blackholes [40,41,42,43,44,45,46]. They all
found a satisfying result. However , Parikh and Wilczek’s tunneling method
is dependent on coordinates, which means that it should find a Painleve-like
coordinates. There is a new method which is independent of coordinates and
known as Hamilton-Jacobi tunneling method developed by Angheben,
Nadalini,Vanzo and Zerbini[31]. This variant tunneling method could also
be considered as an extension of the method used by Padmanabhan
,Srinivisan, Shankaranarayann and Vegenas [47,48,49,50,51]. More research
paper in this area are also found [52,53].

In this thesis we review spacetime singularity, the blackholes and their
formation, some classification and some properties in chapter two. Some
established theorems on blackholes and present observational evidence are
also added in this chapter.

In chapter three, introducing one with the laws of blackhole mechanics and
the laws of ordinary thermodynamics ,we briefly review the remarkable
analogy between ordinary thermodynamics and blackhole mechanics. We
also discuss the validity and necessity of the generalized second law (GSL).
We explain the flaws arises when one attempt to draw an analogy between
the laws of blackhole mechanics and the laws of ordinary thermodynamics.

In chapter four, we give some evidence of blackhole entropy, blackhole

entropy expression, the linearity of blackhole entropy with its horizon area
and some interpretation of blackhole entropy given by the wvarious

.
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researchers. We also discuss the blackhole entropy problem and sums up
some open questions to which complete answers to these questions is still
lack. Finally, using thermodynamic relation we obtain Bekenstein-Hawking
entropy, Hawking temperature and some other intensive parameters of
various types of blackholes.

In chapter five, we give a short history of Hawking radiation, the nature of
Hawking radiation , either the Hawking radiation is continuous or discrete
and given a parallel discussion between blackhole radiation and blackbody
radiation. The luminosity and lifetime of blackholes are also discussed in
this chapter. The tunneling of uncharged massless particles of various types
of blackholes are also given in this chapter and we obtain the tunneling
probability of some blackholes.

In chapter six, we discussed the tunneling probability of massive charged
particles which are obtained by the some researchers. Following their
methods and techniques, we obtained the tunneling probabilty of massive
charged particles from some kinds of blackholes.

In chapter seven, a new method to study the Hawking radiation as tunneling
the Hamilton-Jacobi methods are discussed. In this chapter, applying this
method we obtain the tunneling probability of some blackholes.
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CHAPTER TWO
SPACETIME SINGULARITY

2.1 Singularities:

Mathematically, a singularity of a function is a condition
when the function does not give a finite value. For example, in Newtonian
mechanics the gravitational potential energy U of a mass m is given by the

g GM, . oy B !
equation U =-——~ | where G is the Newton's gravitational constant, M is
7

the mass of attracting body and r is the distance between the two centers of
the bodies. Here U becomes infinite when r=0, therefore »r=0 is a
singularity of U. In the context of general relativity theory, spacetime
singularity means the region or location of the space in which the Einstein
field equations break down. Einstein field equation are taken to be a
fundamental description of space and time. At the singularity, objects or
light can reach a finite time but the curvature of spacetime becomes infinte.
Singularity lies inside the blackhole where matter is crushed in infinite
density, the pull of gravity is infinitely strong and spacetime has infinite
curvature. In the solution of Einstein equations, a situation where matter is
forced to be compressed to a point is called a spacelike singularity and a
situation where certain light rays come from a region with infinite curvature
is called timelike singularity.

{ Black hole

Singularity

Figure: 2.1 Formation of singularity.




Spacelike singularities are a feature of non-rotating uncharged
blackholes, while time like singularities are those that occur in charged or
rotating blackhole exact solution

Within a few months after Einstein field equations discovered, Karl
Schwarzschild obtain the solution of Einstein equation, for vacuum space,
R, =0 as

uv

%) 2M ) 2M - 2 2 2 ) 2
ds? ==(1-=——=)dt* + (1 -—)"'ar? +r°(df” +sin" 0 d¢*)
r r

(with G=c=1)
Here M is the mass of the matter, r is the distance from the center of the
matter. The equation (2.1) has a singularity at »=0 and r=2M .The
singularity at » =0 is a true singularity or physical singularity since it cannot
remove by any co-ordinate choice. But the singularity atr =2M is
not a true singularity since it can be removed by a suitable co-ordinate
choice. In ingoing Eddington-Finkelstein(EF) coordinate system
(v,r,6,¢) Where v=r+r with r, is defined as

]
ro= .[I——iﬁdr :r+2Mln(ﬁ—l) ....................................... (2.2)

B
In this coordinate system the metric (2.1) takes the form
21 2 7) 2 . 2 2
M)dv'+2dvdr+r'(d9'+sm“0d¢') ......................... (2.3)
p
and we see that there is no singularity at r=2M. Thus we have two
characterizations of spacetime singularity in Schwarzschild solution (i) a
singularity that cannot be removed by any choice of coordinate and (ii) the
singularity which can be removed by a suitable coordinate choice, while
these criteria work for blackholes, however, they are not sufficient to capture
all spacetime singularities.

ds? =—(1-

The metric (2.3) defined for »>2M since the relation v=r+r. between v
and r is only defined for » >2A |, but it can now be analytically continued to
all r>0.Because of thedrdv cross term the metric in EF coordinate is
nonsingular at » =2M , so the singularity in Schwarzschild coordinates was
really a coordinate singularity. There is nothing at » = 2M to prevent the star
collapsing through r=2M. This is illustrated by a Finkelstein diagram,
which is a plot of ¢, =v-r against r.
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The light cones distorted as » — 2M from r > 2M so that no future

directed timelike or null world line can reach r > 2M from r <2M
(54].

Spacetime singularities are also explained by geodesics. Geodesics are the
‘possible straightest’ path of spacetime. For any geodesics we can extend it
infinitely on both sides. If this is not possible then it seems that the geodesic
path comes to an edge or an end in some finite distance. Therefore we give a
characterization of spacetime singularity in terms of “geodesic
incompleteness”. A spacetime is called singular if it contains geodesics that

cannot be extended to infinity. In this case it seems that there is an ‘edge’ or
an ‘end’ to spacetime which lies at finite distance. For blackholes it can be
shown that the geodesic paths can be extended through r=2A but not =0

= a7 IR7
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2.2 Blackhole:

In the realm of science ,blackholes were at first only a
speculation as a result of calculation of the bodies whose escape velocity is
greater than the velocity of light. At first , in 1784, John Michell gave this
idea. After a few years, in 1798, mathematician Pierre Simon Laplace
discussed about the classical bodies with escape velocity greater than the
speed of light. But at that time their idea could not attract much attention.
After discovery of Einstein’s theory of general relativity, the theoretical
discussion about that bodies again started. In 1967, John Wheeler, an
American physicist coined the term ‘blackhole’ and thereafter it is popular
used.

[ John Wheeler always denied that he coined the term ‘blackhole’. He says
that ,in the fall of 1967 ,he was invited to give a talk on pulsars, then
mysterious deep space object at NASA’s Goddard institute of space studies
in New York. As he spoke, he argued that something strange might be at the
center ,what he called a gravitationally completely collapsed object. But
such a phrase was a mouthful, he said wishing about for a better name. ‘How
about blackhole?’ some one shouted from the audience.

That was it [ had been searching for just the right term for months, mulling
it over in bed, in the bathtub, in my car wherever I had quiet moments, he
later said. Suddenly this name seemed exactly right. He kept using the term,
in lectures and on papers and it stuck.]

The simplest picture of blackhole is that of a body whose gravity is so strong
that nothing , even light cannot escape from it. The escape velocity of a body
means the initial speed that required to go from an initial point in a
gravitational potential field to escape the gravitational pull of the body and
continue flying out to infinity. For example, the escape velocity of the earth
is 11.2 km/s and for the moon it is 2.4 km/s. According to the theory of
relativity, nothing can propagate faster than the speed of light and so if light
cannot escape due to strong gravity of the body, then neither can anything
else. So the body is unobservable and treated as a blackhole.

2.3 Event horizon of blackhole :
The important key to understanding

the study of blackholes is event horizon. Simply ,horizon is a boundary in
spacetime in which matter and light can only goes to inward towards the



center of the blackhole. In this sense ,the event horizon is a place of no
return. More generally, horizon means the boundary between the part of
spacetime from which light can escape to infinity and the part out of which
light cannot escape. So it is separating the events from outside universe.
Within the boundary if an event occurs, the information from that event
cannot reach outside observer. For a distant observer clocks near a blackhole
appear to tick more slow down than those further away from the blackhole.
This effect is known as gravitational time dilation. If an object approach the
event horizon and cross it, then for a distant observer it would like to move
slower and slower as it closer and closer to the horizon. Observer seems that
the object never reach at the horizon though the falling objects pass through
the horizon in a finite amount of proper time. For a non rotating , uncharged
Schwarzschild blackhole the spherical surface is referred to an event
horizon while for rotating blackholes, event horizons are distorted non
spherical.
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Figure: 2.3 The spherically symmetric collapse of a star, showing the formation
of an event horizon that is the boundary of the reign of space-time from which it
is not possible to escape to infinity. In this diagram time is plotted vertically and
space horizontally, with one spatial dimension suppressed.
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In fact the more accurate description of event horizon is that, at a
specific distance from blackhole light cones are so tipped over that
the outgoing edges of each light cone is vertical in the diagram

below.
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Figure. 2.4 From Penrose (Scientific American).

These edges form a surface which is called the event horizon. The boundary
divides the spacetime into an ‘out side’ and an ‘inside’ where as from inside
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particles and light rays can never escape outside because all of the light
cones point to the singularity, their world lines will end.

2.4 Formation of blackhole:

The solution of Einstein field equations
suggest that such a bizarre objects , like blackholes could exist in nature.
But FEinstein himself thought that black holes would not form, because he
held that the angular momentum of collapsing particles would stabilize their
motion at some radius[55].He claimed that the collapsing matter could not
reach at zero volume. This led the general relativity community to dismiss
all results to the contrary for many years. Only a minority of relativists
continued to contend that blackholes were physical objects[56] and by the
end of 1960’s they infer that there is no obstacle to forming a blackhole in
nature.

Consider a very compact and massive star. The strength of gravity of
the star can be increased if the star shrink or more mass is added. When light
rays leave the surface of this star radially outwards then gravity affects the
light due to its particle properties(due to photon mass).To overcome the
surface gravity and escape from the star ,light has done some work. So its
energy and hence frequency will be diminished. As a result gravitational red
shift occur. For more compact and massive star the red shift becomes
infinite. For example, if a clock at rest in the metric (2.1) and located at a
distance r ( r>r, ) exhibits, when its ticks are ‘read’ from infinity via

electromagnetic signals a red shift measured by [57]

read at

dsf Lall ), - (2.4)

[ds]h:ca//y \/_ gOO (’ =V ) I M
r

The red shift (2.4) goes to infinity if » —»r . Here r, =2M, Schwarzschild

radius. To get an idea about Schwarzschild radius it is notable that the
Schwarzschild radius of the sun is approximately 3 km and for the earth it is
about 1 cm . This means that if we could collapse all the earth’s matter down
to a sphere whose radius is 1 cm , then it will form a blackhole.

In actual world blackholes may formed by the following process:

...............................




2.4(a) Gravitational collapse:

The primary formation process of
blackholes is expected to be the gravitational collapse of sufficient amount
of matter. When a star consumes its nuclear fuel , then it stops all the
thermal activity that prevents it from collapsing under its won weight. Then
the star is known as death star and will undergo a gravitational collapse. The
collapsed may be stopped by the degeneracy pressure of the stars
constituents condensing the matter in an exotic denser state. The fate of the
death star depends on the mass of the remnant. In 1931, Subrahmanyan
Chandrasekhar calculated if the mass of the remnant less than 1.44 times
solar masses ( known as Chandrasekhar limit ) then electron degeneracy
pressure of it prevents itself to collapsing. The star is then stable and known
as ‘white dwarf ’.If the mass of the remnant lies between 1.44 to 3 solar
masses ,then the star again collapse and get a size smaller than ‘white dwarf
*.In this case neutron and proton degeneracy pressure counter balance the
gravity of its weight [58].

FLASH

OF LiGHET

- EMITTED
FROM CENTER

COLLAPSING
STAR

Figure.2.5 Space-time representation of the formation of a
blackhole by the collapse of a star.

The star is again stable and is called the ‘neutron star’. The radius of
the ‘neutron star’ may be only 10 miles and density per cubic inches
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billion billion tons[58].Finally if the mass of the remnant exceeds
about 3-4 solar masses( Tolman-Oppenheimer-Volkoff limit ) then
there is no known mechanism is powerful enough to stop the collapse
and the star will form a blackhole.

2.4 (b) Collapse of star cluster:

If a galaxy is densely populated with
stars then after a long time its center become more and more condensed by
the star cluster. This evolution may form a single supermassive body at the
center of the galaxy. This supermassive body may then undergo gravitational
collapse and form a black hole. Some supermassive blackhole with mass 10’
to 10° solar masses will be form by this process. Also some intermediate
blackholes are supposed to be formed by the amalgamation of many smaller
and cosmic bodies.

Table-2.1 (various types of blackhole)

class mass size
Suppermassive ~10° —10° M ~.001-10AU
blackhole

Intermediate blackhole ~10° M, ~10’km=R,,,,
Steelar blackhole ~10M ~30km

Micro blackhole Upto~M,,. . Upto ~0.Imm

[ From Wikipidia,the free encyclopedia ]

2.4 (¢) Primordial blackholes:

[t is possible that after a very short time of
‘Big Bang’ densities of matter were very much greater allowing for the
creation of blackholes. The high density alone is not enough to allow the
formation of blackholes since a uniform mass distribution will not allow the
mass to bunch up[58]. In other words if the matter density was enhanced in
some region, then rather than expand with the rest of the universe,
gravitational collapse of the matter in this region to form a blackholes might
have occurred. Stephen Hawking proposed that trillions of non stellar
blackholes or primordial blackholes were created along with the universe in
accordance with ‘Big Bang’. Some body suggest that high energy particle
collisions produce the required dense matter that can create a mini
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blackhole. But in the present universe it is not possible to form such
blackholes because gravitational collapse and collapse of a star cluster
cannot produce blackholes of very low mass.

2.5 Different types of blackholes:

2.5 (a) Schwarzschild blackhole:

The story of the blackholes
begins with Schwarzschild discovery of the Schwarzschild solution in
1916, soon after Einstein formulation of final gravitational field equations
in 1915. The Schwarzschild solution is the first simplest exact solution of
the vacuum Einstein equations which is spherically symmetric and
involving only one parameter M, the mass. This solution or blackhole has
no angular momentum, no charge and cannot be distinguished from any
other Schwarzschild blackholes except by its mass. The solution is given
by the metric (2.1) and has a singularity at »r=0 and r=2M . The
singularity at 2M due to its coordinates where the spacetime change their
meanings.

We see that the light cones in Schwarzschild coordinates are closing up as
we approach r=2M . So we can contrast a better coordinate system in that
region by following casual structure; define new coordinates

vl =1 [F A 2M (o = 1)] e eeer e 2.5
uv=I[tr, =1£[r+ n(ZM )] (2.5)

and sO u, v=1r+— ’m ..................................................... (2.6)

e ==

,.
Thus ingoing null rays have u=constant, while outgoing null rays have
v = constani .If we write the metric in coordinates(u,r,8,4) we can extend it
across r=2M along ingoing null rays. Similarly the metric in
coordinates(v,r,8,4) can be extended across r=2M along outgoing null

rays.
In Kruskal-Szekeres coordinates which are defined by

u | (r+1)
e L NG|
u'=eitM = (=AM e L S e e e 27
. )
N
V= e M o (D)2 @M 2.8
(e 8)
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In terms of these coordinates , the metric (2.1) becomes

M} -5

ds® = e XM du'dv' +r*(d6* +sin® 0dg’)

r

Where r(u,v)is defined implicitly by (2.7),(2.8) .These coordinates are
maximal- all geodesics either extend to infinite affine parameter without
leaving this chart or meet the singularity at =0 .The singular surface at
r =2M in the previous coordinates maps to »'v' =0 which is manifestly non
singular. On the other hand, =0 ,which maps to "' =-1 is still singular;
this is a curvature singularity. More generally, surfaces of constant t are at

1

1Z] .
— = constant ,while surfaces of constant r are at «'v' = constant .
v

=constant

t =constant

Figure:2.6 Kruskal diagram for Schwarzschild .

For large r, the metric (2.1) takes the form,

ds® ~ (1 —%)dlz +(1 +ﬂ)dr2 +r2(d6? +sin’0dg*) ..ooiiiin... (2.10)
r r

and from this equation, one can easily show that the Newtonian gravity is

merely a limiting case of general relativity. Again if we taker — o 1in
(2.10) we obtain,

ds® = —di* +dr’ +r*(d0° +sin® 0dg>) ..o (2.11)
Which is Minkowski flat spacetime.
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2.5 (b) Ressiner-Nordstrom blackhole:

1 _ Hans Ressiner and Gunnar Nordstrom
1scovered the solution of Einstein equation for vacuum space for a

charged body of mass M. Their solution is given by

12 2M : 2 2M . 2) 2
ds =—(1—T+%)dl‘+(I—}—+Q—,)"dr'+r‘(a’¢93+sin29d¢2)
.
............................................... (2.12)
(with G=c=1)

Here M is the mass of the body and Q is the total charge of the body. The
singularities of equation (2.12) is given by
L O E e o T (2.13)

i r
which gives,

ri=Mi\/'M2—Q2 g oA GEN 0 R N T RS (2.14)
Therefore the two concentric event horizons becomes degenerate for M =|0|

which corresponds to an extremal blackhole. The blackhole with 9 > M are

believed not to exist in nature. It is notable that the charged blackhole may
not be observed in nature because the blackhole is already discharged when
it is in stable state. The time taken by the blackhole from charged to

: g = . : M
discharged state called the characteristic time , is approximately 107 —

®
second [59].So the blackhole having mass 107 M, becomes stationary state

within one second !

2.5 (¢) Kerr blackhole:

In 1963, Roy Kerr obtained a solution of Einstein
equation for uncharged rotating body. The solution is given by the metric
known as Kerr metric or Kerr blackhole as (in the Boyer-Lindquist
coordinates)

2 (i - asin® 6dg)’ +%er +pldo +
=

sin’ @

BT [ +at)dg-adi)

where
A=ri=-2Mr+a’
p?=r+a’cos’d
J

a=—

M
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Here M is the mass of the body, J is the angular momentum and r is the
radial distance from the center of the body. The Kerr metric is used to
describe a rotating blackhole. The singularity of equation (2.15) is given

by,

Which gives,

o= MENM =@ | MP 3G i, (2.17)

So we may define three distinct region of the Kerr solution bounded by the
event horizons:

Region-1 : r, <r<o
Region-2 : SRS
Region-3 : O<r<r

Event horizon Evenl horizon

A
N

Figure:2.7 Space-time diagram of the Kerr solution in
advanced Eddington-Finkelstein coordinates.

The above figure shows that the three regions plotted in a spacetime
diagram along the equator of the blackhole using advanced Eddington-
Finkelstein (EF) coordinates in which ingoing null rays are straight lines.

+
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|
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Therefore the Kerr blackhole have different two surface where the metric
appears have a singularity. The size and shape of these two surface
depends on both M and J. The region between outer surface and inner
surface is called ‘Ergosphere’. The outer surface enclose the ergosphere
and its shape is similar to flattened sphere. The inner surface marks the
event horizon. Objects which passes through the event horizon can never
communicate with the outside universe. Objects which comes close
enough to the blackhole so that they enter the ergosphere are

Event horizon

-

]
L

o
0

E
5)

| ==

w

Figure:2.8 Kerr blackhole surrounded by an ergosphere. The ergosphere is a
region inside which nothing can remain stationary.

forced to rotate in the same direction as the rotating matters which collapse
to form the blackhole. This feature can be used to extract energy from
rotating blackhole.[Penrose process] The Kerr blackhole is extremal when
lo|=M ie. J=GM?* and if there is no spin i.e. J=0 then it reduces to a

Schwarzschild blackhole.

2.5 (d) Kerr-Newman blackhole:

In 1965, Ezra T. Newman obtained the most general
solution of Einstein equation for charged and rotating body. The solution is
given by
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2 OF <74
ds* = =Sl < asit? 0dg)’ +Z—dr2 +p2d0? + 397 + 0 dp— adi)
P’ P’

with G=c=1
.............................................. (2.18)
A =r'=2Mr+a’ +Q°
Where p2=r*+a’cos’d
J
a=—
M

The metric (2.18) is Known as Kerr-Newman metric or Kerr-Newman

blackhole and it is a generalization of Kerr metric for uncharged rotating
body which had been discovered by Roy Kerr two years ago.

The singularity of equ.(2.18) is given by as usual ,A, =0 which gives

=M+ JM* =0 -a®, with a*+0% < M?

Equation (2.19) gives the equation of the event horizons of Kerr-Newman
blackhole. It will be extremal when «® +0? = M*, while the Schwarzschild

blackhole can never be extremal. To obtain this solution it is assumed that
the cosmological constant equals to zero.
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Table- 2.2 Properties of blackhole.

Name of the blackhole Physical properties Mathematical description
Schwarzschild (i) no angular | (i) J=0
blackhole momentum (ip=0
(ii) no charge (i) R. =2M
(iili)  no energy extraction . - 5
(iv)  never extremal (iv) M" =M,
(V) A=47R} =167M"
Ressiner-Nordstrom (i) no angular momentum | (i)J =0
blackhole (i) charged (i) 9=0
(iii)  energy can be extracted | ... 77 7
by reducing net charge. (WSt S O
(iv)  may extremal. (iv) A=4nrl =4x[M +M* -Q
0
M*=M, +
v) PG M, )
(vi) M =|Q]
Kerr blackhole (i) having angular | (i)J # 0
momentum (i) 0=0
(i1) no charge - Fwg
(iii) energy can  be | () A =MFINM —a
extracted by reduction (i) A=dx(rl +a*)
of angular momentum | 'V s
(iv)  may extremal = 4”[(M+‘/A{ ade)ar]
WM =Mz
aM;
(vi) |a| =M
Kerr-Newman (i) having angular | (i) J =0
blackhole momentum (i) 0=#0
(ii) charged = 2 .
(ili) energy  can be (f”)r* =Mr M =0
extracted by reduction | (iv)
of spin and charge A=4x(r2 +ad)
(iv)  may extremal eSS
= 47;[(M+\/M‘ -0 -a’) +a
(V) M =M, +( %) )+ ']-,
4MII' 4M!;’
(vi) a* + Q0* = M?

o



2.5 (e) BTZ blackhole:
In 1992, Maximo Banados, Claudio Teitelboim and
Jorge Zanelli discovered the blackhole solution of Einstein equations in
2+1 dimension spacetime with a negative cosmological constant. This
blackhole characterized by mass , angular momentum and charge ,define
by flux integrals at infinity- is quite similar to its 3+1 dimensional
blackhole counter part.

The BTZ blackhole metric is given by,
ds®> = =N (r)di® + N2(r)dr® + P [N°(r)di + ] °\9 prevarieme e <aTg (2.20)

with cosmological constant A = /7.
Here the squared lapse N’(r)and the angular shift ¥*(r)are given by

rJ? o

y=-M+— o ONY () E = 2.2
N7(r) Tt (r) TE ( )
Where —w<i<ow | 0O<r<wand 0<p<2r7.
The singularity of equation (2.20) is given by
Ty B () N =l L S S (2.22)
Which gives

M o M
=l =12 1= (=) =1 — (A i A28
T L N R Ao 2.2
[

Where A = \ﬁl = (%)2 with imposed the condition
M>0 and  |[J|<SMl ..o (2.24)

Equation (2.23) gives the equation of event horizons of BTZ blackhole.
We see that like Kerr blackhole , a rotating BTZ black hole contains an
inner and an outer horizons.
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event horizons

Figure: 2.9 The 2+1 dimensional BTZ blackhole. This blackhole can be
visualized as a circular disc with spin .J.

In the extremal case|J| = MI, the roots of N?(r) = 0are coincide. The radius of

|
the curvature /= (—-A) ?provides the length scale necessary in order to have a
horizon in which the mass is dimensionless. If one lets /grow very large the
blackhole exterior is pushed away to infinity and one is left just with the
inside[60].The vacuum space is obtained by settingM -0  which
requiresJ — 0 1s

dst = -Z—;dﬁ ; (;—;)-' A 4P B e, (2.25)

The BTZ blackhole has an ergosphere and an upper bound in angular
momentum for any given mass. The thermodynamic properties of BTZ
blackholes is analogus to the 3+1 dimensional blackhole. For example, its
entropy is captured by a law directly analogous to the Bekenstein bound in
3+1 dimensional, essentially with the surface area replaced by the BTZ
blackholes circumfurrence.

If we set ,A=-1ie. /=1 for the spinless (J =0) BTZ blackholes we obtain
from (2.20) as
ds® = —(=M +r)di> + (M +r*)'dr? +r3dg® .cocoooiiiiiii (2.26)
The metric (2.26) is singular at »=+/A .Thus r=+M 1is an event horizon of
the spinless BTZ blackhole.

2.6 Blackhole Theorems:
The natural outcome of the solutions of the

Einstein’s equation are blackholes and in theoretical physics, they have a
fundamental importance. A number of important theorems on classical
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blackholes have been discovered in the last fifty years. The theorems are as
follows:

(a) Singularity theorem (1965).

(b) Area theorem(1972).

(c) Uniqueness theorem (1975).

(d) Positive energy theorem (1983).

(e) Horizon mass theorem (2005).

2.6 (a) Singularity theorem:

This theorem developed by S. W. Hawking and
R. Penrose[61,62] that quantify the specific conditions under which
singularities are the inevitable result of the solutions of the Einstein’s
equation in general relativity. These theorems demonstrate that in the
framework of general relativity, every blackhole must contain a singularity
at its center and all expanding universe like ours must have begun with a big
bang singularity.

In 1965, R. Penrose used the methods of global analysis to show that the
singularities are general phenomena which occur in gravitational collapse
irrespective of symmetry. The Penrose singularity theorems showed that a
generic solution of Einstein’s equations which satisfies certain reasonable
physical conditions and contains a closed trapped surface is singular in the
sense that it is geodesically incomplete. Thus although the theorems show
that gravitational singularities are a general feature of gravitational collapse
they do not say very much about the nature of the singularity. Although it is
likely that the end point of a realistic collapse is a situation similar to the
Schwarzschild singularity, in which there is a region where the gravitational
force becomes unbounded and crush matter in infinite density, other sorts of
weaker singularity are possible.

Hawking’s singularity theorem is for the whole universe and works
backwards-in-time. According to this theorem, our universe had its origins
in a singularity. In the beginning all of the matter in the universe was
concentrated in a single point, making a very small but tremendously dense
body. This body exploded in a big bang that initiated time and the universe.
Thus time has a beginning in the big bang and an end in a blackhole. The
existence of a singularity shows that general relativity breaks down at the
Planck scale as Hawking says, “ The singularity theorems seem to imply
that either the general theory of relativity breaks down or that there could be
particles whose histories did not exist before a certain time. My own opinion

-25.-




is that the theory probably breaks down but only when quantum gravitational
effects become important”.

2.6 (b) Area theorem:
This theorem discovered by S.W.Hawking in 1972[63].

The theorem states that the total surface area of the outer event horizon of a
blackhole can only stay the same or increase, but will never decrease in any
classical process .This situation is exactly like the second law of
thermodynamics which states that the entropy of a system can only stay the
same or increase, but can never decrease. Eventually it is recognized that the
area of a blackhole is its entropy and the surface gravity is its temperature.

2.6 (¢) Uniqueness theorem:
The blackhole uniqueness theorem states that a

blackhole 1is uniquely specified by its mass, charge and angular
momentum|[64]. The theorem is also known as the ‘no hair’ theorem. Thus
there are only three types of blackholes; the neutral Schwarzschild

blackhole, the charged Reissner-Nordstro m blackhole and the rotating Kerr
blackhole. Two blackholes which have the same mass, charge and angular
momentum are therefore indistinguishable to an external observer.

The blackhole uniqueness theorem first announced by Werner Israel at a
meeting at Kings college London in 1967[65]. He had investigated an
interesting class of static assymptotically flat solutions of Einstein’s vacuum
field equations. The solutions had a regular event horizons and obeyed the
type of regularity conditions that a broad class of non-rotating equilibrium
blackhole metrics might plausibly be expected to satisfy. His striking
conclusion was that the class was exhausted by the positive mass
Schwarzschild family of metrics. This result initiated research on the
blackhole uniqueness theorems which continues today.

2.6 (d) Positive energy theorem:

In general relativity, the positive energy
theorem states that an isolated gravitational system with non-negative local
matter density must have non-negative total energy, measured at spatial
infinity. In other words ,the mass of a blackhole is always positive[66].
Since gravity is an attractive force and the gravitational potential energy is
always negative, so the question arises whether the gravitational binding
energy of a blackhole is so great that it dominates over matter such that the
total energy of the system becomes negative. The answer is that it cannot be.
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2.6 (e) Horizon mass theorem:

The mass of a blackhole depends on where
the observer is. The closer one gets to a blackhole the less gravitational
energy one sees. As a result , the mass of a blackhole increases as one gets
near the horizon. This is the latest theorem on blackholes called the horizon
mass theorem[67]. The theorem states that for all the blackholes; neutral,
charged or rotating, the horizon mass is always twice the irreducible mass
observed at infinity i.e. M(r,)=2M,, . The horizon mass M(r,)is the mass

which cannot escape from the horizon of a neutral, charged or rotating
blackhole. It is the mass observed at the horizon. The irreducible mass is the
final mass of a charged or rotating blackhole when its charge or angular
momentum is removed by adding external particles to the blackhole. It is the
mass observed at infinity.

2.7 Observational evidence of blackhole:
In 1784, John Michell
wrote in his famous article:

“ If there should really exist in nature any (such)
bodies,...we could have no information from sight ; yet,if any other
luminuous bodies should happen to revolve about them we might still
perhaps from the motions of these revolving bodies infer the existence of the
central ones with same degree of probability,as this might afford a clue to
some of the apparent irregularities of the revolving bodies,which could not
be easily explicable on any other hypothesis.”[68]

At the very beginning the theoretically predicted properties of
blackhole were discussed but there were no observational evidence at that
time. Following the Michell paper, the same argument stated by Laplace in
1798. There is a long gap until 1915 when with the coming of the General
relativity theory by Einstein, the theoretical discussion of blackholes started
anew.

Since the blackhole is itself invisible because nothing even light cannot
escape from it, so it is very difficult to find a blackhole in nature. A
blackhole can be found indirectly by observing its effect on the stars and gas
close to it. After discovery of radio astronomy and X-ray astronomy, the
observational search for blackholes get a new dimension. At present,
observational evidence supports the idea that blackholes occur ubiquitously
in nature. Two kinds of blackholes are observed: stellar-sized blackholes in
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X-ray binary systems, mostly in our own Milky Way galaxy, and
supermassive blackholes in Active Galactic Nuclei(AGN)found at the
centers of our won and other galaxies.

One of the most important evidence for existence of blackhole is binary
system of stars. In this system the stars are very close to each other. If one of
this stars explodes catastrophically as a supernova and forms a blackhole,
then the gas and dust of the other star might be pulled towards the star which
form blackhole. This gas and dust begin to orbit around the event horizon
and then orbit the blackhole. The gas becomes heavily compressed and the
frictions among the atoms converts the kinetic energy of the gas and dust
into heat and X-rays are emitted. From this orbiting material radiations
scientists can measure its heat and speed. From the motion and speed of the
circulating matter, scientists can infer the presence of a blackhole .

During the 1970s and 1980s, particular attention was focussed on the source
Cygnus X-1, which appeared to be the strongest candidate for containing a
blackhole. From this source, Cygnus X-1/HDE226868 identified as a binary
blackhole system, orbiting an unseen companion with an orbital period of
5.6 days. It showed X-ray variability on a range of timescales extending
down to one millisecond , indicating that the companion is extremly
compact and must be a neutron star or a blackhole.But neutron stars cannot
have arbitrarily large mass; there is a maximum above which the pressure
can no longer balance gravity. This maximum mass lies between 1.4M g and

2.5M 4 if the neutron star is non-rotating and may be raised by up to 25% if it

is rotating rapidly. If one could determine that the mass of a very compact
object is above the maximum for a neutron star, then it would presumably
have to be a blackhole. This is the line of reasoning that was follwed with
Cygnus X-1 and with various subsequent blackhole candidates[ 69].

We know that HDE 226868 is a member of a binary system because its
spectrum shows systematic Doppler shifts which can consistent with it
moving on a binary orbit under the influence of the unseen companion.
From the Doppler shift data, a radial velocity curve can be constructed,
giving the variation with time of the component of the star’s velocity along
the line of sight. From this one can extract the orbital period P, the radial
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velocity amplitude K and, in principle, the eccentricity of the orbit .
Kepler’s laws gives the following mass function which relates observed
quantities to unknown masses:

PK? M3 sin?i
M,)= = i s g el NI, T S L e 2.27
J(My) 272G (M, + M,)* ( )

where M, is the mass of the compact object, M, is the mass of the

companion star and / is the inclination angle. A crucial fact is that M,
cannot be less than the value of the mass function. Therefore the best
blackhole candidates are obtained when the observed mass function exceeds
3M, - since, according to the theory, a neutron star more massive than this

limit is unstable and will collapse to form a blackhole. Otherwise , additional
information is necessary to deduce M, : the spectral type of the primary

gives approximately A ,, the presence or absence of X-ray eclipses gives
bounds to sini. Hence M, is obtained within some error bar. Blackhole
candidates are retained only when the lower limit exceeds 3M,. At present
day, about ten binary X-ray sources provide good blackhole candidates.
They can be divided into two families : the high mass X-ray
binariestHMXB), where the companion star is of high mass, and the low
mass X-ray binaries(LMXB) where the companion is typically below a solar
mass. The latter are also called “X-ray transients” because they flare up to
high luminosities[70].

In 1989, the X-ray satellite Ginga discovered a new XRT(X-ray transient)in
outburst named GS2023+338/V 404 Cygni, identify the binary blackhole
candidate. Many hundreds of X-ray binary systems are known in our Milky
Way galaxy, but only 10s of these have measured masses, and in about 20
the measured mass indicates a blackhole. Table 2.3 presents the current list
of 20 confirmed blackholes based on dynamical arguments,ordered by
orbital peroid[71].
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5 Table- 2.3 (Confirmed blackholes and mass distributions)

b f(M) Donor Classification M,
System (days) [Mg] Spect. [M,]
Type
GRS 335 9,5%3.0 K/M Il | LMXB/Transient 1414
1915+105
V404 Cyg 6.471 6.09£0.04 KO IV - =)
Cyg X-1 5.600 | 0.244+0.005 | 09.7 lab | HMXB/Persistent 10+3
LMC X-1 4.229 0.14+0.05 07 111 % >4
XTEJ1819- | 2.816 3.13%£0.13 B9 111 IMXB/Transient | 7.1+0.3
254
GRO J1655- | 2.620 2.73+£0.09 F3/51V » 6.3+0.3
40
BW Cir 2.545 5.74+0.29 G5 IV | LMXB/Transient >17.8
GX 339-4 1.754 5.840.5 - o -
LMC X-3 1.704 23+03 B3V HMXB/Persistent | 7.6+ 01.3
XTE J1550- | 1.542 6.86+0.71 G8/K8 | LMXB/Transient | 9.6%1.2
564 I\%
4U 1543- LS 0.25+0.01 A2 V IMXB/Transient | 9.4%1.0
475
H1705-250 0.520 4.86+0.13 K3/7 V | LMXB/Transient 612
GS 1124-684 | 0.433 3.01+0.15 K3/5V 3 7.0£0.6
XTE 0382 7.4i1.1 i ” -
J1859+226
GS2000+250 | 0.345 5.01+0.12 K3/7 Vv o 7.5£0.3
A0620-003 0.325 2.72+0.06 K4 Vv 5 11+2
XTE J1650- | 0.321 2.73+0.56 K4 Vv o -
500
GRS 1009- 0.283 3.17+0.12 K7/M0 5 52106
45 \%
GRO 0.212 1.19+0.02 M2V » 4+1
J0422+32
XTE 0.171 63+02 K5/M0 V » 6.8+0.4
J1118+480
0=




In 1992, a supermassive blackhole detected by Hubble Space Telescope
(HST) at the heart of the active galaxy M87 located 50 million light years
from earth in the constellation Virgo. Also an instrument aboard the Hubble
Space Telescope called the Space Telescope Imaging Spectograph(STIS)
was installed in February 1997. It is mainly ‘blackhole hunter’. STIS found
the signature of a supermassive blackhole in the center of the galaxy M&4.
The spectra showed a rotation velocity of 400km/s while earth orbits our sun
at 30km/s. If the earth moves at fast as 400km/s then our year would be only
27 days long!
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CHAPTER THREE
THERMODYNAMICS AND BLACKHOLE MECHANICS

3.1 Thermodynamics and Gravity:
Thermodynamics is a branch of

physics which deals with the energy, heat, work and entropy of a system. It
was born in 19" century as scientists were first discovering how to build and
operate steam engines. Thermodynamics deals only with the large scale
respond of a system which we can observe and measure in experiments. It is
closely related to statistical mechanics from which many thermodynamic
relationships can be derived. While dealing with process in which systems
exchange matter or energy ,classical thermodynamics is not concerned with
the rate at which such processes take place, termed kinetics. For this reason
,the use of the term ‘thermodynamics’ usually refers to equilibrium
thermodynamics. In this connection a central concept in thermodynamics is
that of ‘ quasistatic processes’ which are idealized’ infinitely slow’
processes. Time dependent thermodynamic processes are studied by non-
equilibrium thermodynamics.

The ordinary laws of thermodynamics are of very general
validity and they do not depend upon the details of the underlying
‘microscopic dynamics’ of particular systems. This mean that they can be
applied to systems about which one knows nothing other than the balance
of energy and matter transfer between them and the environment. Example
of this include Einstein’s prediction of spontaneous emission around the
term of the 20" century and the current research into the thermodynamics of

black holes.

On the other hand, gravitation or gravity is a natural phenomenon in
which objects with mass attract one another. Gravitation is most familiar as
the agent that gives weight to objects with mass and causes them to fall to
the ground when dropped. It is one of the four fundamental force of nature,
along with the nuclear force or strong force, electromagnetic force and weak
force. Einstein describes gravitations using the general theory of relativity,
in which gravitation is a spacetime curvature instead of a force. He proposed
that spacetime is curved by matter, and that free falling objects are moving
along locally straight paths in curved spacetime.



From the above discussion it is clear that the topics of
thermodynamics and gravity lead a rather separate existence in physics. In
the broadest sense, thermodynamics regulates the organization of activity in
the universe, and gravity controls the dynamics, at least on the large scale.
The interaction between these conceptually dissimilar aspects of
fundamental physics is still now full of paradoxes, muddle and uncharted
hazards. The main difficulties about the thermodynamics of gravitating
systems is the apparent absence of true equilibrium. Stars are hot, self-
gravitating balls of gas inside which the weight of the star is supported by its
won internal kinetic or zero-point quantum pressure. A star is made hotter,
not by adding energy, but by removing it, which is unlike ordinary
thermodynamic systems.

3.2 Laws of ordinary thermodynamics:

(a) Zeroth law:

The zeroth law of thermodynamics states that,

‘if two systems in thermal equilibrium with a third system, then they are in
thermal equilibrium to each other.’

This zeroth law is sort of a transitive property of thermal equilibrium. The
transitive property of mathematics is if 4= B and B=C then 4 =C.The same
is true of thermodynamic systems that are in thermal equilibrium. Systems
are said to be in equilibrium if the small, random exchanges between them
do not lead to a net change in energy. At the beginning of the 20" century,
British physicist Ralph H. Fowler coined the term ‘zeroth law’ and this law
is more fundamental even than the other laws.

(b) First law:

The first law of thermodynamics is an expression of the principle of the
conservation of energy. It states that,

“ the change in a system’s internal energy is equal to the difference between
heat added to the system from its surroundings and work done by the system
on its surroundings.”
This law gives a very simple idea. If heat is added to a system, then there are
only two things that can be done — change the internal energy of the system
or cause the system to do work. All of the heat energy must go into doing
these things. Mathematical form of this law is

AU=TdS = Pk 1 5o e R s oo e (3.1)
where U is the internal energy, T is the temperature, P is the pressure, S is
the entropy and V is the volume.
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(c) Second law:

The second law of thermodynamics is an expression of the universal
principle of decay observable in nature. It states that,

“ Heat cannot spontaneously flow from a colder location to a hotter
location.”

This law is formulated in many ways, as will be addressed shortly, but is
basically a law which, unlike most other laws in physics deals not with how
to do something, but rather deals with entirely with placing a restriction on
what can be done.

In practical applications, this law means that any heat engine or similar
device based upon the principles of thermodynamics cannot, even
theoretically be 100% efficient. In 1824,French physicist and engineer Sadi
Carnot discovered this principle, when he developed his Carnot Cycle
engine and later German physicist Rudolf Clausius formalized it as a law of
thermodynamics. This law is perhaps the most popular outside of the realm
of physics, because it is closely related to the concept of entropy or the
disorder created during the thermodynamic process. This law can be
reformulated as a statement regarding entropy as reads,

“In any closed system, the entropy of the system will either remain constant
or increase.”

This is one definition used for the arrow of time, since entropy of the
universe will always increase over time according to the second law of
thermodynamics.

(d) Third law:

The third law of thermodynamics is essentially a statement about the ability
to create an absolute temperature scale, for which absolute zero is the point
at which the internal energy of a solid is precisely zero. This law states that,
“It is impossible to reduce any system to absolute zero in a finite series of
operations.”

Another statement of this law is,

“ As a system approaches absolute zero, all processes cease and the entropy
of the system approaches a minimum value.”

The third law of thermodynamics is a statistical law of nature regarding
entropy and the impossibility of reaching absolute zero of temperature. This
law also provides an absolute reference point for the determination of

entropy.
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3.3 Blackhole and thermodynamics :
At the biginning of his famous book

“The Mathematical Theory of Black Holes (1983)”, Chandrasekhar
remarking ,

“The black holes of nature are the most perfect
macroscopic objects there are in the universe: the only
elements in their construction are our concepts of space
and time. And since the general theory of relativity
provides only a single unique family of solutions for
their descriptions, they are the simplest objects as
well.”

Blackholes are perhaps ‘the most perfect objects in the universe’, because
they are completely characterized by a small number of macroscopic
parameters mass, charge and angular momentum. All the details of the
matter that formed a blackhole becomes irrelevant as that matter passes
through the event horizon i.e. the boundary of the blackhole ; there is no
physical difference between any blackholes of equivalent mass, charge and
angular momentum, regardless of countless ways such a blackhole can be
formed.

Over the last forty years, blackholes have been shown to have a number of
surprising properties. This properties have revealed unforeseen relations
between the otherwise distinct areas of general relativity, quantum
mechanics and statistical mechanics.This interplay, in turn, led to a number
of deep puzzles at the very foundations of physics. Some have been resolved
while others continue still now. The thermal properties of blackholes come
from the behavior of their macroscopic properties that were formalized in
the four laws of black hole mechanics by Bardeen, Carter and Hawking [1].
They dictate the behavior of blackholes in equilibrium , under small
perturbations away from equilibrium , and in fully dynamical situations.
Although, these laws are consequences of classical general relativity alone,
but they have a close similarity with the laws of ordinary
thermodynamics. The origin of this seemingly strange coincidence lies in
quantum physics. Although this parallel was extremely suggestive, taking it
seriously would require one to assign a non-zero temperature to a blackhole,
while all agreed was absurd because blackhole by its very definition do not
emit anything, so the only temperature one might be able to assign them is
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absolute zero. But this idea was overthrown by the discovery of Hawking
radiation. He proposed that blackholes are not completely black and their
physical temperature are not absolute zero[9].The surface gravity of
blackholes can indeed be interpreted as a physical temperature.

At first in 1971, Hawking stated that the area , A of the event horizon of a
blackhole can never decrease(but can remain constant) in any process;

When radiation or matter falls through it, or when two blackholes coalesce,
there is an increase in the total horizon area. In this respect it is much like
the thermodynamic concept, entropy. The entropy of the universe can
increase, but it can never decrease. It was later noted by Bekenstein [3] that
this result is analogous to the statement of the ordinary second law of
thermodynamics, namely that the total entropy , S of a closed system never
decrease in any process;

A 100" e e e By B 00 o R e o e 4 (3.3)

The above comparison suggests that it might be useful to consider blackhole
physics from a thermodynamic view point; something like entropy may also
play a role in it. The difference of these two laws are ; in thermodynamics
one can transfer entropy from one system to another and it is required only
that the total entropy does not decrease whereas in the case of blackhole, one
cannot transfer area from one blackhole to another since blackholes cannot
bifurcate. So the second law of black hole mechanics requires that the area
of each individual blackhole does not decrease in any process. In this sense
the second law of blackhole mechanics is slightly stronger than the
corresponding thermodynamic law.

Bekenstein realized that considerable information was lost within the event
horizon when the blackhole was formed. He suggested that the entropy of
the blackhole could be related to the logarithm of this information. This
information is , in fact , related to the surface area and it was eventually
shown that the entropy of a black holeS,, could be written as ;

c

S = g b (3.4)

where A is the surface area of the event horizon, %is the Planck-Dirac

h : :
constant (2—), k, 1s Boltzman’s constants.

/2
Using this definition Bekenstein proposed the generalized second of
thermodynamics to include blackholes as

S, S SI0 S R o N (3.5)
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Where S.is the common entropy in the blackhole exterior.

It is already mentioned that Hawking discovered that the surface of a
blackhole could not have a temperature of absolute zero. Mathematically it
appeared to have a non-zero temperature. Hawking discovered by applying
quantum mechanics to the region near the event horizon, that blackholes can
emit all species of particles and radiation[72].

In particular , the spectrum of emission is given by;[73]

e SN T R e (3.6)
et —|
Where <n>is the mean number of quanta emitted in one mode of
frequency w, and T is the blackholes absorbivity. The surface temperature
of black hole is given by;
L R i (3.7)
2rcky

where « is the surface gravity of the blackhole evaluated on the event
horizon.[72]

After established that the blackholes have a non-zero surface temperature
and an entropy it is easy to show that they also obey the zeroth, first and
second laws of thermodynamics. It is also believed that they may also obey
the third law in most but not necessarily all cases. To obey it in all cases
requires that the ‘cosmic cencorship hypothesis’ be satisfied. This
hypothesis was made by the British mathematician Roger Penrose, which
states that when a star collapses to a singularity, this singularity is always
concealed from the outside world by an event horizon. So far this has not
been proved and still now it is the number one question in classical general

relativity.

3.3(a) zeroth law of black hole mechanics:

This law states that “ The surface gravity ,xof a stationary black hole is
constant over the event horizon”.

Although« is defined locally on the event horizon, it turns out that it is
always constant over the horizon of a stationary blackhole. This constancy is
reminiscent of the zeroth law of thermodynamics which states that the
temperature is constant throughout a body in thermal equilibrium. It suggests
that the surface gravity is analogus to the temperature. T constant for thermal
equilibrium for a normal system is analogous to « constant over the horizon
of a stationary blackhole. The surface gravity is related to the physical
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temperature of the blackhole , namely Hawking temperature is given by;
[72]

_ he '
Ty =it e (3.8)

1
4GM

For the case of Schwarzschild black hole, where «x = ,the Hawking

temperature becomes;

B + Mo o
T, = T = BERLT (o ) Koo coom s i (3.9)
So this is completely negligible for solar mass black hole- the black hole
absorbs much more from the microwave background radiation than it
radiates itself. In the case of rotating Kerr black hole, the Hawking

temperature is given by;

i M5 K
oo seg el ST M e s, L b 3.10
i =om s sk, SmM, el )

where a and «are defined by ; [8]
= _j\JZ and « = %A;r—) Similarly one can obtain Hawking temperature for
other blackholes.
We see that the Hawking radiation plays no roles in the case of large-sized
black holes. The only type of black hole where one can hope to observe such
the radiation is the so called ‘mini black hole’ which are created along with
the universe in the early stage.
3.3 (b) First law of black hole mechanics:

This law deals with the mass
change, @M when a black hole undergo from one stationary state to another.
Mathematical formulation of this law is given by;

a’M=8—K-dA+work s SO et T IR T R (3.11)
T
Or,
AM = T, dS,, + WOTKIEFM «.vveiiinrnnneeeiisrianean e (3.12)
The entropy of the black hole is thus represented by a quarter of the area of
the event horizon, thatis, S, =% .................................. (3.15])
a8




Figure:3.1 The Bekenstein-Hawking entropy is the entropy to be ascribed to any black
hole: one quarter of its horizon area expressed in units of the Planck area.[From,
scholarpedia ]

The factor }Iwas indeed found by Hawking, when he applied quantum field

theory to the black holes which shows that they will absorbs and emit
particles as if they were thermal bodies with the Hawking temperature given
by equation (3.8).

The ‘work terms’ depends on the type of blackholes. For the most general
type Kerr-Newman black hole family, the first law takes the form;

dM=8£dA+QdJ+thQ .................................... (3.14)
T

whereQ is the angular velocity and® is the electric potential which are
given by

3.3 (c) Second law of black hole mechanics:
The second law of black hole
mechanics is Hawking area theorem([8].This law states that, in any classical

process the area of the event horizon does not decrease with time i. e.
d420
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This law implies for instance that the area of a blackhole resulting from the
coalescence of two parent blackholes is greater than the sum of areas of the
two parent blackholes. It also implies that the blackholes cannot bifurcate,
namely a single blackhole can never split in two parts.

The magnitude of the blackhole entropy is very large. In fact , the blackhole
state is the maximum entropy state of a given amount of matter. If we
express dimension fully, the Bekenstein-Hawking entropy of the blackhole

is given by
Ak
5 I o BRI L D e i
" = (3.18)
For Schwarzschild blackhole, this gives
k,7R]
QR eI e R S (3:19)
BH Gh

Numerically the entropy of the sun is S, ~ 107 k,, whereas a solar mass
black hole has an entropy of about10” k, which is 20 orders of magnitude
larger!

3.3 (d)Third law of black hole mechanics:

The third law of blackhole
mechanics states that, ‘it is impossible by any procedure, no matter how
idealized, to reduce k to zero by a finite sequence of operations.” This law
has a rather different status from the others, in that it does not, so far at least,
have a rigorous mathematical proof.[1] However ,for example if one tries to
reduce x of Kerr black hole by throwing in particles to increase the angular
momentum, one finds that the decrease of x per particle thrown in gets
smaller and smaller as the mass and angular momentum tend to the critical

=) . s _
ratio T _1 ie. extremal case for which isx zero. Actually «=01s merely
IYE

an idealized case because it is forbidden by the ‘cosmic censorship
hypothesis’.

3.4 Generalized second law (GSL):

The correspondence between the laws
of ordinary thermodynamics and the laws of blackhole mechanics was
treated as a mathematical curiosity without any physical implications, in a
seminal paper by Bardeen, Carter and Hawking[1]. At around the same time
. Bekenstein[3] was advocating a rather more radical approach. On the basis
of blackhole’s area theorem he proposed that , multiplied by appropriate
powers of the Planck length, Boltzmann constant and some dimensionless
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constant of order unity, the blackhole area should be interpreted as its
physical entropy. This proposal was given physical support by the discovery

of Hawking[9] that the blackholes radiate at a temperature 7, = —Z—K— :
T

Wheeler provided the initial motivation for Bekenstein’s blackhole entropy
proposal[76]. Wheeler suggested a creature, subsequently called Wheeler’s
demon, which could violate the ordinary second law of thermodynamics by
dropping entropy into a blackhole, producing a decrease in the entropy
outside the blackhole. This led Bekenstein to conjecture that the blackhole
itself has an entropy.

Wald[2] gives an explanation which further strengthed the physical
connection between the laws of blackhole mechanics and the laws of
thermodynamics by the following considerations. If we take into account the
‘back reaction’ of the quantum field on the blackhole, then it is clear that if
energy is conserved in the full theory, an isolated blackhole must lose mass
in order to compensate for the energy radiated to infinity in the particle
creation process. As a blackhole thereby “evaporates”, the blackhole entropy
s,, will decrease, in violation of the second law of blackhole mechanics. On

the other hand , there is a serious difficulty with the ordinary second law of
thermodynamics when blackholes are presents: one can simply take some
ordinary matter and drop it into a blackhole, where, classically at least, it
will disappear into a spacetime singularity. In this later process, one loses
the entropy initially present in the matter, but no compensating gain of
ordinary entropy occurs, so the total entropy , S, decreases. It is notable that
in the blackhole evaporation process, although §,, decreases, there 1s
significant amount of ordinary entropy generated outside the blackhole due
to particle creation. Similarly , when ordinary matter is dropped into a
blackhole, although S decreases, by the first law of blackhole mechanics ,
there will necessarily be an increase in S, .

The above considerations motivated Bekenstein to take the following
proposal[3,77]. Although the second law of blackhole mechanics
breaksdown when quantum process are considered, and the ordinary second
law of thermodynamics breaksdown when blackholes are present, perhaps
the following law, known as the generalized second law (GSL) always
holds. The law stated that,
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“ In any process, the total generalized entropy never decreases”

This statement means that we must regard blackhole entropy as a genuine
contribution to the entropy content of the universe. [3]

If we define the total generalized entropy by S'then

R e (3.20)

whereS,, is the blackhole entropy andS, is the common entropy in the

blackhole exterior and then GSL becomes
A= AT, M8 ) Z D e s i (321}

Although S,,and S,individually may decrease, it appears to be true
thatS'never decreases. If we decreaseS, by throwing matter into a
blackhole, we correspondingly increase A ie. S, so that S'does not
decrease. On the other hand, if A ie. S, decreases due to the quantum

particle creation processes then the thermal spectrum of the created particles
increase S,; again S'does not decrease. Thus neither the second law of

thermodynamics nor the blackhole area theorem are satisfied individually,
but it appears that we have a new law of physics namely GSL.

The generalized entropy (3.20) and the generalized second law (3.21) have
obvious interpretations: Presumably, for a system containing a blackhole, S’
is nothing more than the “ true total entropy” of the complete system , and
(3.21) is then nothing more than the “ordinary second law” for this system.
If so, then S,, truly is the physical entropy of a blackhole.

3.4.1 Validity of GSL:

The GSL plays a fundamental role in blackhole
physics. Though a number of analysis [78,79,80,81] have given strong
support to the GSL but a simple explicit general proof of this law has not
been given until now. Although these analysis have been carried out in the
context of general relativity, the arguments for the validity of the GSL
should be applicable to a general theory of gravity, provided, of course, that
the second law of blackhole mechanics holds in classical theory.

The validity of the GSL for the massless radiation evaporated by an
uncharged, non-rotating semi-classical blackhole was almost proved by
Zurek[81]. Unruh and Wald [78] stressed the importance of the vaccum
polarization and acceleration radiation effects for the validity of the GSL .
More general arguments for the validity of this law for slowly evolving
blackholes were given by Zurek and Thorne[79]. Also a simple explicit
proof of the GSL for quasistationary changes of a generic charged rotating
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blaokholo emitting. ahsorhing, and Scattering amy sort of radiation in the
Hawking semi-classical formalism were given by Frolov and Page[80]. They
assumed that the incoming state is a product state of radiation originating
from infinity(i.e. IN modes) and radiation that would appear to emanate
from the whitehole region of the analytically continued spacetime(i.e. UP
modes), and it is argued that the generalized entropy must increase under
unitary evolution. This is an explicit mathematical demonstration of what
Zurek, Thorne and Price [85] argued verbally, that the GSL is a special case
of the ordinary second law, with the blackhole as a hot, rotating, charged
body that emits thermal radiation uncorrelated with what is incident upon it.
Sorkin [86] argued on quite general grounds that the (generalized) entropy of
the state of the region exterior to the blackhole must increase under the
assumption that it undergoes autonomous evolution.

Most of the proofs of the GSL based upon two key assumptions[84]. One of
the assumption is that the blackholes might be quasistationary, changing
only slowly during its interaction with an environment. It has been
conjectured [85] that the GSL also holds , using the Bekenstein-Hawking

entropy formula % for the blackhole, even for rapid changes in the

blackhole, but this has not been rigorously proved. Another assumption is
that the semiclassical approximation holds, so that the blackhole described
by a classical metric which responds only to some average or expectation
value of the quantum stress-energy tensor. This allows the blackhole entropy

to be represented by 1441 of its classical horizon. This approximation also

implies that the radiation from the blackhole is essentially thermal, with
negligible correlations between what is emitted early and late in the
radiation, so that one may use the von Newmann entropy S,,, = —tr(pIn p) for

the entropy of the radiation and yet have it plus % for the blackhole to

continue to increase[84].

It is notable that if one could violate the GSL for an infinitesimal quasi-static
process in a regime where the blackhole can be treated semi-classically, then
it also be possible to violate the ordinary second law for a corresponding
process involving a self-gravitating body. For example, suppose that the
GSL could be violated for an infinitesimal quasi-static process involving,
say, a Schwarzschild blackhole of mass M(with M much larger than the
Planck mass). This process might involve lowering matter towards the
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blackhole and possibly dropping the matter into it. However , an observer
doing this lowering or dropping can examine only the region outside of the
blackhole, so there will be some r, >2M such that the detailed structure of

the blackhole will directly enter the analysis of the process only for r>r,.
Now replace the blackhole by a shell of matter of mass M and radius r, and

surround this shell with a “real” atmosphere of radiation in thermal
equilibrium at the Hawking temperature as measured by an observer at
infinity. Then the ordinary second law should be violated when one
performs the same process to the shell surrounded by the “real” thermal
atmosphere as one performs to violate the GSL when the blackhole is
present. Indeed , the arguments of [79,85,87] do not distinguish between
infinitesimal quasi-static process involving a blackhole as compared with a
shell surrounded by a thermal atmosphere at the Hawking temperature. Wald
[82] conclude that there appear to be strong ground for believing in the
validity of the GSL.

3.4.2 Problems of GSL:

Before Hawking’s discovery that the blackholes
radiate, Bekenstein realized [3,77]that there is a serious difficulty with the
GSL. One considers a process wherein one carefully lowers a box containing
matter with entropy S and energy E very close to the horizon of a blackhole
before dropping it in. Classically , if one could lower the box arbitrarily
close to the horizon before dropping it in , one would recover all of the
energy originally in the box as “work” at infinity. No energy would be
delivered to the blackhole , so by the first law of blackhole mechanics,
equation (3.14) , the blackhole area A , would not increase. However , one
would still get rid of all of the entropy, S,originally in the box, in violation
of the GSL[82].

To avoid this violation of the GSL, Bekenstein proposed that there was a
limit on how close to the blackhole an object with fixed entropy S and fixed
local energy E could be lowered. This led Bekenstein[83] to conjecture that
the entropy S of a system of energy E and linear size R was limited by the
formula,

SEITER is voniiesis iy ot Van Sonsw b (3.22)

The above proposal is known as Bekenstein’s “entropy bound”. Though this
proposal recovery the difficulties of GSL but it developed that there are a lot
of problem with it. The main difficulty is how to give precise definitions for
the system and for its S, E, and R [84].
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An alternative resolution was proposed in [78], based upon the idea that,
when quantum effects are taken into account, the physical temperature of a
blckhole is no longer absolute zero, but rather is the Hawking temperature,
Ty = ?—Z . Since for a large blackhole, Hawking temperature goes to zero so
it might appear that quantum effects could not be of much relevance in this
case. However , despite the fact that Hawking radiation at infinity is indeed
negligible for large blackholes, the effects of the quantum “thermal
atmosphere” surrounding the blackhole are not negligible on bodies that are
quasi-statically lowered toward the blackhole. The temperature gradient in
the thermal atmosphere implies that there is a pressure gradient and ,
consequently, a buoyancy force on the box. This buoyancy force becomes
infinitely large in the limit as the box is lowered to the horizon. As a result
of this buoyancy force, the optimal place to drop the box into the blackhole
is no longer the horizon but rather the ‘floating point” of the box , where its
weight is equal to the weight of the displaced thermal atmosphere. The
minimum area increase given to the blackhole in the process is no longer
zero, but rather turns out to be an amount just sufficient to prevent any
violation of the GSL from occurring in this process[78].

3.5 Analogy between blackhole mechanics and thermodynamics:

Mathematically, the laws of blackhole mechanics completely analogous to
the laws of ordinary thermodynamics. Although the nature of the laws of
blackhole mechanics is completely different from the nature of the laws of
thermodynamics, so it is generally believed that the analogy between them 1s
purely a mathematical curiosity. But the discovery of particle creation by
blackholes and their evaporation suggest that there may be a deep
connection between blackhole mechanics and thermodynamics.

The analogy with thermodynamic behavior is striking, with the horizon area
playing the role of entropy. This analogy was vigorously pursued as soon as
it was recognized at the beginning of the 1970’s.However, the caution
should be used in developing the analogy, it appeared at first some flaws
such as;

(i)  the temperature of a blackhole vanishes.
(i)  the entropy is dimensionless, whereas horizon area is a length
squared.
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Table-3.1

Analogy between thermodynamic parameter and black hole’s

parameter.

Thermodynamic system

Black hole mechanics

Temperature, T

Surface gravity, «

Energy , U

Black hole mass, M

Entropy , S

Area of the event horizon, A

(iii) the area of every blackhole is separately non-decreasing, whereas
only the total entropy is non-decreasing in thermodynamics.

(iv) the GSL can be violated by adding entropy to a blackhole without
changing its area.

At the purely classical level, it thus appear that the GSL is simply not

true. However , when ¥ — 0, the Bekenstein entropy J% diverges , and

an infinitesimal area change can make a finite change in the Bekenstein
entropy. The other flaws [ (i),(ii),(iii)] in the thermodynamic analogy are
also in a sense resolved in the limit 4 — 0. The second flaw is resolved by
the Bekenstein’s postulate(multiplied by appropriate powers of the
Planck length, Boltzmann constant and some dimensionless constant of
order unity, the blackhole area should be interpreted as its physical
entropy) , while third flaw is resolved because a finite decrease in area
would imply an infinite decrease in entropy. Furthermore , the first law of
blackhole mechanics implies that the blackhole has a Bekenstein

LS

temperature 7, = P which vanishes in the classical limit when 4 — 0,
n

thus resolving first flaw. The Bekenstein proposal therfore “explains” the
apparent flaws in the thermodynamic analogy, and it suggests very
strongly that the analogy is much more than an analogy. It turns out that ,
with quantum effects included, the GSL is indeed true after all,with the

coefficient 7 equal to % [88].
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The most obvious analogy between blackhole mechanics and
thermodynamics is the second law. This law states that the area, A of the
event horizon around a blackhole never decrease with time. When two
blackholes coalesce, the area of the event horizon around the final
blackhole is greater than the sum of the areas of the horizons of the
original blackholes, i.e. 4, > 4, + 4, .

This law shows that the area of the event horizons has a strong similarity
to entropy because it is additive and non-decreasing. It is mentioned
above that the only difference between horizon area and entropy is that,
one can transfer entropy from one system to another but in the case of
blackhole one cannot transfer area from one blackhole to another because
blackholes can never divide into two, they only joined together.[74]

Consider, the most general case of blackholes i.e. Kerr-Newman
blackholes that characterized by mass M, angular momentum J and
electric charge Q, the size of the blackhole area A is given by,

2 Tgen
A:47r(rf+a2)=47r[2M2—Q2+2M2(I—%—% 2 e er il fE (3.22)
With O < M> < M®  G=¢=1
We see from equation (3.22) that, it is not clear at a glance whether a
disturbance to the blackhole which changes both Q and J as well as mass
M, will always increase the total area A. Consider the Penrose energy
extraction process from a rotating and charged blackhole by reducing
both Q and J. The mechanism of this process is of propelling a small
body into the region just out side the event horizon where some particle
trajectories possess negative energy relative to infinity .When the body
reaches the ergosphere arrange for it to break apart into two fragments in
such a way that one of which has negative energy and this part disappears
down the hole. As a result it will reduce the total mass M of the blackhole
somewhat and the mass-energy thereby released by this sacrificed
components appears in the remaining fragment which is ejected to
infinity at high speed. During this energy transfer the blackhole’s rotation
rate is diminished somewhat, so J also decreases. The equation (3.22)
shows that when J decreases, the area A increases but when M decreases,
the area A decreases. The changes in M and J are therefore in
competition, but a careful calculation shows that J always wins and the
area increases[75]. So there is a strong analogy between event horizon
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area and entropy ie. the second law of blackhole mechanics and
thermodynamics

Table-3.2 Analogy between the laws of thermodynamics and the
laws of blackhole mechanics.

Law Thermodynamics Black hole mechanics
Zeroth Equality of temperature is a condition 0‘}for any blackhole, « is consta
for thermodynamic equilibrium "the event horizon.

between two systems or between two
parts of the same system.

First In an isolated system,the total energy | In an isolated system includir
of that system is conserved. blackholes,the total energy of
system is conserved. '
Second During any process the entropy of an | The surface area of a blackhc
isolated system increases or remain always remains constant or
the same. increases during any process.
Third It is impossible to reduce the It is impossible to reduce x 0
temperature of a system to zero by a {‘Pﬂllgﬂg‘khole to zero by a finite 1
finite number of processes. ~of processes.

Now from equation (3.22) one can obtain;

dM:SLdA+QdJ+d>dQ .................................... (3.23)
T

K
Where — =
T

conservation and corresponding to the first law of thermodynamics. In
equation (3.1) the term PdV represents the work term whereas in equation
(3.23) the term QdJ represents the work done on the spin and the term
®dQrepresents the work done on the electric field. So we can re-write the
first law of thermodynamics as,

AL 2 TS FNOTK IO b o S e i wmam s wa s 7m0 5 (3.24)

And the first law of black hole mechanics as,

M etc. The equation (3.23) just an expression of mass-energy

dM = SLdA O BEII 2 S0 i et s st s ot S an RS (3:25)
T
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Comparing (3.24) and (3.25) we see that if A plays the role of entropy S then
x plays the role of temperature T,

18 Rl TS C o i i st et (3.26)

Also it can be shown that the « is constant across the event horizon surface.
So we have an expression of zeroth law analogous to the zeroth law of

thermodynamics.

Finally, there is the third law. For the extreme case we have,
2 2

a2+Q2=Mzi.e.%+%=l ........................... (3.27)

Then «vanishes, although A does not vanished. This corresponds to
absolute zero. It is the limiting case of an object which still possesses an
event horizon. But the  ‘cosmic censorship hypothesis’ implies the
unattainability of ‘absolute zero’,x =0 , so it plays the role of the third law.
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CHAPTER FOUR
BLACKHOLE ENTROPY

4.1 Entropy:

Entropy is, in a sense, a measure of a system’s energy that is
unavailable for work or a measure of the disorder of a system. This quantity
was first introduced by the German physicist Rudolf Clausius in 1850 as the
amount of heat reversibly exchanged at a temperature T. When heat is added
to a system held at constant temperature then the change in entropy depend
to the change in energy, pressure and volume. Entropy undoubtly plays a
major role in thermodynamics and statistical mechanics. It is also the most
characteristics extensive parameter in thermodynamics;
namely when it is expressed in terms of other extensive parameters-it
basically tells us the physical properties that underlines the system. Entropy
is defined by the second law of thermodynamics and it enters the first law of
thermodynamics to complete the differential representation of the internal
energy, namely

B ST =Pl PN i it s i s 4.1)
We can also expressed the entropy as a thermodynamic potential as
B ity s gy e e SR e (4.2)

T 8 i

where U is the internal energy, P is the pressure, V is the volume and N is
the total number of molecules. Equation (4.2) is just the differential form of
the entropy and we observe that , if the dependency of the entropy
S(U,V,N)on the variables U.V,N is known then complete knowledge of all
the thermodynamic parameters is obtained.

Furthermore, the entropy tells us that for isolated systems ( where
dQ, ..o = 0) 1n equilibrium

Pl L =T R i et s (4.3)
and for irreversible processes
o RO NG T (4.4)

So in words it says that the state of equilibrium is defined as the state of
maximum entropy.

In statistical mechanics ,the definition of entropy was developed by Ludwig
Boltzmann in 1870s by analyzing the statistical behavior of the microscopic
components of the system. He shows that this definition of entropy is
equivalent to the thermodynamic entropy to within a constant number
known as Boltzmann’s constant. In this definition , entropy is essentially a
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measure of the number of ways in which a system may be arranged, often
taken to be a measure of ‘disorder’. Specifically, this definition describes the
entropy as being proportional to the logarithm of the number of possible
microscopic configurations of the individual atoms and molecules of the
system which could give rise to the observed macroscopic state of the
system. The constant of proportionality is the Boltzmann constant.

The most famous equation of statistical thermodynamics, the entropy of a
system in which all states of number Q , is given by
L0 e Sl D e e el (4.5)
where k, is Boltzmann’s constants. The microstate Q is a function of the
macrostate i.e.Q(U,V,N). Hence entropy is a function of the variables U, V,
and N .
The equation (4.5) is very important for it provides the basic connection
between macroscopic thermodynamics ( entropy ) and statistical
microscopic physics ( number of microscopic states ). We see that, S =0
when Q =1, thus there is only one exact microstate, hence no disorder — and
no entropy is created.
4.2 Entropy in blackhole physics:

John Wheeler wrote in his book [89] about
the genesis of the discovery of the concept of blackhole entropy by Jacob
Bekenstein:

“ One afternoon in 1970 Bekenstein — then a graduate
student and I were discussing blackhole in my office in
Princeton’s Jawdin Hall. T told him the concern I always
feel when a hot cup of tea exchange heat energy with a
cold cup of tea. By allowing that transfer of heat I do not
alter the energy of the universe, but I do increase its
microscopic disorder, its information loss, its entropy.
The entropy of the world always increase in an
ureversible process like that.

“ The consequence of my crime, Jacob, echo down to the
end of time,” I noted. *“ But if a blackhole swims by, and I
drop the teacups into it, I conceal from all the world the
evidence of my crime. How remarkable!”

5 B«



Bekenstein , a man of deep integrity, takes the lawfulness
of creation as a matter of utmost seriousness. Several
months later , he came back with a remarkable idea.
You don’t destroy entropy when you drop those teacups
into the blackhole. The blackhole already has entropy ,
and you only increase it!”

Bekenstein went on to explain that the surface area of a
blackhole is not only analogous to entropy, it is entropy,
and the surface gravity of a blackhole ( measured, for
example, by the downward acceleration of a rock as it
crosses the horizon) is not only analogous to temperature,

2

it is temperature. A blackhole is not totally cold...... :

Blackhole entropy and generalized second law of thermodynamics were
introduced by Bekenstein in 1972 [5,3,90]. The area of a classical blackhole
horizon cannot decrease in any process [63] is reminiscent of the second law
of thermodynamics. Also blackhole mechanics analogs of the zeroth, first
and third laws of thermodynamics[1] with surface gravity being analogous
to temperature, horizon area with entropy and mass with internal energy.
This analogy strongly supports the Bekenstein’s proposal though some
scientists take it only a mathematical curiosity.

Bekenstein  was the first man who go to beyond mere analogizing and
propose that blackhole actually carry an entropy. He suggests that by the
area of blackhole event horizon we can measure how much entropy of a
blackhole could have, although this idea contradict with thermodynamic
entropy where entropy is related to the volume.

Bekenstein gives a short list of the predecessors of blackhole entropy[91]
such as Christodoulou’s irreducible mass[7], Wheeler’s suggestion of a
demon who violates the second law with the help of a blackhole[92] ,
Penrose and Floyd’s observation that the event horizon area tends to grow
[6], and Hawking’s area theorem[8]. Upon the basis of their work
Bekenstein concluded that the entropy of a blackhole must be proportional to
the horizon area i.e.

Lo B e e e R (4.6)

Now, since area is length squared and entropy is dimensionless quantity , so
it would be reasonable that the proportionality constant in (4.6) must be of
inverse squared length. For the universally validity of the relation (4.6), this
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constant should be independent of blackhole parameters. Also it should not
depend on interaction constants of non-gravitational interactions. Thus, the
only available fundamental length in this case is the Planck length[93],
G’h 1

1, =(=)?~107" c.m. Thus equation (4.6) gives

A
Spn =1 =
L,
where 7 is dimensionless constant of O(1). According to Bekenstein, the
horizon area divided by Planck’s length squared is really an entropy , not
just an analog of entropy. Although this proposal met initially some
opposition[1,92,93], but accepted widely after Hawking’s demonstration [4]
that blackhole can emit particles. By the end of the 1970’s most of the
researchers agree with Bekenstein that at least a quasistatically and semi-

classically evolving one, blackhole should carry an entropy.
4.3 Evidence for blackhole entropy:

(a) To satisfy the second law of thermodynamics is to admit that
blackholes should have entropy. If blackhole does not carry entropy
then it is possible to violate the second law of thermodynamics by
throwing objects into the blackhole. The increase of the entropy of
the blackhole more than compensates for the decrease of the entropy
carried by the objects that was swallowed.

(b) Usually blackholes are formed by the collapse of a quantity of matter
or radiation , both of which carry entropy. Also, the blackholes
interior and contents are veiled to an exterior observer. Thus a
thermodynamic description of the collapse from that observer’s
viewpoint cannot be based on the entropy of that matter or radiation
because these are unobservable. Associating entropy with the
blackhole provides a handle on the thermodynamics.

(c) A blackhole is characterized by only three parameters, namely its
mass , angular momentum and electric charge. For any specific choice
of these parameters one can imagine many scenarios for the blackhole
formation. Thus there are many possible internal states corresponding
to that blackhole. In thermodynamics one meets a similar situation:
many internal microstates of a system are all compatible with the one
observed macrostate. Thermodynamic entropy quantifies the said
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multiplicity. Thus by analogy one needs to associate entropy with a
blackhole.

(d) If matter or radiation falls into blackhole, then the event horizon of
blackhole prevents an external observer to receiving any information
about the blackhole. Thus a blackhole can be said to hide information.
In ordinary physics entropy is a measure of missing information.
Hence it makes sense to attribute entropy to a blackhole.

4.4 Expression for blackhole entropy:
Let us start with the most

general blackhole in general relativity i.e. the Kerr-Newman blackhole in
which the area of the event horizon is given by Smarr 1973[95],

A=4x(r} +a*)=4n[2M* - Q* +2M2(1—Q—2— J? )%]
Sk o E M

=M+ M -0 -a’
with 0> < M?, J? <M*, a:iﬂ{;f,G=c=l

From equation (4.8) one can obtain the incremental formula

dM=8£dA+QaU+(DdQ ..................................... (4.9)
T
where «, Q, ® are defined by
oG STy O O
A & 50

For Schwarzschild blackhole equation (4.9) takes the form

T
The equation (4.9) or (4.10) are familiar as the first law of blackhole

mechanics and are similar to the first law of thermodynamics
dUST =Pl i s s (4.11)
where the second term represent the work done on the system.

By the analogy between the first law of blackhole mechanics and the first
law of thermodynamics and on the basis of Hawking’s area theorem,
Bekenstein made the bold proposal that a blackhole should have an
entropy S,, , proportional to the area of its event horizon i.e.

Sy S ooNSER A Lo e e e i s (4.12)
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Equation (4.12) is a relation between a thermodynamic quantity and a
geometric measure, is so striking that it demands an interpretation. On the
basis of Shannon’s information theory and Brillouin’s classic work relating
it to thermodynamics, Bekenstein proposed an information theoretic
explanation for S,,.[96]

Consider, some ideal gas in a container is compressed isothermally. Then
it is well known that the thermal entropy of the gas certainly decreases due
to the compression. However , the information about the internal
configuration of the gas increases because after the compression the
molecules of the gas are more localized than before compression. In fact,
according to Brillouin, the increase in information

Al =-AS, where , ASis the decrease in entropy. So , it follows that the
entropy measures lack of information about the internal configuration of
the system. If P, is the probability of occurrence for the nth state then the

entropy associated with the system is given by Shannon’s formula,
SES PP ihonbi i s e (4.13)

The smallest unit of information is the binary bit, with »=2 and P, = >

this corresponds to a maximum entropy of In2 , which might be taken to
be a unit of entropy.

The blackhole entropy S,, arises due to the lack of information about the
nature of the gravitational collapse. According to the ‘no hair’ theorem, the
post collapse configuration i.e. the blackhole is completely characterized
by three parameters mass M, electric charge Q and angular momentum J
which encodes in an unknown way the diverse set of events occurring
during the collapse , just as a thermodynamic system characterized by a
few number of quantities like pressure, volume, temperature etc. which
encode the microstate of the system. So the blackhole entropy is not to be
regarded as the thermal entropy inside the blackhole horizon. As
Bekenstein remarks “ In fact, our blackhole entropy refers to the
equivalence class of all blackholes which have the same mass, charge and
angular momentum, not to one particular blackhole.”[3]

If we set G=c=1 , then from equation (4.7) we can obtain,

Sielar i el e e (4.14)
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According to Bekenstein, the appearance of % in the expression for
blackhole entropy is just like many other formulas for entropy of many
thermodynamic system that are conventionally regarded as classical, for
example, the Boltzmann ideal gas. Thus the appearance of - % 18 "a
reflection of the fact that the entropy is, in a sense , a count of states of the
system and the underlying states of any system are always quantum in
nature. It is thus not totally unexpected that n appears in (4.14). These
observations also suggest that it would be somewhat pretentious to attempt
to calculate the precise value of the constant without a full understanding
of the quantum reality which underlies a ‘classical’ blackhole.”[3]

In general, Bekenstein assume that the blackhole entropy S, , is a
monotonically increasing function of its rationalized area;

So= PO e e (4.15)

0 [ ; ;
where a = e is the rationalized area.
T

Using Christodoulou’s techniques, Bekenstein argues that the minimum
increase in rationalized area of the blackhole due to an infalling particle of
rest mass x and radius b is given by

(MG Y S22 - wivinsiessvmsainskivmiibnstni s (4.16)

Now in order to make (Aa),, smaller by making b smaller but not than

the particle’s Compton wavelength fiu™' or than its gravitational radius 2
which ever is the larger. The Compton wave length is the larger for

.3 5

U< (5)E and the gravitational radius is the larger for u> (5)5. In the first

case (Aa),, =2% and in the second case (Aa),, =4u*>2f. Thus

(Aa),, =2k , as is indeed the case for an elementary particle. This then
also quantifies the minimum loss of information due to the particle
entering the blackhole horizon. Recalling now that the minimum loss of
information is a binary bit corresponding to an increase in entropy of In2,
one sets [3],

A ok Y
(ASh!i)tmn 5 da (Aa)min‘ 2h Ay =1In2
.................................... (4.17)
By integrating equation (4.17) one can obtain,
f(a):zﬁhlnz .......................................... (4.18)
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Including all factors G, ¢ and k,, the Bekenstein formula for blackhole
entropy, in conventional units, is

! :
Sbh :é—ﬂG——hIHZ kh‘ G s s A s s SR R e (419)

From equation (4.19) we see that the entropy of the blackhole is enormous.
The large numerical value of the blackhole entropy indicates the highly
irreversible character of the process of blackhole formation . The
temperature of the blackhole , 7,,, can be defined in analogy with the

temperature in thermodynamics; 7™ =(%),. - Herg. I :(%)w

oM
Using equation (4.19) we can obtain the temperature of the blackhole as
2h
e S L L e e s s s e s 4.
bh 873' ln 2 K ( 20)

with «is the surface gravity of the blackhole, a geometric quantity which
remains constant over the event horizon.
4.5 Evidence for S,, = f(4):
In ordinary thermodynamics, entropy and temperature are definite function
of energy, volume and pressure. If we consider a thermodynamical system in
equilibrium including blackholes and its surroundings then the blackhole
entropy S,, and temperature T must be a function of blackholes macroscopic

parameters. According to ‘no hair’ theorem these parameters are only mass
M, angular momentum J and electric charge Q.

Applying the first law of thermodynamics including blackholes and its
surrounding we have,

AME =TS e dW 7 e s asih (4.21)

where oW is the work term on the blackhole.

For the most general type of blackhole i.e. Kerr-Newman blackhole, the
work term 4 takes the form,

1 T (I T U N e S i (4.22)
where Q is the angular velocity and @ is the electric potential defined by,
G GG L (4.23)
ol A
G S e (4.24)
o0 A
with r, = M +/M? -Q* —a’ = radius of event horizon,

a= é A=4rx(r} +a*)=area of the event horizon.

Now using equation (4.22) in (4.21) we obtain,
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dM =TdS,, +DdQ +QdJ
of, TdS,, =dM-0d0-0dl o lia s (4.25)

Again differentiating horizon area A with respect to M, J and Q we obtain
the first law of blackhole mechanics as,

g"—dA e BATL O] S e (4.26)
T

where « is the surface gravity defined by,

SM 4 M*-Q%-a® 2x(r,-r)

k=8n(—),, = R (4.27)
loY S A A

with r, =M (M’ -0*-a* .

Comparing equation (4.25) and (4.26) we get,

K

TSy =SdA Suiveaisissunssvinsiinisemasti (4.28)

From equation (4.28) we can infer that the blackhole entropy S,, is a

function of its horizon area A ;

8 = FUAYs wvnvviacn ssisksonsns iok e sqines vor (4.29)

On the basis of the argument that the two blackholes with the same area
must have the same entropy since otherwise one can violate the second law
by Penrose processes[6,97] , Andrew Gould[98] obtain the same result as
equation (4.29).

Although the equation (4.29) derived on the consideration of Kerr-Newman
blackhole but it seems that it can be applied to other types of blackholes. For
example, a (2+1) dimensional BTZ blackhole obeys the standard first law of
thermodynamics (4.25) augmented by an additional work term, - Pd(2zR),
where P is the surface pressure at the boundary of the cavity of radius R
[99]. Accordingly , the same arguments which applied to prove that the
relation S,, = f(4) for the Kerr-Newman blackhole, may be used now to
prove that the entropy of the BTZ blackhole must be some function of its
horizon area, and indeed, semi-classical calculations yields a linear entropy
to horizon area relation[100].

Recently Vaz and Witten[101] show that in the frame work of canonical
quantum gravity the entropy of a charged blackhole turns out to be the
difference between the outer and inner horizon areas, conflicting with the
result S,, = 7(4). Vaz and Witten explain this disagreement with the semi-

“bh
classical result, as the product of neglecting the effect of back reaction to
any radiation emitted exterior to the blackhole. Another explanation involves
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the similar effect induced by emission of radiation in the interior of the
blackhole, radiation which is undetectable by an exterior observer. However,
as Vaz and Witten admit themselves, their result may be due to the too
restrictive boundary conditions imposed on the wave functional in the
interior of the blackhole( the wave functional is made to vanish beyond the
inner horizon). However, they hedge this claim by pointing out that other
boundary conditions are in effect unknown.

However , we define the temperature T of the blackhole,

oM = K" =-\I‘M —Q'—az (4.30)
a5, 87 f'(4) 24 f'(4)
It is notable that the blackhole have a non-negative temperature, so f'(A4)> 0
ie.

f(A)must be a monotonic non-decreasing function which supports
Hawking’s area theorem and Bekenstein’s entropy of blackhole.

By the parallelism between the zeroth law of thermodynamics

( temperature is constant over a system of equilibrium) and the zeroth law of
blackhole mechanics( surface gravity is constant over the event horizon
surface of a stationary blackhole)

we can infer that the blackhole temperature must be a definite function of the
surface gravity. Therefore , from equation (4.30) we conclude that
J'(4) must be a constant.

Hence,

VRGN E Py o A R e R i (4.31)
By integrating we obtain,

Sl e S, e (4.32)

[f we impose the condition ,
M=0ie A=0,S,, =0 then £ =0 and so,

S!Jh == f(A) = 5’4
which shows that the entropy of blackhole is linear to its horizon area.

4.6 Interpretation of blackhole entropy:

Obviously, the term ‘blackhole entropy’ is an absurd term in blackhole
physics.We all have been convinced by now by the fact that the blackholes
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carry an Bekenstein-Hawking entropy S, =ﬁ but its deeper meaning
2

has remained mysterious.There are many interpretations have been
suggested to explain the blackhole entropy, including some novel and
profound ideas such as [91,79,102,103,104,105,106,107].0n the basis of
quantum information and recent analysis of Hawking radiation, Baocheng
Zhang, Qing-yu Cai, Ming-sheng Zhan and Li You [104] interprete
blackhole entropy as the measure of uncertainty about the information of the
blackhole forming matter’s pre-collapsed configurations, self-collapsed
configurations and inter-collapsed configurations. They applied it to several
circumstances, including the formation of a blackhole, blackhole
coalescence and a common matter dropped into a blackhole.

Jarmo Makela and Pasi Repo [107] suggests that the blackhole entropy can
be interpreted in two possible ways. The first is, there is the conservative
view that the entropy of the blackholes may be understood as a result of a
huge degeneracy in the mass eigenstates of the whole blackhole spacetime.
The degeneracy of the eigenstates might somehow, in a still unexplained
manner, allow one to include the degrees of freedom of the collapsed matter,
but this view contradicts with the ‘no hair’ theorem. The second view -called
the external point of view- is that the entropy of blackhole is , quite simply,
caused by the fact that the interior region of the blackhole spacetime is
separated from its exterior region by a horizon. Because of that , for an
external observer, it is justified that the statistical mechanics of blackhole 1s,
the statistical mechanics of blackhole’s exterior region. On the basis of this
point of view , one can obtain Bekenstein-Hawking entropy of the blackhole
without assuming any degeneracy in the mass cigenstates of the blackhole.
This result is not contradictory with the ‘no hair’ theorem but allows a
complete loss of information, since the degrees of freedom of the matter,
except the total mass M, have vanished. Thus the two points of view to the
interpretation of blackhole entropy, of which neither is quite completely
satisfactory.

It is already given that , according to statistical mechanics, the entropy is a
measure of the multiplicity of microstates that hide behind one particular
macrostate. A special case of this is Boltzmann’s famous formula
S =kyInQ, where Q stands for the number of equally probable microstates
of a particular macrostate. Since blackhole entropy plays a role quite
analogous to that of ordinary thermodynamic entropy, e.g. it participates in
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the second law of thermodynamics, many have wondered what the
microstates that are counted by the blackhole entropy are. Following [94], a
partial list of interpretations of blackhole entropy is given below:

(a) Blackhole entropy counts the number of internal states of matter and
gravity: According to classical ‘no hair’ theorem after the collapse, when a
blackhole has settled down to a stationary state, its properties are
determined by very few parameters observed by exterior observer namely
mass M, angular momentum J and electric charge Q. Thus from this point
of view , blackhole have only three degrees of freedom. Thus one can infer
that the enormous amount of degrees of freedom and information of the
collapsed matter are lost during the collapse. The entropy of the blackhole
may be understood as a measure of information loss during the
gravitational collapse, because there is a well-known relationship between
entropy and information given by Brilliouin[108]; the decrease in
information increase the entropy. This approach is purely quantum
mechanical. According to quantum mechanics, all the information from the
collapsing star is not able to reach to an observer exterior to the newly
formed event horizon. In other words, all the microstates of the collapsing
star cannot be measured by the external observer.This results to an
increasing entropy. Bekenstein [3] who introduced the notion of blackhole
entropy related it with “ the measure of the inaccessibility of information (
to an exterior observer) as to which a particular internal configuration of
the blackhole is actually realized in a given state”( i.e. for a given value of
M, J and Q ). According to the “ standard” interpretation these different
internal states of a blackhole are related with different possible initial
conditions which may result in the creation of a stationary blackhole with
the same parameters M, J and Q [3]. In this approach the entropy of a
blackhole is considered as the logarithm of the number of distinct ways
that the blackhole might have been made[79]. Since the Bekenstein-

Hawking entropy of blackhole is given by s, :FAE, with Boltzmann’s
.fl

constant &, =1,s0 one might expect that there are e¢®* microstates

corresponding to the same macrostate of the blackhole. This point of view

has been illustrated by Frolov and Novikov[102].

(b) Blackhole entropy as an entanglement entropy:

The statistical entropy measure the unavailable information (missing) about
the system, which one might acquire by knowing the system better through
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microscopic measurement. Now as mentioned earlier the blackhole and due
to the presence of event horizon one has no access to the inside region,
affords an objective way of coarse-graining, namely neglect whatever is
inside the horizon, an entropy based on this type of coarse-graining is known
as the entanglement entropy.

Entanglement entropy was introduced very early in relativity to understand
the Unruh effect as resulting from ignoring the states beyond the Rindler
horizon. The interpretation of blackhole entropy in terms of quantum
entanglement entropy first proposed by Bombelli, Koul, Lee and
Sorkin[103] (BKLS) .The observation that was made by BKLS was that the
exterior region of the blackhole has a well defined autonomous dynamics,-
no information is fed into it from the inside horizon-one can expect a second
law to apply to an entropy defined exclusively in it.

This type of entropy when calculated turned out to be divergent due to the
entanglement between values of the quantum field just inside and just
outside the horizon, and if no cutoff were introduced the entropy would
diverge. However, BKLS shows that if a cutoff is introduced the result
would come out to be proportional to the area of the horizon with
proportionality constant quadratic in the cutoff Srednicki [109] rediscovered
the idea of BKLS and pointed out that the global vacuum states of a scalar
field in flat spacetime, when restricted to the exterior region of an imaginary
sphere , is in a mixed state there. The density matrix of this mixed states
arises from tracing out those parts of the global state that reside inside the
sphere; its entropy is evidently related to the unknown information about the
sphere’s interior. This entropy is nonvanishing only because the exterior
state is correlated with the interior one. In the sphere’s case the quantum
entanglement entropy comes out to be proportional to the sphere’s surface
area with a coefficient which diverges quadratically in the high frequency
cutoff [109].

BKLS also gave reasons for relating at least part of the blackhole entropy to
entanglement entropy of the state outside blackhole. In particular they
pointed out that whereas for an ordinary “ black box” situation the
emergency of entanglement entropy out of a pure state is to a large extent a
matter of choice for the observer, for the blackhole case the horizon’s
presence makes its emergency mandatory.
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The entanglement entropy has been lately considered by several authors with
the same conclusion. Susskind, Thorlacius and Uglum [110] explained
entanglement entropy as the relation between entanglement and radiation
entropy. Holzhey [111] and Callan and Wilczek [112] have made use of
clever techniques for computing it, concluding with BKLS and Srednicky
that a plane boundary in Minkowski spacetime, when the quantum state
beyond it is ignored, gets ascribed entanglement entropy proportional to the
area of the boundary with an ultraviolate quadratically divergent coefficient.
Kabat and Strassler[113] further show that the density operator

in question is thermal irrespective of the nature of the field. Holzhey, Larsen
and Wilczek [114] explore a method to regularize the divergence in
conformal field theories.

Bekenstein[91] argued that the entanglement entropy is operationally
finite(at least in flat spacetime). The claim was that , it is untrue , In general,
that one knows nothing about the interior states. For example by knowing
the size of the internal region one can set a bound on the energy which one
has to trace out and hence providing cutoff and making the entropy
operationally finite.

In trying to identify the entanglement entropy as the blackhole entropy one
ends up with the conclusion that its dependent on the number of species of
fields that exists in nature, since each field must make its contribution to the

entanglement entropy. Yet S,, :f says nothing about the number of

species!

(¢) Blackhole entropy counts the number of horizon gravitational

states:
It has been suggested that the sought for states are the states of the
gravitational degrees of freedom residing on the blackhole’s horizon. An
example of this approach is a calculation by Carlip[115]based on the
group of symmetries at the horizon. It reproduces the formula

A et
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(d) Blackhole entropy is a conserved quantity connected with coordinate
invariance of the gravitational action / Blackhole entropy as a Noether
charge:

This abstract approach has been championed by Wald[116] as a road to
blackhole entropy in more general theories of gravity than general relativity.
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Wald derived a general formula for the entropy of a stationary blackhole
based on a Lagrangian derivation of the first law of blackhole mechanics.
The result of [116] apply to blackholes with bifurcate Killing horizons in
any diffeomorphism invariant theory in any spacetime dimension. Wald
finds that the entropy of the blackhole is given by ,

Soesdmd0 i (4.33)

where £ is the bifurcation surface of the Killing horizon. The (n-2) form Q
is the ‘Noether charge’ associated with the Killing field, normalized so as to
have unit surface gravity. T. Jacobson, G. Kang and R. C. Myers [ 129]
obtain the same result for the entropy of blackhole if Q is integrated over
any cross-section of the horizon.
[ Technically, blackhole entropy is the Noether charge of the diffeomorphism
3
symmetry. This notion reproduces the formula S o ZZ;%::_(% when the
p
gravitational action is of first order in the curvature, but gives a modified
formula for higher order gravity theories.]
(e)Blackhole entropy is thermal entropy of the gas of quanta
constituting the thermal atmosphere of the blackhole:
In this approach the origin of the blackhole entropy is related to the
properties of the physical vacuum in strong gravitational fields. There are
always zero-point fluctuations of physical fields in a vacuum state. An
observer who is at rest with respect to the horizon sees this vacuum
excitations as a thermal atmosphere around a blackhole . The first attempts
to relate the Bekenstein-Hawking entropy to the thermal atmosphere were
made by Thorne and Zurek [79] and by ‘t Hooft[117]. Moreover, ‘t Hooft
introduced the concept of a “brick wall” to keep the said atmosphere from
contacting the horizon and thus making the entropy infinite. This approach
recovers the proportionality of entropy to the horizon area, but the
coefficient has to be chosen by hand.

() Blackhole entropy counts the number of states or excitations of a

fundamental string:

Strings in string theory have a variety of excitations , so there is a
multitude of string states. Therefore , a string has entropy, which turns out to
be proportional to its mass. This is quite in contrast with blackhole entropy.
However, an argument by Bowick, Smolin and Wijewardhana [118]
suggests that by adiabatically (i.e. sufficiently slowly) reducing the string
coupling constant g , it is possible to shrink a blackhole’s size as well as to
reduce its mass (while keeping its entropy constant) until eventually it gets
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to be the size of the string length scale/ when the blackhole should not be

distinguishable from a string. At the corresponding value of g , string and
blackhole entropy are quite similar[ 119]. This has been taken to mean that
there is a one-to-one correspondence between blackhole and string states,
where both entities have the same entropy[ 120]. This picture has been
corroborated in the context of five-dimensional extreme blackholes[121].
Hence blackhole entropy can be understood in terms of string entropy.
(g)Blackhole entropy is equivalent to the thermal entropy of the
radiation residing on the boundary of the spacetime containing the
blackhole:
The Ads/CFT correspondence is a mapping between gravitational degrees of
freedom of a certain spacetime and the matter (or field) degrees of freedom
residing on its boundary. In particular, certain string theories in five
dimensional Anti-deSitter(Ads) spacetime are so mapped to conformal field
theories on the corresponding spacetime’s four dimensional boundary which
bears resemblance to Minkowski spacetime. Witten[122] has shown that the
entropy of a blackhole residing in the bulk Anti-deSitter spacetime equals
that of thermal radiation of the fields residing on its boundary.
4.7 Blackhole entropy problem:
In classical theory, blackholes are considered to absorb matter, but emit
nothing. Due to ‘no hair’ theorem, a blackhole is regarded as a candidate of
the final state of matter. But in physics, it is generally believed that the
objects which has absorbing property, must have the radiating property also.
However, in 1974 Hawking [4] argued that the blackholes emit thermal
radiation by taking account of quantum effect of fields. This essentially
establishes the belief that the blackholes are thermodynamical existence,
which have temperature 7 =);'—; and an entropy S,, =4%where T is the
,
temperature of the blackhole , « is the classically defined surface gravity, A
is the horizon area and I, is the Planck length. Usually thermodynamical

system have statistical dynamical description using entropy concept.
However , the statistical dynamical picture of blackholes has not been
established yet. This is called the blackhole entropy problem.

In a sense, thermodynamical entropy S is defined by the response of the free
energy F of the system on the changes of its temperature i.e.

dFSSRdT L ey (4.34)
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Upon the basis of this definition Bekenstein and Hawking obtain the entropy
F g
472  4GH

P

formula S, = for blackholes. Statistical mechanical entropy S,

is defined as,
N Bl 0 ) ol i Bla e i B (4.35)

where p is the density matrix describing the internal state of the system under
consideration. Also it 1s possible to introduce the informational entropy S, by

counting different possibilities to prepare a system in a final state with given
macroscopical parameters from different initial states,
W A R e R (4.36)

where P, being the possibilities of different initial states. In standard case all
three definitions give the same result. But Frolov[123] show that the S,, does
not coincide with the statistical mechanical entropy of a blackhole.

According to statistical mechanics, entropy is the logarithm of the number of
microscopically different states available for given values of the macroscopic
parameters. From this point of view, the question arises as, are there
microscopic internal degrees of freedom that are responsible for the Bekenstein-
Hawking entropy S,, ? This is the question that physicist were trying to answer

for almost 35 years.

The main reason why this question is fundamental is because it goes beyond the
blackhole physics itself. Its answer may give important insight into the as yet
mysterious nature of quantum gravity. To see this let us start with a simple
estimation and consider a static suppermassive blackhole of mass M of the
order of 10°solar masses. It is believed that this type of blackhole exist in the

center of the galaxies. By taking into account 4=167G*M* and S,, = % one

can obtain the entropy of such a blackhole is of the order of 10”. This is seven
order of magnitude larger than the entropy of the other matter in the visible part
of the universe[124]. What makes matters even worse is that in the classical
theory, a blackhole is nothing but an empty spacetime with a strong
gravitational field. Thus , an explanation of the Bekenstein-Hawking entropy is
one of those problem which cannot be solved in classical gravity theory.If we
consider the blackhole horizon surface is covered by cells of a Planckian size

Ly ~ JG , then according to the relation §,,= %, S,, is of the same order of

magnitude as the logarithm of the number of different ways to distribute two
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signs '+ 'and '-'over these cells[125]. The appearance of the Planck scale in
this estimation indicates that a reasonable microscopical explanation problem
of Bekenstein-Hawking entropy must be based on the quantum gravity.
Bekenstein argued that Q = ¢’ must in some sense be the number of

“ quantum mechanically distinct internal states” that a blackhole could have,
corresponding to its classically observed external parameters[79]. The question
now arises; after the collapse of matter, are the degrees of freedom contained in
the matter fields somehow encoded into the quantum states of the blackhole
spacetime itself, or have they vanished altogether, leaving no trace whatsoever
? Of course , it is natural to claim that they are encoded into the quantum states
of spacetime itself such that there is a vast ¢*# - fold degeneracy in the quantum
states of the blackhole. This leads us to a conclusion that the total number of
unknown quantum states of the blackhole must be enormous, too. Thus, from a
quantum mechanical point of view , the number of the physical degrees of
freedom of the blackhole is not limited to just few parameters. Obviously, the
contradiction between quantum and classical blackholes is that the number of
the physical degrees of freedom of the classical blackhole is three, whereas the
number of the physical degrees of freedom of the quantum blackhole is
enormous. The problem with this contradiction is that it is not quite clear how,
starting from general relativity, quantization itself might bring along a huge
number of additional degrees of freedom [107].Also, at present there is no
satisfactory statistical mechanical derivation of the entropy S,, and the
physical nature of the blackholes  internal states” has remained a puzzle. Three
answers to this puzzle have been proposed in [79]; (i) Gerlach’s [126] view of
Hawking radiation as produced by zero-point fluctuations on the surface of the
star that collapsed to form the blackhole and his calculation that the
numberQ ,, of zero-point fluctuation modes that give rise to the Hawking
radiation of a freely evaporating Schwarzschild blackhole satisfies
InQ,, =2805,, . (ii) York’s [126] view of Hawking radiation as produced by
the blackhole’s “quantum ergosphere” of thermally excited gravitational
quasinormal modes, and his conclusion that the number of ways Q  that this

quantum ergosphere can be excited and reexcited, during the evaporation of a
Schwarzschild blackhole into a surrounding  radiation bath, satisfies
InQ,, =1.10617S ,,. (ili) A view implicit in the writings of Bekenstein and

Hawking that Q=e¢% might be the number of quantum mechanically distinct
ways that the blackhole could have been made by infalling quanta(particles).

At the present moment, the Bekenstein-Hawking entropy obtained by counting
of string(D-brane) states but this calculations essentially use supersymmetry
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and are mainly restricted to extreme and non-extreme blackholes. Also it
remains unclear why the entropy of the blackhole is universal and does not
depend on the details of the theory at Planckian scales. It is noted that the
thermodynamics of blackhole follows from the low energy gravitational theory.
That is one can expect that only a few fundamental properties of quantum
gravity but not its concrete details are really important for the statistical
mechanical explanation of blackhole entropy.

Now, we would like to set of questions to which complete answers still lack.
Some questions are given below in order:

(i) How does General relativity know about the blackhole thermodynamics?
[126]

(i) Why should blackholes at all have entropy 7 [127]

(iii) Is the analogy between blackhole thermodynamics and the standard
thermodynamics complete 7 [123]

(iv) Is blackhole entropy S,, real or subjective ? [59]

(v) Where does it appear- on or near the horizon or deep in the hole ? [59]
(vi) At what stage in the blackhole’s evolution is it created — immediately upon
formation by gravitational collapse, or only gradually over the long course of
evolution ? [59]
(vii) In what sense is 7 = 2—’( the temperature of the blackhole ? [127]

T
(viii) What becomes of the standard second law of thermodynamics in presence
of blackhole ? [127]
(ix) What are the microstates whose counting would yield the area law for
blackhole entropy ? [127]
(x) What is the dynamical mechanism that makes S,, a universal function,
independent of the hole’s past history or detailed internal condition? [59,128]
(xi) Do there exist internal degrees of freedom of a blackhole which are
responsible for its entropy ? [123,126]
(xii) Where are the microscopic degrees of freedom responsible for blackhoe
entropy located ? [128]
(xiii) Can S,, be derived from quantum mechanical consideration ? [59]
(xiv) Due to the Hawking radiation (blackhole evaporation), what happens to
S after the blackhole has evaporated ? Will all the information disappear after

the evaporation ? [59]
(xv) Is there any information loss in blackhole dynamics ? [126]

bh
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(xvi) Is blackhole entropy similar to that of ordinary entropy i.e. the logarithm
of a count of internal blackhole states associated with a single blackhole
exterior ? [91]

(xvii) Is blackhole entropy the logarithm of the number of ways in which the
blackhole might be formed ?[91]

(xviii) Is blackhole entropy the logarithm of the number of horizon quantum
states ? [91]

(xix) Does it stand for information lost in the transcendence of the hallowed
principle of unitary evolution ? [91]

(xx) Is it possible to apply the statistical mechanical and informational
definitions of the entropy to blackholes and how are they related with the
Bekenstein-Hawking entropy ?[123]

(xxi) How does a pure state evolve into a mixed(thermal) state ? Is there a
information loss due to the formation of blackhole and Hawking radiation
process ? Does the usual quantum mechanics need to be modified in the context
of blackhole ?[128]

(xxii) Can quantum theory of gravity remove the formation of spacetime
singularity due to the gravitational collapse ? [128]

(xxiii) Unlike other thermodynamical systems, why is blackhole entropy non-
extensive ? i.e. Why S,, is proportional to the area and not volume ? [128]

(xxiv) Why is the blackhole entropy large ? [128]

(xxv) How §,, concords with the standard view of the statistical origin ? What
are the blackhole microstates ? [128]

(xxvi) Are there corrections to S, ? If there are, how generic are they ?[128]

At present , physicists answers some of the question mentioned above but not
quite satisfactory . So these questions are somewhat embarrassing , because we
do not know with our present knowledge how to answers them precisely.
Neverthless, it is hopped that success in modern theory of gravity, e.g. , the
quantum gravity or the string theory would be the key to answer-if not all-some
of these open questions.

4.8 Bekenstein-Hawking entropy, Hawking temperature and other
Intensive Parameters of Blackholes :
According to Bekenstein, blackhole entropy is proportional to the area of
its horizon divided by Planck area. He suggested that the constant of
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proportionality is 24 and if the constant of proportionality not
T

lln2

exactly 2

, then it must be very close to it. Later, Hawking showed

that the blackhole emit thermal Hawking radiation corresponding to a
certain temperature. Using thermodynamic relationship between energy,
temperature and entropy, he was able to confirm Bekenstein’s conjecture

and fix the value of the constant of proportionality at -:I. Using this value
the blackhole entropy formula (4.6) takes the form,

1 4
S =

The formula (4.37) is familiar as the Bekenstein-Hawking entropy formula

of blackhole and the subscript BH stands for Bekenstein-Hawking entropy
h

of blackholes. Including Boltzmann’s constant and set G=c= K= e ¥
T

the equation (4.37) becomes,

b= %ks A R e (4.38)

The mass formula which contains all the information about the

thermodynamic state of the Kerr-Newman blackhole already given by the

equation (4.8) and from that equation we can obtain,

Q4 e
—— BN (B it sedin s isises i 4.39
\/ ( )+ i )+2Q (4.39)
Using equation (4.38) with &, = - in (4.39) we have
T
SBH 1 2 Q4 1 2

o SEBEL (PR e Y O L s 4.40

M J4+SBH( +4)+2Q (4.40)

We will use this relation for obtaining certain thermodynamic properties of
four familiar families of  blackholes and then the theoretical BTZ
blackhole.
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4.8 (a) Schwarzschild blackhole:
Putting J =0 =0 in the mass formula (4.40) we obtain the mass formula

for Schwarzschild blackhole as,
M=t e e s (4.41)

and from above equation we obtain the entropy of the Schwarzschild
blackhole as,

S = B s G s Ao b e (4.42)
The temperature of the Schwarzschlld blackhole is given by,
e L e (4.43)
8S,, 8M

We see from the equation (4.43) that the temperature of Schwarzschild
blackhole is inversely varies with its mass i.e. the larger of the mass, the
smaller of the temperature. Obviously the angular velocity and electric
potential of the Schwarzschild blackhole is zero. The heat capacity of the
Schwarzschild blackhole is given by,

eedl B e (4.44)
T &S,0r wlh 9L ael
aSBH éSzziﬁ

which is a negative quantity.

4.8 (b) Ressiner-Nordstro m blackhole:
Putting /=0 in equ. (4.40) we obtain the mass formula for Reissner-

Nordstro m blackhole as ,

M= Viﬂ” (1+ g e i i e (4.45)

By solving equation (4.45), we obtain the entropy of the Reissner-

Nordstro m blackhole as ,

2
S =2M*—0° +2M21’1—%—2- ........................... (4.46)

The temperature, electric potential and heat capacity of Reissner-

Nordstrom blackhole are given by ,
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PSR s s W (4.48)

0 5

Cod 28plm 00 (4.49)
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The heat capacity of the Reissner-Nordstrom blackhole is a negative
quantity when S, >0’ and both heat capacity and the absolute
temperature is zero associated with the hole when 0 =[S, , which is the
extremal limit.

4.8(c) Kerr blackhole:

The mass formula for the Kerr blackhole is obtained by putting Q0 =0in
equ. (4.40) which reads,
e e e s (4.50)
4 S

Solving for S, , we have

2
S,, =2M? +2M21f1—;;4 ........................ 4.51)

The temperature of the Kerr blackhole takes the form,

il
oM 1 U=ga)
T = =— R ST s S LR P o e (4.52)
&y 4 4.J°
Spy +—
S gy

The temperature vanishes when S, =27 or in terms of M and J it is
J=M>i.e. for extremal case. The angular velocity of the hole is given

by,
aa it L na e RN (4.53)
aJ Shr "
SBH B (e
4 O s
The heat capacity C is given by
16J*
T 2SBH (1 = S4 )
G == B e yen s pe s e (4.54)
B aaTh
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which also vanishes when S, =2J.
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4.8 (d) Kerr-Newman blackhole: The mass formula for the Kerr-
Newman blackhole is already given by equ.(4.40) and from that equation
we can obtain,

2 2
Sp =2M* =0° +2M2J1—%—I";—4 ............................ (4.55)

The temperature of the Kerr-Newman blackhole is given by,

2 2 4
Pl bl B e (4.56)
a5 ey 8MS
Angular velocity Q is given by
et o o e e (4.57)
& MS,,
From equation (4.57) we see that if the mass and entropy of the blackhole
increases then the angular velocity of the blackhole decreases and vice
versa. Also, as we expected that the blackhole’s angular velocity is
proportional to its angular momentum .
The electric potential of the Kerr-Newman blackhole is given by,

Bl e B e (4.58)

o0 2MS,,
From equation (4.58) we see that the electric potential is reduced by mass
and entropy of the blackhole. The heat capacity of the Kerr-Newman

blackhole is given by ,

Stk ! Swd redd 0 (4.59)
M - A6 M AT s 0= (S =8 g ST
5512
BH
4.8 (e) BTZ blackhole:

The equation of the event horizons of the BTZ

blackhole is given by, r, = ZJ%(I 2 00, e T s (R e e (4.60)
where A=l —(i)2 .
Ml

For simplicity we will use /=1 and the equation (4.60) takes the form
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For this particular blackhole if we use the Boltzmann’s constant k, =— ,
T

then the entropy of the BTZ blackhole is given by,
A £ D2y M
=—=—=""Tmy = [ (I+A) et 4.62
SBH 272_ 2?3' 2” r+ 2 ( s A) ( )
where L is the length of the horizon r, .
From equation (4.62) we can obtain,
2 e
M = S!;H +E ................................ (463)
The temperature 7 and angular velocity Q of the BTZ blackhole are given
by,

M I
T'= =28 = L e e e R 4.64
R oy 2
and padhoet i (4.65)
& 28%

The heat capacity of the BTZ blackhole is given by,
o= T s SBH (48.:!1 _']2)
M AR

&Sy

It is notable that the heat capacity of the BTZ blackhole is a positive quantity

when4S;, >.J°. It reduces to zero when 4S,,=J° and negative for

A8 =T
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CHAPTER FIVE

BLACKHOLE RADIATION AND UNCHARGED PARTICLE
TUNNELING

5.1 Background history of Hawking radiation:

Here we would like to give a
historical background of Hawking radiation following the reference [84].
According to this reference the precursor of Hawking’s discovery of
emission by blackholes were the calculation by Parker[130,131,132,133] and
Fulling[134,135]of particle creation by expanding universes, which
developed the concepts of Bogoliubov transformation[136] in time
dependent geometries that were later used by Hawking. It was a surprise to
everyone, including Hawking , that the emission from a blackhole persisted
even when the blackhole become effectively static. The first prediction of
emission by a blackhole was made by Zel’dovich[137,138] who pointed out
on heuristic grounds that a rotating blackhole should amplify certain waves
and there should be an analogous quantum effect of spontaneous radiation of
energy and angular momentum. Later Misner [139] and Starobinski 140]
confirmed the amplification by a Kerr blackhole of scalar waves in the
‘supperradiant regime’ and Bekenstein[141] showed that amplification
should occur for all kinds of waves with positive energy density. The
quantum effect predicted by Zel’dovich was rediscovered by Larry Ford and
Page .

The argument for this spontaneous radiation was that in a quantum analysis
the amplification of waves is stimulated emission of quanta, so that even in
absence of incoming quanta one should get spontaneous emission. By using
the relation between the Einstein coefficients for spontaneous and stimulated
emission , one can calculate the spontaneous rate from the amplification
factor, as Starobinski [140] noted, at least when the spontaneous emission
probability is much less than unity.

A problem arose for neutrinos in that Unruh[142] showed that their waves
are never amplified. This result violated Bekenstein’s conclution and
seemed to be a breakdown of Hawking area theorem[8]. The reason for the
violation was traced to a negative local energy density of the classical
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neutrino waves at the horizon. However Feynman suggested that the lack of
amplification might be due to the Pauli exclusion principle, so that incident
neutrinos suppress spontaneous emission which otherwise occurs. The
amplification factor would then less than unity, since the calculation of an
unquantized neutrino wave cannot directly show the spontaneous emission
but only how the emission changes as the incident flux is varied.

One might be surprised to find such a difference between integral and half-
integrall spins showing up in the behavior of their unquantized waves, but
this i1s merely an illustration of the connection between spin and statistics.
Pauli [143] has shown that the half-integral spins must be assigned
anticommutation relations in order to get a positive energy density, which is
precisely what the unquantized nutrino waves violate in not showing
supperradiance.

Unruh [144] made a formal calculation of second quantization of scalar and
Neutrino fields in the complete Kerr blackhole. Ford[145] quantized the
massive scalar field in a somewhat different way with similar results.
However , Unruh noted that the actual situation might be different , with no
past horizon but the blackhole formed by collapse. Nevertheless , neither he
nor any of the discoverers of the spontaneous emission attempted to
calculate that situation.

In 1973, Hawking at Cambridge University heard of this work through
Douglas Eardly and D.N. Page and so while his visit in Moscow, where
Soviet scientists Zel’dovich and Starobinski showed him that according to
the quantum uncertainty principle , rotating blackholes should create and
emit particles. Believing in the reality of the spontaneous emission but
wishing to put its derivation on a firmer footing , Hawking dared to attempt
the difficult calculation of field theory during the collapse and formation of a
blackhole. Separating out the essential elements , Hawking found how to
calculate the particle emission at late times, after the collapse had settled
down to form a stationary blackhole. At first Hawking got an infinite
number of particles emitted, but then he discovered that the infinity
corresponded to emission at a steady rate. However , the emission was not
only in the supperradiant states or modes but in all modes that could come
from the blackhole.

Hawking initially did not believe this result. Thinking that the emission
might be an artifact of the spherical symmetry he had assumed, Hawking

T



considered nonspherical collapse and got the same emission. Then he tried
to putting in a cutoff on the frequencies of the modes in the initial states
before the collapse, but that eliminated all the emission , including the
spontaneous emission in the supperradiant modes that Hawking was certain
existed. Perhaps most convincing to Hawking was the fact that the emission
rate was just that of a thermal body with the same absorption probabilities as
the blackhole and with a temperature (in geometrical units) equal to the
surface gravity of the hole divided by 27z . This result holds for fields of any
spin and seemed to confirm some thermodynamic ideas of Bekenstein[3].
However , before the emission process was discovered, Bardeen, Carter, and
Hawking [1] had argued against Bekenstein’s suggestion of a blackhole
temperature proportional to surface gravity. Thus Bekenstein’s ideas were
originally not a motivation for = Hawking’s calculation.

As word of his calculation began to spread, Hawking published a simplified
version of it in Nature[9]. However, even at this stage Hawking was not
certain of the result and so expressed the title as a question , “Blackhole
explosions?” He noted that the calculation ignored the change in the metric
due to the particles created and to quantum fluctuations. One objection
raised by several people was that the calculation seemed to give a very high
energy flux just outside the horizon, which might prevent the blackhole from
forming at all. Hawking later answered this and other problems by a more
detailed version of the calculation [4],which shows that an in falling
observer would not see many particles near the horizon. However, it might
be noted that there is still some controversy about the existence of particles
there. The back reaction of the particles created would , in Hawking’s view ,
simply be to reduce the mass of the hole by the amount of the energy
radiated away.

Presumably quantum fluctuation of the metric itself can give rise to the
emission of gravitons in addition to the emission of other particles calculated
as if the geometry were fixed. By considering linearized fluctuations in the
metric about a given background , the emission of gravitons can be handled
in the same manner as the emission of any other particles , though one might
argue that gravitons emission depends more fundamentally upon the
assumed fluctuations in the metric. Therefore, an observed consequences of
graviton emission can be viewed as testing whether gravity is quantized.
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Hawking has argued that quantum mechanics allows small deviations of the
action from the extreme value that gives the classical field equations for
matter and geometry. Thus the classical equations can be violated in the
small region near a blackhole, giving rise to the emission of matter or
gravitational waves, but the equations cannot be violated significantly on a
very large surface surrounding the hole. Therefore, quantities determined by
surface fluxes at infinity do remain conserved; energy, momentum, angular
momentum, and charge. This is the basis for arguing that the emission
carries away the quantities of the hole which otherwise would be constant.
Note that baryon and lepton numbers are not observed to be connected with
long-range fields, so they presumably cannot be determined by surface
fluxes at infinity and thus would not be conserved globally by the blackhole
emission process.

The thermal emission first calculated by Hawking has been verified by
several subsequent calculations. Boulware[146] and Davies [147] have
calculated the emission from collapsing shell. Gerlach [148] has interpreted
the emission as parametric amplification of the zero-point oscillations of the
field inside the collapsing object. DeWitt[149] has given detailed derivations
of both the spontaneous emission process in the complete Kerr metric(with
no particles coming out of the past horizon) and of the thermal emission
from a blackhole formed by collapse. Unruh [150] has found that his
derivation in the complete Kerr metric will give not only the spontaneous
but also the thermal emission if the boundary condition at the past horizon is
changed from no particles seen by an observer at fixed radius just outside the
horizon to no particles seen by an observer freely falling along the horizon.
Wald [151], Parker[152] and Hawking[153]have calculated the density
matrix of the emitted particles and find that it , as well as the expected
number in each mode, is precisely thermal. Bekenstein [154] has given an
information theory argument of why this should be so. Hartle and
Hawking[12] have done a path-integral calculation of the probability for a
particle to propagate out of a blackhole from the future singularity and show
that this method also leads to the same thermal spectrum .In summary , the
thermal emission from a blackhole has been derived in a variety of way by
several people, so its predictions seems to be a clear consequence of our
present theories of quantum mechanics and general relativity.
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5.2 Nature of Hawking radiation:

The spacetime associated to gravitational collapse to a blackhole cannot be
everywhere stationary, so we expect particle creation. But the exterior
spacetime is stationary at late times, so we might expect particle creation to
be just a transient phenomenon determined by details of the collapse. But the
‘nfinite time dilation at the horizon of a blackhole means that particles
created in the collapse take arbitrarily long to escape — suggests a possible
flux of particles at late times that is due to the existence of the horizon and
independent of the details of the collapse. There is such a particle flux , and
it turns out to be thermal- this is known as Hawking

radiation or blackhole radiation.

Hawking’s discovery is one of the most well established predictions
obtained from the study of quantum mechanics linked to Einstein’s general
relativity. According to Hawking’s the radiation from a blackhole is
essentially thermal: the blackhole emits field quanta of all frequencies ,
according to the usual black body spectrum, corrected with a factor that
accounts for the scattering from the spacetime curvature[155]. In particular,
for a Schwarzschild blackhole with mass M the characteristic temperature is
given by
3
s e e T s (5:2.D
871Gk, M

where k, is the Boltzmann factor.
Some authors have raised the possibility that the Hawking radiation might
in fact have a discrete spectrum. The idea that blackhole may have a discrete
spectrum was first proposed by Bekenstein in 1974[156] who used an
analogy between the horizon area A for Kerr blackhole proportional to the
squared irreducible mass [157]
Mt

167
and an action integral cj' pdg of a periodic mechanical system. This analogy

was based on a fact that the irreducible mass behaves as an adiabatic
invariant i.e. remain unchanged in reversible processes. Using this analogy
and Bohr-Sommerfield quantization condition Bekenstein obtained the
discrete spectrum[157]

M2 o~ Mo 2 isbeaiinsivens st Ghann vpees (5:2:3)

where M, is the Planck mass and nis an integer. Later in 1986 V.
Mukhanov[158] and Kogan[159] independently revived this idea using
completely different arguments. This problem attract more attention and has
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been discussed in several interesting papers[160,161,162,163,164] where the
discrete spectrum was derived using new ideas. We also note that
quantization of the area operator in quantum gravity has been obtained in
[165,166] using the loop representation.

However , we recall the Bekenstein proposal[156] which can be described
by the eigenvalues of the blackhole event horizon area of the form
T T R (5.2.4)

where « is the constant of order one , n ranges over positive integer and
1, is given by
1
o e e By (5.2.5)

P 3

is the Planck length.

In particular case of a Schwarzschild blackhole the fact that equation(4.2.4)
implies a discrete spectrum for Hawking radiation can be seen by recalling
that the area of such a blackhole with mass M is

_162G’M*

(__4

and so it follows from equation (5.2.4) and (5.2.6) that the angular
frequencies of the quanta of Hawking radiation are integer multiples of the

fundamental angular frequency[155]

3

R Ttan B R e e e (5.2.7)
327GM

For example, if M is ten solar masses or 2x 10" kg, then o,is of order of

A

0.1kHz , which is roughly the resolving power of an ordinary portable radio
receiver[155].

Indeed we have two theories about the explanation of Hawking radiation
which are contradicting experimental predictions. According to Hawking’s
opinion a continuous blackbody spectrum for blackhole radiation, whereas
Bekenstein’s proposal states that the spectrum is discrete. The qualitative
difference is that; one easily sees from Wien’s displacement law that the
fundamental angular frequency ,of equation (5.2.7) is near the angular

frequency corresponding to the maximum of the blackbody spectrum with
the temperature given by equation(5.2.1).

Now, one may asked, is there any relationship between two theories? We
shall, for the sake of convenience , refer to the theories based on Hawking’s
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result and Bekenstein’s proposal, respectively, by continuous and discrete
theories of blackhole radiation.

The starting points of the two theories are completely different. The
continuous theory developed based on the semi-classical theory where
spacetime is treated classically and matter fields are treated as quantum
mechanically. On the other hand , Bekenstein’s proposal and hence discrete
theory are supposed to be quantum theories of vacuum blackhole
spacetimes. If one adopts the viewpoint that Bekenstein’s proposal arises
from a quantum theory of vacuum spacetimes, one may feel justified to
regard the discrete theory as more fundamental than the continuous one.
More precisely, one may expect the continuous theory to emerge as the
semi-classical limit of the discrete theory when the effects of matter fields
are taken into account. This implies that if the effect of quantized matter
fields are assumed to overshadow the effect of quantum mechanics of the
spacetime, the discrete theory should reduce to the continuous one.

In addition, the blackhole can be formed either due to the bound motion of
matter or due to its unbound motion. In quantum mechanics we are used to
the fact that we have a discrete mass spectrum for a bound motion and a
continuous spectrum for an unbound motion. One of the possibilities is that
the blackhole total mass has a discrete spectrum or its spectrum is
continuous. If it is continuous , then it is possible for both bound and
unbound motion. If it is discrete , then the corresponding discrete quantum
number has the same origin both for bound and unbound motion[167]. But
the bound motion has also a “conventional” quantum number( or numbers).
And the unbound motion has also a “conventional” continuous parameter( or
parameters). From this it follows that if the mass of the blackhole is
quantized i.e. discrete, the quantum blackhole state is described not only by
its mass but also by some other parameter(s), discrete or continuous.

Indeed , the spectrum of radiation coming from a blackhole should have a
very complicated structure. According to the Bohr postulate, the spectrum of
emitted quanta must correspond to energy level spacing of quantum system.
If the blackhole spectrum depends on extra parameters , the radiation
spectrum would have a fine structure in the case of discrete additional
parameters or it is continuous in the case of a continuous additional
parameters. So we conclude that the radiation spectrum “remembers” the
way how the blackhole is formed. The spectrum seems to be not the
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universal one, but in accordance with the well known semi-classical result
by Hawking the spectrum of radiation from a blackhole is universal-itis
thermal.

5.3 Blackbody radiation Vs blackhole radiation:

we know that a blackbody is an ideal body which allows the whole of
the incident radiation to pass into itself(without reflecting energy) and
absorbs within itself this whole incident radiation( without passing on the
energy).This property is valid for radiation corresponding to all wavelengths
and to all angles of incidence. Therefore , the blackbody is an ideal absorber
of incident radiation. But a blackbody not only absorbs radiation ideally. If
we consider a blackbody at constant temperature placed inside a fully
insulated cavity of arbitrary shape, whose walls are also formed by ideal
blackbodies at constant temperature, which initially differs from the
temperature of the body inside. After some time the blackbody and the
closed cavity will have a common equilibrium temperature. Under
equilibrium conditions the blackbody must emit exactly the same amount of
radiation as it absorbs. This phenomenon is known as blackbody radiation.

On the other hand , in classical mechanics a blackhole absorbs all incident
radiation or matter falling on it , so a blackhole can be treated as a
blackbody. But we have seen that nothing from inside can get out of a
blackhole, so it would appear that it cannot be a source of radiation. In this
sense , blackhole don’t seem to fit comfortably into thermal physics.

However, blackbody radiation is a quantum phenomenon. Planck invented
his constant in order to describe it. On the other hand British physicist
Hawking studied the quantum theory of electromagnetism near the
blackholes, he found that blackholes actually emit radiation, that in fact has
a blackbody spectrum. It should be no surprise that the blackhole radiation
phenomenon lies in quantum uncertainty. All over spacetimes,the quantum
electromagnetic field is undergoing the little negative-energy quantum
fluctuations. Normally they are harmless and invisible , because the
negative-energy photons disappear as quickly as they form. But near the
horizon of a blackhole , it is possible for such a photon to form outside the
hole and crosses into it.

Once inside, it is actually viable as we remarked earlier, it is possible to find
trajectories for photons inside the horizon that have negative total energy. So
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such a photon can just stay inside, and that leaves its positive energy partner
outside on its own. It has no choice but to continue moving outwards. It
becomes one of the photons of the Hawking radiation.

In this picture nothing actually crosses the horizon from inside to out.
Instead the negative energy photon falls in, freeing the positive energy
photon. The net result of this is that the hole loses mass: the negative energy
photon makes a negative contribution to the mass of the hole when it goes
in.

Once we accept that blackholes can radiate, then it is possible to estimate the
wavelength of the radiation that blackholes emit. If we take a photon of
wavelength 4 equal to the radius of the blackhole then the energy is equal to
Betuai
A 2GM
(for Schwarzschild blackhole)
If we consider the blackholes are indeed blackbodies, absorbing everything
that falls on them and emitting light then their temperature T should be at
least approximately related to this energy by setting E=4T,
leading to the following estimate of the temperature of a blackhole

e he’

 2kGM
Without any reason we take the wavelength equal to the radius of the hole
rather than , say, its diameter or circumference and we must expect that the
details of quantum theory and spacetime curvature will not be encapsulated
in such a simple dimensional argument. Nevertheless we see that only a
factor larger than the one Hawking found, which is called the Hawking

temperature 7, is

3
Ty =Lw6x10'“(£)"K ........................... {5.3.3)
167°kGM Mg

Obviously, this is so small for stellarmass and supermassive blackhole that it
has little relevance to astrophysics. But Hawking’s discovery is widely
regarded as one of the first real steps toward a quantum theory of gravity.
Although we have no such theory , many physicist expect that it must
predict the Hawking radiation.

5.4 Luminosity and life time of blackholes:
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The luminosity is the rate of
energy of all types is radiated by an object in all directions. The luminosity
of a star depends on its size and its temperature, varying as the square of the
radius and the fourth power of the absolute surface temperature. Our sun is a
medium sized star with a luminosity of 3.8x10” ergs per sec. The
luminosities of other stars are commonly expressed in terms of the sun’s
luminosity. The known luminosities of stable stars range from about 10~
that of the sun for a relatively cool white dwarf to about 10° times that of
the sun for the hottest supergiant star.

If we assumed that the blackhole are completely blackbody, then we can
apply the Stefan-Boltzmann law of blackbody radiation. According to this
Jaw , the luminosity of a blackhole is given by

Ly = @ AT sviiicinnosivninatninnimnsponniinas (5.4.1)
whereo is the Stefan-Boltzmann constant given by
2k’
L L ik SRR R 5.4.2
7T Tshic? ( )

A is the area of the surface that radiates. In this case the surface area is the
surface area of the blackhole, T is the temperature of the blackhole.
Applying the formula equation (5.4.1) and putting the values of A and T for
different types of blackhole we can obtain the luminosity of the different
types of blackhole. Here we discuss only Schwarzschild blackhole.

The relevant surface for the Hawking radiation in the surface area of the a

sphere with radius of the Schwarzschild blackhole radius, because that’s

where the radiation originates; so

GEM2
C-l

Substituting this in equation (5.4.1) we have the luminosity for the

Schwarzschild blackhole as

27k 162G°M?

A = 47[R.5c1; = 16”
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Using temperature T given by equation (5.2.1)
3 3
e A e g (5.4.5)

T — =
87GkM 1677 kGM
From equation (5.4.4) we have the luminosity of Schwarzschild blackhole as

ch
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In equation (5.4.6) we see that the first factor is , of course , just a pure

number. The numerator of second factor is the quantity %C which is the

He

square of the Planck mass M, 1. e. M; s So the second factor is

dimensionless, being the ratio of the square of two masses. The third factor
is known as Einstein luminosity.

The Einstein luminosity is large, but the blackhole only approaches this
Juminosity when its mass as small as the Planck mass. For an ordinary hole,

the factor I/f]_ reduces the luminosity drastically. For example a 10Mg

blackhole radiates 107w !

Now we turn to discuss the lifetime of a blackhole. Through the Hawking
radiation , blackholes gradually lose mass. Unlike other bodies , the smaller
they get, the higher their temperature goes according to equation (5.4.5), so
the loss mass accelerates. In the picture of Hawking radiation , the escaping
member of a virtual particle pair carried away energy from blackhole and so
the blackhole losses mass as a result. Eventually the blackhole losses all its
energy , or equivalent mass, and evaporates and this issue that blackhole
evaporation is one of the most surprising discoveries of the past 70’s
decades. Now we would like to derive a formula to calculate the lifetime of
blackhole.

The power of Hawking radiation is just the same as the luminosity of a
blackhole
he®

P == .L et = D et syl sl R ¢ SRIEE DTN (547)
30720 G M~

On the other hand the amount of energy carried away by Hawking radiation
is the same as the energy loss by the blackhole. Therefore the power of
Hawking radiation is the rate of loss of total energy E of a blackhole i.e.

PoaBl s i Ll (5.4.8)
di
From Einstein mass energy relation E = Mc*, we have
o A (5.4.9)
dt di

Comparing equation (5.4.7) and (5.4.9) we get
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As a blackhole slowly evaporates, its mass drops from M, (its initial mass)
to zero. The time required for evaporation starts from zero to t (total time for
evaporation). So integrating equation (5.4.10) we have

where K =

K [di= el e (5.4.11)
FinioshingM;he integral we obtain
3
i %‘%ﬂ ................................. (5.4.12)
Therefore the blackhole lifetime formula can be written as
e = g‘% ................................. (5.4.13)

The equation (5.4.13) tells us that the lifetime of a blackhole is proportional
to the cube of its mass. This implies that a massive blackhole takes
proportionally much longer time to evaporate and the process of evaporation
accelerates as the blackhole slowly loses its mass. Moreover , if we look the
3
temperature formula for blackhole , 7= —Jg—~ , then we see that as the
167 kGM
blackhole loses its mass , its temperature increases. When a blackhole get
very small, its temperature may become so high that it may burn up and
cause an explosion. For example, the lifetime of a blackhoole having the
mass of our sun is
3 30 3

L = M, ~ (1.99x10|ikg2 — ~ 2X T0% yetirs. soiiwas somrsnnis (5.4.14)

3K  3x3.98x10°kg'g
The lifetime of such a blackhole is even longer than that of our universe. If
we set 1, to the present age of the universe, we obtain a minimum mass

such a ‘primordial’ blackhole must have had ( assuming it Hawking radiates)
to survive to the present day. This mass is approximately ~10" g [168].

Now we discuss the hawking radiation as tunneling process of massless
particle from the event horizon of different types of blackholes as
follows:
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5.5 Uncharged particle tunneling from Schwarzschild blackhole:
5.5.1 Painleve- like coordinate transformation and null geodesics of
Schwarzschild blackhole :

The line element of the Schwarzschild blackhole is given by,

2 = —(1 -zi"f-)dz +(1-3;A£) 'dr® +r*(d9*® +sin’ @ d¢?)
! 5
=— f(rdt’ + ——+r°d0° +r°sin® Odg* ....coviiiiiiiiiiiiii, (5:5.1)
where f(r)—g(r)—l—%jl{
5

The study of this geometry over the course of several decades revealed a
number of remarkable surprises. First , the existence and physical relevance
of pure vacuum °‘blackhole’ solutions; second, the incompleteness of the
spacetime covered by the original Schwarzschild coordinates and the
highly non-trivial global structure of its completion; third, the dynamic
nature of the physics in this geometry despite its static mathematical form,
revealed perhaps most dramatically by the Hawking radiation[4].

Since the metric (5.5.1) has the coordinate singularity at the horizon, so we
have need to a coordinate transformation such that there is no singularity at
the horizon. For this reason we should adopt Painleve coordinate
transformation [173] to investigate the Hawking radiation as tunneling
process. This is easily accomplished via transformation,

I —g(r)
............................ 5:5.2
J f(r) e(r) ( )

This transformatlon reduces the metric (5.5.1) in the form,

2 bl 2 s b ) 2 2 . 2
ds® =—(1- 2M)dl‘ +2 Md[dr+dr' +r°df@° +r°sin’ 6’d¢2
\ i

r

Now there is no singularity at the horizon and the true character of the
spacetime is stationary but not static. Thus it is possible to define an
effective “vacuum” state of a quantum field by requiring that it annihilate
modes which carry negative frequency with respect to t ; such a state will
look essentially empty to a freely-falling observer as he or she passes
through the horizon.

The radial null geodesics are given by putting ds’ = d@ =dg =0 in (5.5.3)
e M SRR SE e S e ko (5.5.4)
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where the positive sign (+) represents the outgoing geodesics and the
negative sign (-) represents the ingoing geodesics under the implicit
assumption that t increases towards the future.

5.5.2 Tunneling rate of Schwarzschild blackhole:

We adopt the picture of a pair of virtual particles
spontaneously created just inside the horizon. The positive energy virtual
particle can tunnel out and materialize as a real particle escaping classically
to infinity. The negative energy particle is absorbed by the blackhole
resulting in a decrease in the mass of the blackhole. We consider the particle
as an ellipsoid shell of energy ». When the particle’s self-gravitation is
taken into account, then equation (5.5.3) and (5.5.4) should be modified.
Krause and Wilczek [13] found that , when the blackhole mass is held fixed
and the total ADM (Arnowitt-Deser-Misner) mass allowed to vary , a shell
of energy @ moves in the geodesics of a spacetime with M replaced by
M+ . If instead we fix the total mass and allow the hole mass to fluctuate,
then the shell of energy o travels on the geodesics given by the line
element,

ds® = —{1 ) }dl2 +2deld]’+d}‘2 +72dO* +r’sin’ 0dg’
r r

.............................................. (38.5)
and the shell of energy » will move along the modified null geodesic in the
radial direction ,

g /&‘“f_r“i) ..................................... (5.5.6)

Since the typical wavelength of the radiation is of the order of the size of the
blackhole , so one might doubt whether a point particle description 1is
appropriate. However , when the outgoing wave is traced back towards the
horizon, its wavelength , as measured by local fiducial observers, is ever-
increasingly blue-shifted. Near the horizon, the radial wave number
approaches infinity and the point particle, or WKB, approximation is
justified.

The imaginary part of the action for an s-wave outgoing positive energy
particle which crosses the horizon outwards from r, to r,, is expressed as,

n

ImS = Im ’LTPF dr = Im Ti[dﬂ' RS S R R (5.5.7)
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. are the respective initial and final radii of the blackhole , P,

is the canonical momentum conjugate to r. The trajectory between these two
radii is the barrier that the particle must tunnel through.

where » and r

In order to evaluate the integral, we employ the Hamilton’s equation

- dH

=
dP,

r r

, change variable from momentum to energy, we obtain

gy r dr
ImS=Im [ [=dH=Im [] I i it emmmssibaions (5.5.8)

M, r LA

where dH =—dw' because total energy H = M -’ with M constant.

The integral can be done by deforming the contour, so as to ensure that the
positive energy solutions decay in time. Doing the &’ integral first we obtain,

imS = -7 frdr=Z[2 ~r2, |- 74Mo-207).
The tunneling rate is therefore
P s = IR & 5 e (5.5.9)

Using Bekenstein-Hawking entropy formula we have,
S g (M) = -’5 =dzM>

Sy (M - 0) = 47(M - ©)*.

AS gy =S (M = @) =Sy (M) = 27(AM© =207 ) connneerecnninneeennns (5.5.10)
where AS,, is the difference of entropies of the blackhole before and after
the emission.

Substituting equ.(5.5.10) into equ.(5.5.9) we have,

g o e ikt s g SV A S A BB S00s Vi (53:8.11)

From equ.(5.5.9) we see that when the quadratic term ine neglected, then it

reduces to a Boltzmann factor for a particle with energy o at the inverse

Hawking temperature i.e. e”” where g= % _ 27 _gzM . The second term
H K

represents correction arises from the physics of energy conservation, which

self-consistently raises the effective temperature of the hole as it radiates.

Also from equ.(5.5.10) we see that the radiation spectrum is not purely

thermal.
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5.6 Uncharged particle tunneling from R-N blackhole:
5.6.1 Painleve- like coordinate transformation and null geodesics of
R-N blackhole:

The line element of Reissner-Nordstro m blackhole is given by,
2 2
ds* =—(l —Z—M;JrQ—,)dﬁ +(1 —%+%)"dr2 +72(d0* +sin” 6dg?)
¥ I r '
................... (5.6.1)
To investigate the Hawking radiation as tunneling process we should adopt
Painleve coordinate transformation. According to the transformation

equation (5.5.2) the metric (5.6.1) reduces to,
ds® =—f(r)dt* +24)1(r) —(1—)—1 didr + dr® +rd0* +rsin’ 8dg’
g\ ‘

where f(r)=g(r)=1—%+2;.
r r

The metric(5.6.2) can be rewritten as,

2 2
dst = (-2 Q0 10 |2 D g+ dr? +r*(d6% +sin” 04
F: /il

r r
........... (5.6.3)
The radial null geodesics are given by,
L8 2
AR el s T (5.6.4)
¥ i

where the positive sign (+) represents the outgoing geodesics and the
negative sign (-) represents the ingoing geodesics under the implicit
assumption that t increases towards the future.

5.6.2 Tunneling rate of R-N blackhole:

We have already given the tunneling process of
Hawking radiation for the Schwartzschild blackhole. With the same sprit we
modified the equation (5.6.3) as,

=) 2 i 2
ds* =—(1 —2—(M—QL)+Q—2)a’t2 +2(M——QT didr +dr® +r>(d6* +sin’> 6dg*)
. r r T

and the shell of energy o will move along the modified null geodesic in the
radial direction ,
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The imaginary part of the action for an s-wave outgoing positive energy
particle which crosses the horizon outwards from 7, to 7, is expressed as,

ImS = Im ro]'P, dr =1Im ro]ﬂpjdp,' S B e (5.6.7)
Fiu K, 0

- . are the respective initial and final radii of the blackhole , P,

is the canonical momentum conjugate to r. The trajectory between these two
radii is the barrier that the particle must tunnel through.

where » and r

, to evaluate the integral. By

r

We employ the Hamilton’s equation r= %Ii

r

changing variable from momentum to energy, we obtain
M-w 1, dl" M=o oy d

mS=Im [ [ZdH=Im [ |

¥
My tw ¥ Mol [2(M—w')_§_2_2
r »

where dH = —dw' because total energy H = M - ' with M constant.
The integral can be done by deforming the contour, so as to ensure that the
positive energy solutions decay in time. Doing the ' integral first we obtain,

oul

= —n[(M— 0)2 + (M -0} M-0) -0° - M? - MM? —Qz]

The tunneling rate is therefore,

27![(M-—a))3+[M—w)\!(M—mllmgz MM MI—QZ]
e

ImS = —Jrrjr dr= %-[rj - r(2 ]

i | y
1—~ sl 2ImS =

Using Bekenstein-Hawking entropy formula we have,

SBH(M)5%=7F[2M2 +2Mm _Qz]

Sy (M - ) = 71'[2(M—a))2 +2(M - 0)|(M -0)* -0* —QZ]

AS,y =Sy (M —w) =Sy, (M)

= 27:[(M—a))2 +(M - ) (M -0) -0 -M* - MM’ "Qz]

............................... (5.6.10)
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where As,, is the difference of entropies of the blackhole before and after

the emission. Substituting equ.(5.6.10) into equ.(5.6.9) we have,

I L MR e R e (5.6:11)

From equ.(5.6.9) we see that when the quadratic term neglected, then it

reduces to a Boltzmann factor for a particle with energy» at the inverse

f 2 2 1

Hawking temperature i.e. ¢ where g = Lo ZE[MJr Mg } . The
Triw [ 0?

other terms represents correction arises from the physics of energy

conservation, which self-consistently raises the effective temperature of the

hole as it radiates. Also from equ.(5.6.11) we see that the radiation spectrum

is not purely thermal.

5.7 Uncharged particle tunneling from Kerr Blackhole:

5.7.1 Dragged Painleve-Gullstrand Kerr metric and null geodesics of
Kerr Blackhole:

The line element of Kerr metric in the Boyer-Lindquist coordinate system is
given by,

2 et
ds? = -2 (di - asin® 9dg)* +LOA_dr2 +ptdet + 3 91602 o 25dg - adt]?
o

2

where
A=r’=2Mr+a’
p?=r’+a’cos’d

a=-—

M
Here M is the mass of the body, J is the angular momentum and r is the
radial distance from the center of the body. The equation of the event
horizon is given by,

A =0 which gives, r, =M +VM’ -a* , M’>a’.

In order to investigate Hawking radiation as tunneling from Kerr blackhole
we first adopt dragging coordinate system to overcome two difficulties.

First , the event horizon r, =M +JM?*-a® does not coincide with the
infinite red-shift surface r, = M £+ M> —a’cos’@ , which means that there

is an energy layer exists between them. So the geometrical optical limit
cannot be applied. Second , as there exist a frame dragging effect in the
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stationary rotating spacetime, the matter field in the ergosphere near the
horizon must be dragged by the gravitational field also, so a reasonable
physical picture should be depicted in the dragging coordinate system. This
hints that we must transform the metric (5.7.1) into a dragging coordinate
system.
feemell i di o (5.7.2)
dt Eao

where Qis the angular velocity.

For the metric (5.7.1) we have,

StA—atsn’ &) T sin? @[(r2 +a*)? —Aa’sin’ @
g = 3 P e A G -02: Ea3 7 [ )2 ]
P A P
—asin? O[(r* +a’) - A]
8oz = pg

2 &
From(5.72), . Defla fu . wil oo
di g (rP+a*)’ —Ad’sin’é

At the horizon the angular velocity becomes,

a
Qh = ;?Ta—z ............................ (5.7.4)
The line element (5.7.1) in the dragging coordinate system becomes,
ds? = goo dt® + 8 dr’ + 8,407 ceiiiiiiiiin {5.7.5)

i 333 = —-Ap
where g, = g gy (P +a?)’ —Ad’sin@
The line element (5.7.5) represents a 3-dimensional hypersurface of 4-
dimensional spacetime. Although in the dragging coordinate system does
not has any singularity at the event horizon, and we can also get the
Hawking pure thermal spectrum , yet this coordinate system is not what we
want because it is not flat Euclidean space in radial to constant time slices.
So we continue performing a general Painleve-like coordinate
transformation[173]. For this transformation we set,

di, =dt + F(r,0)dr +G(r,0)df  ..ooooeveeiiniiiiinnnneneeenee (8,70}
where F(r,6) and G(r,6)are two determined functions of rand @ , and
satisfy the integrability condition ,
SF(r,0) 6G(r,0)
56 . - &

Thus from (5.7.5) we obtain,
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ds® = go, dt’ +{g00 F*(r,0)+g,, }drl +{gm G*(r,0)+ g }dﬁz +2G(r,0) g, dido

+2F(r,0)G(r,0) gy, drd0 + 2F (r,0) g, didr

................................. (5.7.8)

We demand that constant time- slices are flat Euclidean space in radial. So
we set,

oo Fz(r,9)+g” =1

::)F(r,g):i 1—’\g]1 ............................... (5.7.9)
&oo
From equation (5.7.7) , G(r,0) = J'ﬁ;;ﬁ dr OB v s oo (5.7.10)

where C(0) is an arbitrary analytic function of € .
Substituting the value of F(r,6) into equation (5.7.8) we get,

ds® = £ di® + dr’ +{g0U G (r,0)+ g, }d@z +2\/g00 (1-g,,) G(r.0)drdd
+2g,, G(r.0)didd + 2\ go(1—g,,) didr
.................... (5.7.11)

The positive sign (+) denotes the spacetime line element of the outgoing
particle and the minus sign (-)denotes the spacetime line element of the
ingoing particles at the horizon.

According to Landau’s theory of the coordinate clock synchronization[174]
in a spacetime decomposed in 3+1 dimension, the difference of coordinate

times of two events taking place simultaneously in different place is

AT == [8%dy'  (i=123) oo (5.7:17)
oo

If the simultaneity of coordinate clocks can be transmitted from one place to
another and has nothing to do with the integration path, components of the
metric should satisfy

o &go 3 g 0y e
2 (-8uy= 2 (-2 eI et (5.7.13)

&’ 8y &x &oo
Now the metric (5.7.11) in the new coordinate system , which we called the
dragged Painleve-Gullstrand ~Kerr metric, has a number of attractive
features : (1) the metric is well-behaved at the event horizon; (2) the time
coordinate ¢ represents the local proper time for radially free-falling
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observers; (3) the hypersurfaces of constant time-slices are just flat
Euclidean space in the oblate spheroidal coordinates; (4) by substituting the
components of the metric (5.7.11) into equation (5.7.13), we see that the
metric  satisfy the Landau’s condition of the coordinate clock

synchronization §Fgg 9) . aGg,g) : (5) the infinite red-shift surface coincide
/s

with the event horizon surface so that the WKB approximation can be used.
These attractive features are very advantageous for us to discuss Hawking
radiation as tunneling and to do an explicit computation of the tunneling
probability at the event horizon.

Now in order to investigate the tunneling process we evaluated the radial
null geodesics described by equation (5.7.11) . Since the tunneling processes
take place near the event horizon, so we may consider a particle tunneling
from the event horizon as an ellipsoid shell . To conserve the symmetry of
the spacetime , we think the particle should be still an ellipsoid shell during
the tunneling process i.e. the particle does not have motion in @-
direction[179]. Under these condition we obtain the radial null geodesics
from equation (5.7.11) (ds* =0= do?) as

AR 5 X 2 (5.7.14)

\/(rz +a?) =a’Asin* @
( where a dot denotes differentiation with respect to ¢ and the positive sign
(+)represents an outgoing geodesics and the negative sign (-)represents an
ingoing geodesics.

5.7.2 Tunneling rate of Kerr blackhole:

We adopt the picture of a pair of virtual particles
spontaneously created just inside the horizon. The positive energy virtual
particle can tunnel out and materialize as a real particle escaping classically
to infinity. The negative energy particle is absorbed by the blackhole
resulting in a decrease in the mass and the angular momentum of the
blackhole. We consider the particle as an ellipsoid shell of energy o and
angular momentum wa. When the particle’s self-gravitation is taken into
account, then equation (5.7.11) and (5.7.14) should be modified. To ensure
the conservation of energy and angular momentum, we fix the total mass and
angular momentum of the blackhole and allow the hole mass and angular
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momentum to fluctuate. When particle tunnels out , the blackhole mass and
angular momentum will become M - and a(M — w) respectively.

The shell of energy will move along the modified null geodesic in the radial
direction

3 Fagre I -
e SRR ) s e (5.7.15)
\/(:2+a2)2—a2Asin29

where A=r?—2(M -w)+a’ is the horizon equation after the emission of the
particle with energy o .

Now the coordinate ¢ does not appear in the dragged Painleve-Gullstrand
Kerr metric (5.7.11) . So ¢ is an ignorable coordinate in the Lagrangian
function L.. To eliminate this degree of freedom completely, the action
should be written as

L [ Bl i st (5.7.16)

So the imaginary part of the action is

Lo (Beiy) : X
ImS =Im j[ j (}dP,’—qMP;)]i ............................... (5.7-17)

r, (0,0) r
where P and P,are two canonical momentum conjugate to r and ¢

respectively.
r =M+VM*-a* and r,, =(M-0)+{(M-0)’ _a* are the locations of the

event horizon before and after a particle tunnels out, they are just inside and
outside the barrier through which the particle tunnels.

We now eliminate the momentum in favor of energy by using Hamilton’s

equations

. ai _dM -o)

D T e e (5.7.18)
o e ) e (5.7.19)

= =gll———
dP‘p |(¢:r.f’.-) dP

where dHy,; », - QdJ =aQd(M - w)represents the energy change of the

blackhole because of the loss of the angular momentum when a particle
tunnels out [180] , and the dragging angular velocity is given by

S 0f =




szl o o (5.7.20)

Q= 5
(r* +a)* -Aa’sin’ @
Substituting equations (5.7.15), (5.7.18)and (5.7.19) into equation (5.7.17)
and noting that we must choose the positive sign in equation (5.7.15) as the
particle is propagating from inside to outside the horizon, then we have
TouM -0 FouM —@ ' 2 242 TR
mS=1Im[ | | G DT A et WEFEY N0,

Ly, M

-----------------------------

where
AN=ri+a®-2M-&r=F-r)r-r)
F= M-t (M-a) -d’
We multiply and divide the integrand with p* + Jpi(p*—-A") to obtain
fouM -@ (1 _ ' 2 2 p R 2 S R S AL
ImSzlm[J- I (1-aQd)[p +\fp (,2) AI)]\/(r I+a ) —a"A'sin” @ drd(M - )]
By M p (r—r+)(r_r—)

We see that » =+ is a pole of order one. The integral can be evaluated by

deforming the contour around the pole, so as to ensure that the positive
energy solution decay in time. Note that all real parts , divergent or not, can

be discarded since they only contribute a phase. Doing the r integral first we

obtain,

M-w (l"d‘_a)")2 +(M-mr)J(M—a)')2 —az _laz
ImS =27 j 2
\/(M_a)f)z St

M

d(M - )
o s B8

Finishing the integral we have

ImS = 7[M? - (M - w)* + MYM* - d* ~ (M -0) (M -w)’ —a’]

............................................ (5.7.24)
The tunneling rate is therefore
e -2ImS _ 222 [M (M- ) +MAM? —a* ~(M-w) (M-e)-a*]
(5.7.25)

..............................

Using Bekenstein-Hawking entropy formula S, = x(rl+a’),
we have S, (M) ==[2M’ SIMAIME = =a']

S (M — @) = 2[2(M - 0)* +2AM - oW (M -w)? —a’ —a*)
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AS = Spy (M — @) = Syy (M)

=27[(M - @)? + (M - o)(M -w)’ —a® - M’ —MAIM? -a’]
where AS,, is the difference of entropies of the blackhole before and after
the emission. From equation (5.7.25) we have
T IR s e (5.7.26)

From equation (5.7.26) we see that when the quadratic term neglected, then
it reduces to a Boltzmann factor for a particle with energy» at the inverse
s 2 27r{M+\/7M2 j—az 1 ¥

Hawking temperature i.e. e ” where f=—=
TH K -\/M‘ e’

equation (5.7.26) indicates that when the energy conservation and the
angular momentum conservation as well as the particle’s self-gravitation are
taken into account , the tunneling rate is related to the change of blackhole
entropy during the process of the particle’s emission and the radiant
spectrum is not precisely thermal.
5.8 Uncharged particle tunneling from Kerr-NUT blackhole:
5.8.1 Kerr-NUT blackhole metric in dragging coordinate system and
infinite red- shift surface of Kerr-NUT blackhole: The line element of
Kerr-NUT blackhole is given by[177]

d? = -2 (dr— Pdp)? +2=dr* + p2do + S‘”ig[(F +1%)dg - adi]?

P iy oK

e AED

where
A= =2Mr+a’ =1
p? =r*+(l+acos)’
P =asin’ 8 —2lcosf

F=r'+ad?
J

a=—
M

Here M is the mass of the body, J is the angular momentum and r is the
radial distance from the center of the body , / is the NUT parameter . The
equation of the event horizon is given by,
A’ =0 which gives,
o= MENM? —a>+1° | M?>a* =D . (5.8.2)
To determine the area of the Kerr-NUT blackhole, we consider t is constant.
At the event horizon » = r, , the line element (5.8.1) can be written as

it e phagp S g (SO R Ll i (5.8.3)
p’ P’
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The determinant of the two dimensional metric above is
gx» g2

= =S BlE" A AT i s (5.8.4)
&1 £33
So the area of the blackhole is
A= [dd= [Jgdbdp=4n(r’ +a* +1*) oo (5.8.5)
The Bekenstein-Hawking entropy is therefore
Sse =~§=ﬂ'(r+2 L L S SO et i S .(5.8.6)

The infinite red shift surface is given by g, =0 which gives

P MM S0 00850 5o iiiihs i Vit s (5.8.7)

Obviously the infinite red shift surface does not coincide with the event
horizon surface , which means that there is an energy layer exists between
them. So the geometrical optical limit cannot be applied. Also there exist a
frame dragging effect in the stationary rotating spacetime, the matter field in
the ergosphere near the horizon must be dragged by the gravitational field
also, so a reasonable physical picture should be depicted in the dragging
coordinate system. This hints that we must transform the metric (5.8.1) into
a dragging coordinate system.

Tt (raflaibel = Ui v (5.8.8)
dt oo

where Qis the angular velocity.

For the metric (5.8.1) we have,

— (A’ —a’sin’ ) p’ 3 sin2 O(F +1?)? -A’P?
oo = 2 BNy e P 3
P A p
AP —asin® O(F +17%)
8 = pz

e 2
From (5.8.8), GoBP_ Bw . A 1:’ asin 2192(F +2l )2
dt & sin“@(F+1°) AP

At the horizon the angular velocity becomes,
a
(o [ e e 5.8.10
"l vat + 1P ( )
The line element (5.8.1) in the dragging coordinate system becomes,
dte g di’ ¥ gl FgpdlY v s (5.8.11)

2




N 2 P e
-ANp°sin @
where gOO:gOU_gU3= S N BEnE s P 2P e 2
gy sin” (77 +uwd) =A(dsih 6 —2lcos0)
The line element (5.8.11) represents a 3-dimensional hypersurface of 4-
dimensional spacetime. The infinite red-shift surface now coincide with the

event horizon surface in the dragging coordinate system.

5.8.2 Painleve-like coordinate transformation and null geodesics of
Kerr-NUT blackhole:
To investigate the Hawking radiation as tunneling process it is necessary to
eliminate coordinate singularity at the event horizon. In the expression
(5.8.11) , there still exists coordinate singularity at the event horizon in the
dragging coordinate system. So we continue performing a general Painleve
coordinate transformation[173]. For this transformation we set,

ity o = A+ F(r,0)dr+ Gir,8)dd

where F(r,0) and G(r,0)are two determined functions of rand @ , and
satisfy the integrability condition ,
i LU i e (5.8.13)
o0 or
Thus from (5.8.11) we obtain,

ds® = Fos dr* + {gm FX(r,0)+ 20 }dr2 +{g00 Gz(r,ﬁ) +2,5 }d92 +2G(r,0) gy, dido

+2F(r,0)G(r,0) go, drd0 +2F (r,0) g, dtdr
................................. (5.8.14)

We demand that constant time- slices are flat Euclidean space in radial. So
we set,

oo Fz(r,ﬁ)-i-g” =1

somraec cat Dot DR e 5.8.15

S F(r0) =t [ Eu ( )
g

From equation (5.8.13), G(r.6) = j5F;;9) TR L (5.8.16)

where C(6) is an arbitrary analytic function of 6 .
Substituting the value of F(r,8) into equation (5.8.14) we get,
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By o

ds? = g . di* +dr’ + {gm G (r.0)+ 2., }dal + 2V g, (1-g,,) G(r,0)drd®
+2g0, G(r,0)dld0 £ 2\ g,y (1~ g,,) dedr
.................... (5.8.17)

The positive sign (+) denotes the spacetime line element of the outgoing
particle and the minus sign (-)denotes the spacetime line element of the
ingoing particles at the horizon.

According to Landau’s theory of the coordinate clock synchronization[174]
in a spacetime decomposed in 3+1 dimension, the difference of coordinate
times of two events taking place simultaneously in different place is

AT=o[Egd - =100) St (5.8.18)
g

00
[f the simultaneity of coordinate clocks can be transmitted from one place to
another and has nothing to do with the integration path, components of the
metric should satisfy

S 2, ) &, S
-_ (= (-— 5 4 =1!2‘3 ........................ 5-8-19
ox’ ; g()o) ox' ( Lo L i ( )

Now the metric (5.8.17) in the new coordinate system , which we called the
dragged Painleve-Gullstrand - Kerr-NUT metric, has a number of attractive
features : (1) the metric is well-behaved at the event horizon; (2) the time
coordinate ¢ represents the local proper time for radially free-falling
observers; (3) the hypersurfaces of constant time-slices are just flat
Euclidean space in the oblate spheroidal coordinates; (4) by substituting the
components of the metric (5.8.17) into equation (5.8.19), we see that the

metric satisfy the Landau’s condition of the coordinate clock
oF (r,0) oG(r,0)
Y7

synchronization ; (5) the infinite red-shift surface coincide

with the event horizon surface so that the WKB approximation can be used.
These attractive features are very advantageous for us to discuss Hawking
radiation as tunneling and to do an explicit computation of the tunneling
probability at the event horizon.

Now in order to investigate the tunneling process we evaluated the radial
null geodesics described by equation (5.8.17) . Since the tunneling processes
take place near the event horizon, so we may consider a particle tunneling
from the event horizon as an ellipsoid shell . To conserve the symmetry of
the spacetime , we think the particle should be still an ellipsoid shell during
the tunneling process 1.e. the particle does not have motion in
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@-direction[179]. Under these condition we obtain the radial null geodesics
from equation (5.8.17) (ds® =0=d@?) as

= sin@[2p* —/p’(p* - A)]
\Jsin? 6(r> +a® +1%)> = A(asin’ 6 - 2/ cos )’

i ..(5.8.20)
where a dot denotes dlfferentlatlon w1th respect to ¢ and the positive sign
(+)represents an outgoing geodesics and the negative sign (-) represents an

ingoing geodesics.

5.8.3 Tunneling rate of the Kerr-NUT blackhole:

We adopt the picture of a pair of virtual particles
spontaneously created just inside the horizon. The positive energy virtual
particle can tunnel out and materialize as a real particle escaping classically
to infinity. The negative energy particle is absorbed by the blackhole
resulting in a decrease in the mass and the angular momentum of the
blackhole. We consider the particle as an ellipsoid shell of energy » and
angular momentum wa. When the particle’s self-gravitation is taken into
account, then equation (5.8.17) and (5.8.20) should be modified. To ensure
the conservation of energy and angular momentum, we fix the total mass and
angular momentum of the blackhole and allow the hole mass and angular
momentum to fluctuate. When particle tunnels out , the blackhole mass and
angular momentum will become M - o and a(M - w) respectively.

The shell of energy will move along the modified null geodesic in the radial

direction
sinf[xp’ —\ p’(p* —A )]

\/sin2 0(r? +a* +1*)? —A_(asinz 6 -2l cos6)’
............................. (5.8.21)

¥y=

2

where A =72 -2(M -w)+a® -1? is the horizon equation after the emission of
the particle with energy o .

Now the coordinate ¢ does not appear in the dragged Painleve-Gullstrand
Kerr-NUT metric (5.8.17) . So ¢ is an ignorable coordinate in the
Lagrangian function Z.. To eliminate this degree of freedom completely, the
action should be written as
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L= (L2 Bgyds s vie bt iisviniis v T L o)
So the imaginary part of the action is

roug (Frils)

mS=Im [[ | (}dP,’—};ﬁdP;)]i ............................... (5.8.23)
n, (0,0) r

where P and P,are two canonical momentum conjugate to r and ¢
respectively.

r,=M+M? —d> +1* and r,, = (M -w)++(M -w)’ -a* +1* are the locations
of the event horizon before and after a particle tunnels out, they are just
inside and outside the barrier through which the particle tunnels.

We now eliminate the momentum in favor of energy by using Hamilton’s

equations

- j—g i ff%j“’) ............................ (5.8.24)

4o j_g = aé%};a’) ..................... (5.8.25)

where dH,,,, = QdJ = aQd(M - w) represents the energy change of the

blackhole because of the loss of the angular momentum when a particle
tunnels out [180] , and the dragging angular velocity is given by
2

z A -2 2 e
Q:—A P~=asin” 8(r"+a" +1") (5.8.26)

sin? 8(r* +a* +1*)  -A P’
Substituting equations (5.8.21), (5.8.24) (5.8.25) and (5.8.26) into equation
(5.8.23) and noting that we must choose the positive sign in equation
(5.8.21) as the particle is propagating from inside to outside the horizon,
then we have

rrrulM—ﬂJ
ImS=1Im[ | [ (=d g eah
i, M

7

(r> +a” +1%)*sin? 8 - (A")*(asin’® 8 - 2/ cos8)?

touM - \/
=] 1 —al) drd(M — ")
mH( . sinf[p’ -y p*{p* - (8"’ } S
.......................................... (5.8:27)
where
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(AY =r'+a’ - -2M -y =0-r)r-r)
rif =M—w'i\f(M_a,f)2 e T
We multiply and divide the integrand with p* + J p*{ p?=(4)? } to obtain

oM —w 2 2 P LE: "2 2 2 282 =D ot "2 CE | 2L ;
[mS = Im J- J- (1 - aC) [p +Jp {p (A") ]\/(r +a/ +1 ),Sm,? (A" (asin® @ —2lcosd
ru M (F=F NP1 )p EinY
drd(M - @")
........................................ (5.8.28)

We see that » =r, is a pole of order one. The integral can be evaluated by

deforming the contour around the pole, so as to ensure that the positive
energy solution decay in time. Note that all real parts , divergent or not , can
be discarded since they only contribute a phase. Doing the r integral first we
obtain,

g sy Mr UM -w')? —az+lz]+a2+2(M—a)’)\f(M—a)’)2—a2+lz
mo =—-27
i JM =o' Yeat ¢ 1P

d(M - o)

................................ {5.8.29)
Finishing the integral[178] we have
ImS = —7[(M - )* = M* +(M - 0)|(M -0)* —a* +1* —=M\M? —a* +1*]

............................... (5.8.30)
The tunneling rate is therefore

T 008 e2:r[(M-w)J—M1+(M—w)J(M—w)3-a2+F YN YRR
.............................. (5.8.31)
Using Bekenstein-Hawking entropy formula S, = z(+} +a’ +1%),
we have S, (M) =7[2M? +2M\M? —a® +1* —=a® +17]
S (M = @) = 7[2(M - 0)* +2(M - o) (M -0)* —a® +1* —a* +1*]

ASpy =Sy (M — @) =Sy, (M)
=27[(M - @)’ + (M - oM - )} —a® +1* =M? -MIM* —a* +1*]
Where AS,, is the difference of entropies of the blackhole before and after

the emission. From equation (5.8.31) we have
i il W o8 R S e D B (3.8.32)

- 104 -




From equation (5.8.32) we se¢ that when the quadratic term neglected, then
it reduces to a Boltzmann factor for a particle with energy at the inverse

2
12 __27ElM+\fM2 =" +I2\

Hawking temperature i.e. e where f=—=—= - -
T~ IMP=a’ +1°

Also equation (5.8.32) indicates that when the energy conservation and the
angular momentum conservation as well as the particle’s self-gravitation are
taken into account , the tunneling rate is related to the change of blackhole
entropy during the process of the particle’s emission and the radiant
spectrum is not precisely thermal.

5.9 Uncharged particle tunneling from Kerr-Newmann Blackhole:

5.9.1 Dragged Painleve-Gullstrand Kerr-Newmann metric and null
geodesics of Kerr-Newmann Blackhole:

The line element of Kerr-Newmann metric in the Boyer-Lindquist
coordinate system is given by,

ds? = -2 (di - asin® 0dg)” + Z dr® + p'd6® +
-

sin’ @

P
A

[(r* +a®)dp - adt)’

where
A=r?-2Mr+a’ 0
2 % 4 g*cos’ @
J

4 =i
M

Here M is the mass of the body, J is the angular momentum , Qis the
electric charge. The equation of the event horizon is given by,

A =0 which gives, F1=Mi«/M2—al—Q2 . Misa’ 20N

In order to investigate Hawking radiation as tunneling from Kerr-Newman
blackhole we first adopt dragging coordinate system to overcome two

difficulties. First , the event horizon r, = M+ M?-a*-Q* does not
coincide with the infinite red-shift surface r. =M £ M’ -a’ cos’0-0°

which means that there is an energy layer exists between them. So the
geometrical optical limit cannot be applied. Second , as there exist a frame
dragging effect in the stationary rotating spacetime, the matter field in the
ergosphere near the horizon must be dragged by the gravitational field
also, so a reasonable physical picture should be depicted in the dragging

-105 -




coordinate system. This hints that we must transform the metric (5.9.1)
into a dragging coordinate system.

v el S Bel s (5.9.2)
di goo

where Q is the angular velocity.

For the metric (5.9.1) we have,

—(A—-a’sin’ ) p’ sin? B[(r +a*)? — Aa’ sin” 6]
8o = 2 R4 i g22=)02= 23T 2
P A p
—asin? 9[(r* +a*)— Al
8o = P2

dp __ & al(r’ +a’) - Al
From (5.9.2), Bert o8
eami ) dt o (r* +a*)? - ha’sin® 0

At the horizon the angular velocity becomes,
)= r_%; ............................ (5.9.4)
The li;le element (5.9.1) in the dragging coordinate system becomes,
ds® = ngD di? +g, At +8nd0®  coiieriiiiiiienne (5.9.5)
: g0 -Ap’

where =g —28=
5= 0w Bl (r2 +a*)* —Aa’sin’ 0

The line element (5.9.5) represents a 3_dimensional hypersurface of 4-
dimensional spacetime. Although in the dragging coordinate system does
not has any singularity at the event horizon, and we can also get the
Hawking pure thermal spectrum , yet this coordinate system is not what we
want because it is not flat Euclidean space in radial to constant time slices.
So we continue performing a general Painleve —Gullstrand coordinate
transformation[173]. For this transformation we set,
diy = dt+ F(r,0)dr +G(r,0)d0  ooeeceecsirsescienneees (5.9.6)

where F(r,6) and G(r.@)are two determined functions of rand & , and
satisfy the integrability condition ,

SF(r,0) _ &G(r.,0)

s6 o

Thus from (5.9.5) we obtain,
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ds® = 84 di’ +{g00 F*(r,0)+ g }a’r2 - {go{, G (r,0)+gn }d@z +2G(r,0) gn did@

+2F(r,)G(r,0) g drd0 + 2F(r.0) g, didr

................................. (5.9.8)
We demand that constant time- slices are flat Euclidean space in radial. So
we set,
8o F*(r.0)+g, =1
TR s R e L 5.9.9
= Fi(rB) =k ahe
&oo
From equation (5.9.7) , G(r.0) = j‘%j@dr PO s (5.9.10)

where C(0) is an arbitrary analytic function of € .
Substituting the value of F(r.0) into equation (5.9.8) we get,

ds? = gg, dt’ +dr’ +{gm G*(r.0)+gx» }dc?? +2\/ g, (1—g1) G(r,0)drd0
+2g,,G(r,0)dldo +24go(1—gy) didr
.................... (5.9.11)

The positive sign (+) denotes the spacetime line element of the outgoing
particle and the minus sign (-) denotes the spacetime line element of the
ingoing particles at the horizon.

According to Landau’s theory of the coordinate clock synchronization[174]
in a spacetime decomposed in 3+1 dimension, the difference of coordinate
times of two events taking place simultaneously in different place is

AT =R T GRS, el e (5.9.12)
oo

If the simultaneity of coordinate clocks can be transmitted from one place to
another and has nothing to do with the integration path, components of the
metric should satisfy

8. T Oy 8 £2
&"( goo) 5x’( oo i
Now the metric (5.9.11) in the new coordinate system , which we called the
dragged Painleve-Gullstrand Kerr-Newman metric, has a number of
attractive features : (1) the metric is well-behaved at the event horizon; (2)
the time coordinate ¢ represents the local proper time for radially free-falling

observers; (3) the hypersurfaces of constant time-slices are just flat
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Euclidean space in the oblate spheroidal coordinates; (4) by substituting the

components of the metric (5.9.11) into equation (5.9.13), we see that the

metric satisfy the Landau’s condition of the coordinate clock

5Fg; o) = ﬁg—gl : (5) the infinite red-shift surface coincide
7

with the event horizon surface so that the WKB approximation can be used.

These attractive features are very advantageous for us to discuss Hawking

radiation as tunneling and to do an explicit computation of the tunneling

probability at the event horizon.

synchronization

Now in order to investigate the tunneling process we evaluated the radial
null geodesics described by equation (5.9.11) . Since the tunneling processes
take place near the event horizon, so we may consider a particle tunneling
from the event horizon as an ellipsoid shell . To conserve the symmetry of
the spacetime , we think the particle should be still an ellipsoid shell during
the tunneling process i.e. the particle does not have motion in -
direction[179]. Under these condition we obtain the radial null geodesics
from equation (5.9.11) (ds* =0= de?) as

e | BE e e S (5.9.14)

\[(rz waty —a*Asin’ @
where a dot denotes differentiation with respect to ¢ and the positive sign
(+) represents an outgoing geodesics and the negative sign (-) represents an
ingoing geodesics.

5.9.2 Tunneling rate of Kerr-Newman blackhole:

We adopt the picture of a pair of virtual particles
spontaneously created just inside the horizon. The positive energy virtual
particle can tunnel out and materialize as a real particle escaping classically
to infinity. The negative energy particle is absorbed by the blackhole
resulting in a decrease in the mass and the angular momentum of the
blackhole. We consider the particle as an ellipsoid shell of energy o and
angular momentum wa. When the particle’s self-gravitation is taken into
account, then equation (5.9.11) and (5.9.14) should be modified. To ensure
the conservation of energy and angular momentum, We fix the total mass and
angular momentum of the blackhole and allow the hole mass and angular
momentum to fluctuate. When particle tunnels out , the blackhole mass and
angular momentum will become M —o and a(M - w) respectively.
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The shell of energy will move along the modified null geodesic in the radial
direction

2 i
s 2w AR s e e (5.9.15)

\ﬁrz £a Y~ Asin® 0

where A =r? —2(M -w)+a® +Q? is the horizon equation after the emission of
the particle with energy o .

Now the coordinate ¢ does not appear in the dragged Painleve-Gullstrand
Kerr-Newman metric (5.9.11) . So ¢ is an ignorable coordinate in the

Lagrangian function L.. To eliminate this degree of freedom completely, the
action should be written as

!

So the imaginary part of the action is

Towe (i F) 2
ImS = Im j[ j (rdP, —¢dp,;)]-‘3’_5 ............................... (5.9.17)
r

e (0,0)
where P.and P are two canonical momentum conjugate to r and ¢
respectively.

w0 and  r,=(M-0)+{M-0)-g'-0" arc the

locations of the event horizon before and after a particle tunnels out, they are
just inside and outside the barrier through which the particle tunnels.

We now eliminate the momentum in favor of energy by using Hamilton’s

equations

% - gl _d(M - o)

?‘-—EE l(r;¢.l’¢) —T R R R L B (5918)
£t _ o4 - ) i1

¢ P, iy e | (5.9.19)

where dH ., = QdJ =aQd(M - o) represents the energy change of the
blackhole because of the loss of the angular momentum when a particle
tunnels out [180] , and the dragging angular velocity is given by

codbra B e (5.9.20)

(> +a’)’ —Aa’sin’ @

- 109 -




=il bl Sas

Substituting equations (5.9.15), (5.9.18)and (5.9.19) into equation (5.9.17)
and noting that we must choose the positive sign in equation (5.9.15) as the
particle is propagating from inside to outside the horizon, then we have

FyuM =@ oM - 1__ Qr 2 i 242 £ ZAI . 29
ImsS = Im[ | j(l—aﬂ')ﬂd(M—m')]ﬂm[j f Gt )2(r 2 )2 ¢ SIN 9 pd(M - o
o ; o P =P (p* -B)

............................. (5.9.21)
where :
A=r+a’+0° -2(M-a)r =(r-rDr-r)

r =M—a)'i\f(M—a>')2 ~a’ -0’
We multiply and divide the integrand with p* ++p"( p> —A') to obtain

s Im[’wjz”f].“' (1-aQ)[p +J}1(52 —A:)] (r : a%)? —a’A'sin? @ Tl
T M pPr=rYr=r)
........................................ (5.9.22)
We see that » =r/ is a pole of order one. The integral can be evaluated by
deforming the contour around the pole, so as to ensure that the positive
energy solution decay in time. Note that all real parts , divergent or not, can
be discarded since they only contribute a phase. Doing the r integral first we

obtain,

Moo (M-@') +(J\d!'—w')\/(7\4'-—co')2 “at =0 —1—(512 +0%)
ImS =-27 J 2 d(M-a")
Y, \Md(—a)')z—az—Q2

i e el 923
Finishing the integral we have

ImS = 7[M? - (M - o) + MM* -a® -0’ (M- (M -0) -a'-0"]

e Y

The tunneling rate is therefore

I e—ZImS s e—Z:r[MZ—(M-m):+M\fM2—az—Qz M=) (M-w)*-a*-0%]
.............................. (5.9.25)

Using Bekenstein-Hawking entropy formula S, =7(r} +a’),

we have S, (M) =r[2M’ +2M(M? -a* -0’ -a’ =0’]
S, (M = @) = 2[2(M - o)’ 1AM -0 M -0 —a* -0 ~a" - Q’]
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ASpy = SBH(M_Q))—SBH(M)

(M=) + (M- oM —0) —a* 0" ~M* -M\M’ —a’ =]
where AS,, is the difference of entropies of the blackhole before and after
the emission. From equation (5.9.25) we have
S e R e e e o T e (5.9.26)

From equation (5.9.26) we see that when the quadratic term neglected, then
it reduces to a Boltzmann factor for a particle with energy» at the inverse

e o 21:[M+\/M2 e —QZ]Z
TH__K-_— M —a* - 0> :
Also equation (5.9.26) indicates that when the energy conservation and the
angular momentum conservation as well as the particle’s self-gravitation are
taken into account , the tunneling rate is related to the change of blackhole
entropy during the process of the particle’s emission and the radiant
spectrum is not precisely thermal.

Hawking temperature i.e. e where f=

5.10 Uncharged particle tunneling from BTZ blackhole:
5.10.1 BTZ blackhole metric:
The BTZ blackhole metric is given by,
ds? = <N (P> + N2 (r)dr? + P2 [N* (P dt +dg) oovvnnniinnnnnnns (5.10:1)

with cosmological constant A =—/7".
Here the squared lapse N*(r)and the angular shift N?(r)are given by

2 2

J v
NI =-M+—+ NS S i e v 5.10.2
(r) TR = ( )
where okt o Derc - and-0<@<2s: and M ,J denotes the

ADM mass and angular momentum of the BTZ blackhole respectively
(The BTZ unit G, = % is adopted throughout this section).

The equation of the event horizons given by
i R SO e S (5.10.3)
which gives

..........................
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with M >0 and  |J|sMI.
The area of the outer event horizon 4, =2, and Bekenstein-Hawking

entropy of the spinning BTZ blackhole is twice the perimeter L of the
event horizon[40]
S (M, 0)=2L =47, wvvoireiionimmivniionmansinaiiesiaia (5.10.3)

5.10.2 Dragged Painleve-Gullstrand BTZ metric and null geodesics of
BTZ blackhole:
In order to investigate Hawking radiation as tunneling from BTZ
blackhole we first adopt dragging coordinate system to overcome two

[MJ_q/MZ —“;-;] }';

difficulties. First , the event horizon r, ={ I 5 ~ does not

coincide with the infinite red-shift surface r, = +/\M , which means that
there is an energy layer exists between them. So the geometrical optical
limit cannot be applied. Second , as there exist a frame dragging effect in
the stationary rotating spacetime, the matter field in the ergosphere near
the horizon must be dragged by the gravitational field also, so a reasonable
physical picture should be depicted in the dragging coordinate system. This
hints that we must transform the metric (5.10.1) into a dragging coordinate
system.

L R e s e (5.10.6)

dt . PR
where Qis the angular velocity. The line element (5.10.1) becomes
A = = NN AE N PO S v etisnianvrnstng (5.10.7)

In fact the line element (5.10.7) represents a 2 -dimensional hypersurface of
3-dimensional BTZ spacetime. This dragging coordinate system is not what
we want to use for resolving tunneling effect in BTZ spacetime. So we need
another coordinate transformation to make none of the components of either
the metric or contra metric diverge at the horizon. Moreover constant time
slices are just flat Euclidean in radial. To obtain a coordinate system
analogous to Painleve-Gullstrand coordinate[173] , we should perform a
coordinate transformation

R | ) e (5.10.8)

where f(r)is a function of r, independent of /.

Putting equation (5.10.8) into(5.10.7) we obtain

ds® = —N2(r)dt? = 2N*(r) f(r)dtdr + [N (r) - N (e i (5.10.9)
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As a corollary, we demand that the metric (5.10.9) is flat Euclidean in radial
to the constant time slices. We then get the condition
N2 () -N()f*(r)=1

lmiiite) (5.10.10)

B a0 L i e e e
1) N )
So the equation (5.10.9) becomes
ds® =—N2(r)d12j:2«/1—N2(r) IR T LA e et e (5.10.11)

The positive sign (+) denotes the spacetime line element of the outgoing
particle and the minus sign (-) denotes the spacetime line element of the
ingoing particles at the horizon. There is now no singularity at the event
horizon and the true character of the spacetime as being stationary but not
static , is manifest. Also the infinite red shift surface coincide with the event
horizon surface in the new line element which shall be referred to asa
dragged Painleve -BTZ metric.

The radial null geodesics given by (putting ds* =0)

e B N e e s et (5.10.12)

where a dot denotes differentiation with respect to ¢ and the positive sign
(+) represents an outgoing geodesics and the negative sign (-) represents an
ingoing geodesics respectively under the assumption that / increase towards
future.

5.10.3 Tunneling rate of BTZ blackhole:

Let us now focus on a semi-classical treatment of the associated radiation

( outgoing massless particle). We adopt the picture of a pair of virtual
particles spontaneously created just inside the horizon. The positive energy
virtual particle tunnels out from the event horizon and materialize as a real
particle escaping classically to infinity. The negative energy particle is
absorbed by the blackhole resulting in a decrease in the mass .In the case of
the rotating BTZ blackhole with fixed angular momentum J , the emitted
particle is simply visualized as a shell of energy . When the particle’s
self-gravitation is taken into account, then equation (5.10.11) and (5.10.12)
should be modified. To ensure the conservation of energy , we must fix the
total ADM mass and let the ADM mass M of the BTZ blackhole vary. If a
shell of energy  is radiated outwards the outer horizon , then the BTZ
blackhole mass will be reduced to M -w, SO the line element will be

modified to
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BT T [ e =

o )
ds* =-N (r)di’ i2\}1—-N () didr+dr? iiooooiiiiiniienionas (5.10.13)

The shell of energy will move along the modified null geodesic in the radial
direction

o 2
;‘=i1—\’1—N i v oo (5.10.14)

_2 2 2
where N () =-(M - o) +%—+4i2— is the horizon equation after the emission
r

of the particle with energy @ .

The imaginary part of the action for an s-wave outgoing positive energy
particle which crosses the horizon outwards from r, to r,, is expressed as,

m oul

ImS = ImrUTP,, e ImrTPIdP,, e (5.10.15)
Tin Ty O

where r, and r,, are the respective initial and final radii of the blackhole , P,

is the canonical momentum conjugate to r. The trajectory between these two
radii is the barrier that the particle must tunnel through and

[M + MZ—J—Z]

=1 !

: 2 e (5.10.16)
[(M—w>+,/(M—m)2—f—2

rl =1

out 2

By applying Hamilton’s equation we change the momentum variable to the
energy variable as

SRl [0 E1) SREE i SRR eI (5.10.17)
ap. dP,
From (5.10.15) we obtain
M-w t,, '
ms=1m [ | A I (5.10.18)

2 2
o ""l—\F+(M—aJ' R

The integral can be done by deforming the contour, so as to ensurc that the
positive energy solutions decay in time ( i.e. into the lower half of @' plane).
Doing the o' integral first we obtain,

RS S 1| et e it (5.10.19)

Finishing the integral we have
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ImS = 27[F, =F,u] s cvainoisvainiinivensaven (5.10.20)
The tunneling rate is therefore

[ @ 208 = ptPUon™t) o o8 L s s (SLe2])
where AS,, =S, (M - ©,J.1)=S,,(M,J,]) is the difference of the Bekenstein-
Hawking entropies of the BTZ blackhole before and after the emission of the
shell of energy .

It should be noted that the above discussion is limited to the case of energy
conservation only. If we consider a spinning BTZ blackhole , so the rotation
degree of freedom should be taken into account. This can be done by
considering the emitted massless particle as a shell of energy wand angular
momentum ;. Now taken into account not only the energy conservation but
also the angular momentum conservation, we must fix the total ADM mass
M and total angular momentum J, but let the ADM mass M and angular
momentum J of the BTZ blackhole vary. If a shell of energy o and angular
momentum j tunnels out from the event horizon, then the BTZ blackhole
mass and angular momentum will be reduced to M - and J - j respectively.

Therefore the modified line element and modified null geodesics are given
by

=2 58"
ds’ ==N (Pdi? £2\1=N () didr+dr’ .ooooooeeiiiiiniannnns (5.10.22)

and

1=
Pl == () e tmoks pavnasonsi s s (5:10.23)

w2 2 2
where N (r)=—(M—a))+—~+(J4— /)" is the horizon equation after the
&

emission of the particle with energy o and angular momentum i

Now the imaginary part of the action should be written as
Fouy Bout
ImS = Im[ [P.dr- [P,dg)
B Gin
Fom P, ‘Pé
=1Im | [ [dP/dr- [ap,dg)
Tin 0 0
e CPiby) _ : o
=Im |[ [ (dP! —$dPN=
,.

e (0,0)

.............................. (5.10.24)
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where P and P,are two canonical momentum conjugate to r and ¢

respectively.
To remove the momentum in favor of energy , we use the Hamilton’s
equations
L _dH _d(M - o)
de (ri@.Fy) dP, 5 10 25
‘gj_dﬂ e A e e (5.10.25)
dP¢ (¢.r.F) dP¢
where dH,,,, = Q d(J - j)represents the energy change of the blackhole

because of the loss of the angular momentum when a particle tunnels out
and the dragging angular velocity is given by
Q- ”2 S e e (5.10.26)

'S
Substituting equations (5.10.23),(5.10.25) and (5.10.26) into equation
(5.10.24) we have

Toud M =, = 1)

1mS=1mJ’ j [d(M—w’)—Q’d(-f—j’)}i

e (MJ) T
oM —0,J =) / 12 ./
=im | [ N jaM - o) - L d - e
f (MJ)
s L2 T)
Finishing the integral we have
IS =2al7, =1, ]
The tunneling rate is therefore
[ g 2009 = e tad s GBI i i e s (5.10.28)

Reproduces the Krause-Parikh-Wilczek’s standard result for the tunneling
picture, where AS,, =S,, (M -o,J - j,1)-S,, (M.J,0) is the difference of the
Bekenstein-Hawking entropies of the BTZ blackhole before and after the
emission of the shell of energy »and angular momentum ;.

5.11 Uncharged particle tunneling from non-accelerating and rotating
blackholes with electric and magnetic charges:

5.11.1 Non-accelerating and rotating blachkholes with electric and
magnetic

charge: The Plebanski-Demianski [169,170,171] metric covers a large
family of spacetimes which include, among others, the well known

blackhole solutions like Schwartzschild, Reissner-Nordstr0m , Kerr, Kerr-
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Newman, Kerr-NUT, Kerr-Newman-NUT and many others. Here we study a
special case of this family — blackholes with rotation but non-accelerating
with electric and magnetic charges. The metric of this such kind of blackhole
is given by [172]

i e 2 .2 2 IO L D
d.5‘2=—(A a i;m Q)dl2+p—dr2+p3d92+sm O[(r° +a ), a”Asin 8]d¢2
P A P’
_24:;rsm'H[(r;-&-ar')—/_\]dMr¢
where A=r’+a’ +e’ +g° —2Mr, p? =r?+a’cos’ §. Here M is the mass

of the blackhole, e and g are the electric and magnetic charges respectively,
a is the angular momentum per unit mass. The event horizon equations are
given by A =0 which gives

o MM~ Lg% i ivisons s (5.11.2)
The event horizon area of this blackhole is given by
A=AFPEGA ) cuinsvsns sisvinis insisivnons (3:11.3)

and Bekenstein-Hawking entropy

A ) 2 ] 5 9 5 5 5 o
S gy =I=ﬂ'(?’: +a)=a[2M" +2M\/M' —a’-e’-g* -e’-g’]

............................ (5.11.4)
5.11.2 Dragging coordinate system and infinite red- shift surface of
non-accelerating and rotating blackholes with electric and magnetic
charges:

The infinite red shift surface is given by g,, =0 which gives

re = M M = OO B0 = P2 L ishinhs sovnnivvenns ne e (511.5)

Obviously the infinite red shift surface does not coincide with the event
horizon surface , which means that there is an energy layer exists between
them. So the geometrical optical limit cannot be applied. Also there exist a
frame dragging effect in the stationary rotating spacetime, the matter field in
the ergosphere near the horizon must be dragged by the gravitational field
also, so a reasonable physical picture should be depicted in the dragging
coordinate system. This hints that we must transform the metric (5.11.1) into
a dragging coordinate system.

Lot Qalilc Sn
dt [
where Qis the angular velocity.
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For the metric (5.11.1) we have,

-(A-a’sin’ ) p’ : sin? @[(r® +a*)? —a’Asin’ @
oo = P R (Rt 6T My U i P [ )3 |
P A p
_—asinzﬁ[(rz-kaz)—/_\]

03 PE

From (5.11.6), o lval e | NG SR e (5.11.7)
dt (r"+a’) —aAsin“ g
At the horizon the angular velocity becomes,
o

s LIRS e SHE It T v (5.11.8)

h 3 2
v, ta

The line element (5.11.1) in the dragging coordinate system becomes,
ds® Bpn i g LA i e (5.11.9)

g _ - Ap
g5 [(r* +a*)’ —a*Asin® 6]

The line element (5.11.9) represents a 3-dimensional hypersurface of 4-
dimensional spacetime. The infinite red-shift surface now coincide with the

event horizon surface in the dragging coordinate system. So the geometrical
optical limit can be applied now.

where goo = oo —

5.11.3 Painleve-like coordinate transformation and null geodesics of
non-accelerating and rotating blackholes with electric and magnetic
charges:
To investigate the Hawking radiation as tunneling process it is necessary to
eliminate coorditanate singularity at the event horizon. In the expression
(5.11.9), there still exists coordinate singularity at the event horizon in the
dragging coordinate system. So we continue performing a general Painleve
coordinate transformation[173]. This transformation can done by

di~3 d + P B)dr Gl BYa0 - vvavbais svnss svsiion dovh veiii (5.11.10)

where F(r,6) and G(r,0)are two determined functions of rand ¢ , and

satisfy the integrability condition ,

Sl (TR UG R R R (5.11.11)
00 or
Thus from (5.11.9) we obtain,
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ds® = g, di’ +{gm FX(r.0)+g, }drz +{gm G*(r,0)+ g4 }d@‘* +2G(r,0) g, did6

+2F(r,0)G(r,0) g4, drd0 +2F (r,0) g, didr

................................. (5:11:12)

We demand that constant time- slices are flat Euclidean space in radial. So
we set,

g0 F (r,0)+g, =1

R AT o e L O N 51113
S F(r.0) =+ &0 ( )
oo
From equation (5.11.11), G(r,9)=j§.‘fg;+‘9)dr+cw) ............ (5.11.14)

where C(0) is an arbitrary analytic function of & .
Substituting the value of F(r,0) into equation (5.11.12) we get,

ds® = g, di’ +dr’ +{g00 G*(r.0) + g, }dez +2\/ 2o (1= 2,,) G(r,0)drd0
+2g4 G(r,0)dtdd £ 2\/g0(,(1 —g,,) ddr
.................... (5:11:15)

The positive sign (+) denotes the spacetime line element of the outgoing
particle and the minus sign (-) denotes the spacetime line element of the
ingoing particles at the horizon.

According to Landau’s theory of the coordinate clock synchronization[174]
in a spacetime decomposed in 3+1 dimension, the difference of coordinate
times of two events taking place simultaneously in different place is

AT=-[8ugy  (i=123) oo (5.11.16)
oo

If the simultaneity of coordinate clocks can be transmitted from one place to
another and has nothing to do with the integration path, components of the
metric should satisfy
4 g o . &y
o’ ( goo) 5"’( guo)
Now the metric (5.11.15) in the new coordinate system , has a number of
attractive features : (1) the metric is well-behaved at the event horizon; (2)
the time coordinate  represents the local proper time for radially free-falling
observers; (3) the hypersurfaces of constant time-slices are just flat
Euclidean space in the oblate spheroidal coordinates; (4) by substituting the

Sl B 1A e me s iy (5.11.17)
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components of the metric (5.11.15) into equation (5.11.17), we see that the

metric satisfy the Landau’s condition of the coordinate clock
SF(r,0) _ 8G(r,6)
0 or

synchronization ; (5) the infinite red-shift surface coincide

with the event horizon surface so that the WKB approximation can be used.
These attractive features are very advantageous for us to discuss Hawking
radiation as tunneling and to do an explicit computation of the tunneling
probability at the event horizon.

Now in order to investigate the tunneling process we evaluated the radial
null geodesics described by equation (5.11.15) . Since the tunneling
processes take place near the event horizon, so we may consider a particle
tunneling from the event horizon as an ellipsoid shell . To conserve the
symmetry of the spacetime , we think the particle should be still an ellipsoid
shell during the tunneling process i.e. the particle does not have motion in 8-
direction[18]. Under these condition we obtain the radial null geodesics from
equation (5.11.15) (ds® =0=d8?) as

Cb s PTG Bt | (5.11.18)
‘j(rz +a’)’ —a’Asin’ @

where a dot denotes differentiation with respect to + and the positive sign
(+)represents an outgoing geodesics and the negative sign (-) represents an

ingoing geodesics.

*
Vy =

5.11.4 Tunneling rate of non-accelerating and rotating blackholes with
electric and magnetic charges:

We adopt the picture of a pair of virtual particles
spontaneously created just inside the horizon. The positive energy virtual
particle can tunnel out and materialize as a real particle escaping classically
to infinity. The negative energy particle is absorbed by the blackhole
resulting in a decrease in the mass and the angular momentum of the
blackhole. We consider the particle as an ellipsoid shell of energy » and
angular momentum wa. When the particle’s self-gravitation is taken into
account, then equation (5.11.15) and (5.11.18) should be modified. To
ensure the conservation of energy and angular momentum, we fix the total
mass and angular momentum of the blackhole and allow the hole mass and
angular momentum to fluctuate. When particle tunnels out , the blackhole
mass and angular momentum will become M - and a(M - ) respectively.
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The shell of energy will move along the modified null geodesic in the radial
direction

i 2 2___
[P’ -VP (P : Sl (5.11.19)
\ﬁrz 4 q%) ~a* Asin® 8

where A=r?-2(M-w)+a’ +e* +g> is the horizon equation after the
emission of the particle with energy o .

Now the coordinate ¢ does not appear in the dragged Painleve-Gullstrand
metric (5.11.15) . So ¢ is an ignorable coordinate in the Lagrangian function

L. To eliminate this degree of freedom completely, the action should be
written as

L N PO bt vl s St i (5.11.20)

So the imaginary part of the action is

i (FFy) . i i
mS=Im |[ [ AT Sy R e T (511.21)
r, (0,0 r

where Pand Pyare two canonical momentum conjugate to r and ¢
respectively. ‘

7 =M+\fM2 ~a*-e*-g* and r, = (M -w)+|(M -w)* —a’ -¢’ - g are the
Jocations of the event horizon before and after a particle tunnels out, they are
just inside and outside the barrier through which the particle tunnels.

We now eliminate the momentum in favor of energy by using Hamilton’s

equations

! | d(M - )

r=-£§ |("'-¢-Pn)=T e vieie e e e a R AT Wi e da e (511.22)
g B G (5.11.23)

= — =d —_—
(¢:r.1))
dp, dp,

where dH,,,, = QdJ = aQd(M - w)represents the energy change of the

blackhole because of the loss of the angular momentum when a particle
tunnels out, and the dragging angular velocity is given by
L GLLECERE e e (5.11.24)

(r? +a?) —d’ Asin’ 6
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Substituting equations (5.11.19), (5.11.22) (5.11.23) and (5.11.24) into
equation (5.11.21) and noting that we must choose the positive sign in
equation (5.11.19) as the particle is propagating from inside to outside the
horizon, then we have

FoueM =02
1mS=1m[j j (1—aQ')i’id(M-a)')
f M r
FoM -0 ; 2+ 2 2__a2Ar : 29
=Im | [ (1-aQ) G : ) L S“" drd(M - o)
" M [p* —yp*(p* -4
.............................. (5:11:25)

where

A=r’+a’+e’ +g’ -2(M-o')r =(r-r))r-r)
r) :(M—a,v')i'\/(jf—a)")2 —a’-e*-g’
We multiply and divide the integrand with p* +p’(p* - 4") to obtain
FouM -2 2 2 2. KT 2 PR SR )
mS=Im [ [ (1-aQ) Lo* +p’(p A),]‘/(r b )2 ol R
(rer)E=r.)p

Ty M

........................................ (5.11.26)
We see that » =/ is a pole of order one. The integral can be evaluated by

deforming the contour around the pole, so as to ensure that the positive
energy solution decay in time. Note that all real parts , divergent or not, can
be discarded since they only contribute a phase. Doing the r integral first we

obtain,
M-o (M —-a@')? —l(aav2 +e’ +g2)+(M—6o’)\/(74'—a)’)2 —a*-e’-g’
ImS=-27 | 2 d(M - o)
: \/(M—m')z—az—ez—gz
................................ (5.11.27)

Finishing the integral we have
ImS = —7{(M - @)} =M +(M -0} (M -0)’ -a’—¢ —g’ ~M{M* -a*-¢’ - g’]

............................... (5.11.28)
The tunneling rate is therefore

e e-llm.\‘ e e2:r[(M~m)3—M: +(M—ro)\{(M—m)1—az~e3—g31 —M\(M:—uz-e: g%
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Cnimaa(511:29)
Using Bekenstein-Hawking entropy formula S,, =7(r} +a’),

wehave S,,(M)=n2M* +2M{M*-a*-¢’ -g’ -’ - g’}

Sy (M - @) = 7[2(M - @)’ UM -0 (M-w) —a* -’ -g* —e’ —g]

ASyy =Sy (M — @) —Spy (M)
=27F[(4M—a))2+(M—a))J(47M—a))z _al_el_gl _M2 _MW'Z _al’_e] _gl]

where AS,, is the difference of entropies of the blackhole before and after

the emission. From equation (5.11.29) we have

Do il B it Bl in ey lva S Sk TR (5:11:30)

The result is obviously consists with an underlying unitary theory.
Following the reference [18] , expanding AS,, in (@ -w,) and neglecting the

higher order terms we have

risd 7 M(P+e’+g?)
—ﬁl{.‘)—w;,][]—-—l——[.‘\f'f M- -a"-e"-g —(@-awy)]
i

[~e™m = ~ AR ey (5.11.31)
where o, = awQ and g is the inverse Hawking temperature given by

2 2 2 21

ﬁzizgfr—= 2”[M+\{M e L Also in equation (5.11.29) we see
T; K \/ﬂz_az_ez_gz

that the first term gives the thermal Boltzmann factors g el for Ahe
emanating radiation. The second term represents correction from the
responds of the background geometry to the emission of a quantum.
Furthermore equation (5.11.30) indicates that when the energy conservation
and the angular momentum conservation as well as the particle’s self-
gravitation are taken into account, the tunneling rate is related to the change
of blackhole entropy during the process of the particle’s emission and the
radiant spectrum is not precisely thermal.

5.11.5 Concluding remarks:

In this section, we have presented the Hawking radiation as tunneling from
non-accelerating and rotating with electric and magnetic charged blackhole
by applying Krause-Parikh-Wilczek’s semi-classical quantum tunneling
method[13,14,15,16]. We find that the emission rate at the event horizon 18
equal to the difference of Bekenstein-Hawking entropy before and after the
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emission of a particle. The Hawking temperature of this type of blackhole
recovered by expanding AS,, in (o-®,) and neglecting the higher order

terms.

In special case , if we put a=e=g =0 then the result reduces for the
Schwarzschild blackhole and if a = o, g =0 then the result reduces to the

Reissner-Nordstrom blackhole and supports the Parikh-Wilczek’s result[14].
Also if we assume the equivalent charge 0” =e’ + ¢’ then the result is

similar for the tunneling of uncharged particle from Kerr-Newman
blackhole[18].

5.12 : Uncharged particle tunneling from Kerr-Newman-NUT
blackhole :

5.12.1 Kerr-Newman-NUT blachkhole: The Kerr-Newman-NUT
blackhole metric can be given by [179]

sin? 0[r> + (I +a)*)’ - A(asin® 6 + 4l sin’ g)2

b ) 2
FERNE (a2 B BN b ; d¢
p A p
2[A(asin® 9+4Isin2g)—-asin29 [r* +(+a)’]
i 2 = dideg
Yo
........................... (5:12.1)
where

A=rligtsetsgi=L=2Mp — pl=¥ +( +acos®)’. Here M is the mass of
the blackhole, e and g are the electric and magnetic charges respectively, a is
the angular momentum per unit mass, / is the NUT parameter. The event
horizon equations are given by A=0 which gives

r; =Mi\/1’T42 e o s e e T A
The event horizon area of this blackhole is given by
A= AT F AL HT2Y v vion woivi s miins wannsdi o (5:12.5)

and Bekenstein-Hawking entropy

S =§=7r(rf +a® +1%) = a[2M? +2M\/M2 —at-et-gr+l’ o2 -g° +21%]
............................. (5.12.4)

L




5.12.2 Dragging coordinate system and infinite red- shift surface of
Kerr-Newman-NUT blachkhole :

The infinite red shift surface is given by g, =0 which gives

r‘i=M:.|:\/F—azcoszé’-—ez-gz+t’2 .................................. (5.12.3)

Obviously the infinite red shift surface does not coincide with the event
horizon surface , which means that there is an energy layer exists between
them. So the geometrical optical limit cannot be applied. Also there exist a
frame dragging effect in the stationary rotating spacetime, the matter field in
the ergosphere near the horizon must be dragged by the gravitational field
also, so a reasonable physical picture should be depicted in the dragging
coordinate system. This hints that we must transform the metric (5.12.1) into
a dragging coordinate system.

e S R e e (5.12.6)
dr oo

where Qis the angular velocity.

For the metric (5.12.1) we have,
=—(A—a2 sin” @) p’

oo pz — &n =Zs gn 2,02=
sin? O[(r> + (I +a)*]’ - A(asin® 6 + 4lsin’ g)z
8 = P
A(asin® @ +4lsin’ g)-asirﬁ O[> +(+a)’]
g = 5
el

A(asin® @ + 4l sin’ -g—) —asin? 0[r* + (1 +a)’]

o (5106, L g Bl 4
sin2 9[(r2 + (I +a)*]* — A(asin® @ + 4l sin’ 5)2

................................ (5.12.7)
At the horizon the angular velocity becomes,

a
=-r2—+(m)7 ............................ (5128)

The line element (5.12.1) in the dragging coordinate system becomes,

Q,

e p i ik E et e na(513.9)
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A it
where g, = 20 —Ee Ap”sin” & -
g5 sin? 6[r + (I +a)’]> — A(asin’ 8 + 4lsin® 5)2

The line element (5.12.9) represents a 3-dimensional hypersurface of 4-
dimensional spacetime. The infinite red-shift surface now coincide with the
event horizon surface in the dragging coordinate system. So the geometrical
optical limit can be applied now.

5.12.3 Painleve-like coordinate transformation and null geodesics of
Kerr-Newman-NUT blachkhole:
To investigate the Hawking radiation as tunneling process it is necessary to
eliminate coordinate singularity at the event horizon. In the expression
(5.12.9) , there still exists coordinate singularity at the event horizon in the
dragging coordinate system. So we continue performing a general Painleve
coordinate transformation[173]. This transformation can done by

iy = di+F(r,0)dr+G(r,0)do

............................... (F.12:10)

where F(r,0) and G(r,6)are two determined functions of rand ¢ , and
satisfy the integrability condition ,
NS S I s (5.12.11)

08 or
Thus from (5.12.9) we obtain,

ds® = gy, dt’ +{g00 F*(r.0)+g, }drz +{g00 G*(r,0)+ gy }d93 +2G(r,0) g4 d1d6

£ 2F(r.0)G(r,0) gy drd0 +2F (r,8) g, didr

................................. (6:.12.12)
We demand that constant time- slices are flat Euclidean space in radial. So
we set,

goo Fz(r,ﬁ)—t-g“ =1

e e e Ll 5.12.13

S F(r0)=+ | =8u ( )
oo

From equation (5.12.11), G(r,8) = j.‘?F_g;;—gldch) ............ (5.12.14)

where C(6) is an arbitrary analytic function of 4 .
Substituting the value of F(r,@) into equation (5.12.12) we get,
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ds? = gog di* + " +{8éo G*(r,0)+ &x }d‘?l +21 2o (1~ £1) G(r,0)drdé
+2g,, G(r,0)dtdO £ 2\ ge (1 - £,,) didr
.................... (5.12.15)

The positive sign (+) denotes the spacetime line element of the outgoing
particle and the minus sign (-) denotes the spacetime line element of the
ingoing particles at the horizon.

According to Landau’s theory of the coordinate clock synchronization[174]
in a spacetime decomposed in 3+1 dimension, the difference of coordinate
times of two events taking place simultaneously in different place is

AT==[Boa!  (i2123) i (5.12.16)
8o

0
If the simultaneity of coordinate clocks can be transmitted from one place to
another and has nothing to do with the integration path, components of the
metric should satisfy

5 g(]r 5 g(}; Pt
0 By b e e daoen) (5.12.17)
&' g ox )

Now the metric (5.12.15) in the new coordinate system , has a number of
attractive features : (1) the metric is well-behaved at the event horizon; (2)
the time coordinate ¢ represents the local proper time for radially free-falling
observers; (3) the hypersurfaces of constant time-slices are just flat
Euclidean space in the oblate spheroidal coordinates; (4) by substituting the
components of the metric (5.12.15) into equation (3.12.1 7), we see that the
metric satisfy the Landau’s condition of the coordinate clock

synchronization 5F((;9’ 9 e %g’é))  (5) the infinite red-shift surface coincide
/a

with the event horizon surface so that the WKB approximation can be used.
These attractive features are very advantageous for us to discuss Hawking
radiation as tunneling and to do an explicit computation of the tunneling
probability at the event horizon.

Now in order to investigate the tunneling process we evaluated the radial
null geodesics described by equation (5.12.15) . Since the tunneling
processes take place near the event horizon, so we may consider a particle
tunneling from the event horizon as an ellipsoid shell . To conserve the
symmetry of the spacetime , we think the particle should be still an ellipsoid
shell during the tunneling process i.e. the particle does not have motion in
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o_direction[18]. Under these condition we obtain the radial null geodesics
from equation (5.12.15) (ds* =0=d@") as

sin@[xp” —y/p’(p* =B)]

\/sz O[r® +{l +a}*]’ - Aasin® @ +4lsin’ g)z

........................ (5.12.18)
where a dot denotes differentiation with respect to ¢ and the positive sign
(+) represents an outgoing geodesics and the negative sign (-) represents an

ingoing geodesics.

¥
r=

5.12.4 Tunneling rate of Kerr-Newman-NUT blachkhole :

We adopt the picture of a pair of virtual particles
spontaneously created just inside the horizon. The positive energy virtual
particle can tunnel out and materialize as a real particle escaping classically
to infinity. The negative energy particle is absorbed by the blackhole
resulting in a decrease in the mass and the angular momentum of the
blackhole. We consider the particle as an ellipsoid shell of energy o and
angular momentum wa. When the particle’s self-gravitation is taken into
account, then equation (5.12.15) and (5.12.18) should be modified. To
ensure the conservation of energy and angular momentum, we fix the total
mass and angular momentum of the blackhole and allow the hole mass and
angular momentum to fluctuate. When particle tunnels out , the blackhole
mass and angular momentum will become M - and a(M - w) respectively.

The shell of energy will move along the modified null geodesic in the radial

direction
sin@[£p’ -\ p’(p* - 4)]

\/;2 O[r* +{l+a}’ ] — A(asin? @ +4lsin® %)2
....................... (5.12.19)

where A=r?-2(M-w)+a’ +e’+g>—1* is the horizon equation after the
emission of the particle with energy o .

o=

Now the coordinate ¢ does not appear in the dragged Painleve-Gullstrand
metric (5.12.15) . So ¢ is an ignorable coordinate in the Lagrangian function
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L. To eliminate this degree of freedom completely, the action should be
written as

Lo (Lo B s inop e ains o (5.12.20)

So the imaginary part of the action is

o (Fr By 5 d
ImS=Im [[ | P =PI s v i (5.12:21)
n,  (0,0) 1 d

where P and P,are two canonical momentum conjugate to r and ¢
respectively.
rm=M+ M2_a2_el_g2+12and rur=(M_a))+ f(M_aJ)2_az_e2_g2+lz

are the locations of the event horizon before and after a particle tunnels out,
they are just inside and outside the barrier through which the particle

tunnels.

We now eliminate the momentum in favor of energy by using Hamilton’s

equations
~ di _dM - o)
r= 2P oo = ——dP,, ............................ (5:12.27)
v dH - d(M - w)
= SN et e SRS B R 51223
¢ dp, s =2 dP, ( )

where dH,,,, = QdJ = aQd(M - o) represents the energy change of the

blackhole because of the loss of the angular momentum when a particle
tunnels out, and the dragging angular velocity is given by

,Z\(arsin2 0+ 4lsin’ %)—asin2 O[r’ +(I+a)’]

sin? 9[(r* + ([ +a)’) —z_ﬁ(asin2 0 + 4lsin’ g)z

...................... (5.12.24)
Substituting equations (5.12.19), (5.12.22) (5.12.23) and (5.12.24) into
equation (5.12.21) and noting that we must choose the positive sign in
equation (5.12.19) as the particle is propagating from inside to outside the
horizon, then we have

TowM —@
ImS=Im[ [ | (1-aQ')£d(M ~')
G M

7
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i J;inz 8[r? +(I+a)*]? - A'(asin® 6 +4lsin’ g)2
= Jm (1-aQ")
I MJ: sinf[p> =P’ (p7 = A)]

............................................. (5.12.25)

drd(M — ")

where

A=rr+a’ +el+ g’ - =2M-a)r=(-r)r-r)
r=(M-0)t(M-0) -a’ - -g' +I

We multiply and divide the integrand with o + Vpi(p?=A) to

Obtain,
ImS =
oy M~ [p? +4p%(p* —A’)]\/sin2 O[r + (I +a)’]? — A'(asin® @ +4lsin’ ig)2
1mj j(l—ag',,) / e
M (r=r)r-r.)p sinf
drd(M — ")
........................................ (5.12.26)

We see that » =/ is a pole of order one. The integral can be evaluated by

deforming the contour around the pole, so as to ensure that the positive
energy solution decay in time. Note that all real parts , divergent or not,, can
be discarded since they only contribute a phase. Doing the r integral first we
obtain,[178]

[p® +p (P’ —A')\/sinz O[r’ +(+a)’] — A'(asin® @ + 4lsin’ g)z

/ / 7l dr
J (r—r))r—-r))p’sin@
Tin /2 2
S ke E G
rl—r
............................ (5.1227)
Therefore
M-w 2 2

ImS=-Im | (1-aQ;)2m"+(—*;(-l%d(M - o)

R rl—r

==27

M]ﬂ’ 2M - w')’ +2(M—aJ')J(M—a)')2 —at—t—gr P =gt -t g’ +20° +2ald(M‘
b JM -0 —a® - —g* +1?
Finishing the integral we have
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Ims = (M - @) =M’ v M=oy =a ==+ MM =0 e =g t]

(5.12.28)

...............................

The tunneling rate is therefore

27[(M-w) -M*+(M -) (M-w)—a* - -g +17 -M -J;:—a:—u:-g:h'z-]

~21m§
F""e 21InS —e

.............................. (5.12:29)
Using Bekenstein-Hawking entropy formula S, = n(rl+a’+1%),

we have S, (M)=nr[2M’ +IMM? —a* = —g* +1’ ¢’ - ¢’ +20%]

S, (M - 0) = 7[2(M - )} +2M —0)(M -0)’ —a’ ~¢’ g’ +1* =¢’ ~ P42

AS gy =SBH(M_C'))-SBH(M)
= 2{(M - 0)} +(M -0 (M -0)* -a’ -’ —g* +1* =M’ MM —d g+

where AS,, is the difference of entropies of the blackhole before and after

the emission. From equation (5.12.29) we have
8 el et SR e e (5.12.30)

5.12.5 Concluding remarks:

In this paper, we have presented the Hawking radiation as tunneling from
Kerr-Newman-NUT blackhole by applying Krause-Parikh-Wilczek’s semi-
classical quantum tunneling method[13,14,15,16]. We find that the emission
rate at the event horizon is equal to the difference of Bekenstein-Hawking
entropy before and after the emission of a particle. The Hawking
temperature of this type of blackhole recovered by expanding AS,, in

(o — w,) and neglecting the higher order terms.

According to the reference [178] expression (5.12.30) is just the emission
rate of the Hawking radiation which ignores self-gravitation action. So we
conclude that the real radiation spectrum of this type of blackhole is not
precisely thermal when energy conservation and angular momentum
conservation are taken into account. The tunneling rate we obtained is more
accurate and is a good correction to Hawking pure thermal spectrum.
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In special case , if we put /=0 and we assume the equivalent charge
0* =e¢? +g* then the result is similar for the tunneling of uncharged particle
from Kerr-Newman blackhole[18]. If /=e=g=0 then the result reduces to
the Kerr blackhole[18] .For /=a=g=0then the result is fit for Reissner-

Nordstro m blackhole and supports the Parikh-Wilczek’s result[14]. Also if
we assume a=1I=e=g =0 then the result is supports for the Schwarzschild

blackhole obtained by the Parikh-Wilczek’s result[14].

The result we derived above shows that the blackhole radiation causes the
spacetime background geometry to be varied. Because of the self-gravitation
and energy conservation and angular momentum conservation, the event
horizon of blackhole varies with blackhole radiation, namely when the
particle outgoes the event horizon will contract and the two turning points
pre-contraction and post-contraction are the two points of barrier. The
tunneling rate of particle is relevant to the mass M, the angular momentum
a the electric charge e, the magnetic charge g, and the NUT parameters /

of the blackhole and satisfies the underlying unitary theory.
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CHAPTER SIX
HAKING RADIATION AS TUNNELING OF CHARGED PARTICLE

6.1 Charged particle tunneling: Parikh and Wilczek [14] calculate the
emission rate of the uncharged massless particles by the tunneling process
from the event horizon of the Schwarzschild and R-N blackholes. In this
section, we investigate the tunneling behavior of charged massive particle
and calculate its emission rate from a charged R-N blackhole. To calculate
the tunneling rate of charged massive particle, one must overcome two
additional difficulties. The first is that one has to decide the equation of
motion of a charged massive particle, since the radial null geodesics is only
applicable to describe the tunneling behavior of uncharged massless particle
from the event horizon. The trajectory followed by a charged massive
particle is not light-like but subject to Lorentz forces, different from the null
geodesics of an uncharged mass less particle. Here, to investigate the
tunneling behavior of charged massive particle, we consider the phase
velocity and group velocity of the de Broglie wave corresponding to the
outgoing particle. The second difficulty is how to take into account the effect
of the electro-magnetic field when the charged massive particle tunnels out
from the event horizon. One must take into account not only the
conservation of energy but also the electric charge conservation. Here , we
adopt a slightly modified tunneling picture, that is we consider the charged
massive particle as a charged conducting ellipsoid shell carrying energy @
and electric charge g. To take into account for the effect of the electro-
magnetic field , we consider a matter-gravity system that consists of the
blackhole and electro-magnetic field outside the hole. Taking into account
the particle’s self-gravitation, the conservation of energy and electric charge,
we must fix the total mass and total electric charge of the spacetime but
allow those of the blackhole to vary also.

6.2 Charged particle tunneling from R-N blackhole:

6.2.1 Painleve- like coordinate transformation of R-N blackhole:

The line clement of Reissner-Nordstro m blackhole is given by,
ds’ =—(1- ik +Q%)dﬁ +(1 sl Q; Y dr? + 3 (d6? +sin’ 0dg*)
r i r |45
................... (6:2Z:1)
To investigate the Hawking radiation as tunneling process we should adopt

Painleve-like coordinate transformation.
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According to the transformation
1-g(r)

lov=1— | |—=—"—dr
= f(r)g(r)

The metric (6.2.1) reduces to,

ds* = - f(r)dt® +2\/f(r)1}——:—)—1 didr +dr® +r’d@* +r’sin’ 0dg’
g\r

2

where f(r)=g(r)=1—2_+Q_2_

r r

The metric(6.2.3) can be rewritten as,

2 2
ds’ =—(1-%+Q ydt® +2 &{_Q_Z didr +dr® +r*(d6* +sin’ 6dg*)

1 r2 ¥ r

6.2.2 Phase velocity and electro-magnetic potential of R-N blackhole:
The line element of

R-N blackhole and the null geodesics in Painleve-like coordinate

transformation are given by
ds* =—(1- 2—"1+9;_)dﬁ +2 gﬂg__Q_; didr +dr® +r* (d6* +sin® 0dg?)
i bl o Sy (6.2.5)
The radial null geodesics are given by,
s e O B e e o e (6.2.6)

2
r r

where the positive sign (+) represents the outgoing geodesics and the
negative sign (-) represents the ingoing geodesics under the implicit
assumption that t increases towards the future.

The elctro-magnetic potential is given by,

PAETC R RT e B S (6.2.7)

0

where 4, =-=
¥

Since the charged massive quanta does not follow the radial null geodesics
(6.2.6), so we consider the outgoing particle is a massive shell (de Broglie s-
wave). According to de Broglie hypothesis , this massive shell is a sort of de
Broglie s-wave. The approximation wave equation is given by [176],
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i Jr.P,.dr—a)r)

D=0 ™ i et e e (6.2.8)
where r — ¢ is the initial location of the particle.

Ifwelet [Pdr-at=gy .c..... el (6.2.9)

enWe e el i (6.2.10)
dt k

where k is the de Broglie wave number.

Comparing equation (6.2.9) with the definition of the phase velocity we

know that ris the phase velocity of the de Broglie wave. Unlike the
electromagnetic wave , the phase velocityv, of the de Broglie wave is not

equal to the group velocity v, . The definition and relationship between them

are,
dr 1 @
v"’:E=r=; ................................. (6.2.11)
dr. do
Wi 5 ek SR PR SO S T e b2]2
s ( )
v, = %vg ................................. (6.2.13)

Since the tunneling across the barrier is an instantaneous process, there are
two simultaneous events during the process , one is particle tunneling into
the barrier and another is particle tunneling out the barrier. According to
Landau’s theory of the coordinate clock synchronization[174], the difference
of coordinate times of these two simultaneous events is

Grm—S0 gt o B0 A T i s (6.2.14)
Eoo Eoo

where . denote the location of the tunneling particle. The group velocity is

_dr. _ 8w 6.2.15
b= G (6.2.15)

and the phase velocity is therefore
2 2
B b Lt L Einiie n i) (6.2.16)

=V = e o PP S T X
P 2% 28y 2 pfoMr-0Q°
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6.2.3 Tunneling rate of charged particle from R-N blackhole :

We consider the spacetime as dynamical and
incorporating the self-gravitation effect of the tunneling particle when the
energy conservation and the electric charge conservation are taken into
account. We assume that the total ADM mass and charge of the hole-particle
system are held fixed whereas the mass and the charge of the hole are
allowed to fluctuate, then the mass and the charge will become M - o and
Q-q when a particle with energyw and charge ¢ has tunneled from the
event horizon. So considering the charged massive particle tunnel’s out from

the event horizon along the radial direction, we should modify the metric
(6:2.5) a5,

Sl C +2\/2(M—w)_ ©-9)
.

r r r

....................... (6.2.17)
and the radial geodesics are given by,

s Lo IO e (6.2.18)

2 oM -0y -(0-g)°
Also the non-zero component of electro-magnetic potential becomes
i e s e s el (6.2.19)

As the Lagrangian function of the electro-magnetic field corresponding to

the generalized coordinates described by A,1s _TIF F*" , we can find that

uv

the generalized coordinate 4, = (4,,0,0,0) is an ignorable coordinate.

In order to eliminate the degree of freedom corresponding to 4,, the

imaginary part of the action for the charged massive particle should be
written as,

r

rmf.' ( 'D’ “"‘{l J

B[ @ -2

r | (0,0) s
............................. (6.2.20)
where P, is the electro-magnetic field’s canonical momentum conjugate
to 4, .

L . Tout PA A,
ImS =Im [(L-P, 4,)dt=Im [ -—=Dydr = 1m]
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Applying Hamilton’s equations

dH
by e e g e (6.2.21)
dH
Rl PERSHE RS (6.2.22)

Substituting equation (6.2.21) and (6.2.22) into equation (6.2.20) we obtain,

130)

(F\’I—(JI
""" 1 I
ImS = Im[{ j{ j (=(dH), 4, ——(dH) ., ) }]dr

(M.Ey) A s

un

.................... (6.2.23)
where
(dH)/';A,‘/'_.., = d(M = O)l) =—dw'.

@)y, =~ =L

Putting the value of r from (6.2.18) into (6.2.23) we get,
Ll @) — /5 | = 2 i - 12
f{erz(M Dy =0-g" . 20-g)2M-0r-© 4V . }dr]

ImS = -1
" ml —2M - )r+(Q-9)’ rl=2M-a)r+(Q-q")

2
1, (0,0) !

Im[:Jr(quP, \/2(M—a)))‘—(Q q)’ o _2AQ-¢q )\/2(M—a) Vr —(Q q) }dr]

) ;,,,(O.JO)l (r—r, )(; -r ) =T )(1 -r )
................................... (6.2.24)
where
r = (M=) (M =) — (O =) eeoeeeeeeeeeree e (6.2.25)
Bt AU O ) N e I e TR B (6.2.26)
P = (M = @) + J(M =) (0 =) <o (6.2.27)

We see thatr =r+' is a pole of order one. The integral can be evaluated by
deforming the contour around the pole, so as to ensure that the positive
energy solution decay in time. Note that all real parts , divergent or not , can
be discarded since they only contribute a phase. Doing the r integral first we

obtain,
(w.9) e Wi 8 B

S =2n | [’ <2 g (6.2.28)
0o (r, —r.) (rl —R&.)

Finishing the integral we have,

- 137 -




ImS =—%[{(M—a))+\/(M—a))2 =) —{MWL\/M2 -0 F)= —%AS,,H

................................... (.6.2.29)
where AS,, is the difference of entropies of the blackhole before and after
the emission.
The tunneling rate is therefore
[P g % BN, e B e 1 v p - e s (6.2.30)
Now , if we expand AS,, in terms of w,q and take only the first order term
then

AS,, =-B(w-w,) where g= 27 M +m]

1s the inverse Hawking

temperature and o, = Q_q___ )
M+ M? -0
So from equation (6.2.30) we obtain,
I Ly N I SR p e (6.2.31)

From equation (6.2.31) we see that the corrected spectrum is not precisely
thermal. Only the leading order term gives the thermal Boltzmann factor
e—ﬂ(m—w(.) )

6.3 Charged Particle Tunneling from Kerr Blackhole:

6.3.1 Painleve- like coordinate transformation of Kerr Blackhole: The
behavior of a scalar field theory near the event horizon in a rotating
blackhole background can be effectively described by a two dimensional
field theory in a gauge field background. Based upon this concept Tao Zhu
[181] proposed that the quantum tunneling from rotating blackhole can be
treated as “charged particle’s tunneling process in its effectively two
dimensional metric. Using this view point and considering the corresponding
‘gauge charge’ conservation he calculate the non-thermal tunneling rate
from Kerr blackhole and his results are consistent with the Parikh-Wilczek’s
original result for spherically symmetric blackholes.

The line element of Kerr metric in the Boyer-Lindquist coordinate system is
given by,

ds® =— A

(di —asin?0dg)® + ‘Z dr? + p2d6” + 01 4 gV dg - adi)?
P

2

where




A=r®=-2Mr+d’
pl=r’+a’cos’ b
J
a=-—
M

Here M is the mass of the body, J is the angular momentum and r is the
radial distance from the center of the body. The equation of the event
horizon is given by,
A =0 which gives, r, =M tM* -a* , M’>d’.
Now apply the technique of the dimensional reduction near the horizon of

Kerr blackhole in 4-dimensional behaves as the two dimensional spherically
symmetric line element in the region near the horizon is given by [181]

]

I 4 (7 e B 6.3.2

=S (632)
Where
f_l (I‘) =& o =& = 0, oo = —f(i‘), o= r? +C!2, dilaton
and gauge charge field 4, is given by
/RO RIS o m Sy S A (6.3.3)

E_aar

Now since the tunneling method deals with the region very close to the
horizon, one can investigate the quantum tunneling effect of Kerr blackhole
by using this two dimensional metric [182].

We use the Painleve-like coordinate transformation as

N 2Mr
d’k —d/+]—:"_2—£dl .................................... (634)
22 S
Then the line element becomes

2M” 2

e
dS:’ :—(]—ﬁ)d/; +2 “‘ 214
r-+a

Vri+al
6.3.2 Tunneling rate of charged particle from Kerr blackhole: The radial

null geodesics are given by (ds* =0)

Al dr +dr’ oo (6.3.5)

e -l (6.3.6)

- VI‘Z + (,lz
Where the upper(lower) sign corresponding to the outgoing(ingoing)
geodesics.

As we considering a rotating Kerr blackhole , so the rotation degree of
freedom should be well addressed also. So energy conservation and angular
momentum conservation should be taken into account. Now from the action

(183]
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N P (6.3.7)

rl+a’ rl+al
We see that only the magnetic quantum number m of particle is relevant near
the horizon and the particle which contains quantum number m behaves as a

“charged “ particle with gauge charge m in the background gauge field 4, .

2 2 5
r-+a am

I= [didr(r* +a*)g,,[ G

In this sense the angular momentum conservation means gauge charge m
conservation. So we can treat the tunneling process as the ‘“charged”
particle’s tunneling. When self-gravitation of the tunneling particle is
included then  equation (6.3.6) should be modified by

, J-—-m

M->M-o, a:i—)a= , thus
M

wherew is the particle energy and.J is the total angular momentum of the
Kerr blackhole.

When we investigate a charged particle’s tunneling process , the effect of the
gauge field should be taken into account . For this reason, we write the

nv

Lagrangian function of the system as L=L, +L, where L, =— ‘“’4 is the

Lagrangian function of the gauge field corresponding to the generalized
i ~, 0). When a charged particle tunnels out , the

coordinates A4, =(——
r’+a

system transit from one state to another. From the expression of L, we find
that 4, is an ignorable coordinate. To eliminate the freedom corresponding

to 4, the action should be written as
ty .
= LBy Al oo Kosrvsrrcssevesgtns e, (6.3.9)

The emission rate of the tunneling particle is related by
[ et il o o e g n i e s - (6.3.10)
The imaginary part of the action is

PA, AI

r

=Im [[dP, - ﬁdPA', T o e e e et S e (6.3.11)

r

y
Im/ =1Im j(P,, L )dr

where P, is the gauge fields canonical momentum conjugate to 4, .

By applying Hamilton’s equations
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dI d(M - ')

1
re=

ZE (n4, P dP.
' " B R T et B S (6.3.12)
/‘1 _dH | ___a dm
dp, WY Pt gt dp,
where o' == m, and dH, ., represents the energy change of the blackhole

M-w
because of the loss of the gauge charge m when a particle tunnels out.
As the particle propagating from inside to outside the event horizon, so we
take positive sign of equation (6.3.8).

So we have
(M-w.m)r,, ! dr

a
Im/=1Im [d(M - @) +=p——din’]
Ptat
.................. (6.3.13)
where r=r, =(M-0')+(M-w)?-a’is a simple pole in the above

equation . The integral can be evaluated by deforming the contour around
the pole. In this way we obtain

M-w./-m) 42 2 '
ml=-27 | L 79 (M -0)-—2—d(-1)]  ceerrrrerinn (6.3.14)
(i gy e T e r,ota

where r = (M -0~ J(M -0")} -a’* .and dm’ = —d(J - m").
Now the Hawking temperature on the event horizon of the Kerr blackhole is
given by
T, = —,‘+I7—r——,.’ .......................................... (63 . 1 5)
dz(r,” +a”)

Thus we have
| (M-w,J-m) 1 f 1
Im/=-— —[d(M -@")— ———=d(J -m")]|=-=AS,, .
(MJ:/) T'[ ( : r’+a il A
.................................. (6.3.16)
where AS,,, is the difference of the entropies of the blackhole before and
after the emission . The tunneling rate is therefore

I e e (6.3.17)
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6.4 Charged particle tunneling from Kerr-Newmann Blackhole:

6.4.1 Phase velocity and electro-magnetic potential of Kerr-Newman
Blackhole: The line element of Kerr-Newman metric in the Boyer-
Lindquist coordinate system is given by,

5

= (dt —asin® 0dg)* + pA dr’ + p*do* +

L O 1 +a?ydp - adi]?

2

where
A=r?-2Mr+a’* +Q*
pl=r+a’cos’d
o
a=—
M
Here M is the mass of the body, J is the angular momentum , Qis the
electric charge. The equation of the event horizon is given by,

A =0 which gives, rizMw_L\/Mz—az—Q2 . MPs>a*+0%

and the 4-dimensional electro-magnetic potential is given by[21]
A, ==p20r((dl), —asin® 6(dg),] «oveveririniaaii (6.4.2)

The line element of Kerr-Newman blackhole in dragged Painleve-Gullstrand
coordinate is already given in (5.9.11). Since

o o o L i“
G = G G e (6.4.3)

we can easily obtain the component of the electromagnetic potential in the
dragging coordinate system

A = A"(-g—)” =—p0r[1-aQsin’ @], A, =A, =0 «.cooeiiiiiii, (6.4.4)

d

where Q=-%% s the dragged angular velocity and in the Painleve-
833
Gullstrand coordinate transformation the component of the electro-magnetic

potential is unchanged 4, = -p2Qr(i-aQsin’ 6], A =A4,=0

Since the charged massive quanta does not follow the radial null geodesics ,
so we consider the outgoing particle is a massive shell (de Broglie s-wave).
According to de Broglie hypothesis , this massive shell is a sort of de
Broglie s-wave. The approximation wave equation is given by [176],
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" J P.dr-or)

GO SMEE T "o 1 et ot s o £l e e o 3 e e (6.4.6)
where r, —¢ is the initial location of the particle.

If we let jP,dr = TR ! Nae AR o A o B (6.4.7)
then we have g A R P (6.4.8)
dt k

where £ is the de Broglie wave number.

Comparing equation (6.4.7) with the definition of the phase velocity we

know that » is the phase velocity of the de Broglie wave. Unlike the
electromagnetic wave , the phase velocity v, of the de Broglie wave is not

equal to the group velocity v, . The definition and relationship between them

are,

p:%H:% ................................. (6.4.9)
i Lo (O] g el o I S (6.4.10)
oodt di

v, = %vx ................................. (6.4.11)

Since the tunneling across the barrier is an instantaneous process, there are
two simultaneous events during the process , one is particle tunneling into
the barrier and another is particle tunneling out the barrier. According to
Landau’s theory of the coordinate clock synchronization[174], the difference
of coordinate times of these two simultaneous events is

dim B8 g’ = B (A= dF=0) oo, (6.4.12)
oo &ao
wherer, denote the location of the tunneling particle. The group velocity is

v, =%:-§m .................................... (6.4.13)
S

and the phase velocity is therefore

Noa sl s L e il oo Ap

r=v_ =—y =

P 5) g 9 _—5 = = = - o —
o \/goo(l_gn) 2\/('0 A)[(r* +a”)" —Aa"sin” 6]

............................... (6.4.14)

= {4 =




6.4.2 Tunneling rate of Charged particle from Kerr-Newmann
Blackhole:

We consider the spacetime as dynamical and
incorporating the self-gravitation effect of the tunneling particle when the
energy conservation, angular momentum conservation and the electric
charge conservation are taken into account. We assume that the total ADM
mass ,angular momentum and charge of the hole-particle system are held
fixed whereas the mass ,angular momentum and the charge of the hole are
allowed to fluctuate, then the mass and the charge will become M - and
QO-q when a particle with energy ® and charge ¢ has tunneled from the
event horizon. So considering the charged massive particle tunnel’s out from
the event horizon along the radial direction, we should modify the equation
(6.4.14) as,

. SRR IO R ¥R W g X (6.4.15)
2\/(,02 —A)(r* +a?)’ —Aa’sin? 0]

where A=r’+a>+(Q-¢q)’ -2(M - w)r is the horizon equation after the
emission of the particle with energy ® and charge q.
we taken into account the effect of the electro-magnetic field to investigate
the tunneling of charged particle. That is , the matter- gravity system
consists of the blackhole and the electro-magnetic field outside the hole. We
write the Lagrangian function of the matter-gravity system as

A S R (e (6.4.16)

nv

1 Al . : :
where L, :_ZF F*" is the Lagrangian function of the electro-magnetic

field corresponding to the generalized coordinates described by 4, = (4,,0,0)
in the dragged Painleve-Gullstrand — Kerr-Newman coordinate system
[184]. When a charged particle tunnels out , the system transit from one state
to another. But from the expression of L, ,we find that4, =(4,,0,0) is an

ignorable coordinate. In addition , the coordinate ¢ does not appear in the
line element expressions (5.9.5) and (5.9.11)[Ref. Chapter Five]. In order to
eliminate these two degrees of

freedom corresponding to 4, completely, the action for the classically

forbidden trajectory should be written as

S= [(L-P, APy @)l ccooiriiiiiiiiiiiiei, (6.4.17)

which is related to the emission rate of the tunneling particle by
e el el e e e e A A (6.4.18)



The imaginary part of the action for the charged massive particle is

P, A Pg
ImS = Im{ j(P,- 2 ’—-":f)dr}

s

r r
dr

Fyw (PriPy Ps) _' N - ,
=Im{ i j (rdp, — A, dP, - ¢dP,)) } ...................... (6.4.19)

rw o (0,0,0) r
where P,,P, and P, are the canonical momentum conjugate to r, 4, and ¢
respectively. Also

rh,=M+\yM' -0 -a ,r, =(M—a))+\/(M—a))2 -(0-¢q)* -a® are the

locations of the event horizons before and after the charged particle
emission. According to the Hamilton’s equations, we have
v dH _d(M - )

r= P |("2¢J’o§4:-".4,) SENEE T o s e e (6.4.20)
¢ = E BB a ) = ‘QT .............................. (6421)
v dH _34©@-9)

A= b iy = O g e (6.4.22)

where the dragging angular velocity and the electro-magnetic potential in the
dragging coordinate system are given by

dbatid e S e PR e (6.4.23)

(P +a’) -Aa’sin’ 0

Pan = H6 ) e (6.4.24)
(r"+a’) —Aa sin“ @
Substituting equation(6.4.15) and (6.4.20)-(6.4.24) into equation (6.4.19)

the imaginary part of the action becomes
Fout(M —0.0-q) d

mS=Im | [[d(M-0")-aQd(M-)-®dQ ¢
Ly (M) ;.
g (M =0.0-q) ) A AN (P D A TS B0
=im [ [l0-aQ)d(M - @) - D'd(Q- )] MG Af’p’ asin’6]
feo (MO
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7 e 2,2 A gn B ) 2_A/ ) ZZ_A,z.zg
oy (M =0,0 ,)[{ e a (r° +a A") } \/(p )[(, +a’) a’sin ]d(M—w’)

=Im _[ (r*+a*)’ =Aa’sin’ 0 A'p
I (M.Q)
& (O -q"yr(r’ +a’) 2\/(,02 —A(r? +a’) —=A'a’sin’ 0] d(O- 1)
(r*+a’)’ =Aa’sin’ 6 A'p
........................................... (6.4.25)
where

AN=rl+a —(M-0")r+(0-¢) :(r—r:)(r—r_/)
H=(M-0)t(M-0)-(Q0-¢) -d’

!

We see that »=r, is a simple pole at the event horizon. The integral can be
evaluated by deforming the contour around the pole, so as to ensure that the
positive energy solution decay in time. Note that all real parts , divergent or
not , can be discarded since they only contribute a phase. Doing the r
integral first we obtain,

2

(M-w,0-q) 8 y DA/
ImS=-z | =2l (M - o) 2#§Q—,il d(Q - "]
(M.0) ("+ =7 ) r, — )
(M-w,0~q) r
=z | — 2rld(M - 0") =20 - 4)d(Q =) eeeevrrenannnn, (6.4.26)
(M.Q) + o
Now from r, =(M -o") +\/(M -w") —(0-4¢')’ —a® we obtain the identity
(r] =rl)dr =2r,d(M - @") =200~ g)d(Q =q") veveeeeeee .. (6.4.27)

Using this identity into equation (6.4.26) we can easily finish the integration
and yields a simple expression

o 2 2 l
ImS =-7x J‘r:dr: = %[r”‘, -r.]=- EAS”H .............................. (6.4.28)

where AS,, =S,, (M -w,0-4)-S,, (M,0)=nx[r), —r;] is the difference of
the Bekenstein-Hawking entropies of the Kerr-Newman blackhole before
and after the particle emission. From equation (6.4.18) we obtain the

tunneling rate
[T B ol e e s Ay orma (6.4.29)
Now , if we expand AS,, in terms of w,q and take only the first order term

then
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22{M +M? Q> —a’] . : !
ASyy =-B(w—w,) where g = 1 %a ) is the inverse Hawking
JMI -0 -a
Q—q___ Then from (6.4.29) the emission
M+ M -0 - &

temperature and o, =

rate becomes
I 2 R e VI, B oo o e orene (6.4.30).

Also equation (6.4.30) indicates that when the energy conservation , the
angular momentum conservation and the electric charge conservation as well
as the particle’s self-gravitation are taken into account , the tunneling rate is
related to the change of blackhole entropy during the process of the
particle’s emission and the radiant spectrum is not precisely thermal.

6.5 Charged particle tunneling from non-accelerating and rotating

blackholes with electric and magnetic charges:

6.5.1 Non-accelerating and rotating blachkholes with electric and
magnetic charge: The Plebanski-Demianski [169,170,171] metric covers a
large family of spacetimes which include, among others, the well known

blackhole solutions like Schwarzschild, Reissner-NordstrOm , Kerr, Kerr-
Newman, Kerr-NUT, Kerr-Newman-NUT and many others. Here we study a
special case of this family of blackholes with rotation but non-accelerating
with electric and magnetic charges. The metric of such kind of blackhole is

given by [172]

ds? :_wm2+%dr3+pgd02+sm'8[(r*+a')7“—a'Asm'6]d¢2
P p’

- 2asin® O[(r? +a2)~A]d’d¢

e (6.5.1)

where  A=r’+a*+e*+g>-2Mr,  p’ =r’+a’cos’6. Here M is the mass

of the blackhole, e and g are the electric and magnetic charges respectively,
a is the angular momentum per unit mass. The event horizon equations are

given by A=0 which gives
r=MEJM —a - =gt (6.5.2)

The event horizon area of this blackhole is given by

A= AT (P2 £a7)] ot o3 oo 0 o o T BB (6.5.3)

and Bekenstein-Hawking entropy
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S =§= a(rl +a’)=n[2M? +2M\/M2 —a’-et-g’-e’-g’]

e ny L L (0 K
Also the electric potential and magnetic potential are given by[180]
A,=(4,00,4,) and B, =(B,0,0,B,) respectively.

Heres
o 29

4 =-=, At L et e (6.5.5)
p (2

B --% - L R I (6.5.6)
P’ p’

6.5.2 Dragging coordinate system and infinite red- shift surface of Non-
accelerating and rotating blachkholes with electric and magnetic

charge:

The infinite red shift surface is given by g, =0 which gives

ro=MEYM? =02 oS0 =7 =81 i (6.5.7)
Obviously the infinite red shift surface does not coincide with the event
horizon surface , which means that there is an energy layer exists between
them. So the geometrical optical limit cannot be applied. Also there exist a
frame dragging effect in the stationary rotating spacetime, the matter field in
the ergosphere near the horizon must be dragged by the gravitational field
also, so a reasonable physical picture should be depicted in the dragging
coordinate system. This hints that we must transform the metric (6.5.1) into
a dragging coordinate system.

Let Q=90 __8o ... (6.5.8)

dr &ao
where Qis the angular velocity.

For the metric (6.5.1) we have,

—-(A-da’sin’@ ¢ s sin? Q[(r* +a*)? —a’Asin’ 6
g = (_ — )’gnzp_’ E&n =P 833 = U )3 ]
P A P
—asin? 9[(r* +a’)-A]
8o = 2
P
d 2 ra’)-A
From (6.5.8), —ae ot O R e (6.5.9)

d (r*+a*)? - a*Asin? 6
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At the horizon the angular velocity becomes,
Qpum=tan s s e, (6.5.10)

rl+a’
The line element (6.5.1) in the dragging coordinate system becomes,

ds® = goo di” +g,,dr’ +g,d0> ... (6.5.11)
§ 20 - 4p°
where gy, = goo — =2 =
&oo = &oo g [(F+a’) —a’Asin?g]

The line element (6.5.11) represents a 3-dimensional hypersurface of 4-
dimensional spacetime. The infinite red-shift surface now coincide with the
event horizon surface in the dragging coordinate system. So the geometrical
optical limit can be applied now.In the dragging coordinate system the
electric potential and the magnetic potential can be given by[178]

] et BEVEE R T ST S Y (6.5.12)
(r-+a’) —Aa“sin” 6
e L (i Su- (L) e ey R i (6.5.13)

(r* +a*)? —Aa’sin? 6

6.5.3 Painleve-like coordinate transformation and radial geodesics of
non-accelerating and rotating blachkholes with electric and magnetic
charges :
To investigate the Hawking radiation as tunneling process it is necessary to
eliminate coordinate singularity at the event horizon. In the expression
(6.5.11) , there still exists coordinate singularity at the event horizon in the
dragging coordinate system. So we continue performing a general Painleve
coordinate transformation[173]. This transformation can be done by
di = di+F(r,0)dr+G(r,0)d0  ...oviiiiiiiiiiiiiiiiiiannnnn. (6.5.14)

where F(r,0) and G(r,0)are two determined functions of rand & , and
satisfy the integrability condition ,
L0 oG Ny - - (6.5.15)

00 or
Thus from (6.5.11) we obtain,

ds® = ggo di’ +{goo F(r,0)+g, }dr2 +{gooG2(”79)+gn }d92+2G(r,49)g00 dide

+2F(r,0)G(r,0) g4 drd6 +2F(r,0) g, didr
................................. (6.5.16)
We demand that constant time- slices are flat Euclidean space in radial. So

we set,
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8o Fz(l‘,9)+g” =1

e e [ 6.5.17
= F(r,0)= i\f—?ﬁ ( )

oo
OF (r,0)

From equation (6.5.15), G(r,0)= J’ W LG (0], s w. (6.5.18)

where C(0) is an arbitrary analytic function of 6 .
Substituting the value of F(r,0) into equation (6.5.16) we get,

ds® = g di® +dr’ +{gm G’ (r,0)+ g, }d@z +2\/g00(l -g,,) G(r,0)drdo

+2g0, G(r,0)did0 + 2\/ enllz ) diir
.................... (6.5.19)
The positive sign (+) denotes the spacetime line element of the outgoing

particle and the minus sign (-)denotes the spacetime line element of the
ingoing particles at the horizon.

According to Landau’s theory of the coordinate clock synchronization[174]
in a spacetime decomposed in 3+1 dimension, the difference of coordinate
times of two events taking place simultaneously in different place is

AT==[8%ad'  (i=123) cooereieriiiiiees (6.5.20)
Eoo

[f the simultaneity of coordinate clocks can be transmitted from one place to
another and has nothing to do with the integration path, components of the
metric should satisfy[175]

Ly O Buy | jm123)
ox Eoo ox Eoo

Now the metric (6.5.19) in the new coordinate system , has a number of
attractive features : (1) the metric is well-behaved at the event horizon; (2)
the time coordinate  represents the local proper time for radially free-falling
observers; (3) the hypersurfaces of constant time-slices are just flat
Euclidean space in the oblate spheroidal coordinates; (4) by substituting the
components of the metric (6.5.19) into equation (6.5.21), we see that the
metric satisfy the Landau’s condition of the coordinate clock
SF(r,0) _ 8G(r,0)

56 &

with the event horizon surface so that the WKB approximation can be used.

........................ (6.5.21)

synchronization ; (5) the infinite red-shift surface coincide
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These attractive features are very advantageous for us to discuss Hawking
radiation as tunneling and to do an explicit computation of the tunneling
probability at the event horizon.

Since the charged massive quanta does not follow the radial null geodesics ,
so we consider the outgoing particle is a massive shell (de Broglie s-wave).
According to de Broglie hypothesis , this massive shell is a sort of de
Broglie s-wave. The approximation wave equation is given by [176],

1 JI‘I‘,.zlr—(ul)
T ) e . M R = e = (6.5.22)
where r —¢ is the initial location of the particle.
Ifwelet [Pdr-ar=gy ..cccoooiiiiiinnninn, (6.5.23)
' d)‘ . [0}
thenwe have —=r=— ...l (6.5.24)
dt k

where £ is the de Broglie wave number.

Comparing equation (6.5.24) with the definition of the phase velocity we

know that ris the phase velocity of the de Broglie wave. Unlike the
electromagnetic wave , the phase velocity v, of the de Broglie wave is not

equal to the group velocity v, . The definition and relationship between them

are,
dr w
mfClinem MR Y . SRS TSE SE 6.5.25
a & ( )
b= e c B e (6.5.26)
h ey B B (6.5.27)

Since the tunneling across the barrier is an instantaneous process, there are
two simultaneous events during the process , one is particle tunneling into
the barrier and another is particle tunneling out the barrier. According to
Landau’s theory of the coordinate clock synchronization[174], the difference
of coordinate times of these two simultaneous events is

dr=-80 gy =80 g (4O =dp=0) c...........(6.5.28)

& oo & oo
where r, denote the location of the tunneling particle. The group velocity is
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_dr. __8w (6.5.29)

£ di i
ol
and the phase velocity is therefore
r:vﬂ:%v}::—%@:—% Ag()() = ; gApgz ot
y \/goo(l—g”) 2,J(p? = M) +a?)? — Aa’sin® 6]
............................... (6.5.30)

6.5.4 Tunneling rate of charged particles from Non-accelerating and

rotating blachkholes with electric and magnetic charges:
We consider the spacetime as dynamical and

incorporating the self-gravitation effect of the tunneling particle when the
energy conservation, angular momentum conservation , the electric charge
conservation and magnetic charge conservation are taken into account. We
assume that the total ADM mass ,angular momentum and charge of the hole-
particle system are held fixed whereas the mass ,angular momentum and the
charge of the hole are allowed to fluctuate, then the mass ,the electric
charge and the magnetic charge will become M -w , e-¢,and g—g, when a
particle with energyw , electric charge e and magnetic charge g, has
tunneled from the event horizon. So considering the charged massive
particle tunnel’s out from the event horizon along the radial direction, we

should modify the equation (6.5.30) as,

= dow e el o N e R o b (6.5.31)
2\/(p2 —A)[(r* +a?)’ -Aa’sin? 0]
where A=r?+a? +(e—e) +(g-g) -2M - ) is the horizon equation

after the emission of the particle with energy o , electric charge e, and

magnetic charge g, .

We taken into account the effect of the electro-magnetic field to investigate
the tunneling of charged particle. That is , the matter- gravity system
consists of the blackhole and the electro-magnetic field outside the hole. We

write the Lagrangian function of the matter-gravity system as
A O RS R I (6.5.32)

1 s . : :
where L, =~ZF/NF‘“ is the Lagrangian function of the electro-magnetic

field corresponding to the generalized coordinates described by the equation
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(6.5.12) and (6.5.13)in the dragged Painleve-Gullstrand coordinate system
[184].We can find that the generalized coordinate is an ignorable coordinate.
In addition , the coordinate ¢ does not appear in the line element
expressions (6.5.11) and (6.5.19). In order to eliminate these two degrees of
freedom completely, the action for the classically forbidden trajectory

should be written as S= [(L- P, 4,- P, B~ P, §)di

.............................. (6.5.33)
Applying the WKB approximation , the emission rate of the tunneling
particle is given by[185]
T A . o 2 o g. B v v el (6.5.34)
The imaginary part of the action for the charged massive particle is

LR . . ,
mS=Imi [ [ (dp| 4 dP} - B dp, - par)" }

r., (0,0,0) I

...................... (6.5.35)
where PP, F, and P, are the canonical momentum conjugate to r, 4, B,

and ¢ respectively.

Also,

ro= MM =g —a’ 1, =(M-0)+(M-0) -(c-¢)’ -(g-8) ~d’
are the locations of the event horizons before and after the charged particle
emission. According to the Hamilton’s equations, we have

. dH _d(M - )
ra= d—Pr Ly Py By Py ) = T‘ .................................. (6536)
. dH - d(M - )
¢ —E |(¢~A,-/{.l,2/’,-/'n,-’-/).) —QQT .............................. (6537)
Ay B T o e i BN e i (6.5.38)
dBy, TR dP,
n _ dH (g-8)
B =D, 6.5.39
! dPB’ i(lf,;r,l‘,;¢,I"‘:A,_I'__,') & dP”l ( )

where the dragging angular velocity @ , electric potential ®, and magnetic
potential @ in the dragging coordinate system are given by

o U R ) S R o L R e (6.5.40)

(P +a*) —Ad*sin’ 6
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(e—e)r(r’ +a*)

b, e P Ll R B i (6.5.41)

(> +a*)? —Aa’sin’ 6

B, == (I‘- +a')(g—g,)r (6542)

8

oy g g
Substituting equation(6.5.31) and (6.5.36)-(6.5.42) into equation (6.5.35),
then imaginary part of the action becomes

Fot(M = ¢=¢) £-8))
ImS =1Im J J[d(M—a)’) —aQ'd(M - ') -Dld(e-e]) —CD;,d(g—g,’]d—."
Iy (M .e.g) r
foudd M =@ ¢=¢) g—g) 2 2 _ !
mS=1m [ [ [(1-a@)d(M - o)~ LG )(6, G ie—ely
i DM (r-+a°) " —=Aa sin" 6
2 2 /
ro+a’ )(g-g)r dr
- 2( 2 2)(g, 2g|-)2 d(g_glf]f
(r"+a’)" —A'a sin” 0 .
Tau(M —0.€~¢),.8=8) 2 ANTE L
mS=Im [ [ [(1-aQ)d(M-0)- 2.0 ol . R

2 242 122 e
no (Meg) (r"+a’) —A'a“sin” @

(> +a*)g-g))r d(g_g],]2\/(p2—A')[(r2+a2)2—A'azsinzﬁ] 5

(PP +a)  —Aa*sin’ 6 PA'
Iyl M=w.e=c) . g-g)) 2 2 =
mS=tm | [ [0-a@)dM-a)-—0 29X oy
= e (r"+a’) —A'a’sin" 0
(r’+a’)(g-g)r /
= d(o —
(r’ +a*)’=Aa’sin* 0 (g-&]
2J(p? = AY(r} +a®)} - A'a’sin? 6] ,
2
plr=r)r=r.)
............................... (6.5.43)

where
A=r+ad’ —(M—a)’)r+(e—e,’)2 +(g-g1)° =(r_,,+’)(,,_r_/)
=M=t (M=) - (=)’ ~(g-8]) ~d’

We see that r=r/ is a simple pole at the event horizon. The integral can be
evaluated by deforming the contour around the pole, so as to ensure that the
positive energy solution decay in time. Note that all real parts , divergent or
not , can be discarded since they only contribute a phase. Doing the r
integral first we obtain,
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(M-w,e-¢, g-g)) 2(1"/ +a)

ImS = -7 j —=———{(1-aQ,)d(M - @)

(M eag)) ( w ') '

/ /
= r+/(2e elz) d(e_e/) (g/2 gl) + d(g gl )]
(7i%a-) (" +a*)
(M-w,e~¢, g-g)) /

ImS = -7 t[2rld(M - ')

(M.eg) (I"+ - —)

—2e-e)de—e)-2g-g)d(g-g))]

...................................... (6.5.44)
Now from r/ =M —a)’)+\/(M—a)’)2 —-(e-e/)’ -(g-g/)’ —-a’ we obtain the
identity
(r, =r)dr) = 2r/d(M ~ @)= 2e~e})d(e ~¢)) ~2(g ~ 8)d(g - &)
: ..(6.5.45)
Using the identity(6.5.45) 1nto equatlon (6 5 44) we can easily finish the
integration and yields a simple expression

ImS=-7 mj‘r*’dr‘f = %—[r”z, —rE )T =AS e (6.5.46)

where ASHH_SBH(M w,e—e,g-8)~ Sy (M,eg)=nlr, —1.] is the

m

difference of the Bekenstein-Hawking entropies of the blackhole before and
after the particle emission. From equation (6.5.34) we obtain the tunneling
rate

T @™ e (6.5.47)

Equation (6.5.47) indicates that the tunneling rate is related to the difference
of the Bekenstein-Hawking entropies of the blackhole before and after the
emission of the shell of energy w, electric charge ¢, and magnetic charge g,.
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CHAPTER SEVEN
HAWKING RADIATION VIA HAMILTON-JACOBI METHOD

7.1 Hamilton-Jacobi Method : In the past two decades, a lot of researchers have
investigated Hawking radiation of blackholes [4,9]. Most of them rely on the
quantum field theory on the fixed background spacetime and derived radiation
spectrum is pure thermal[186]. Parikh and Wilczek [14] employed the semi-
classical tunneling method to research the Hawking radiation of Schwarzschild and

Reissner-Nordstrom blackhole. Their research has shown that the derived radiation
spectrum is not pure thermal and the tunneling probability is related to the change of
Bekenstein-Hawking entropy when the self- gravitation interaction and energy
conservation are taken into account. In their methodology, the key point is the find
the motion of equation of the emitted particle and to calculate the action by
Hamilton equation .Thus one has to perform Painleve-Gullstrand coordinate
transformation. Following the method, great effort has been devoted to the Hawking
radiation of massless particle and massive charged particle particles, which has
effective significance for the furthermore cognition and research on blackhole.

Recently, M. Angheben, M. Nadalini, L. Vanzo and S. Zerbini[187] developed a
method to study the Hawking radiation of blackholes , which is known as Hamilton-
Jacobi method and focuses on the calculation of the particle action via the Hamilton-
Jacobi equation to investigate Hawking radiation of blackholes. The main
characteristics of this method is the covariant treatment of the horizon singularity by
using the spatial proper distance . However, the derived radiation spectrum is pure
thermal since they have lost the sight of the self-gravitation of the particle[188]. In
fact the background spacetime of blackholes is not fixed and the self-gravitation
interaction should be taken into account during the research of Hawking
radiation[189]. Now we investigate the Hawking radiation via Hamilton-Jacobi
method of some different kinds of blackholes.




7.2 Hawking radiation as tunneling via Hamilton- Jacobi method from
Schwarzschild Blackhole: The line element of Schwarzschild blackhole is
given by

ds* = (1 - 202 4 (1 - 21 62 112 (467 +5in? 6 dg*)
¥ ¥
(with G=c=1)

ds* ==f(P)di® + f7'(r) dr? + r3(d6? +sin2 6 d@?) ccoveeeereeeieeeeirieeereerren, (7.2.1)

4

where f(r)=1- &
-

and r, = 2M = radius of the event horizon.

We consider a scalar particle moving in this spacetime without its self-gravitation.

7.2.1 Tunneling rate of massless particles from Schwarzschild Blackhole:
Within the semi-classical approximation , the classical I of the particle satisfies the
relativistic Hamilton-Jacobi equation [197]

g"é,16,1+ L R SR ppey M ey e (7.2.2)

where m is the mass of the scalar particle and g** are the inverse metric tensor

components obtained from (7.2.1) namely
00 _ _ I "no_ _2ﬂ 22_L
g - ]_% ’g — P 94 _]‘z’g
»
Consider equation (7.2.1) , the equation (7.2.2) can be written as
1 oI ol 1 oI 1 ol
e =) +—(—=)* + e T /L i | O 7.2.3
f(r)(é“/) +f(')(5,_) +r2(59) ;~2sin30(5¢) +m ( )
By considering the axial symmetry of the blackhole spacetime , we carry out the
separation of variable to (7.2.3) as
I=-t+W(r)+J(x")
Therefore we have,

Py
RRJ

|
e and other components are zero.
r-sin”

51=-o, SI=W'(r), Sol=dy,8,0=J, ecrrcererrirrrrenrcrreessenn. (7.2.4)
where .J,and J, are constant respectively.
From (7.2.3) we have
1 1 I
@ fW )+ =T =T +M =0 e, 1245
j.(r) f(’) (’) rz 0 r?' Sln‘_) 9 ¢ m ( )

From above equation we obtain,
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T I e gl

\J[(l)— —‘/(r){r—z.]& + ;»:-Z-S-inz 7 - +m" }

W= j - dr
)

So we have ,

I J\ RO dr+J(x") (7.2.6)
=—ol + - FHT(X') SN

f(r)
By directly use Feynman prescription to deal with the integral over the coordinate ,
we will get one half of the correct one, that is Im7 = ImW = m,0.[190]

X(f —f(r){l,./g +-]7, T +m’
r-

However , if the above calculation making use of the isotropic coordinate defined by
dr

Y ——

The metric assumes the form[190]

[ >, r—>,0,lnp=j

.

dst =—f(r(p))di? +—PUp 4 p2(d6% +5in? 0.dg?) }
Yo,

(- %)2 o W e e (7.2.8)
= —di? r/’ +(]+¢)4(dp2+p2dsf)
(1+-2)?
4p

In this system of coordinate, the spatial metric is no longer singular at the horizon.
This form of metric is still static , but with a radial part regular at the horizon p = r,.

We may apply again similar formula as (7.2.6) deforming the contour and a direct
computation gives the correct result Im7 = ImW =2m,w.

The reason of this discrepancy can be understood observing that in a curved

manifold , the non-locally integrable function 1 does not lead to a covariant
o

distribution

oL Because the result above is not invariant under changes of
r+1.

coordinate within a time slice , we introduce the proper spatial distance defined by
the spatial metric

do? = 7' (r)dr? +r2(d6? +5in" G d@?) ccoueeeeeeeeecreeeeeceeeeean. (7.2.9)

so the radial part of the action can read as
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dU\/a)2 —f(r(O'))(L,J; +ﬁ.]; +m?)
W(e) = J‘ re r-sin- @
J7(r (@)

Using near the horizon approximation
SEVE I (F) (T ) 2. 5 ooy
We get the invariant result

_2rio

f'(n)

And the semi-classical emission rate
IREA R T S (7.2.12)
From the above equation we can easily obtain the Boltzman factor 5 =87\ .

....................... (7.2.10)

+ (real contribution) = 4z iMa + (real contribution) —..................... (7.2.11)

Now if we take into the self-interaction of the particles; when a particle of energy
o emits throughout the event horizon then due to energy conservation, the mass of
the blackhole will be A -wand event horizon will change from r=2Mto
r=2(M -w). From (7.2.12) we have

= e—'.’lm/ 3 e—xm\m = 6-4,7(2/\-/-01)(0 4 647:'(1132-8;11\4(0 — oM (7213)

where AS,, =S,,(M -w)-S,,(M)=4z0’ -872Mw is the difference of

Bekenstein-Hawking entropies before and after the emission of particles.
This result is accordance with Parikh-Wilczek’s result.

7.3 Hawking radiation as tunneling via Hamilton-Jacobi method from

Reissner-Nordstro m blackhole: The line element of Reissner-Nordstro m
blackhole is given by,

=—(1——+Q—)dt +(1—2M o —)"dr? +r>(d6® +sin’ 8dg’)
r )’
Or, ds* ==Adt> + A'dr? +r°d0? +r>sin”> 0d@” .eeeeeeeeereeeanenne. (7.3.1)
With the electromagnetic potential 4, =(4,,0,0,0)
Where a=1-24 Q,_ , A e e o o (7.3.2)
r v r

and =M +\/M2—Q2 is the location of the event horizon. In

Parikh=Wilczek’s method one should adopt the Painleve-like coordinate
transformation in order to the line element is well behaved at the event horizon.
And the motion of the equation of the particle should be also calculated in order
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to calculate the action . But these can be avoided in Hamilton-Jacobi method.

Near the event horizon of the blackhole we can get the line element as [191]

ds® = =A p(E A= r,,)dt2 AU G (s r,,)]"] dr? +r,,2 (dO* +sin? <9d¢z) ................ (7.3.3)

where A,,(r,,):CS—A |y
. 5’, r=r,

7.3.1 Tunneling rate of charged particles via Hamilton-Jacobi method from

Reissner-Nordstro m blackhole The classical action I of the charged particle
satisfies the relativistic Hamilton-Jacobi equation [197]

g (S I—gA NS T=qA)+U> =0 cvieeieeeceeceeeeeeee e (7.3.4)
u "

where » and gare the mass and charge of the particle and is the inverse

tensor obtained using by the line element (7.3.3) and substituting it into
equation (7.3.4) we get [191]

I 2 2 ] ~ 0 ] 0 9
—— (0, 1-gA) +A , (r)r-r)S.) +—=[(6,)  +———(,]) ]+u" =0
O AR (AR ey (20 —5(8,0)]

Now considering the axial symmetry of the blackhole , we carry on the
following separation variable

I=—at +W(r)+Y(6,9)
where wis the energy of the emitted particles, W(r)is the generalized
momentum in radial.

From equation (7.3.5) and (7.3.6) we can obtain

%;+@¢f—éi@l§1ﬁ%wﬂﬂ-5y

I dr
W(r) = |
A.l'(rll) ” - r'/?

"] 2
2

7, sin

Introducing the proper spatial distance [187,192] which is defined by
do’ = A8, =175 ]"I dr? -+-r,,2(a’(92 +sin? 9d¢2)
Limiting to the s-wave contribution that is the bulk of the particle
emission[191] we get

2 ]
= A TR T ey S 7.3.9
g Al(rh) / r/, ( )

Then equation (7.3.7) can be rewritten as
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2 do , A=) S, 2
= — g P NN (AN L Y - 3
W(o) L) J r \/(a)+qA,) l‘,,z (@, ¥ % e 9) +u’]

..................................................... (7.3.10)
The solution is singular at o =0 which corresponds to the event horizon.
Thus deforming the integration contour from the real o -axis to the lower
complex o - plane that avoid the pole o =0 counter clock wise and using the
Feynman prescription at the event horizon , we obtain the imaginary part of
the action [ as

Im/ = 2”—(a)—qg) ..................................................... (7.3.11)

e r/r rh

Now using WKB approximation , we can get the tunneling probability of the
emitted particle and find the radiation spectrum being pure thermal.
However, the recent result shows that the radiation spectrum deviates from
pure thermal one and the tunneling probability are related to the change of
Bekenstein-Hawking entropy before and after the particle emitted. The
reason of pure thermal spectrum is that the self-gravitation interaction of the
emitted particle was not considered in this process. Now if we taking the
self-gravitation interaction as well as the conservation of energy and charge
into account, we turn to return to the Hawking radiation of Reissner-

Nordstrom blackhole. Let we fix the mass and charge of the total spacetime
and allow those of the blackhole to be varied, when a particle of energy o
and charge ¢tunnels out , the parameters of the mass and charge in
equation(7.3.11) should be changed and the modified imaginary part of the
action is

(w.q) sl
Im/ = J - ,2”,_(610);_2_,‘1_ dq')
o 8 () Ty
(M -m.0~-q) '
27[ 1} —( '
- [ -0) - a0 gy
A (r, 7

............................. (7.3.12)

a (= 222) 2O2g)

where , Ty Gro B mm ™ e (7.3.13)
r=M-0'+ (M- -(Q-q')

Substituting equation (7.3.13) into equation (7.3.12) we get
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A

(M -0,0~q) =3 =
il _[d(M - a) - 22140 q)

!

(M.Q) (M-, -(Q-9") r,
Finishing the integral we obtain

Im/=-

Finishing the integral we have,

................................... (7.3.14)
where AS,, is the difference of entropies of the blackhole before and after

the emission.
The tunneling rate is therefore

ASpy

Tom o™ =M e (7.3.15)

The result show that the tunneling probability is related to the change of
Bekenstein-Hawking entropy and the radiation spectrum deviates from pure
thermal one , which supports the Parikh and Wilczek’s result.

7.4 Hawking radiation as tunneling via Hamilton-Jacobi method from
Kerr blackhole: : The line element of Kerr metric in the Boyer-Lindquist

coordinate system is given by,

)

. 2
sin” @

75— A, (dt —usin® 8dg)” + pA- dr’ + p’d@® + —=[(r’ +a*)d¢ — a dl]’
7 e
.................................. (7.4.1)
where
A=r'-2Mr+a’
PPETHEG €O G . # el e e e (7.4.2)

J

M
Here M is the mass of the body, J is the angular momentum and r is the

radial distance from the center of the body. The equation of the event

horizon is given by,
_adt, MPsdl.

A =0 which gives, r, =M tVM°* -d’
Since , the event horizon r, =M +y/M? —a> does not coincide with the

infinite red-shift surface r, = M +JM? —a’cos’6 , which means that there
1s an energy layer exists between them. So the geometrical optical limit
cannot be applied. So we adopt dragging coordinate system.

Lt @ulc B it (7.4.3)

dt - oo
where Qis the angular velocity.

a
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For the metric (7.4.1) we have,

—(A-a’sin’ ) - 5 sin® G[(r* +a’)’ — Aa’ sin’ 6]
8oo = ( 2 ,gn:p_’ g3 TP 833 >
P A P
3 —asin’ 9[(r* +a’) - A]
503 p‘_)

From (7.43), Q=9%_ 8o __ d( +a)-A]
dt g0 (r"+a’) —Aa’sin” 6

i (7.4.4)
At the horizon the angular velocity becomes,
W, T e (7.4.5)
rl+a’

The line element (7.4.1) in the dragging coordinate system becomes
ds’ = g dt® +g,,dr’ +g,d0 ... (74.6)

8 _ —4p
gy (P +ad’) —Aa*sin® 6

where gg, = g -

The area and Bekenstein-Hawking entropy corresponding to the outer
event horizon of the blackhole is given by

A= j@ dédg = 4n(r} +a’)

7.4.1 Tunneling rate of massless particle from Kerr blackhole via
Hamilton-Jacobi Method:
The classical action Jof the radiation particle satisfies the relativistic
Hamilton-Jacobi equation as [197]

g8 I8, 1+u” =0 L, (7.4.8)

where uis the mass of the emitted particle and g** are the inverse metric
tensor obtained from (7.4.1)as

il (r’ +a*)’ —Aa’sin’ 0 i /AN 22 |
e 2 S ISmprEl =

and other components are zero.
Putting these value into the equation (7.4.8) we have

- 163 -



RS ACELo) AP
(—) (—) + (—) +u’ =0

1 51 2 : ol
AR =) +M(r,0) (=) +Cr,0) (—)* +u’ =

or PO 9)(&) (7 )(5") +C(r )(59) +u
............................................. (7.4.10)

where,

P(r’e):(r“+a‘)'—’Aa‘sm'0, M, 9)— Cr0) =

Ap® p
.................................. (7.4.11)

Now considering the axial symmetry of the blackhole , we carry on the
following separation variable
I= =@l AW (Fy0) + [@ oo (7.4.12)
wherew is the energy of the emitted particle ,#(r,8) is the generalized
momentum and ; is the angular momentum with respect to the ¢ -axis.

From (7.4.12)
ﬂz—a)f/(> =-w+ jQ
o) ol

ol §W o _ W

5 & 0 80
Substituting these into equation(7.4.10) we can obtain
ow 1

& M0 P(r,0)

................................... (7.4.13)

\/(CU-J'Q)Q —P(r,@){C(r,@)(%‘)2 +u’ }

...................................... (7.4.14)
From above equation we can learn that the imaginary part of the emitted
particle ‘s action is only produced from the pole at the event horizon
[193]. According to the reference [185] for getting the correct result , the
proper spatial distance should be introduced, which is defined by

do? = -i;—drz SO0 1 ek arsbveo emeem e s e (7.4.15)

Since there 1s no motion in the 8 —direction ,so we have

= |l e, 7.4.16
J\/M(; o : )

since M(r,60) = A,
o

Now at the horizon
P(r,0)=P'(r,,0)(r =7,) F cooeeeeereeeeereeeeeen, }

..................... (7.4.17)
M@#,0) = M'(r,,0)(r =1,) + v,
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6P(r’ 0) | = P'(l‘ 9)
Where 9 7
5___ME’_@ | = M'(r 9)
or r=r, >0

H =
ence o I\/M’(r+,9)(r—"+)+ ..........................

2 -
= ——— Rt 2 7.4.18
IM'(r,,0) T ( )

. dr 1
Again do = = o
® g NM7,0) M (r 0P =) F oo, ’

...................................... (7.4.19)
do dr

OF, 4200 L0 ol o R (7.4.20)
o 20r-r,)

From equation (7.4.14) we have
- 2=

MG =) e H P00 =7) + oo 1

&2, \/(a)— jQ,) - P(r,@){C(r,H) (‘SWT(;’GZ)2 + }

= e;M,(r 5 [~ \{(a) JQ.)? - P(r, 9){6( ) s
L7, 5
............................................. (7.4.21)

where Q, =% _is the velocity at the event horizon and the solution is
rl+a’

singular at o =0 which corresponds to the event horizon.
do dr
Also —=

o  2r-r)

+

2dr i PN
. - Q) = P(r,0) C(r,0)(—)* +u?
J2(”—"+)\/P'("+,9)M'(r+,9)\](w s G >{ (r.OX55)" +u }

Or, W(o)=

SW (r, 9)), - }
50

. Therefore from equation (7.4.21) we can obtain

= 7 Q)IM,( 5 f(r J(w JQ A PO — 1)+ JO+22)
= r.,

. W
since —=0.
o0

A ’ 2
Or, W = ! J'(w_JQ*) 1-b(r—r,) dr Where b=£g*—’_—0)—u2—
JP'(r ,OM'(r,,0) 7 (r-r,) (0-jQ,)

B (0-jQ,) J»,/I -b(r-r, d() 200 )
P OM'(r,,0) (r R
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e @-jQ) bz d
L JPeLeMLLe) T 2
Here the singularity is at z=0. Applying the Cauchy integral formula we

O where z=r-r,

can obtain
2r . 2r ja
ImW =ImI = (0-jQ,)= Q—=5—=)
JP'(r,,0)M'(r,,0) 1 JP'(r,,0)M'(r,,6) ( rlva’
....................................................... (7.4.22)
Now the temperature over the surface of the blackhole is given by[193]
r NPCLOM (0 1 r -M
B 4 S 27 P+l
i e ol e, = (7.4.23)
1 L

or, =
JP'(r, ,O)M'(r,,0) 2(r, - M)
From (7.4.22) we have

d(Im ) = i s
JP'(r,,0)M'(r,,0) PRy
il B e e o (7.4.24)
or, Im/ = JI'”(’+ T )(J.u— 2adj -
r,-M ri+a

If we fix the total ADM mass and angular momentum of the spacetime and
allow those of the blackhole to vary, then when a particle with energy »and
angular momentum ; tunnels out, the mass and angular momentum should
be modified. ReplacingM byM -w and Jby./-,; we obtain the imaginary
part of the actual action as

N ' ";2 +az ’ (da)'_ fldjl '))
mi=z [ [r-(M-o) PR

M )

M-w.J-) 2 2 Y

B g 7 P (15
i g (M- L tal
............................................. (7.4.25)

where

J=J =alM - "), r.=M+vVM? -a?

F o= (M -o)+ (M -0') —d’

J=y

Now , [d(J-j)=[J-j1" =(J-j)-J=~J=J=0
J

j is so small that we assume that - j~.J. Therefore
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M-w

1‘;3+a2
Im/l=-rx J —_-____r'—(M—a)’)

Finishingwtlhe integral we have

Im [ =-7{(M - 0)}\J(M -0)? —a® +(M -0)* - MIM* - &
= Ml]

The tunneling rate

[~ -2l ezn[(M—wf+(M-(u)Jm-M1-M M- ]

d(M - ')

= eMm

where AS,, is the difference of Bekenstein-Hawking entropy of the
blackhole before and after the particle emission from the blackhole.

7.5 Hawking radiation as Tunneling via Hamilton-Jacobi method from
Kerr-NUT blackhole: The line element of Kerr-NUT metric is given by
[194]

2 Az Rl ¢ b o b i 2 D )

ds* = —2_(di - Pdg)* + Zz i+ p2d6? + 2 O (P 1 1)dg - aar?
...................................................... (7.5.1)

where F=r’+4?

N =r2Mr+a® -1’

PE=r +(+acos0) e eneeseseneens (7.5.2)

azi, P=a’sin’ @-2lcosb

M

Here M is the mass of the body, J is the angular momentum ,/ is the NUT
parameter. The area and Bekenstein-Hawking entropy corresponding to the
outer event horizon of the blackhole is given by

A= [-g dodg=4z(r} +a* +1%)
S, =§=n<rf a0 R oM e e B S (7.5.3)

The infinite red shift surface and the event horizon of the blackhole is

given by r=M+JM?—a’cos’6+1’ and r=M+vM? —a® +1? respectively.
Obviously they are not coincide to each other which is inconvenient to
study the Hawking radiation. So we adopt dragging coordinate system.
Thus we perform the dragging coordinate transformation

49 _ g8 e (7.5.4)
di oo

where Q is the angular velocity, on the line element (7.5.1) and we get
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2 2 2 7A_p_ Sl?n- 9- 2 2 d[2 + p; d}"z +p2d92
(r~+a” +/17)sin" @ - A" (asin” @ -2/ cosb)" .

S =

Now the event horizon and infinite red shift surface are coincident with
each other, which means the geometrical optical limit can be applied now.
Using WKB approximation we can get the relationship between the
tunneling rate and the imaginary part of the radiation particle as ' ~e>™".
7.5.1Tunneling rate of massless particles via Hamilton-Jacobi Method
from Kerr-NUT blackhole :
The classical action 7of the radiation particle satisfies the relativistic
Hamilton-Jacobi equation as [197]
g IO LA T S i aaemegmd g st bt S (7.5.6)

where wis the mass of the emitted particle and g** are the inverse metric
tensor obtained from (7.5.1) as

"0 P+ a? +1%)sin? 0= A¥(asin® 6 = 21 cos 0)* nooA

g =~ L oA = B

N p-sin- @ P P
........................................................... (7.5.7)

and other components are zero.
Putting these value into the equation (7.5.6) we have

N0 Ol B w M By 225 -
—)" + —) +g(—) +u =0

g () +g (3) g(a‘e) u

] ol 5 2 ol :
, - —) +M(r,0) (=) +C(r,0) (=) +u” =0
n o paaya) MO (5 +C0) () +u

............................................. (7.5.8)
where,
P(r’g):(r‘+a'+l')sm‘76’—7Aj(’c:si|1‘9—21c059)‘, M(r,é})=A; . C(r.6) = I7
A p°sin @ 0’ 0°
.................................. (7.5.9)

Now considering the axial symmetry of the blackhole , we carry on the
following separation variable
I= =@l +W(Fy0)+ J@ oo, (7.5.10)
wherew 1s the energy of the emitted particle ,” (r,0) 1s the generalized
momentum and ; is the angular momentum with respect to the ¢-axis.

From (7.5.10)
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£=—a)+j%=—a)+j9

a T e e (7.5.11)
sl oW S W

& & 60 66
Substituting these into equation(7.5.8) we can obtain
w_

& \JM(r,0) P(r,0)

J(w - JjQ)* - P(",H){C(r,é’) (é(;I/V—H)2 +u’ }

...................................... (7.5.12)
From above equation we can learn that the imaginary part of the emitted
particle ‘s action is only produced from the pole at the event horizon
[ 193]. According to the reference [185] for getting the correct result , the
proper spatial distance should be introduced, which is defined by

Gr? 4 DR oooeesiromsieessesstasseisneseenniaseens (7.5.13)

do?=2 ,

A-
Since there is no motion in the # —direction ,so we have
(7.5.14)

since M(r,0) =

2

IS

Now at the horizon

PO SR, 3O) (= 1 ) v e i ouafpusnesos’s D00 85

M(,0) = M'(r,,0)(F = F,) F oo
oP(r,0) | =P(,,0)

Where ’ ’

ﬂl(rvg) | — Ml(r 0)
& r=r, 25

.............................. (7.5.15)

|
I M (7 0) (7 =F,) + oo
=W_(2r=9) S s s (7.5.16)

dr _ 1
JM(r,0)  JM'(r,,0)(r =1,) + oo
...................................... (7.5.17)

Hence o=

Again do =

From equation (7.5.12) we have
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- S
JMG.00-r)+ . 0 AT s 1

\/(‘" QL) - P(r, e){a 9>(e;5(-é@>Z+u2 }

1

Or, W (o) =
B e,

JW(VQ)')_'_ ‘)}
1%

= 4 ‘/(a) JQL)? P(r,e){C(r,B)(
............................................. (7.5.19)

where Q, = «-—-aT-—,— is the velocity at the event horizon and the solution is

2

rlval+1
singular at o =0 which corresponds to the event horizon.

Also d—a= L
c 2r-r)

2dr 2 §W 2 2
A= = JQ,)’ = P(r,0){ C(r,0)(—=)* +u’
'[2(r_r+)\/P'(r+,0)M'( )\/(w itk ){ Ee)Ca T }

. Therefore from equation (7.5.19) we can obtain

J@-jQ,) ={ P'(r,,0)(r—r,) + .. NO+2°)

]
F LO)M'(r, J(r—r)

SW
since — =0.
56
Or, W = : j(w—jQ") 1-b(r-r,) dr where b=——P r ,'Q)u’_
JP'(r ,0)M'(r,,0) 7 (r=r,) (- Q)
__ (@-jQ) 1=k -r) dr-r)
JP'(r,,.0)M'(r,,6) (r—r,)

or, (0- jQ.) NI—bz dz

[P( OM'(r..0)° 2z
Here the singularity is at z=0. Applying the Cauchy integral formula we
can obtain

where z=r-r,

27 : 2 ja
R Praomne.o e o oe.s " ral
....................................................... (7.5.20)
Now the temperature over the surface of the blackhole is given by[ 193]
JPULOM(n,0) 1 -M

4r 2 rl+a’ +1I?

............................. (7.5.21)

1 r +a’ +1?
\/P r,OM(r.,0) 2(r, - M)
From (7.5.20) we have

-170 -



27 adj

d(lIm1) = (do ——5——F—)
VP (r, . 0)M'(r,,0) ri+a’+l?
P T J-;r(r; +a’ +l“)(“1 _’ ac{j :
r,-M R, FdriT

........................................ (7.5.22)
If we fix the total ADM mass and angular momentum of the spacetime and
allow those of the blackhole to vary, then when a particle with energy »and
angular momentum ; tunnels out, the mass and angular momentum should
be modified. Replacing M by M - and Jby.J -, we obtain the imaginary
part of the actual action as

M-wl-) 7‘,,'2+a2+12 ' ac-ljl
—— e (de =)
Iml=n _[ jr+—(M—w) i i
Mo
M-w.)-) rf-_*_a'-’ +12 ad(]—i’)
=-n | [= SdM ~ o) =y
A )+—(M— ) i S+

............................................. (7.5.23)
where

J-j =aM-o", r,=M+NM? —a* +1’

r! =(M—a)')+\/(M—a)')2 —a’+1’

J=y

Now , [d(J-;)=[J-j1"=(-)-J=J=J=0
/)

j is so small that we assume that /- j ~.J. Therefore
Im/= _ﬂ-‘\f—w—r:z S g

g (M-
Finishing the integral we have
ImI = —7[(M - o) (M -0)’ —a® +1> +(M - w)> = MIM? —a® +1?

= MZ]

The tunneling rate
[~ e = ezn[(M-w)2+(M-m)Jm-M2-Mm] = o
where AS,, is the difference of Bekenstein-Hawking entropy of the
blackhole before and after the particle emission from the blackhole.

d(M - ')
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7.6 Hawking radiation as Tunneling via Hamilton-Jacobi method from
Kerr-Newman blackhole: The line element of Kerr-Newmann metric in the

Boyer-Lindquist coordinate system is given by,

A = _ﬁv(m —asin® @dg)* +%er +p2do* + Sl”;9[(r2 +a’)dg - adi]’
2 p'

oooooooooooooooooooooooooo

where
A=r'=2Mr+a’ +0°
2 2 2 2
p =r"+a cos 6
J

M
Here M is the mass of the body, J is the angular momentum , Qis the

electric charge. The equation of the event horizon is given by,
A =0 which gives, r, =Mv_L\/M2 — 52 27 W MESaEGE

a

In order to investigate Hawking radiation as tunneling from Kerr-

Newmann blackhole we first adopt dragging coordinate system to
overcome  two difficulties.  First the event  horizon

r, =M=+ M?*-a>-0? does not coincide with the infinite red-shift surface

r, =M=+ M?—a*cos?6—-0Q> , which means that there is an energy layer
exists between them. So the geometrical optical limit cannot be applied.
Second , as there exist a frame dragging effect in the stationary rotating
spacetime, the matter field in the ergosphere near the horizon must be
dragged by the gravitational field also, so a reasonable physical picture
should be depicted in the dragging coordinate system. This hints that we
must transform the metric (7.6.1) into a dragging coordinate system.

I e O e o N (7.6.2)
dt &oo
where Q is the angular velocity.

For the metric (7.6.1) we have,

_ —(A-a’sin’0) P’ ) sin® @[(r* +a*)*> — Aa’ sin’ 6]
o = 2 s 8u="> n =P > 83 = 2
P A Iy
_—asinzé[(r2+a2)—A]
03 ,02
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From (7.6.2), _90_ e - a[(r; ja-)—,A,] 3
di 8w (r"+a’)" —Aa"sin"6
.................. (7.6.3)
At the horizon the angular velocity becomes,
D pimnmns |t b i Mot U (7.6.4)
7‘; +a”

The line element (7.6.1) in the dragging coordinate system becomes,

ds® = gy, di* +g,di’ L ZAUD" | ade oot s (7.6.5)

) g3 ~ap°
where gg, = g — =2 == 2 gin?
8oo = & 5 (PP +d’)-Aa’sin?6

7.6.1 Tunneling rate of massless particles via Hamilton-Jacobi Method
from Kerr-Newman blackhole:
The classical action 7of the radiation particle satisfies the relativistic
Hamilton-Jacobi equation as [197]

g8, Jo, Tt =0 00 e B e (7.6.6)

where uis the mass of the emitted particle and g#* are the inverse metric

tensor obtained from (7.6.5) as

= (r*+a’)’ —Aa’sin’ 6 TARLIATES o o]

g =- = , 8 = — > g7 = =
Ap P P’

and other components are zero.

Putting these value into the equation (7.6.6) we have

TS, M S, B,
—) + —) +g(—=) " +u =0
g(&) g (<) g(de) u

] 5] 9 5] ) 5[ b) 2
- )+ M(r,0) () +C(r,0) (—) +u> =0
' P(r’g)(&) +M(r )(§r) (r )(59) u
...................................................... (7.6.7)
where,
A o WL R R )
Ap- P P

Now considering the axial symmetry of the blackhole , we carry on the
following separation variable
T==@f AW (F,0) + JB oot (7.6.9)
wherew 1s the energy of the emitted particle ,w(r,6) is the generalized
momentum and ; is the angular momentum with respect to the ¢ -axis.

From (7.6.9)
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é1-=—a)+j%=—a)+j£2

a SR D - (7.6.10)
aA_w d _w

5 o 00 80
Substituting these into equation(7.6.7) we can obtain

oW ] ] . = E;K 2 2

= T J(w Q) P(z,@){(,(r,é?)( 59) +u }
...................................... (7.6.11)

From above equation we can learn that the imaginary part of the emitted

particle ‘s action is only produced from the pole at the event horizon

[ 193]. According to the reference [185] for getting the correct result , the

proper spatial distance should be introduced, which is defined by

do? =%er S B e b ore A s e Bt e (7.6.12)

Since there is no motion in the @ -direction ,so we have
LA ) =, ! - (7.6.13)

since M(r,0) = A,
PE

Now the horizon

P, @) = Pl yONr — FL)F i sivsinaimesiaadttans s (7.6.14)
M(r’e)zM’(l‘+,0)(l"“r+)+ .................................................................. 15

(0

Where o

M0 | o)
5)‘ r=r, 4+

1

Hence o= d)
! JM ' 0)(r = 1) + e j

:Wiz—’__‘_—e)ﬂl‘—r* .......................................... (7615)
dr _ ]
JM(r,0)  M'(r,0)(F =7) + oo,

Again do =

...................................... (7.6.16)

From equation (7.6.11) we have
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JAME0¢=r) . H P (r,0)(r =)+ ]
do 5W(”,9))2+u2 }
560

(- JjQ,) P(F,H){C(r, &) (

] do
Or, w = = - Q) = P(r,0KC(r,0
r, W(o) Fo oD \/(w JQ) = P(r, ){( X

............................................. (7.6.18)

——1s the velocity at the event horizon and the solution is
rl+a’

singular at o =0 which corresponds to the event horizon.
do dr
Also — =

o  2r-r)

2dr 5 b4 . 3

W= — Q) = P(r,0)]C(r,0)(ZN)? +u’
J’Z(r—n)\/P'(rH@)M'(r 9)\)((0 e ){ e }
u ‘ [
JP'(r.,O)M(r,,0) " (r=r,)

)’

(10,2, 2 }
50

where Q, =

. Therefore from equation (7.6.18) we can obtain

dr

J@- Q) —{ P 0)r—r) 4 JO+17)

. W
since —=0.
660

5 ’ 2
Or, w = I I(w_jQ+) I-b(r—r,) dr where b=£&’_—g)u—,
JP'(r, ,OM'(r,,0) 7 (r-r,) (0-jQ,)’

_ (@-jQ,)  (l=blr-r) dr-r)
L JPL.OM(r,,0) ()
(- jQ,) rm dz
FeoMe.e )
Here the singularity is at z=0. Applying the Cauchy integral formula we
can obtain

Or,

where z=r-r,

27 ) 2r ja

ImW =Im/ = -jQ,)= -
Rt x/P'(n,@)M’(n,é’)(w o JP'<r+,9)M'(r+,0)(w rf+a2)
....................................................... (7.6.18)

Now the temperature over the surface of the blackhole is given by[193]
PCLOMGL0) 1 M
- 4r " b= rlva

............................. (7.6.19)

| rf +a?
or, =
JP'(r, . OM'(r,,0) 2(r, - M)
From (7.6.18) we have
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2r adj

d(lm1)=‘\/P' QM' 9 (da)_ 2+ ';)
i a”
b e T e et (7.6.20)
or, Im 7= [ZL 29D 4,24,
r

ool
If we fix the total ADM mass and angular momentum of the spacetime and
allow those of the blackhole to vary, then when a particle with energy »and
angular momentum ; tunnels out, the mass and angular momentum should
be modified. ReplacingM byM - and Jby.J - we obtain the imaginary
part of the actual action as

Mewiey Tyt (de ~ nadj’ 3

ImlI=n J J;?—(M—a)’) ri”+a

Mo

M-w.J- 2 2
! r*+a

=— - dM-o A CA G
<[ e - S

(7.6.21)

.....................................................

where

J-j'=aM=-a),  r =M+ M -a’-0’

RE= (M—a)’)+\/(M—a)')2 -a’-Q’

J-y
Now, [d(J-j)=[J-/17 =(J=j)=J~J~J=0
J

j is so small that we assume that ./ - j ~.J. Therefore
M-w rl'_’ +a2

Im/=-x ,+—, d(M—a)')
Pl g (M-

Finishing the integral we have

Im/ =—7r[(M—a))\/(M—a))2 -a* -0 +(M -w)’ +a’ cosh™ #—M M -a* -0’
a*+Q

-M?—a*cosh™ L]
a’ +Q2

By comparing ) with M we assume that
-w M

2 = M 5 =
a’” cosh ' =i~ a° cosh™ ————=
2 2 2
\/a‘ +Q° Jal +0?

Therefore

Im{=-2[(M - 0)\|(M -0)} —a® - 0® +(M -w)* ~M|M? —a* -0 - M?]
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The tunneling rate
I—~ s e—llml =
where AS,, is the difference of Bekenstein-Hawking entropy of the
blackhole before and after the particle emission from the blackhole.

22[(M -)? +(M~@)(M-0) -a® -0 -M =M M -a> -7 ) AS gy

=e

7.7 Hawking radiation as tunneling via Hamilton-Jacobi method from
Kerr-Newman-NUT blackhole: The Kerr-Newman-NUT blackhole

metric can be given by [195]

-

ds?=-LBma SN D) y2 L Pk gt
P A
sin?@[r* +(l+a)’)’ —Aasin? @ + 4lsin? Q)z
2 2
) d¢
=
2[A(asin? 8 + 4lsin® Q)—asinz O [r*+(+a)’]
o 2 drdg
g
........................... (7.7.1)
where
A=r’+a’+e’+g’ -1 -2Mr,  p’=r’+(+acosf)’. Here M is the mass of

the blackhole, e and g are the electric and magnetic charges respectively, a is
the angular momentum per unit mass, / is the NUT parameter. The event
horizon equations are given by A=0 which gives

P MM = =g+ (7.7.2)

The event horizon area of this blackhole is given by [196]

4 =474 , where Q, is the angular velocity at the horizon.

+

A=47[r2 + (@ +1)%] coriiiiiiiiniiiiieieiinnns (7.7.3)
and Bekenstein-Hawking entropy

i = g =a[r] +(a+1)?) = x[2M? +2M\/M2 —a’—e’—g?+1 -’ —g? + 21> +2al]

7.7.1 Dragging coordinate Transformation of Kerr-Newman-NUT

blackhole :
The infinite red shift surface is given by g, =0 which gives

ri=M:*:\/M2—a200329—ez—g2+12 .................................. (7.7.5)
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Obviously the infinite red shift surface does not coincide with the event
horizon surface , which means that there is an energy layer exists between
them. So the geometrical optical limit cannot be applied. Also there exist a
frame dragging effect in the stationary rotating spacetime, the matter field in
i the ergosphere near the horizon must be dragged by the gravitational field
also, so a reasonable physical picture should be depicted in the dragging
coordinate system. This hints that we must transform the metric (7.7.1) into
a dragging coordinate system.

Let Q=92 __38n

........................ 7.7.6
di oo ( )
where Qis the angular velocity.
For the metric (7.7.1) we have,
. ) 2 242 . 2 . 2 6
—(A-da’sin?0) p? ' sm'9[(r'+(1+a)‘]‘—A(asm'¢9+4lsm'5
oo = 3 » 8n =" &n =P , &3 = 3
¥ P A P
. 2 . 2 9 . 2 2 2
A(asin” @+ 4lsin” 5) —asin“G[(r°+(+a))
8oz = 2
Yo,

dp, Sl PFaLsint %) -asin? 6" + (1 +a)’)
From (7.7.6), QS = 2

sin? 6((r* + (I +a)’]* - Aasin® 9+4lsin2§)2

At the horizon the angular velocity becomes,
a

B, e e e (7.7.8)

g ¥l +(+a)?
The line element (7.7.1) in the dragging coordinate system becomes,

dSZ = 240 d,z +glldr2 +g22d@2 ................... (779)

where g =g, - o _ 5
&3 sinZH[rz+(l+a)2]2—A(asin39+4lsin25)2

The line element (7.7.9) represents a 3-dimensional hypersurface of 4-

dimensional spacetime. The infinite red-shift surface now coincide with the

event horizon surface in the dragging coordinate system. So the geometrical
optical limit can be applied now.
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7.7.2Tunneling rate of massless particle via Hamilton-Jacobi Method
from Kerr-Newman-NUT blackhole :
The classical action /of the radiation particle satisfies the relativistic

Hamilton-Jacobi equation as [197]

¥ B, I8, 1 +07 =0 V. imsesmmsos s ik o g oferes v o 85 o b (7.7.10)
where uis the mass of the emitted particle and g** are the inverse metric
tensor obtained from (7.7.9) as

el sin? 9{r2 +(+a)’ J —A(asin? @ +4/sin’ g)z
' Ap*sin’ @ 24 —pz’g P
and other components are zero.

From (7.7.10) we obtain ,

~00 5] 2 11

— +
& (5,) g (
A
P(r,0) o

where

ol 5 ol 3
N g (Y 4u2 =0
5r) g(§t9) -

2 ol Q 2 D
) M 0XS) +COOL) +uP =0 (7.7.11)

2+ +a) Vsin?6-Aasin® 6 +4dlsin? 9y
P(r,0) =

= , M@0 = -
Ap~sin© 6 P

C(r,0)= !

2

............................................. (7.7.12)
Now , considering the axial symmetry of blackhole spacetime we carry out
the separation variable to (7.7.11) as
I==at +W(r,0)+ J@ e (77130
where o 1s the energy of the emitted particle, w(r,0)is the generalized
momentum and ;is the angular momentum with respect to the ¢ - axis.

From (7.7.13) we obtain

ol e Ly i SRR Oh L PR s et ()
ol ot or o 08 o6

Substituting these value into equation (7.7.11) we obtain,

oW I

& JPro)M(0)

\/((U—jQ) P(r,H){C(r,Q)(ép) +u }

................... (7.7.15)
where Q = @
ol
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From equation (7.7.15) we observe that the imaginary part of the emitted
particles action is only produced from the pole at the event horizon[193].
According to the Ref.[185] for getting the correct result the proper spatial
distance should be introduced , which is defined by

2
do? = %drz DTG setapen. B w5 Pt W) bt (7.7.16)

We consider the emitted particle as an ellipsoid shell of energy o to tunnel
across the event horizon and should not have motion in @-direction
(d6 =0). So we have from equation (7.7.16),

dr

do =-

- M@0

Py S Pyt e, L B (7.7.17)

7" JTm,e)

By applying near-horizon approximation we have,

P(7@) = P(rs0)(r — 1, )t .. osiaboten, ioet higher order terms of (r —r,)
M@E,0)=M'(r,0)(r—r)+. e higher order termsof (r —r,)
where Jiltal) ., =P(r.,0) ma,W(_r,@) ., =M'(r.,6)
¥ : -,
From equation (7.7.17) we obtain
o= .[ ! dr
M 0)(r=F) +
2
Or, 0 =—=——=J(r=7) F e ceeerveveee....(7.7.19
e A it
Again
do = - byl r

|
= d
JTC.006-7r)

do ) dr
o 2(r-r,)

Hence we get

From (7.7.15) we can obtain
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3 2(r=r) do
JEP 0 —r)+ K M'(r,,0)(r=r,) +........ 1o

9) b 9 2] 7
\/(w—jQJ“—P( 9){C(+,9)( (; )) }
] do W(r,0).,
W(o) = Q) - P(r,0)C(r,0
(o) N CRTCE )j \/(‘" JQ.) - P(r, ){ (r,O) 7= +u }
............................................... (7.7.20)
where Q, =——%_is the angular velocity at the event horizon, and the
rl+(a+1)?

solution is singular at o =0which corresponds to the event horizon.
Finishing the integral and substituting the result into (7.7.13) we obtain the
imaginary part of the action as
Im/ =ImW = 24 {a)— - L . } ................ (7.7.21)
JP(r, oM (r,,0) | rl+(+a)’

Now the temperature over the surface of the blackhole is given by [193]
r NPCLOMC,0) 1 M

47 27 rl+(a+l)’
] . rl+(a+1)?

I, < L 7.7.22
JP'(r,,0)M'(r,,0) 2(r, - M) ( ]
From (7.7.21) we have, d(Im/)= =7 da)—,gadj—T }
JP'(r,,0)M(r,,0) rl+(a+l)’
Or, Im/= Jr”{r::(_a};[y }{ dw_r3+c(%lg—+-1)3 J

.................................. (7.7.23)
If we fix the total ADM mass and angular momentum of the spacetime and
allow these of the blackhole to vary, then when a particle with energy
wand angular momentum ; tunnels out , the mass and angular momentum
should be modified . Replacing M by M -w and J by /-, we obtain the

imaginary part of the actual action as
M-w.]-5 42

m7=r | _AM;{M_LJ'}

r+(a+l)?
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(7.7.24)

.......................

=-7

M-w.J=] 12 2 o
rj +(a+1)l dAan ’cid(.] ~%) )’
j (M- ro+(a+l)
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M

where J- ;' =alM-w"),
r! =(M—a)’)+\/(M—co’)2 —a’-e*-gl+1?.

=y
Now [d(J =)=l =1 =(J-j)=T~J=J=0
J

(j 1s so small that we assume (J - j)~.J)

M-w 12 2]
Hence Im/=-z | Tty @)
ri—(M-o"

Xy 4

e 2M =@ +2AM -0 )M -@) —a* —e —g> +1> —e? - g* +21* +2al
=-r J. \/(M—a)')—az—ez—g2+lz
M

dM-w")

5

Finishing the integral we get
ImI = —a[(M - 0)\| (M-0)? -a® -e? —g? +I> +(M —=0)’ = M?> =M\ |M? -d* —¢* - g* +1?
M .

+l(a2 —1? +2al)cosh™ ) —l(a2 -1’ +2al)cosh™ ———=—]
2 \/a2+e2+g2—12 D) }a2+ez+g2
[cosh™ /1) ~ cosh™ &l
Jai+el+gr -1’ \/a2+e2+g2—12

Im/=—2{(M - )\ (M -w)* -a® —€* —g? +1> +(M —w)* = M> - M\|M? —a® —¢*> —g* +1*]

The tunneling rate is therefore
e 27[(M~w) -M* + (M—(U)\/(M -w)-a* —cz—g2+lzz -M \/Ml—a: -t -g? o ]

I— -3 e—EIm/ —

(7.7.25)

Using Bekenstein-Hawking entropy formula S, = z[r +(a+1)*],
we have S, (M) =z[2M* +2M\/M2 —al—el—gi 4P —e? — g’ +21° +2dl]

Sy (M = @) = 7[2(M = @)* +2(M - 0)|(M - w)> —a® —¢> - g? +17 e — g> +21% +2al]

-182 -




ASyy =Sy (M — @) =Sy (M)

=21{(M -0)’ +(M -0 (M-0) —a’ -’ =g  +1* —M> M IM? —a* —* —g* + 1’

where AS,, is the difference of entropies of the blackhole before and after

the emission. From equation (7.7.25) we have

Pt szt Ratrs S v ] el o) (7.7.26)

7.7.3 Concluding remarks:

In this section, we have presented the Hawking radiation as Hamilton-
Jacobi method from the event horizon of Kerr-Newman-NUT blackhole .
We find that the emission rate at the event horizon is equal to the difference
of Bekenstein-Hawking entropy before and after the emission of a particle.

According to the reference [193] expression (7.7.26) indicates that the
radiation is not pure thermal, which gives a correction to the Hawking
radiation of the blackhole. Following the reference [193] expanding equation
(7.7.26) in terms of (v -w,) we get,

2 2
ri+(a+l)”
i

(w—0y)

[~em=¢ 7

2 2 2 2
M(a +e +g~-I°
dea +e 48 )7 (=04 )+ |

'\_r\/1+\/z\43—az—ez—gz+lz— S
2(M-—a"-e"—-g~+I7)

((
[l

.................................. (7.7.27)
When neglecting the higher order terms involving (- w,) the Hawking pure

thermal spectrum can be obtained. We therefore come to the conclusion that
the actual radiation spectrum of Kerr-Newman-NUT blackhole is not
precisely thermal , which provides an interesting correction to Hawking pure

thermal spectrum.

In special case , if we put /=0 and we assume the equivalent charge
O’ =e¢’ +g* then the result is similar for the tunneling of uncharged particle
from Kerr-Newman blackhole[18]. I[f /=e=g =0 then the result reduces to
the Kerr blackhole[18] .For /=4 =g =0then the result is fit for Reissner-

Nordstrom blackhole and supports the Parikh-Wilezek’s result[14]. Also if
we assume a =/=e =g =0 then the result is supports for the Schwarzschild

blackhole = obtained by  the  Parikh-Wilczek’s  result  [14].
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The result we derived above shows that the blackhole radiation causes the
spacetime background geometry to be varied. Because of the self-gravitation
and energy conservation and angular momentum conservation, the event
horizon of blackhole varies with blackhole radiation, namely when the
particle outgoes the event horizon will contract and the two turning points
pre-contraction and post-contraction are the two points of barrier. The
tunneling rate of particle is relevant to the mass M, the angular momentum
a,the electric charge e, the magnetic charge g, and the NUT parameters !/

of the blackhole and satisfies the underlying unitary theory.
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Abstract Following Hamilton-Jacobi method, we have investigated the Hawking radiation
of Kerr-Newman-NUT black hole. We have considered the spacetime background dynami-
cal and incorporate the self-gravitation effect of the emitted particles when energy conser-
vation and angular momentum conservation are taken into account. We have found that the
emission rate at the event horizon is equal to the difference of Bekenstein-Hawking entropy
before and after emission.

Keywords Hawking radiation - Hamilton-Jacobi method - Kerr-Newman-NUT black hole

1 Introduction

After Hawking’s discovery that black holes radiate, there were several approaches to study
this effect. The Hawking discovery was based on the general relativity and quantum me-
chanics. This is the key link in spacetime quantization. In the last few decades, there were
many researches on the Hawking radiation and many methods to calculate Hawking radia-
tion were obtained. One of them is the Hamilton-Jacobi method. Our attempt to calculate
the tunneling rate of massless particle from the event horizon of Kerr-Newman-NUT black
hole by the Hamilton-Jacobi method.

The classical “no hair” theorem states that all the information about the collapsing body
is lost except three conserved quantity: the mass, the angular momentum and the electric
charge. So the only solutions of Einstein-Maxwell equations in four dimensions is the sta-
tionary and rotating Kerr-Newman black hole solutions. In classical theory, the loss of infor-
mation is not a serious problem since it could be thought that the information is preserved
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inside the black hole but just not very accessible. Even, once Hawking thought that the loss
of information never recovered. But recently he changed his opinion about information loss
paradox. However, taking quantum effect into consideration, the situation is changed due to
Hawking discovery that black holes radiates thermally [1, 2].

Due to the emission of thermal radiation black hole could loss energy, shrink and even-
tually evaporate away completely. Since the radiation with a precisely thermal spectrum
carries no information, so the information carried by a physical system falling toward black
hole singularity has no away to be recovered after a black hole has disappeared completely.
This is known as so called “information loss paradox™ [3. 4] which means that pure quantum
states can evolve into mixed states. This type of evolution violates the fundamental principle
of quantum theory, as these prescribe a unitary time evolution of basis states [5].

The information loss paradox can perhaps be attributed to the semi-classical nature of the
investigations of Hawking radiation. However, researches in string theory indeed support the
idea that Hawking radiation can be described within a manifestly unitary theory, but it still
remains a mystery how information is recovered. Although a complete resolution of the
information loss paradox might be within a unitary theory of quantum gravity or string /
M-theory, it is argued that the information could come out if the outgoing radiation were not
exactly thermal but had subtle corrections [3, 4].

There is some degree of mystery remains in the mechanism of black hole radiation. In the
original derivation of black hole evaporations, Hawking described the thermal radiation as a
quantum tunneling process created by vacuum fluctuation near the event horizon [6]. In this
process. the radiation is like clectron-positron pair creation in a constant electric field. The
energy of a particle can change its sign after crossing the event horizon. So a pair created by
vacuum {luctuations just inside or outside the horizon can materialize with zero total energy.
after one member of the pair has tunneled to the opposite side. But Hawking did not proceed
in this way. He considered the creation of a black hole in the context of a collapse geometry,
calculating the Bogoliubov transformations between the initial and final states of incoming
and outgoing radiation. However, there were (wo difficulties to overcome this problem. The
first was to find a well-behaved coordinate system at the event horizon. The second was
where is the barrier. Recently. a method to describe Hawking radiation as tunneling process
was developed by Krause and Wilezek [7] and elaborated by Parikh and Wilezek [8-12].
This method involves calculating the imaginary part of the action for the process of s-wave
emission across the horizon, which in turns is related to the Boltzmann factor for emission
at the Hawking temperature. Using the WKB approximation the tunneling probability of the
s-wave coming from inside to outside the horizon is given by

I’ xexp[—2Im/], (h

where 7 is the classical action of the trajectory. Expanding the action in terms of the particle
energy, the Hawking temperature is recovered at linear order. In other words for 27/ = 8 E +
O(E?) this gives

1" ~exp[—27] = exp[—BE], R (2)

which is the regular Boltzmann factor for a particle of energy,and,is the inverse temperature
of the horizon.

Besides treating the Hawking radiation as a tunneling process Krause-Parikh-Wilezek
also took the tunneling particles back reaction into account. They obtained the correspond-
ing modilied spectrum. The most interesting result was that they found this modified spec-
trum was implicitly consistent with the unitary theory and could support the conservation of
information [7-10]. Following this tunneling method, there have been many generalizations,
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such as its application to other spacetimes. The Hawking radiation as tunneling from various
spherically symmetric blackholes were found in [13-28]. Also, there are some attempts to
extend this method to the case of stationary axisymmetric black holes [29-37]. Recently,
some people investigated the massive charged particles tunneling from the static spheri-
cally symmetric as well as stationary axisymmetric black holes [38-45]. They all found a
satisfying result. However, Parikh and Wilezek’s tunneling method is dependent on coordi-
nates, which means that it should find a Painleve-like coordinates. Recently, Angheben ct al.
found an invariant tunneling method which was independent of coordinates and called the
Hamilton-Jacobi tunneling method to calculate the Hawking temperature [29]. This variant
tunneling method could also be considered as an extension of the method used by Padman-
abhan et al. [46-50)].

The Hamilton-Jacobi method to describe Hawking radiation was developed (51, 52]. In
this paper we follow the reference [51, 52] to obtain the tunneling rate of the massless
particles at the event horizon of a Kerr-Newman-NUT black hole. The article is arranged
as follows. In Sect. 2 we give the metric of Kerr-Newman-NUT black hole. The horizon
area and Bekenstein-Hawking entropy formula are also given in this section. In Sect. 3 we
introduce the dragging coordinate system in order (o infinite red shift surlace coincide with
the event horizon surface, so that the geometrical optical limit can be applied. In Sect. 4 we
discuss the Hamilton-Jacobi process to obtain the tunneling rate. A concluding remarks is
given in Sect. 5.

2 Kerr-Newman-NUT Black Hole

The Kerr-Newman-NUT blackhole metric can be given by [50]

4 — 2SR 2
ds® = —-‘—LI,SLG)-([!2 + /)Zdr2 + pde?

sin00r? + (I +a)?)? — A(asin®6 + 4lsin’6/2)*
+ = do-
s

.2 . 2 e 242
+2[A(asm 6 + 4lsin 6’/2)7 asin 60"+ (a” + ))dfd</>. (3)
e

where

A=rita’+e*+g>—1>=2Mr, 2
p?=r*+ (I +acost)>.

Here M is the mass of the black hole. e and g are the electric and magnetic charges respec-
tively, a is the angular momentum per unit mass, / is the NUT parameter. The event horizon
equations are given by A = 0 which gives

ri=M:t\/(M2—a2—e2—g3+lz), (5)

The event horizon area of this black hole is given by [53] A = 4—?‘# where (2 is the angular
velocity at the horizon.

A=4an[ri+(+1)7], 6)

and Bekenstein-Hawking entropy
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A 2 2
Sen =7 =n(ri+@+1)’]

=r[2M 42M [(MI—at—e— g2 +12) —? g2+ 27 +2al]. (D)

3 Dragging Coordinate Transformation

The infinite red shift surface is given by ggo = 0 which gives

ri=M:t\/(Mz—azcoszﬂ—ez—g2+lz). ®)

Obviously the infinite red shift surface does not coincide with the event horizon surface,
which means that there is an energy layer exists between them. So the geometrical optical
limit cannot be applied. Also there exists a frame dragging effect in the stationary rotat-
ing spacctime, the matter ficld in the ergosphere near the horizon must be dragged by the
gravitational ficld also, so a rcasonable physical picture should be depicted in the dragging
coordinate system. This hints that we must transform the metric (3) into a dragging coordi-
nate system. Let

l
P=tl _ 8n )
dr 8oo
where (2 is the angular velocity. For the metric (3) we have,
(2 — a%sin’ ) P Lro
8vo = 7 , 8= % 8n=p
sin?0[r2 4 (I +a)?)? — A(asin®6 + 4/sin0/2)2
833 = = (10)
P
Aasin® 6 + 41sin>6/2) — asin® B(r2 + (a2 + (%))
8oz = 2 :
P
From (8),
o_ b _ _Alasin’e +4sin’#/2) —asin’ 602 + (@ + %) am
T dr sin?0[r2 + (I + a)?]? — A(asin®6 + 4/sin’6/2)2
At the horizon the angular velocity becomes,
a
R = (12)
T 24 +a)?
The metric (3) in the dragging coordinate system becomes,
ds® = goodt® + gy dr? +g33c192. (13)
where
2 2002
oW = 00__g0_3 Ap-sin®f (14)

g5 SO0+ (U +a)2)2 — Alasin’ 6 +4lsin0/2)2

The line element (13) represents a 3-dimensional hypersurface of 4-dimensional spacetime.
The infinite red-shift surfuce now coincides with the event horizon surface in the dragging
coordinate system. So the geometrical optical limit can be applied here.
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4 The Hamilton-Jacobi Method
The classical action of the radiation particle satisfics the relativistic Hamilton-Jacobi cqua-
tion

g"8, 18,1 +u*=0, (15)

where u is the mass of the emitted particle and g"" are the inverse metric tensor obtained
from (13) as

00 _ Ap’sin’ e pll _4 g2 = 1
sin6[r2 + (| + a)?)? — A(asin® 6 + 4lsin® 6/2)?" o’ 0’
(16)
and other components are zero. From (15) we obtain,
51\? 81\’ 51\?
00 I 22 2
2 - 222 20, 17
8 (5:) +8 (5:-) i (50) g tn
1L TS SI\? SI\?
- — M@, 0) — Cr.0) — 220 18
P(r.e)(m) Ty )(5,-> G4 )<59) +tum=0, L
where
Ap*sin® e
P('.'6)=-2 2 272 ) =T 20
sin“A[r? 4+ (I + a)?)? — Alasin~§ + 4lsin~ A /2)* (19)
A 1
M(r.6)==. C(rt)=—.
p? 0?

Now, considering the axial symmetry of black hole spacetime we carry out the separation
variable to (13) as

I'=—wr+W(,0)+ jé. (20

where w is the energy of the emitted particle, W(r, 6) is the generalized momentum and j
is the angular momentum with respect to the ¢-axis. From (15) we obtain

§I Y s SW s SW
_— = | — = — ] —_——=— _ = —, 21
TR Ay v AC N i a7 @b
Substituting these value into (18) we obtain,
SW 1 SW?
— —j2)2=P0.0){Cr,u) — 21, 22
5 P(r.@)M(r.H)\/(w ety ){ v )(ae> +“] (e
where
)
eul® (23)
ot

From (17) we observe that the imaginary part of the emitted particles action is only produced
from the pole at the event horizon. According to the [51] for getting the correct result the
proper spatial distance should be introduced. which is defined by

2

do? = %dr2 + pdo*. (24)

We consider the emitted particle as an ellipsoid shell of energy to tunnel across the event
horizon and should not have motion in @-direction (/¢ = ). So we have from (24),
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I e (25)
do = ———dr,
VM(@r,0)
1
= | 26
. / NI -
By applying near-horizon approximation we have,
P(r.¢) = P'(r..0)(r —ry)+ ---higher order terms of (r —r.), 4
27)
M(@r.0)= M'(r..0)(r —ry) +---higher orderterms of (r —r4),
where
6P ',9 o ) j '
Ui T o e i R TR | (28)
5,. r=rq 6'- r=re
From (26) we obtain
i 1
o = dr, (29)
./ VM@, 0)0r —ry) + -
implies
2
s e M -
Again
1 : 1
40 = —————=dr
JM(r.6)
|
= dr
fM("-(-‘ NHr—ry)+---
1
= dr. 31
VM(ry, 8)(r —ry)
Hence we get
1 -
LA (32)
o 2r —ry)
From (22) we can obtain
2(r—ry) do
SW=— —_
P ra. O —ri)+ - UM re.O)r—ry)+---) @
e AN
X \/(w—-JQ)z——P(;‘.H)l(‘(r.ﬁ)(—g) 4+ uty, (33)
1
W(o)=—- =
\/P (re . OYM'(r..6)
l sW?
X /ﬁ‘/(w—jf?)z—P(:-.H)IC(::H}(—) +uzl. (34)
J o 80
where 2, = TT:(_;W is the angular velocity at the event horizon, and the solution is singular

at 0 = () which corresponds to the event horizon. Finishing the integral and substituting the
result into (15) we obtain the imaginary part of the action as
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2n ja
Im/=ImW= — . 35
R N LA ) (“’ 2+@ +/>2) (39)

Now the temperature over the surface of the black hole is given by [48]

Plr-.0)M(r..0 —
T=‘/ (r- . O)YM'(r.. )=L7r+ M . (36)
47 2n ri+(a+1)?
which gives
1 2 +1)?
_rit+(a+l) 37

P OM (-8 20r.—M)

From (23) we have,

Dt adj
— 1 = ) 3
D = .. 0) (l TRt ’)2) o

[t we fix the total ADM mass and angular momentum of the spacetime and allow these of
the black hole to vary, then when a particle with energy w and angular momentum j tunnels
out, the mass and angular momentum should be modified. Replacing M by M — w and J by
J — j we obtain the imaginary part of the actual action as

e It/ -w/ =) ;”+(a+1) [1 adj’
_ do'— 57—
—w pd-j ,ﬂ+(a+1) ad(J — j")
g M =t = == 35
7'(/ / re— (M —w) (M=) ri+(a+1)? i

where J — j'=a(M — ). re =M+ JM? —a2—e2 — g2+ 1> and r\, = (M — ') +
VM —w)? —a? —e?— g2 + 2,
Since j is very small, therefore, we have ff” d(J—j)=[J —j’]j" =J—-j)-J=0.

Hence
=0 N e 2+ (a+1)2
Im/ =~ — o).
m n'/ / O = w)I(M w') (40)

Using Eq. (39) we have

2M - ) +2M - )/ (M—w) —a?—e2—g2+12
M-w _el_g2+2l2+2a1 ,
lml=—7t/ [ d(M — o).

M VM —w) —a?—e2— g2 +1?
(41)
Finishing the integral we get
Im/= —n[(M ~0)V(M—-w)? —a—e— g2+ 12+ (M —w) - M
- M —
—M\/Mz—az—ez—gz+lz+—(a‘—12+2al)cosh"_(___—w)_
2 Jai+ e +gr 12
] 2 2 = M
— =(a*—1*+2al)cosh™' ] (42)
2 a’+el+g2 -2

which gives
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Im/=-7[(M-w)/(M-w)?—a>—e2—g2+12+ (M - w)* - M?
—-M\/Mz—az—ez—g2+[2]. (43)

Therefore the tunneling rate is

I~ = 2IMS — 271(M =0V =M (M =)/ (M=) =2 =2 g2 2= M \ /M2 =2 = 2= 217 (44)

Using Bekenstein-Hawking entropy formula Sgy = 7202 + (@ + 1)?), we have

Sy (M) =m[2M* +2M /M2 =2 -2 — g2+ 12 —¢? — g2 4212 + 2al], (45)

and

Sen(M — ') = 1[2(M — 0)* +2(M — )/ (M —w)? —a> =2 — g2 + I2
-’ —g?+ 20 +2al]. (46)
Therefore
ASpn = Sgy(M — w) — Sgu (M)
=27[(M - ) +2M —w) V(M —w) —a? —e? — g2+ I2
—MZ—M\/MZ—aI—eI—g3+I3], 47)

where ASgy is the difference of entropies of the black hole before and after the emission.
From (44) we have

I~ eS8i, (48)

5 Concluding Remarks

In this paper, we have used the Hamilton-Jacobi method to presented the Hawking radiation
from the cvent horizon of Kerr-Newman-NUT black hole. We find that the emission rate at
the event horizon is equal to the difference of Bekenstein-Hawking entropy before and after
the emission of a particle.

According to the reference [51] expression (28) indicates that the radiation is not pure
thermal, which gives a correction to the Hawking radiation of the black hole. Following the

reference [51] expanding equation (28) in terms of (w — wy) we get,
I~ eMSun

(w=-wy) 12 a2 T 3 . Mia2+e2 +y2 e
—r-Q-[l *1'-*' —— (M ++/ M2 —a? =2 =2~/ _mﬁff-ﬁ_"""’ wp)+-)]

(49)

When neglecting the higher order terms involving (w — wp) the Hawking pure thermal
spectrum can be obtained. We therefore come to the conclusion that the actual radiation
spectrum of Kerr-Newman-NUT black hole is not precisely thermal, which provides an
interesting correction to Hawking pure thermal spectrum.

In special case, if we put/ = 0 and we assume the equivalent charge ) = ¢*>+ g then the
result is similar for the tunneling of uncharged particle from Kerr-Newman blackhole [47]. If
| = e = g =0 then the result reduces to the Kerr black hole [54]. For/ =a = g =0 then the
result is fit for Reissner-Nordstrom black hole and supports the Parikh-Wilezek's result (8].
Also it we assume a = [ = e = g = () then the result supports for the Schwarzschild black
hole obtained by the Parikh-Wilezek's result [8].
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The result we derived above shows that the black hole radiation causes the spacetime
background geometry to be varied. Because of the self-gravitation and energy conservation
and angular momentum conservation, the event horizon of black hole varies with black
hole radiation, namely when the particle outgoes the event horizon will contract and the
two turning points pre-contraction and post-contraction are the two points of barrier. The
tunneling rate of particle is relevant to the mass, the angular momentum, the electric charge,
the magnetic charge. and the NUT parameters of the black hole and satisfies the underlying
unitary theory.

References

. Hawking, S.W.: Naturc (London) 248, 30 (1974)
Hawking. S.W.: Commun. Math. Phys. 43, 199 (1975)
Hawking. S.W.: Phys. Rev. D 14, 2460 (1976)
. Hawking. S.W.: Phys. Rev. D 72, 084013 (2005)
Jiang. Q.-Q.. Wu, S.-Q., Cai, X.: Hawking radiation as tunncling from Kermr and Kerr-Newman black-
holes. hep-th/0512351
6. Hartle, J.B., Hawking, S.W.: Phys. Rev. D 13, 2188 (1976)
7. Krause, P., Wilezck. F.: Nucl. Phys. B 433, 403 (1995). gr-qc/9406042
8. Parikh, M.K.. Wilczek, F.: Phys. Rev. Lett. 85, 5042 (2000). hep-th/9907001
9. Parikh, M.K.: Phys. Lett. B 546, 189 (2002). hep-th/0204107
10. Parikh, M.K.: hep-th/0402166
1. Parikh, M.K.: Int. J. Mod. Phys. D 13, 2351 (2004)
12. Parikh, M.K.: Gen. Relativ. Gravit. 36, 2419 (2004). hep-th/0405160
13. Zhang, J.. Zhao. Z.: Phys. Lett. B 618, 14 (2005)
14. Liu, W.: Chin. J. Phys. 45(1) (2007)
15. Sarkar. S.. Kothawala, D.: 0709.4448 [gr-qc]
16. Zhang, J.. Zhao. Z.: Phys. Lett. B 638. 110 (2006). gr-qc/0512153
17. Jiang, Q.-Q.. Wu, S.-Q.: Cai, X.: Phys. Rev. D 73, 064003 (2006). hep-th/0512351
18. Kerner, R.. Mann, R.B.: 0803.2246 [hep-th]
19. Zeng, X.-X.. Hou, H.-S.. Yang, S.-Z.: PRAMANA. J. Phys. 70(3), 409-415 (2008)
20. Hu, Y.-P., Zhang, J.-Y., Zhao. Z.: 0901.2680 [gr-qc]
21. Kerner, R., Mann, R.B.: Phys. Rev. D 73, 104010 (2006). gr-qc/0603019
22. Gillani, U.A., Rchman, M., Saifullah, K.: 1102.0029 [hep-th]
23. Bilal, M., Saitullah, K.: 1010.5575 [gr-qc]
24. Rchman, M., Saifullah, K.: 1011.5129 [hep-th]
25. Lin.H.-C.. Soo. C.: 0905.3244 [gr-qc]
26. Arzano, M., Mcdved, AJ.M., Vagenas, E.C.: J. High Encrgy Phys. 0509, 037 (2003). hep-th/0505200
27. Lin. K.. Yang, S.-Z.: Phys. Rev. D 79, 064035 (2009)
28. Yang.S.Z..Lin, K., Yang, J.: Mod. Phys. Lett. A 24(27), 2187-2193 (2009)
29. Anghcben, M., Nadalini, M., Vanzo, L., Zerbini, S.: J. High Encrgy Phys. 0505, 014 (2005).
hep-th/0503081
30. Miao. Y.-G.. Xue, Z., Zhang, S.-J.: 1012.2426 [hep-th]
31. Jian, T.. Chan, B.-B.: Acta Physica Polonica B 40(2) (2009)
32. Majhi, B.R.: 0809.1508 [hep-th]
33. Matsuno, K., Umetsu, K.: 1101.2091 [hep-th]
34. Ali. M.H.: Class. Quantum Gravity 24, 5849 (2007). 0706.3890 [gr-qc]
35. Ali. M.H.: Int. J. Theor. Phys. 47, 2203 (2008). 0707.1079 [gr-qc]
36. Liu, W.: New coordinates of BTZ black hole and Hawking radiation via tunncling. Phys. Lett. B 634,
541-544 (2006)
37. Medved, AJ.M.: Class. Quantum Gravity 19, 589-598 (2002)
38. Wu. S.-Q.. Jiang, Q.-Q.: J. High Encrgy Phys. 0603, 079 (2006). hep-th/0602033
39. Grifiths. I.B.. Podolsky. I.: Class. Quantum Gravity 22, 3467 (2005)
40. Griliths, J.B., Podolsky. J.: Phys. Rev. D 73, 044018 (2006)
41. Plebnski, J.F., Demianski, M.: Am. Phys. NY 98, 98 (1970)
42. Gillani, U.A., Rchman, M., Saifullah, K.: 1102.0029 [hep-th]
43. Painleve, P.: C. R. Acad. Sci., Ser. | Math. 173, 677 (1921)

woB W —

@ Springer




IntJ Theor Phys

44,
. Wang, Q.. Yang, S.-Z.: Phys. Scr. 78, 045003 (2008) (3 pp.)
46.
47.

48.
49.

50.
53l

Landau, L.D., Lifshitz, EM.: The Classical Theory of Ficld. Pergamon, London (1975)

Srinivasan, K., Padmanabhan, T.: Phys. Rev. D 60, 024007 (1999). gr-qc/9812028

Shankaranarayann, S.. Srinivasan, K., Padmanabhan, T.. Mod. Phys. Let. A 16, 571 (2001).
gr-qc/0007022

Shankaranarayann, S.. Srinivasan, K., Padmanabhan, T.: Class. Quantum Gravity 19. 2671 (2002).
gr-qc/0010042

Shankaranarayann, S.: Phys. Rev. D 67, 084026 (2003). gr-qc/0301090

Vagenas. E.C.: Nuovo Cimento B 117, 899 (2002). hep-th/0111047

Liu, H.-L., Liu, Z.-X., Hou, J.-S., Yang, S.-Z.: A necw method to study the Hawking radiation from the
Kerr-NUT blackhole. Int. J. Theor. Phys. 47, 2960-2965 (2008)

Liu. J.-J.. Chen, D.-Y., Yang, S.-Z.: A ncw mcthod to study the Hawking radiation of the charged black
hole with a global monopole. Rom. J. Phys. 53(5-6), 659-664 (2008)

3. Griftiths, I.B.. Podolosky. I.: Class. Quantum Gravity 22, 3467-3480 (2005). gr-qc/0507021

Frolov. V.P., Novikov, I.D.: Black Hole Physics, Basic Concepts and New Developments. Kluwer Aca-
demic, Dordrecht (1998)

Rajshahi Umversn?zy I:{'%xary

gonNO..., peeeed
Acces 201Y...oceeeneonse

Ca
Date L2ELS A e

R \A
W“mmuuv;nmvm 3

@ Springer




