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ABSTRACT

The goal of the thesis is to find out Some new connectedness concepts in fuzzy
topological spaces. Some concepts of connectedness in fuzzy topological spaces that
already exist in the literature are recalled here also. In this work, various type of
connectedness like C; — connectedness E=1,273 4, (C3)= connectedness, stronger
forms of connectedness are studied in detail. Interrelations between various
connectedness concepts in fuzzy topological spaces are discussed. In each chapter of this
thesis, we give several possible definitions, both existing and new, of a concept and then
compare the resulting concepts and determine thereby the interrelations among them.

Some other properties of these concepts have also been discussed.
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INTRODUCTION

The concept of fuzzy sets was first introduced in 1965 by L. A. Zadeh in his
classical paper [38] as an attempt 10 mathematically handle those phenomena which are
inherently vague, imprecise or fuzzy in nature. Various merits and applications of fuzzy
set theory have been extensively demonstrated by Zadeh and a large number of
subsequence workers. It is impossible to illustrate these aspects of fuzzy set theory any

further due to its enormity and diversity.

The advent of fuzzy set theory has also led to the development of some new areas
of study in Mathematics. It has become a concern and a new tool for the mathematicians
working in many different areas of Mathematics. These have been generally
accomplished by replacing subsets, in various existing mathematical structures, by fuzzy
sets. In 1968, C. L. Chang [5] did “fuzzification” of topology by replacing subsets in the
definition of fuzzy topology by fuzzy sets. Since then a large body of concepts and results
have been growing in this area which has come to be known as “fuzzy topology”. In
1971, Goguen [8] defined fuzzy set by replacing the unit interval I by a completely
distributive lattice L with an order reversing involution. A further development of L —
fuzzy topology was made by Sarkar Mira [28, 29] and Hutton [12, 13]. Another
significant approach to fuzzy topology was adopted by R. Lowen [17] in 1976. Seeing,
what he regarded as some basic shortcomings in the Chang’s concept of fuzzy topology,
he redefined fuzzy topology as being families of fuzzy sets which are closed under
arbitrary suprema and finite infima and which contain all constant fuzzy sets. This equips
Lowen’s fuzzy topologies with several advantages not enjoyed by Chang’s fuzzy
topologies, some of which are

(1) Constant maps are always continuous.

(ii)  Projection maps of a product fuzzy topological space are always open.

(iii) In product spaces, slices are always homeomorphic to corresponding
factor spaces.

(iv)  The category of fuzzy topological spaces, like that of topological spaces,
becomes a topological category. (For further details see Lowen and Wuyts [21]).
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The present state of ongoing research in fuzzy topology can be divided in two
separate sections, one of which is exclusively using the unit interval I to describe
fuzziness (Chang’s fuzzy topologies) and the other using L — fuzzy topologies. In our
investigation, we have preferred the concepts of fuzzy topology developed by C. L.
Chang [5].

Fuzzy sets have become a concern and tool for persons working in a variety of
fields. Particularly, mathematicians working in many different areas such as logic,
topology, algebra, probability theory, category theory etc. They have shown keen interest
and have done a lot of research in the area of fuzzy sets. In the same way, researchers are
applying fuzzy sets in the areas of general systems, intelligent systems, artificial
intelligence, decisions theory and optimization, approximate reasoning, sociology and
behaviors science etc. Also the theory of fuzzy sets has already affected a wide variety of
disciplines such as control theory, information processing, cluster analysis, genetics,
electrical engineering and operation research etc. However, a few workers have made
some effort to point out the possibilities of applying fuzzy topology in some system —
theoretic problems and more recently, in computer graphics. Without elaborating any

further, we refer to the paper by Nazaroff [23], Warren [35] and klein [14] in this context.

In 1998 a definition of fuzzy connectedness was given by Gunther Jager [10] and
proved to be equivalent to Pu and Liu’s definition (1980) (c. f. e.g. .M Puand Y. M.
Liu [27]). In 2007 Q. E. Hassan [11] introduced new results in fuzzy connectedness
spaces. Among the results obtained mentioned fuzzy super connectedness which was

introduced by Fatteh and Bassan [7].

The present thesis entitled “On Connectedness Concepts in Fuzzy Topological
Spaces” is mainly a review work and devoted to the study of some connectedness for
fuzzy topological spaces. Actually we collected several materials on fuzzy connectedness
from different published papers and accumulated them so that one can find them at a

glace in one place.
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However, the materials of this thesis have been divided into five chapters and a

brief discussion of this is given bellow:

The first chapter is corporate with some basic concepts, definitions and known
results on fuzzy sets, fuzzy topological spaces and different mapping on fuzzy
topological spaces which are necessary for the subsequent chapters. Results are provided

without proof and can be seen in papers referred to.

In chapter two, we recall various concepts of connected fuzzy topological spaces,

comparison of various concepts of fuzzy connectedness and we also discuss some other

type of fuzzy connectedness like — C4,2,-CandD-C.

In chapter three, we discuss C — Connectedness (i = 1, 2, 3, 4) in fuzzy
topological spaces. We study their interrelations and preservation. Some other theorems

also added regarding to this concepts.

In chapter four, we recall some existing propositions regarding
(C3) - connectedness for fuzzy topological spaces. We compare this connectedness with

other connectedness introduced in chapter two.

In chapter five, stronger forms of fuzzy connectedness have been discussed.
Characteristics of fuzzy super connectedness and fuzzy strong connectedness are
included in this chapter.
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CHAPTER -1

Preliminaries

) A Introduction: L. A introduced the concept of fuzzy set. Zadeh in his classical
paper [38] described those situations where the defining property of a “subset” of a set X
is imprecise or fuzzy (e.g. those real number which are much larger than 5). In such
situations it is generally impossible to say that an element either belongs to, or does not
belong to, that “subset”. One possible way to overcome this difficulty is to assign to each
element of a set X a “grade of membership”, say for convenience between 0 and 1. This
leads to function o : X — [0,1] which Zadeh called a fuzzy set in X.

In 1968, C.L. Chang [5] defined a fuzzy topology on a set X in the expected way,
viz. as a collection of fuzzy sets in X, closed under finite infimum and arbitrary suprema,
and containing 0 and 1. The most significant approach to fuzzy topology was adopted by
R. Lowen [17] in 1976.

2. Preliminaries: Now we recall several definitions and basic results that will be

used in our work.

Definition 2.1: Let X be non — empty set and 7 =[0,1]. A fuzzy set in X is a function

A: X — I which assigns to each element x € X, a degree or grade of membership
A(x) e I . Thus a (usual) subset is a special type of fuzzy set in which the range of the

function is {0,1}. Therefore, one can consider subsets of X as fuzzy sets in X.



CHAPTER -1 Preliminaries 5

2 .,
Example 2.1: Suppose X = {1,2,3,4,5,6,7,8, 9}and u(x) = is a fuzzy set. Then we

can construct the following table:

X 1 2 3 4 5§ 1|6 7 8 9
ux) | 04 | 02 | 013 01 | 0.08 | 0.06 |0.057|0.05 0.04

The graph of a fuzzy set which is defined above is given bellow:

u(x)

05 -+
04

03 \
0.2 \\ ulx)

0.1 D

Figure 1: Graph of a fuzzy set

Remarks 2.1: If a, b, ¢, d € X , then the grade of membership is 1.
e, o @, v 28X, then the grade of membership is 0.

Definition 2.2: Let X be a non — empty set and 4 ¢ X . Consider A:X — I be a fuzzy
set in X. Then we say that A is a fuzzy set if for every xe A such that A(x)=1.

Similarly, X is a fuzzy set if every element of X goes to 1. Subsets of X will also be
called crisp subsets of X.

Definition 2.3: If A is a fuzzy set in X then the set {x € X : A(x)> 0} is called the
support of 4 and is denoted by A or J, .i.e. every element of X mapped into I except 0.
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Remarks 2.2: If 4c X then 1, will denote the characteristic function of A and 1, for
the characteristic function of {x} and a1, for @ Al,. We also write I, 1, and Iy,

respectively for the intervals (0,1], [0,1) and (0,1).

Generally, we shalluse A, B, C .......... , etc. to denote subsets of X and
Ay U, Vs W, ... ... ... 10 denote fuzzy sets in X. For a fuzzy set A in X, 1-A is called the

complement of 4 in X. We also denote 1— 4 by A° sometimes. For most purpose
supremum, infimum and complementation have turned out to be appropriate translations

of the usual set — theoretic operations of union, intersection and complementation

respectively.
Definition 2.4: Let @ and B be two fuzzy sets in X. Then we define

(1) a=p iff a(x)=p(x),VxeX.

(i) acp iff a(x)< f(), VxeX.

(i) A=avpiff A(x) = max{a(x), f(x)} Vxe X .
(iv) A=anpiff A(x) = min{er(x), B(x)} Vxe X .
(V) n=ca iff n(x)=1-a(x), VxeX.

Definition 2.5: Let A be the collection of fuzzy sets in X.ie. A={a,} where j€ Y i

Then U e, (x) =sup {&;(x)}, V xe X and Mo, (x) =inf {a;(x)}, ¥ xeX.

Definition 2.6: If @ € ] and A is a fuzzy setin X defined by A(x) =, for all xe X,
then we refer to A as a constant tuzzy set and denote it by & itself. In particular, we
have the constant fuzzy sets 0, 1.
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Example 2.2: Suppose X={,2,34,5 and u,vef, where

Then we construct the following table:

1

u(x) = % and v(x)=—

X

X 2 3 4 5
u(x) 0.25 011 0.0625 0.04
v(X) 0.125 0.037 0.015 0.008

The graph of the two fuzzy sets which are defined above is given bellow:

1.2
1
0.8
0.6 uix}
0.4 vix)
Q ¥; .
2 3 4
TR

Figure 2: Graph of fuzzy subset

Clearly for all x e X, v(x) Su(x). Therefore u Cv.
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Example 2.3: Suppose X ={a,b,c,d, e}, u= £0.2,0.4,1,0.8,0.3} and
v={0.3,02,08,09,04}. Then w=uvv= {0.3, 0.4,1, 0.9, 0.4} and the graph of the

union of two fuzzy sets is given bellow:

1.2

os /S

0.6 J74 AN i
- i/ N —
L s/ N —w

Figure 3: Union of two fuzzy sets

Example 2.4: Suppose X ={a,b,c.d, e}, u= {0.2,0.4,1,0.8,0.3} and
v=1{0.3,02,0.8,09,04}. Then w=uAv= {0.2, 0.2, 0.8, 0.8, 0.3} and the graph of the

intersection of two fuzzy sets is given bellow:

1.2

1 / >\
0.8

0.6 v \
04 - -+ AN —
>é" : y
0.2 '
0 : 1
- 1 2 3 4 5

Figure 4: Intersection of two sets
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Example 2.5: Let X ={1, 2, 3, 4, 5, 6, 7} and u(x) =—1— be a fuzzy set, then we can
%

construct the following table:
X 1 2 3 4 5 6 7
u(x) 1 05 0.33 0.25 0.2 0.16 0.14
u‘(x)=1-u(x) 0 0.5 0.67 0.75 0.8 0.84 0.86

The graph of the complement of a fuzzy set which is defined above is given bellow:

1.2

oo L\ .
Nl

u(x}

1-uix}

il
// el

1 2 3 4 5 6 7

Figure 5: Complement of a fuzzy set

We can say that fo a fuzzy set u, # Au' = 0.5 but in general set theory AN 4" =¢ always.
Definition 2.7: Let /: X — Y be a mapping and a be a fuzzy set in X. The image f (o)
is a fuzzy set in Y whose membership function is defined by

supa(x) if () #¢

f(a)(y)={0 7=

Definition 2.8: Let /': X — Y be a mapping and £ be a fuzzy set in Y. The inverse
image f~'(B) is a fuzzy set in X defined by

B =Bf(x).
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Definition 2.9: A fuzzy point p in X is a special type of fuzzy set in X with membership
function is defined by

p(x)=r, where 0 <r <1
py)=\, forall x#y

P is said to have support x and value r. We also write this as x, or 71_.
A fuzzy point p is said to belong to a fuzzy set & in X denoted p e & iff p(x) < a(x)

and p(y)<a(y)if y2x.ie. x, ea =r<a(x).

De — Morgan’s law in fuzzy mathematics: For any two fuzzy sets & and £ we have
@D  I-@Ap=(1-a)v(1-5)
i) 1-(avp)=(1-a)a(l-p)

Remarks 2.3: For a fuzzy set 4 in X, AN (1-A) need not be zero and for two fuzzy
sets , f in X
flanp)= fl@)n f(B).
Definition 2.10: Let X be a non — empty setand < I” i.e. t is the collection of fuzzy
sets in X. Then t is called a fuzzy topology on X if it satisfies the following conditions:
(1) 0 and 1 belong to t.
(ii) a, fet =Danfet
(i) o et >V, ,aEl
The topology on X is in the sense of C. L. Chang. The ordered pair (X.?) is called the
fuzzy topological space.

Definition 2.11: Let X be a non — empty set and # < I* i.e. t is the collection of fuzzy
sets in X. Then t is called a fuzzy topology on X if it satisfies the following conditions:
(1) 0 and 1 belong to t.
(i) a,fet =Danfet
(i) «o;et =V, &t

(iv)  tcontains all constant fuzzy set.
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The topology on X is in the sense of R. Lowen. The ordered pair (X,f) is called the
fuzzy topological space.

Remarks 2.4: Members of t are called t — open or simply open fuzzy sets and their
complements are called t — closed or simply closed fuzzy sets.

Definition 2.12: Let A be a fuzzy subset in an fis (X, t), then the closure of A is denoted

by A orclAd,isdefinedby A=N{u:Ac uand pet'’}.

Definition 2.13: Let A be a fuzzy subset in an fis (X, t), then the interior of A is denoted
by A’ orintAandis definedby ' =U{y: ucdand pet}.

Definition 2.14: If (X, t)isanftsand Ac X.Then ¢, ={u/A:uety={und:uet} is
a fuzzy topology on A. This fuzzy topology on A is called the subspace fuzzy topology
on A and the pair (4.z,) is called the fuzzy subspace of (X, t).

Definition 2.15: Let (X, t) be an fts . Then

(i) asubfamily B of t is called a base for t iff each member of t can be expressed as

a suppremum (union) of members of B.
(ii) asubfamily S of t is called a sub - base for t iff the family of all the finite

infima of members of S is a base for t.

Definition 2.16: A fuzzy singleton p in X is a special type of fuzzy set in X with
membership function is defined by

p(x)=r, where 0 <r <1

py)=0, forall x#y

We write this as x, . A fuzzy singleton p is said to belong to a fuzzy set @ in X i.e.

x,€ax = r<a(x) where 0<r<I.

D- 3072
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CHAPTER -2

Connectedness in Fuzzy Topological Spaces

1. Introduction
Several concepts of fuzzy topological spaces have been introduced and studied by

many authors. In [2] Ali and Srivastava gave a comparison of some fuzzy connectedness
concepts. Another similar comparison was later given by Ali [1]. In this chapter we will
give some definition of fuzzy connectedness and upgrade the comparison by including
some more connectedness concepts due to Fatteh and Bassan [6], Ajmal and Kokli [3],
Ali [1], and Lowen and Srivastava [19]. We use fuzzy topology in the sense of Lowen
[17]. We put I =[0,1] and J, = (0,1]. The ¢ —valued constant fuzzy set will be denoted
by e itself. By 1, will be denoted by the characteristic function of a subset A of X where

(X,1)is a fuzzy topological space (in short fts).

2. Connectedness in Fuzzy Topological Spaces

To discuss connectedness in fis, we will discuss some definition related to

connectedness in fts.

Definition 2.1: Two fuzzy sets 3,y in an fis (X,) are said to be Q — separated if there
are fuzzy sets A, u suchthat A> g, u>y andAAy=0=unp.

Definition 2.2: Two fuzzy sets £,y in a fis (X,r)are said to be separated if there exist
fuzzy sets A, y €t such that

@ A> p,u>yand
Gi) AAy=0=unp.
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Definition 2.3: A fuzzy set uin a fuzzy topological space (X,0)is said to be
disconnected if there are non-empty fuzzy sets f3,yin the subspace (X,,%) such that
B.y are Q — separation and Bvy=pu. A fuzzy set uis called connected if it is not

disconnected.

Definition 2.4: Let (X,f) be an fts and Hbe a fuzzy set in X such that 4 >> 0. The
pair (u,v) ,u,v e t is said to be (C1) - separation iff

(1) UEUFY
(ii) uvv=yuand

(i) wAv=0.

Definition 2.5: Suppose for some & > 0we have s >> & . The pair(u,v),u,v et is said to

be (C2) — separation iff there exists some & €(0,£] such that

(i) UEUEY
(i) wvv=gand

(i) wunv=p-g.

We first recall the following definition of various fuzzy connectedness concepts that will
be later compared in this chapter.

Definition 2.6: We call an fts (X,1)

(a) FC (i) iff (X,7) has no clopen fuzzy set except 0, 1. [12]

(b) FC (ii) iff no clopen fuzzy set #>>0 (ie. p(x)>>0forall x) canbe (Cl)-
separated. [18]

(¢) FC (iii) iff no clopen fuzzy set u>>r>0 (re (0,1]) can be (C2) -
separated. [18]
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-

(d) FC (iv) iff there do not exist non — zero Q — separated fuzzy sets S,y in X
suchthat Svy=1.[27] ’

(e) FC (v) iff there do not exist non — zero separated fuzzy sets £,y in X such
that Bvy=1.[39] '

(f) FC (vi) iff there do not exist B,y et other than 0,1 such that g v ¥ >0 and
BAay=0.[30]

(g) FC (vii) iff (X,#) has no non — constant clopen fuzzy set. [31]

(h) FC (viii) iff (X,#) has no non — constant clopen fuzzy sets B,y et with
B+y<1.[7]

(i) FC (ix) iff there do not exist non — constant clopen fuzzy sets £,y et with
B+y=1.[7]

() FC (x) iff there do not exist non — zero fuzzy sets B,yet
withf+y=1land Ay =0.[3]

(k) FC (xi) iff for no S e I, there exist u,vetwithuvv>1-4, uanv<1l-pfand
u (1= Bl g=v'(1-B,1]. [1]

(1) FC (xii) iff for no f e I, there exist a proper non — empty subset 4 < X such

that f1,.41,_, et. [1]

3. Comparison of various concepts of fuzzy connectedness

Some of the above fuzzy connectedness concepts have already been compared in
[2] and [1] as is conveyed by the following theorems:
Theorem 3.1: [2] Regarding FC(i) to FC(vii), we have the following implications

FC(vi)  FC(iif)

U U
FC(i)= FC(ii) = FC(iv) & FC(v)
i
FC(vii)

Moreover, none of the other implications holds.
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Theorem 3.2: [1] Regarding FC(ii) to FC(iv), FC(vi), FC(vii), FC(xi) and FC(xii), we
have the following implications

FC(iiiy  FC(vii)

U U
FC(xi) = FC(vi) = FC(ii) & FC(xii) = FC(iv)

Moreover, none of the other implications hold good.

Proof: For FC(vii) = FC(iv), see [31]. The other remaining implications are obvious.

We now give some examples.

Example 3.1: Let X = (%,1) and u,v,we I” be defined by

" 32
X, ifxe|—,—
4 (3 3]

u(x)= 5
x—3, ifxe[g,l]
x—0, Iif xe(%,%:l
v(x)=

Xy if xe (%,l]
1

w(x)=x forall xe X and 5=3-.
Let t be the fuzzy topology on X generated by {u,v,w,] —w} U {Conosants}. Then it is
obvious that (X,#)is FC (xi). However (X.,¢) is not FC (iii). For w2 é =0 >0is clopen.

uvv=w, uzw=#v, and uanv=w-35. Now choose ¢ €(0,¢] witheg <J. Then

x—g& 2x—-0.Therefore unv=w-0<w-g,.
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This Example shows that FC(xi) 76 FC(iii)

Example 3.2: Let X=7 and t be a fuzzy topology on X generated
by {id,1 —id} U {Consants} . Then it is easily seen that (X,#) is FC (xi). However, (X,f)

is not FC (vi), since id is clopen and non — constant.
From this example we see that FC(xi) 76 FC(vii)

Example 3.3: Let X ={x,y} andu,veI”, where u =-§-1x v%ly and v =§1x v%ly Lett
be the fuzzy topology on X generated by {u, v} {Conosants} . Then we see that (X,?) is

FC (vi). However (X,7) is not FC (xi). Since for 5=§—, uvv=%>1-5

T %sx—a. So it s seen that FC(vi) 75 FC(x)

Example 3.4: Let X =1, and u,ve I* be given by

%, if xe (O, l:l
2
u(x)=
0, if xe (% ,1]
0, ifxe [O, l]
2
v(x)=

1
x, ifxe|l—=,1
4 (2]

Let t be the fuzzy topology on X generated by {u, v} U {Conosants} . Then clearly (X,7)
is FC (ii). However (X,?) is not FC (vi). Since #uvv>0 andu Av=0.

From this example one observes that FC(ii) 76 FC(vi).
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Example 3.5: Let X =1, Define p: X —1 by u(x)= —li-x, for all xe X . Also consider

Hp=p ALy x and u,=pAL whereJ =R/Q. Let t be the fuzzy topology on X
generated by {u,1 - 1, 4, 1, } v {Conosants} . Then as observed by Lowen [18], (X,f) is

FC (iii), however, (X,f)is not FC (vi) since u is clopen and non — constants.

One can observe, from this example, that FC(iii) 74 FC(vii).
Example 3.6: If X =1, take u,ve I* withu =—12-1X ; v=%1x -4 and 4 -—-[0,-;-‘]. Let t be
the fuzzy topology on X generated by {u, v} {Conosants} . Then it is clear that (X,?) is
FC (vii). However (X,?) is not FC (xii) since for & =% we have ol ,,al,_, et were

Ac X . This example therefore shows that FC(vii) 76 FC(xii). Also, one can see from
Lowen [18], counter example B, that FC(iii) 76 FC(ii).

According to the implication diagram, the proof is now complete.

Remarks 3.1: Since the fuzzy connectedness concept FC(vi)' defines by Hutton [12]

does not make sense for Lowen type fuzzy topologies, we have not considered it in the
above Theorem 3.2. Note, however, that the concepts FC (xi) through FC (vii) make
perfect sense even if we work with Chang type fuzzy topologies. This and the fact that
Hutton’s concept is historically the first fuzzy connectedness concept possessing several
desirable features, that us to upgrade Theorem 3.2 to the following.
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Theorem 3.3: The following implications exist:

FC(vi)=——=—==p FC(vii)

U U
FC(ii) = FC(xii) = FC(iv)
] ]
FC(vi) FC(iii)
]
FC(xi)

Proof: We prove only FC(vi) = FC(ii). Let (X,t) be Chang type fts that is FC(vi)". If
it is not FC (ii), then there exists a (C1) — separation (u,v) of some t — clopen u>>0.
But x# must be 1 (as (X,f) is FC(vi)") and so u is t — clopen with u #0,1. Which is a
contradiction.

We now give few examples.

FCi) 7$FC(vi) .
Example 3.4 works here also if in that example t is the Chang type fuzzy topology
generated by {u, v} .

FC(vi)’ ;é FC(iii).

Consider the following example for this.

Example 3.7: Let X =] andu,veI”, where u =1[0 LV (l)l , andv =(—;—)l{o 5. ML 5
)E e

2 ¢ " (E-I]

>
Let t be the fuzzy topology on X generated by {,v}. Clearly (X,?) is FC(vi)'. However,
(X,1) isnot FC (v) since 1 is clopen in (X,#) and 1 can be (C2) — separated.

FC(xi) ;6 FC(vi)".
Example 3.2 works here also if in that example t is the Chang type fuzzy topology
generated by {id,l —-id} .
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FC(iii) ;é FC(vi)".
The following example will serve the purpose.
Example 3.8: Let X =7 andz={0,u,1}, where u is a constant fuzzy set in X with

value% . Then (X,#) is FC (iii). However, (X,?) is not FC(vi)', for u is clopen in (X,7)

withu #0,1.

FC (vii) ;é FC(vi)'
Example 3.8 works here also.

We now give a somewhat more exhaustive comparison. We leave out FC (i) completely
this concept does not make sense in fuzzy topologies owing to the presence of all
constants as open fuzzy sets.

Theorem 3.4: We have the following implications:
FC(x)
g
FC(v)
g
FC(ix) = FC(vii) = FC(iv) < FC(iii)
A 0
FC(xii)
f
FC(ii)
)
FC(viiiy=> FC(vi)
]
FC(xi)

Moreover, none of the other implications hold good.
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Proof: In view of Theorem 3.1 and 3.2 in addition to proving FC(x) <> FC(vi), the only
remaining implications to be proved are FC(ix) = FC(vii), FC(viii)= FC(vii) and

FC(viii)= FC(vi).

FC(x) <> FC(vi): By definition on fts (X,r) is FC(x)iff there do not exist any non —
zero A,5et with 1+5=1 andAA8=0. But A+5=1 and A1Ad=0 iff A=1-6
and AA1—1=0. This is equivalent to requiring that A=1, where 4=A"{1}. Thus
(X,1) is FC (x) iff there do not exist any proper subset A of X such that both 1,,1,_, are
in t. In view of [2] (Proposition 2.3) there, (X,) is FC (x) iff it is FC (iv). This is view of
Theorem 3.1, shows (X,?) is FC (x) iff it is FC (v). |

FC(ix) = FC(vii), FC(viii)=> FC(vii): If an fts (X,?) is not FC (vii) then there exist a
non — constant clopen fuzzy set A. But then § =1-4 is also non — constant and clopen
with A+ & =1. Thus (X,#) can neither be FC (vii) nor FC (ix).

FC(viii)=> FC(vi): If an fts (X,#) is not FC (vi) then there exist 4,6 e7—{0,1} with
AvS>0 andAAS=0. But then A and § are non — constants and A+J <1. Hence,
(X,1) is not FC (viii).

Now we show the needed non — implications FC(vii) /5 FC(ix) and FC(iv) ;6 FC(ix):
Let (Z,t;) be the “fuzzy sierpinski Space” as introduced in [32], where 7, is the fuzzy

topology on I generated by {id}. Then (I,t;) is obviously FC (vii). Choose any
ﬁ,/le(-%,l] and put f=avidand a=Avid. Then 4,6 €, and these are non —

constants with 4+ >1. Hence, (/,t;) is not FC (ix). The above counter example also

shows that FC(iv) 76 FC(ix).
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FC(ix) 75 FC(vi), FC(ix) 76 FC(viii) and FC(vii) 76 FC(viiiy: On 1 let ¢, be the
topology generated by {p el':u< 1}. Then (I,1,) is evidently FC (ix). Define 4,6 € I’
by

(0, if x E[O,—lz—)

b e

1

et ) 03

3 lfxel:

0 ;'fxel:—l—l]
\ 2 2’

Ax) =+

b | —

5(x) =1

Then 4,6 et, with Avd >0 and AA6=0.So (1,1) is not FC (vi).
The above example also shows that FC(z’z’)%FC(viii) or FC (ix) and that
FC(iv) 75 FC(viii) or FC (ix).

FC(iii) = FC(viii) or FC (ix): Let X =1,. Define u: X =1 by ;z(x)=—;£,xeX and

let 4, =pnl,  and g, =punl, , where J=R-Q. Lett be the fuzzy topology on X
generated by {,u,l— Hs Hy,s yJ}. Then as observe by Lowen [18], (X,#) is FC (viii).

However, it is neither FC (viii) nor FC (ix).

By Theorem 3.1 as FC(ii) }b FC(vii), we get that FC(ii) 75 FC(viii) . as a consequence
therefore, FC(iv) 7$ FC(viii). Similarly, by Theorem 3.1, FC(iii) /E FC(vi). So
FC(iif) fs FC(viii) and FC(iv) 75 FC(viii).

FC(ix) 76 FC(ii): On, I, Let ¢, be the fuzzy topology generated by {al 4501 Ai} where

a€(0,])and 4,4, are non — empty disjoint subsets of I with 4, U 4, =1. Then (I,t,)
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cannot be FC (ii) as «l 4and al, provided a (C1) - separation of the clopen constant

fuzzy set « . However (I,t,) is clearly FC (ix).

FC(viii) ;éa FC(ix): On, 1, consider the fuzzy topology t, generated by { uel :u> %}

Then, (1,4) is clearly FC (viii) but not FC (ix).

FC(ix) 75 FC(xii) : On, 1, consider the fuzzy topology 1, introduced earlier so that (/,1,)
is FC (ix). However, for any proper subset A of I. For any a €/ with & <%;a1 , and

al_,et,. Thus (1,1) is not FC (xii).

FC(viii) 76 FC(xii): On, I, consider the fuzzy topology ¢ generated by
{ye[":y)-;—}. Then (I,t) is FC (viii). Now let & =0.4; then 1-& =0.6. Take

£=0.7 and choose a proper subset A of I. Let y=0.6 and put u=p1,vy and
v=p1,_ ,vy.Then u,vet; withuvv>l-a and uav<l-a. Hence (1,1;) is not FC
(xii). Therefore FC(viii) 76 FC(xii).

The proof of the theorem is now complete.

4. Some other type of fuzzy connectedness:

Here we discuss a connectedness concept a —C3 of which (C1) — separation of
Lowen [18] becomes a particular case. We also introduce other connectedness concepts,
namely @ —C4 and S—C4 which look similar to the recently introduced connectedness
concepts 2, —C and D-C of Lowen and Srivastava [20]. We observe that all these

concepts are good extension of connectedness and have several pleasing properties.
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Definition 4.1: Let (.X,7) beanfisand o €

(a) Let 4 >1-a be a fuzzy set in X. Then (u,v),u,v et is called & — separation
of u iff uzpu#v, uvv=p and uanv<l-ea. (X,t) is called o —C3 iff no clopen
pu>1-a canbe o —separated .

(b) (X,1) is called strongly & —C4 (S —C4, in short ) iff (X,#) is FC (xi).

(¢) (X,1) iscalled D—C iff (X,r) is FC (xii) for all & € I, [20].

(d) (X,r) is called a@—C iff there do not exist u,vet—¢—{0,1} such that

uvv>l-a and u Av=0 [30].

Remarks 4.1: For e <, a,f€ I, wehave 2,-C=2,-C.

Theorem 4.1: The following are equivalent:

(i) (X,p)is a-C4.

(i) (X,7_,(#)) is connected.
Proof: (i) = (ii) : If (X,i,_,(?)) is not connected then there exist 4,Bei_,(t), A#¢#B
such that AUB=X and AnB=¢. Since 4,Bei_,(t), there exist u,vet such that
A=u"'(l-a,]] and B=v'(-a,l]. Clearly, uvv>l-a, uav<l-a and
ul-all#g#v'(1-all].
By setting A=u"'(1-a,1] and B=v"'(1-a,l], we see that 4,Bei_,(t), A#=¢#B,

X=AUB and AN B=¢.Hence (X.i_,(#)) is not connected. Which is a contradiction.

Theorem 4.2: a —C3, @ —C4 and S—C4 are preserved under continuous functions.
Proof: Let f:(X,1)—> (¥ ,s) be continuous and on — to function. (X,f) be @ —C3.If
(Y,s) is not & — C3, then there exist #>1—a clopenin Y and its & — separation (u,v).
It follows trivially that (£~ (u), £™(v)) is an & — separation of the clopen (f~'(x)).

The proof for « —C4 and S —-C4 are similar.
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Remarks 4.2: «-C3, a—-C4, S—C4 and a—C are not preserved under almost and
weakly continuous function (for definition of almost and weakly continuous functions,
c.f. [4] and [34]).

For these, we consider the following example. Let X denotes the unit interval I with the
fuzzy topology consisting of all constant fuzzy sets. Then X is clearly o —C3, a—C4,
S-C4 and a-C.

Let2,, where 0<r <1, denote the two point set {a,b} with the fuzzy topology generated

by {rl,,r1,} v {Consants} .
Now consider the function f: X — 2, defined by (see also [2])

}

b,iﬁce(%,]}

b | —

a,ifx e [0,
f(x)=

For o >-1- and r =%, f is found almost and weakly continuous, while 2,is not ¢ ~C3,
a-C4,5-C4and a-C.
For 0<r$% and 0<r<1 with r>1-a, f again is almost and weakly continuous,

while 2 isnot ¢ -C3, a—-C4, S-C4 and a -C.

Remarks 4.3: In this example, just on putting o =r. We see that 2, —C for a <1 is

not preserved under almost and weakly continuous function.

Theorem 4.3: & —C3, @ —C4, S-C4 and o —C are good extensions.
Proof: Let (X,T) be connected. If (X,@(T)) is not & —C3, then there exist u>1-a

clopen in (X,o(T)), u,vea(T) such that u#u#v, uvv=x and unv=1-a. Put
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A=u"'(1-a,]] and B=v'(l-a@,]. Then A4,BeT, AUB=X and ANB=¢.
Moreover A# ¢ # B. Thus (X,T) is not connected. Which is a contradiction.

Conversely, let(X,o(T)) be a-C3. If (X,T) | is not connected, then there exist
A,BeT such that AUB=X, AnB=¢ and A#¢=B. Now 1,1, being to a(T)
with 1, #1#1,,1,v]l,=1>1-a and 1, Al,=0<1-«. So 1 can be @ — separated and
therefore (X,a(T')) is not @ —C3, a contradiction.

Proofs are on similar lines for e —C4, S—C4 and o -C.

Definition 4.2: A subset A of a fts (X,f) is fuzzy dense in X for every uet
SUPU(x) .y = supu(a),., , (see also [22]).

In the following theorem A denotes the closure of A in (X,i()).

Theorem 4.4: Let (X,7) be an fts and (4,7,) be a subspace of (X,#). Then for any B
with AngZ,wehave

@) (4,t,) is a—C3 = (B,t,) is a - C3.

(ii) (4,1,) is a—C4 = (B,t,) is a - C4.

(iii) (4,t,) is S—C4 = (B,t,) is S—C4.
Proof: (i) Suppose (B,t;) is not o —C3. Then there exist #>1-a clopen in B and
u,vet, suchthat u#u#v, uvv=p and uanv<l-ea (on B). Then Obviously u/A
clopen in A, u/A,v/Aet,, u/lAvv/A=pul/A and u/AAv/iA<l-a (on A).
Moreover p/A#u/A and pu/A#v/A. ¥ pg=u on A, then v<l-a on A. So
supv(a)(x),., <1—a. Again we have supv(b),_, >1—«. Thus supv(a),_, #supv(b),_,-
This, however, is not possible, since by denseness of A in B (which follows from Bc 4)
supv(a),., =supv(b),.,. Hence (u/A,v/A) is an & —separation of p/ A which is a

contradiction with the fact that (4,7,) is @ - C3.
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(i) Let (B,t;) be not a—C4. Then there exist u,vef,such that uvv>l-a,
unvs<l-a (onB)and u'(1-a,l]2d=v'(1-a,l].

Clearly, then u/A,v/iAet,, u/Avv/A>1-a and u/AAv/A<l-a. Moreover
W/ A (1-all#g= (/A" (1-a,l], as A is fuzzy dense in B. So, we see that (4,7,) is

note —C4, a contradiction.
The proof for S —C4 is similar.

Theorem 4.5: If {4,t, :jeJ} is a family of & —~C3 (resp @a-C4 or §-C4)
subspaces of (X,r) with N, 4, #¢, then if A=U,_,4,, (4,t,) is a—C3 (resp
a-C4 or S-C4).

Proof: First suppose that (Aj,tAj), foreach jeJ,is a—-C3.

Let gy e, 4;.If (4,t,) is nota — C3, then there exists #>1—a clopen in A,
u,vet, such that u# u#v, uvv=p and unv<l-a (on A). Since u(a,) >1-a, we
have, e.g. v(a,) = #(a,) >1—a and since v# u on A, there exists some jeJ such that
v/iA#ul4;, since a,ed and v(g))>1-a, we have u(a,)<l-o. Whereby
v/iA, #pl 4. Clearly, then (u/4,,v/4,) is on a—separation of u/A;, which is a
contradiction the fact that (4;,1,) is a-C3.

Next, suppose that (Aj,rﬁj),forcach jeJ,isa-C4.

Leta,en, ;4,.If (4,t,) is nota — C4, then there exist u,vet, suchthat uvv>1-«,
urv<l-a (onA)and u'(1-a,1]#2d#v'(1-a.]]. Since uvv>1-a on A, we have,
e.g v(a,)#1-a.But vi1-a everywhere on A, so there exists some jeJ such that
v>l-a on A;. Let u;=u/4, and v,=v/A,. Then u;v;€t, . Let a;ed, with

v;(a;)<1-a, we then see that u;(a,)>1-a. Hence it is clear that vy, >l-a,
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u,Av;<l-a and u,” (1-a,1]#¢=v," (1-a,1]. Thus (4,1, is not & ~C4 which is

a contradiction. The case S —C4 can similarly be handled.

Theorem 4.6: A non — empty product space is & —C3 (resp @ —C4 or S —C4) iff each
factor space is @ — C3 (resp @« —C4 or S—-C4).

The proof is similar to that of theorem 3.1 of Lowen [18].
Theorem 4.7: The following are true:

(a) a-C3«<a-Ci=a-C

) Fora>p,aecl,pel,a-C3=2 ;- C=a-C
(c) For a>-;—,a—C3:>2a—C<=a—C

(d 1-C3& FC(vi) and 1-C4 < FC(vi)

Proof: Let us first note that the implication in (a) are obvious. —C3# a~C4 or & -C

For this consider the following example.

Example 4.1: Let X =(%] and u,vel” where

>

]3]
u(x) =

O,zﬁce(g-,l]

OzﬁceBﬂ
v(x)=
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Let t be the fuzzy topology on X generated by {u,v} U {Consant} . It can be shown that

(X,t) is a-C3 for azl, since uvv>—i—, % and u“‘([l,l];eg##v"(l,l].
2 2 2 2 2

It is also clear that (X,f) isnot «—C.

a-C3#a-C4 or a—-C3
The following example will serve the purpose.

Example 4.2: Let X ={x,y} and w,vel” be given by u=(§}1xv(31y and

y= G—)lJr % (32-)1 , - Let t be the fuzzy topology on X generated by {u,v}u {Consant} . It

1
is then clear that (X,#) is «—C for any a, in particular a=5 . However, (X,1) is

neither & —C4 nor a - C3 for a=—;—.

(b) Letael,, fel, a>p and (X,7) be a-C3.If (X,t) is not 2, 5 -C, then
there exists a non — empty proper subset 4= X such that (1-A)1,,(1-A)1, , et.
Therefore, (1-B),v(1-Ply_,=1-f>1-a and (1-B,A(1-/1,_,=0<1-c.
Hence (X,r) is not o —C3 since the constant clopen fuzzy set with value 1— 8 can be
a — separated . The remaining case can be handled similarly.

1
© If a>p andﬂ=-2—, then from (b), we have a-C3=2,-C and
have2,-C= 2, -C by Remarks 4.1. The remaining case can similarly be handled.

Again Example 4.1 and 4.2 show that the arrows in (c) are not reversible.

(d)  These are obvious from the relevant definitions.
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CHAPTER -3

C;- Connectedness in Fuzzy topological spaces

1. Introduction

Lowen [18] defined an extension of connectedness in a restricted family of fuzzy
topologies, for fuzzy set which is everywhere strictly positive. Fatteh and Bassan [7]
studied further the nations of fuzzy supper connected spaces and fuzzy strongly
connected spaces. However, they defined connectedness only for a crisp set of a fuzzy
topological space. In this chapter we discuss four types of connectedness for a fuzzy set,
we study the implications that exist between them. These conditions are called
Ci — connectedness (i = 1, 2, 3, 4). In this chapter we have given proofs only for the
results on Cj-connectedness and Cs; — connectedness; the corresponding proofs for the
results on  C; — connectedness and C4 — connectedness respectively, essentially being the

same except for obvious modifications are omitted.

2 C; — Connectedness

It is well known that for fuzzy sets u and v, the following implication is valid:
unv=0=u<1-v. However, the reverse implication is not true in general. This
departure of fuzzy set theory from ordinary set theory allows us to have the following
variations in the fuzzy setting of the traditional notion of disconnection of a subset in a

topological space.

Definition 2.1: A fuzzy set n has a C; — disconnection (i = 1, 2, 3, 4), if there exist fuzzy

open sets u,v e t, such that
Crpsuvvunvsl-puunv#0andunu+0,
Corusuvv,urunv=0,urv#0andunuz0,
Coiufuvvunv<l-puufl-uandv£1- pu and

Corusuvv,urnunv<0,ufl—pandv £1- u respectively.



CHAPTER -3 C; Connectedness in Fuzzy topological spaces 30

Definition 2.2: A fuzzy set uin fts (X,7)is said to be C; — connected (i =1, 2, 3, 4) if

there exists no C; — disconnection (i =1, 2, 3, 4) of xin X.

3. Comparison of C; — connectedness (i=1, 2, 3, 4)

In a fts (X,r)the classes of Ci — connected (i = 1, 2, 3, 4) fuzzy sets can be

described by the following lattice diagram:

C

N\

By

Cs

Ci-connectedness being the strongest condition gives us the smallest class whereas

C4 — connected fuzzy sets form the largest class. We demonstrate through examples that
the inclusions are proper; moreover, the intersection of the classes of C, — connected and
C; — connected fuzzy sets may not be empty. In that case, there exist fuzzy sets in fuzzy
topological spaces which are C, — connected as well as Cs — connected but not C, —
connected. So C; — connectedness and C; — connectedness even together do not imply

C,| — connectedness.

Implications in the above diagram are immediate from the definitions. Here, we

illustrate all the reverse implications by counter examples.
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Example 3.1: C, £ C;

Let X =[0,1] and define fuzzy sets u and u as follows:

lzfl<x.<_]
(s = 373 ]
1 f0x<—
3
el
l if—<x<1
and v(x)={ 3 1
5 {.f'OSxSE

Then 1={0,u,v,u nv,,}is a fuzzy topology on X. Define u by y(x)=§ if 0<x<].

Here, 4 is C4 — connected but not C; — connected. i.e. C4 7> C;

Example 3.2: Cy; 4 C,

Let X =[0,1]and define fuzzy sets u and u as follows:

0#‘1<x51
3
u(x) = i
— if0gx s~
bohe
lz'fl<x51
and v(x) = . i

Then 7 ={0,u,v,u Av,1 x 1 1s a fuzzy topology on X. Consider the fuzzy set 1 tobe uv v,

Then 4 is Cy — connected but not C, — connected. i.e. Cysh G

From above examples,
we see that Cy# C; also.
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Example 3.3: C; 4 Cy and C, % C,
Let X =[0,1]and define fuzzy sets u and u as follows:

1.1
—if—<x<l]
3/3<x

2 I
<
3 70sx<3

uix)=

—2—1'f1<x_<.1
and v(x) = %" 2

—

- f0<x<=
3 v 3

Then ¢ ={0,u,v,u Av, x 118 a fuzzy topology on X. Let us take the fuzzy set s to be the
constant function x(x) =% forallx e X . One can verify that 4 is Cs; — connected as well

as C; — connected but not C; — connected. i.e. C3# Cy and C, # C.

Remarks 3.1: Counter example 3.3 also establishes the fact that the intersection of the
classes of C; — connected fuzzy sets and C, - connected fuzzy sets in an fts may not
empty.

Example 3.4: C; 4 C,

Let X =[0,1]and define fuzzy sets u and u as follows:

0 ifg<xsl
#(x)= ) 3 5
5 i}{'OSxSE
% if-%<x_<.1
andv(x) = 4

o:ﬂ)sm%
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Then ¢ = {0,u,v,u Av,l,}is a fuzzy topology on X. Let us define z as follows:

lif%<xsl

”(x):
2 2
2 if0sx<s
31f o

Here, u is C3 —connected, but not C; — connected (not C, — connected).

Example 3.5: C, fJ:> Cs
Let (X,f) be the fts considered in counter example 3.3, and let u be the fuzzy

constant function ,u(x):% for allxe X . Then u is C; — connected but not C; —

connected.

Remark 3.2: Counter examples 3.4 and 3.5 establish the facts that the classes of

C, — connected fuzzy sets and C; — connected fuzzy sets in fts may not be comparable.

4. Preservation of C; — connectedness (i=1, 2, 3, 4)
In the following theorems, we discuss the preservation of C; — connectedness

(i=1, 2, 3, 4) under fuzzy continuity.

Theorem 4.1: If F: X — Y is a fuzzy continuous function and x is a C; — connected
(C, — connected) fuzzy set in X, then F(x) is a C; — connected (C; — Connected) fuzzy

setin Y.

Proof: Proof of the above theorem is straight forward.

Theorem 4.2: It F: X — Y is a fuzzy continuous surjection and if x is a C3 — connected
(C4 — connected) fuzzy set in X, then F(x) is a C3 — connected (C4 — connected) fuzzy

setin Y.

Proof: Suppose F'(u) is not Cs — connected. Thus there exist fuzzy open sets » and v in

Y, such that F(u)<uvv,unv<l-F(u)ufl-F(u) andvgl1-F(u). Therefore,
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u<F'w)v F'(and F' ) A F'(v) < 1-pas < F7(F(w) =
1-F'(F(u)) <1- p, where F u)and F~'(v)are fuzzy open sets in X, since F is fuzzy
continuous.

Again, there exist y,,y, € ¥, such that
@®  uO)>1=-F)(»n)
(i)  u(y)>1=-F)»,)
As F isonto, F™'(y,)and F'(y,)are non-empty subsets of X. By definitions, we have
F' (u)(x,) =u(y,), for every x, € F~'(y,)and F(u)(y,) = sup{u(x,)} , where x, € F'(y)-
We claim that F~'(u) §1- gand F~'(v) <1- p. Suppose
Fl'u)<l-u
= F7'(u)(x,) < 1- u(x,), forevery x, e F7'(3,)
= u(x,)<1-u(y,), forevery x, € F7'(3,)
= sup{u(x,)} <1-u(y,), forevery x, € F~' ()
= F()n) =1-u(y)

This contradicts (i) similarly by considering F™'(v)<1-u we have a contradiction

with (ii).

In the reverse direction, we have the following theorem.

Theorem 4.3: Let F: X — Y be a fuzzy open injection and let x4 be a fuzzy set in Y,

Then u is C; — connected implies that F~'(z) is C;— connected (i =1, 2, 3, 4).

Proof: Proof of the above theorem is easy.

Definition 4.1: A fuzzy point x, is said to be contained in a fuzzy set u or u is said to

captain x, if u(x) 2« . We denote itby u > x, .
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We observe that a fuzzy point x, is C; — connected (i = 2, 3) hence C4 —

connected, but not necessarily C; — connected which is a departure from general topology

where points are connected sets.

Example 4.1: Let X = {x,y} and define fuzzy sets u and v, as follows:

u(x>=%, u(y>=§ and

W)=, v =3

Then ¢={0,u,v,u nv,l,}is a fuzzy topology on X. Here, the fuzzy point x, /118 not

C,— connected. Moreover, we observe that the fuzzy set 0 is C; — connected and hence

C;—connected (i=1, 2, 3, 4).

Definition 4.2: Two fuzzy sets u and v in X are said to be non-overlapping if u <1-v.

u and vare overlapping if there exists a point x € X such that #(x)>1-v(x). In this

case u and vare said to overlap at x.
Theorem 4.4: If « and v are intersecting C; — connected (Cz — connected) fuzzy sets is
X, then u v v is a C;— connected (C;— connected) fuzzy set in X.
Proof: Let 7, and 7, be fuzzy open sets in X such that

wNvvSn v, and 7 A ST=uv Y s (1).
Then, as u and v are C; — connected, (1) gives us

(uan,=0or varm,=0)and (van=0orunn,=0).

Now we consider the following cases:

Case I: Suppose uAm =0. As u and v are intersecting there exists x, € X' such as

u(x,)#0#v(x). We claim that vAn,#0. Suppose, if possible, van,=0. Then
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(vAn,)(x)=0, but v(x)#0; therefore n,(x)= 0. Now as uan =0, we have
7,(x)=0, since u(x)#0. Hence (7, vm,)(x)=0 which contradicts (1) as

(u v v)(x,) # 0. Therefore, we have v A7, =0, which implies that (uvv)An =0.

Case II: Suppose uAn, =0. As in case I, we can show here that v A7, =0 is not

possible, hence v A7, = 0. Therefore (uvv)An,=0.So, (uvv) is C; — connected.

The following example illustrates that the above theorem is not valid for disjoint
(non — intersecting) fuzzy sets. Moreover, if also reflects the divergence in fuzzy setting
from that of general topology. For, the theorem also fails for two fuzzy sets u and v

which are not separated in the since

unvzQ0orvau =0

Example 4.2: Let X =[0,1] and define fuzzy sets x and y as follows:

G 26
L(X)=1
2ir0<x<2
3 3

%if %<x <1
y(x)=1

0if0 Snsg
L 3

Then ¢ ={0, 7,V .1, }is a fuzzy topology on X. Let 7, and 7, be defined as

lif 2<x <1
mx)=

0if 0<x ==

0if Z<x <1
n,(X)= 2

—if0<x <=

3 3
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Here, 77, A1, =0, and it can be verified that 7, and 7, are C; — connected fuzzy sets
but 7, v 7, has a C; — disconnection. Also 7, and 7, are not separated in the sense of

general topology. For 7, Am, # 0.

The following example shows that theorem 4.4 fails for C; — connectedness

(C4 — connectedness).

Example 4.3: Let X =[0,1] and define fuzzy sets 77, and 7, as follows:

%if —<x <1
n(x)= 2 4
Zif0<x<—
5 5
%if %<x <I
n,(x)= 4 4
—if0<x <—
5 5

u(x) =

v(X) =1

Here uav#0 and u,v are C3 — connected fuzzy sets in X, but #vv has a C3 —

disconnection.




e
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Theorem 4.5: Let {77,},., be a family of C; - connected (C; — connected) fuzzy sets in
X. Such that for i, j € I,i # j, the fuzzy sets 7, and 7, are interesting. Then v,_, 77, is a

C, — connected (C; — connected) fuzzy set in X.

Proof: Let z and v be fuzzy open sets in X such that n<uvv, uavsl-1n, where

7=V, 1, Now, let 77, be any fuzzy set of the given family. Then
n, SUVV, unvsl-n,

as unv<l-n implies uAv<A,,(1-7)and therefore uAv<1-7, . But 7, is Ci —

connected. Hence

m, Au=0orn Av=0

Now, the result follows in view of the facts that 7, Au=0, then as in theorem 4.4, we

can prove 77, Au=0for each ie I ~{j}and v, (, Au)=0 implies 7 nu=0.

Corollary 4.1: If {r7,},_, is a family of C; — connected (C; — connected) fuzzy sets in X

and A,_, 1, #0,then v, 7, isa C; — connected (C; — connected) fuzzy set in X.

Proof: Straightforward in view of theorem 4.5.

Corollary 4.2: Let {7,}be a sequence of C; — connected (Cz — connected) fuzzy sets in
X, such that 77, and 7,,, are intersecting for each »,. Then vy 7, isa C - connected

(C; — connected) fuzzy set in X.

Proof: Follows by using theorem 4.4 and induction.
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Theorem 4.6: If « and v are overlapping Cs — connected (Cs — connected) fuzzy sets

in X, then u Av is a C; — connected (Cy — connected) fuzzy set in X.

Proof: Let 77, and 7, be fuzzy open sets in X such that

WNVFET Yy T A SV Y smeseianmes (1)

Now, as # and v are C; — connected, (1) gives us

(7, <1-u or 1, <1-u) and (7, <1-v or 17, <1-v).

Moreover, as u and v are overlapping fuzzy sets, there exists x, € X' such that

x> 1-v(x) (2)

Now, consider the following cases:

Case I: Suppose 7, <1—u, then by (2), we have

m(x) Sv(x) (3)

We claim that, 77, £ | —v. For, if not then

7,(x) S 1=v(x) <u(x)) (4)

Now, by (3) and (4) we have

(v m)(x) < (uvv)(x)

Which implies that v v <7, v 1,, this contradicts (1). Hence 77, <1-v. Therefore,




CHAPTER -3 C; Connectedness in Fuzzy topological spaces 40

m<l-u)a(l-v)=l-uvv.

Case II: Suppose 7, <1—u. Here, we can show as in case | that n, $l—v. Therefore,

n, <1-v.Hence n, <1-uwvv.

Theorem 4.7: Let {,},., be a family of C; — connected (C4 — connected) fuzzy sets in X.
Such that for i,j e I,i # j, the fuzzy sets 1, and 7, are overlapping. Then v, 7, is a

C; — connected (C4 — connected) fuzzy set in X.

Proof: Let u and v be fuzzy open sets in X such that 7 <uvv, uAv<1-7, where
n=vV,n. Now, let 7, be any fuzzy set of the given family. Then as 7, is a

C; — connected fuzzy set, so we have

usl-g, orvsl-n,

iy

Now, the result follows in view of the facts that if 77, <1—u, then 7, <1-u for each

iel~{i},since n, and 7, are overlapping C3 — connected fuzzy sets, and

uSAIei(l_ni) =1-7.

Corollary 4.3: Let {7,},., be a family of C; — connected (C4 — connected) fuzzy sets in X
and x, be a fuzzy point such that « >% and x, <A, 7. Then v,_, 7, isaC3 -

connected (C4 — connected) fuzzy set in X.

Hint: Since x, < A,,7,, it follows that 7, and 77, are overlapping fuzzy sets, for each

ijel.
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Corollary 4.4: Let {17,}be a sequence of C; — connected (Cs — connected) fuzzy sets in
X, such that 7, and 7,,, are overlapping for each 7. Then v, 1, is a C; — connected

(C4 — connected) fuzzy set in X.

Theorem 4.8: If 77 is C3 — connected (C, — connected) fuzzy sets in X and n <5 <77,

then & is also a C; — connected (C4 — connected) fuzzy sets in X.
Proof: Let » and v be fuzzy open sets in X such that

S<uvv, unvsl-¢0
Then, as 7 is C; — connected, we have

n<l-uornsl-v.

But, if 7<1-u then 7 < (1-u) =1-u° =1-u and on the other hand, if 7 <1-v then

7 <(1-v) =1-v° =1-v. Therefore,
o< <l-uordo<p<l-v.
However, the above theorem fails in case of C; — connectedness and C, — connectedness

which is a departure from general topology. The following example will illustrate that the

closure of a C; — connected fuzzy set need nottobe a C; — connected fuzzy set.
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Example 4.4: Let X =[0,1] and define fuzzy sets  and v as follows:

1if %<x <1
u(x)= 5
0if 0 <x <—
3

03 2ex <l
Y=y 2
Zif0<sx<—

3 3

Then ¢ ={0,u,v,uvv,1,} is a fuzzy topology in X. Here, u is a C; — connected fuzzy set

but its closure # is not C; — connected.

To show theorem 4.8 fails for C, — connectedness consider in example 4.2 the fuzzy set 77 to be

the fuzzy point x,,5, where x € (-%,1:|. Then the closure X;,; is not C, — connected.
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CHAPTER -4

(C3) - Connectedness in Fuzzy topological spaces

' Introduction

In this chapter we study a new type of fuzzy connectedness and establish that it
has several desirable features. We introduce here (C3) — connectedness in fuzzy
topological spaces and also establish its appropriateness. In particular, we note that itisa
“good extension” of the concept of connectedness in topology, is preserved under fuzzy
continuity, second — additive and productive. However, we also show that it cannot be

viewed as a “Preuss - Connectedness” concepts (c.f. e.g. Lowen [19] and

Srivastrava [33]).

2 (C3) — connectedness

Let E be a set and I the unit interval. Put T(E) the set of all topologies on £
and W(E) the set of all fuzzy topologies on E.The topological space one obtains giving

] as the induced topology we denote I,. We then define the mapping
@:T(E)y=>W(E):T - o(T)

where @(T) = ¢(E,1,), the continuous functions from (£.7) to /,. It is trivial to cheek
that @(T) is indeed a fuzzy topology since it is the set of all lower semi continuous

functions from (E,7) to the unit interval equipped with the usual topology.

Definition: We call a fuzzy topological space (X,7) (C3) — connected iff for all ¢ €/,
and for all t — clopen fuzzy sets u =g there do not exist u,vel with the following
properties

(i) UFEUFY

(i1) uvv=0o

(i) wuAv=0
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A pair (u,v) satisfying (i), (i), (iii) shall be referred to as a (C3) — separation of s .

Remarks: The concept of (C3) — connectedness is closely related to the concept of
(C1) — connectedness as introduced in Lowen [15]. Obviously, (C1) — connectedness
implies (C3) — connectedness and examples can easily be constructed to show that the

converse is false.

We first show that this is a “good extension” (in the sense of Lowen [17]) of the

concept of connectedness in topology.

Proposition 1: A topological space (X,T) is connected iff (X,o(T)) is (C3) -

connected.

Proof: One way implication is obvious as each non — trivial open separation {},Y,} of X

leads to a (C3) — separation viz. {l,,l, } of 1. To prove the other implication, let
(X,w(T)) be not (C3) — connected. Then there exist & € /,, an o (T) - clopen pu=¢ and
£.6, ea(T) suchthat & # u#&,, §vE =p and § A8 =0.

Fix any &' € (0,&). Then 51_1(6',1],52"(3',1] e T and it is easily verified that these make a

non — trivial 7' - open separation of X.

Proposition 2: If (4,,¢),., is a family of (C3) — connected subspaces of an fits (X,r)

with M,_, 4, # @ then (4,,¢,) is (C3) — connected, where A=u,_, 4,.

Proof: Let A be not (C3) — connected then there exist ¢ € /; and a (C3) — connection
(£,&,) of some ¢, - clopen pu>¢g.ie. &#u#, with §ve, =u and & A&, =0.
Pick some a, e,_,4,.Forany iyeJ, §/4, ~& /14 =0and §/4, ve,/4, =pl4, .
So, since &/4,,&,/4, are 1, -open, pld 2¢g is ¢, - clopen and since (4, .7, ) is
(C3) — connected, either & /4, =ulA, or &/4, =pulA, . Suppose 1A, =pl4,.

Then, since, a, € A7.0 , we have & (a,) = p(a,) 2 €. Thus, &,(qy) = 0.
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Now, take any other jeJ, then&,/A, #p/ A, since a,€ 4. Thus &/4,=pl4,
showing thereby that, for all ieJ, §/4, =pl4. As A=0, 4, & =4, which is a

contradiction.

Remarks: Given an fts (X,r) and D < X, we recall, from Lowen [18], that D is called

fuzzy dense in (X,t) iff for each puet,

SUpP,c v Ju(x) =SUP,cp /.l(x) s

Further, Lowen [18] has shown that if Y= el Y, then (Y,1,) is the largest subspace of

(X,t) in which Y is a fuzzy dense (for the definition of L(t), see Lowen [18])

Proposition 3: Let (X.f) be an fts and (¥,7,) be (C3) - connected subspace of an fts

(X,f) with Y € Z c ¥ . Then (Z,t1,) is (C3) — connected.

Proof: Let (Z,t,) not be (C3) — connected. Then there exist £ €/, #,- clopen u=¢,
anda# pu# B with avf=u and anpf=0. Clearly, u/Y is ¢ - clopen and
wulY>¢e. Also, alY,BlY €t,.

Now, keeping in view that Z is fuzzy dense in Y, we can verify, as in Lowen [18], that

{a/Y,B/Y} forms a (C3) — separation of x/Y . Thus Y is not (C3) — connected which is

a contradiction.

Proposition 4: Let f:(X,s)— (Y,f) be an onto fuzzy continuous function between
fuzzy topological spaces and let (X,s) be (C3) — connected. Then (¥, t) is also (C3) —

connected.

Proof: If possible, let (¥,7) be not (C3) — connected. Then there exist g€/, an (-

clopen p>g, and &,& et such that & #pu#&, with § v, =u and & A&, =0. As
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f is fuzzy continuous, 7 (u) is s— clopen. Also, ey (= je fze. Put

m=/"(&) and n,= f7(&,). Then, 7,77, € 5. Foreach xe X,

mAm)@ =1 E) A FED )

=& AE)f(x)
={.

Thus, 7, A7, =0. For each x € X', we have

v )@ =" E)v FE

=(& v ENS(x)
= pf (x)
= 7 u(x).

Hence, 7, v 77, = ' p. Finally, it is obvious that 77, = f u#n,.So, (X,s) isnot (C3) -

connected which is a contradiction.

Proposition 5: Let {(x,,¢,): j € J} be a family of fuzzy topological spaces. Then HX j

J2 S
Jjed

is (C3) — connected iff each X, is (C3) — connected.

Proof: In view of proposition 4, we only need to prove the  if * part. Let (X ;) be

(C3) — connected and put (X,7) =] [(X.¢,). Fix some x, = (x,) ., € X . We show, by

jed
induction, that all those points of X which differ from x, at most finitely many co —
ordinates, are in a (C3) — connected subspaces of (X,7). Put
Z={xeX:x,=x for all i # j}. As (Z,t,) is fuzzy homeomorphic to (X ,.¢,), (Z.1,)

must be (C3) — connected.
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Next, assume that all points of X which differ from X, at most (n-1) co — ordinates are in
a (C3) — connected subspaces of (X,7).

Now suppose x, and x € X differ by ‘n’ co — ordinates. Choose y e X such that x, and
y differ by (n-1) co — ordinates and x and y only by 1. Then induction hypothesis x,
and x are in some (C3) — subspaces, say (S,z;) of (X,#) and y and x are in some

(C3) — subspaces, say (7,t,) of (X,f).As ye ST, (Su T,t, ;) must be (C3)—
connected in view of proposition 2. Thus if we substitute Y = Union of all (C3) —
subspaces of (X,f) containing x, and

D ={x:x, and x differ atmost finite co—ordinates} ,then ¥ 2 D and Y is a (C3) —
connected from proposition 2. We now show that D is fuzzy dense in X. Let z e be
basic open (in the standard basis). Then, there exists j, /,, j» fyseeenn J, such

that = /\H"ij’1 (u), where u, =t s foreach i=123,....... n (P, are the projection

maps). Thus, for each x e X
ux)=n"u (x,).
Given x=(x,),., € X, define ¥ = (¥)) ., € X, where

i

~ xOJ'! if‘jijlﬂjzjjJ,-----.-..,jn
X, otherwise

Clearly, X € D and p(x) = u(¥). Also sup,_,, u(x) =sup,._, u(x) shows that D is fuzzy
dense in (X,7).

In view of proposition 3 and the fact thatY = X , it follows that (X, ) is (C3) — connected.



CHAPTER — 4 (C3) — Connectedness in Fuzzy topological spaces 18

Let |FTS| denote the class of all fuzzy topological spaces. For 4 <|FTS|, we put

A={X e |F T S|:each fuzzy continuous f: X —> E€ Ais consant} . Following G. Preuss

[24, 25, 26], members of A may be called 4 - connected spaces.

Proposition 6: There does not exist a class 4 ¢ |FTS| such that
l4={X e [F TSI : Xis(C3) — connected .

Proof: Let there exist a class 4 C IF T. S| such that
04 ={X e|FTS|: X is (C3) - connected}

Then the inclusion map i: B — E , being continuous, is constant. Thus B must be a

singleton. Hence, forany E€ 4,Bc E is (C3) - connected iff B is a singleton. Fix

some ¢ e I, and consider the fts ((0.2],Q) where Q is generated by

{u, 1= g, e ](O,I]’ HA 1(1,2]}
Where u is given by

(1-&)x+¢&,where x e (0,1]
H(x)=
(1-&)x+2&—1,when x € (1,2]

Then u Al and 4 Al 5 constitute a (C3) — connected of Q- clopen x> & whereby

((0,2],9) is not (C3) — connected. So, there exist (X,7) € A and a non — constant fuzzy
continuous function. Evidently, (0,1] and (1,2] are (C3) — connected subspaces of
((0,21,9). So, f((0,1]) and f((1,2]) must be (C3) — connected. Hence there exist distinct
x,%, € X with £((0,1]) ={x,} and f((1,2]) ={x,} . Further, since X is not ‘totally
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(C3) — connected’, it follows that ({x,,%,},t/{x,,x,}) is not indiscrete, sO there exists
£ et such that
&(x) # &(x,)

However (&) e Q is two — valued which, by simple inspection of Q, is impossible.
Proposition 7: For an fts (X,1), the following conditions are equivalent:

(i) (X 1) is (C3) — connected.

(i)  There is no fuzzy continuous map 7 :(X,1) = ((0,2],Q) such that

FX)NO1]#® and f(X)N(1,2]#O.

Proof: (if) = (i) Let (X,f) not be (C3) — connected. Then there exist £ € I, ¢ - clopen

v>¢ and 4,4, €t —{v} such that
Avi=vand LAl =0.

Put X, =4 ((0.1]) and X, =4, ((0,1]), and define f: X — (0,2] by

___/’L,(x)—g’ if xeX,

1—¢
fx)=
ZQ(JC)+I—2.¢:,I,fxEX2

1-¢

Then f : (X.1) = ((0,2],Q) is fuzzy continuous. For x € X ., it is easily checked that

£ (1) =v where

Ax),ifxe X, f(x)=]

4, (x)z{ﬂmv’xexz,f(xm

Consequently, f'(1-u)=1-v.
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Similarly, it can be checked that
f”l (un 1(0,1]) =/ and f—l (WAl = A

Hence, f is fuzzy continuous. Since, X, # ®, X, # @, F(X N (0,1]) # @ and
f(XN(1,2])# P, whichisa contradiction.

(H = (@i). If there exists a continuous function f :(X,7) — ((0,2],€2) with
F(X (0,1 =@ and f(X N(1,2]) # @, then by putting v= f7'(u), we see that v ist—
clopen with v> & . Moreover, ™' (uAlqy) and /7' (Al ,) forma(C3) - connection

on v. Hence, (.X,f) cannot be (C3) — connected which is a contradiction.
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CHAPTER -5

Stronger Forms of Connectedness in FTS

1. Introduction

In this chapter we study some stronger forms of connectedness in fuzzy
topological spaces. We introduce here the notion of fuzzy super connected spaces (fuzzy
D — spaces) and fuzzy strongly connected spaces following closely the definition of D —
space Levine [15] and strongly connected space Levine [16], due to Levine in general
topological spaces. We also give some characterization of super connected spaces and

fuzzy strongly connected spaces.

2. Fuzzy Super — Connectedness

Levine [15] introduced the notion of a D — space to be a topological space in which every
non — empty open set is dense. In note Fatteh and Bassan [7] we defined
super — connected spaces to be a topological space which has no proper regular open
subset and have shown that a space is super — connected iff it is a D — space. So, we
define a fuzzy D — space to be a fuzzy topological space in which there is no proper fuzzy
regular open set and we shall also call such a space to be a fuzzy super — connected
space. Since, a fuzzy clopen set is a fuzzy regular open set, fuzzy super — connectedness
implies fuzzy connectedness but the following example shows that the converse is not

true.
Example 2.1: Let X =[0,1]. For each xe X' we define A(x)-:% and ,u(x)=§. Let

1 ={0,1, A, ¢} . Then clearly fts X is fuzzy connected but it is not fuzzy super — connected,

since it has a proper fuzzy regular open set u .

3 Characterizations of Fuzzy Super Connectedness

By giving some theorem we will discuss some characterization of fuzzy

super — connectedness.
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Theorem 3.1: If X is an fits then the following statements are equivalent:
(i) X is fuzzy super connected.
(ii)  Closer of every non — zero fuzzy open set in X is 1.
(iii)  Interior of every fuzzy closed set (in X), different from 1, is zero.
(iv) X does not have non — zero fuzzy open sets 4 and u satisfying A+ ¢ <1.
(v) X does not have non — zero fuzzy open sets A and g satisfying
At+tpu=A+pu=1.

(vi) X does not have non — zero fuzzy closed sets f and k satisfying

f+k=f+k =1.

Proof: (i) = (ii). If X has a non — zero fuzzy open set A such that A #1,then 1 is

a proper fuzzy open set.

(ii)= (iii). Let f be a fuzzy closed set in X different from 1. Now ' =1-1-f =0,

as 1— f is a non — zero open set. Since 1— ' =1-£.

(7ii) = (iv). If X has non — zero fuzzy open sets A and u such that A+ u <1, then

A+u<1.So u#0 implies 2 #1. Since 1#0, A #0, which contradicts (iii).

(tv)=(i). If X has a proper fuzzy regular open set A1, then 2 and u=1-41 are

non — zero fuzzy open sets satisfying A+ u <1.

e ). If X is not fuzzy super — connected, then it has a proper fuzzy regular open

set say A.If we put gu=1-A1, then =0 and 1+ u=1. Also according to since

1-2=(1-A4) wehave t=1-42=(1-2) =1-A.Since, 1-2 is fuzzy regular closed

set. Therefore A+ zz =1. So (v) violated.
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Conversely, if X has non — zero fuzzy open set A and usuch that A +u=A+m=1,

then
A=(-p=1-g=1

Since u#0 and 1 +u=1, A#1. Also 2#0 is given. Therefore A is a proper fuzzy

regular open set. Therefore X cannot be fuzzy super — connected.

(v)e (vi). (v)=(vi) Follows if we take f=1-1 and k=1-u. Reverse

implication can be proved similarly.

Theorem 3.2: An fts X is fuzzy super — connected iff it has no proper fuzzy open set
which is also fuzzy semi — closed or equivalent iff it has no proper fuzzy closed set which
is also fuzzy semi — open.

Proof: This follows immediately from the definition of fuzzy regular open sets, fuzzy

semi — open sets and fuzzy semi — closed sets.

Theorem 3.3: If X and Y are fuzzy topological spaces and a function F from X onto Y is
fuzzy continuous then X is fuzzy super — connected implies Y is fuzzy super — connected.
Proof: Deny. Then there exists a fuzzy open set 2 #0 in Y such that A #1. F is fuzzy

continuous implies
b om0 e ) I —— (i)

(see Theorem 4.2 of Warren [34]). Since 4 #0 and A #1, then there exist y,,y, € ¥ such

that A(y,) # 0 and A(y,) # 1. Now F is onto. Therefore there exist x,,x, € X' such that

F(x))=y and F(x,)=y,.
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So F'(A)(x,)=AF(x))=A»)#0. Similarly F'(A)(x,)#0. So by (i), F'(A) isa
nonzero fuzzy open set in X such that F' “'(A)#1. This is a contradiction as X is fuzzy

supper — connected.

Theorem 3.4: A finite product of fuzzy super — connected spaces is fuzzy super —

connected.

Proof: Let (X,s) and (Y,f) be fuzzy super — connected topological spaces. Suppose that
(X xY,sx1) is not fuzzy supper — connected. Then there exist A,u€s and &,pet such

that Ax&#0, uxn#0 and
Ax&(x,y)+ pxn(x,y) <1

for every (x,y)e XxY where (Ax&,uxn)esxt, Axg= ﬂ"l(l)nPy'l(é’), P isa
projection map of (XxY) onto X, etc. So min{A(x),&(y)} +min{u(x),n(y)} <1 for
every (x,y) € X xY which implies that for any (x,y) € X x¥ either

(1) A(x)+ pu(x) <1

or

() AW +n() <]
or

(i) Q)+ )<
or

(iv) O +n(y)<l.

Now Aanpues and EAnet.

As X and Y are fuzzy super — connected topological spaces, if AAu#0,

EAn#0, then there exist x,€X and y el such that (A A z)(x;) >% and
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| .
(f/\n)(y,)>—;-. So }L(x,)>%, ,u(x1)>%, §(y,)>—;— and n(y,)>5. Therefore if x=x,

and y = y,, then there none of the above four possibilities will be true.

If Aau=0, then for each xe X cither A(x)=0 or u(x)=0. So for every
xe X, A(x)+pu(x)<1. Note that A,u# 0 as AxE#0, uxn#0 which implies that
(X,s) is not fuzzy super — connected. Similarly & A =0 will imply that (Y,t) is not

fuzzy super — connected.

Theorem 3.5: Any fuzzy product of fuzzy super — connected spaces is fuzzy super —
connected.

Proof: Let (X,.t,),, be a family of fuzzy super — connected spaces. Now it will be
enough to show that at some point of X, the addition of any two non — zero basic fuzzy

sets of (X,r), where X =], X ,exceeds 1.

Suppose not, Then there exist i,b,i.e.... Aosindasdipasensdy, & 00 A, &l fo

(A, (8, Yo By, (6, )} 4 ML () Jons (), D} ST oo (i)

forevery x, € X, , k= L2.3,cunesss ,m and forevery x, € X, , K= L2 3w M

Case — Lt If {iy,iysissececees iy OV {15 T Jaseeerenss ,j,} =@ then since each X, (iel) is fuzzy

for k=123mm and x'; € X,

x, €X, and x, € X, k=12 3 ;m and k' =123,........ e

i
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Case — II: Let p € {7,155 l3500000eee i YOV s Jos Jasereeesees 7,3 Now if min{A (x; )seeens A, (X))
and min{z, (x; )seeeeee oy e )} have different subscripts then by argument of Case — |

we can prove that (i) does not hold but if the two minimum terms have the same subscript

p then (i) becomes

A,(x,)+ H,(x,) <1 forall x,e X .
Then A, A p, €, (wheret,, is fuzzy topology on X ,) and as argued in Theorem 3.4.
A,(x,)+ p,(x,) 41 forall x, € X,

4. Fuzzy Super — Connected Subspace:
Definition 4.1: A subset of a fuzzy topological space X is said to be a fuzzy
super — connected subset of X if it is a fuzzy super — connected topological space as a

fuzzy sub — space of X.

Theorem 4.1: If Ac¥ c X, then A is a fuzzy super — connected subset of X iff it is a
fuzzy super — connected subset of the fuzzy subspace Y of X.

Proof: Easy.

Theorem 4.2: Let A be a fuzzy super — connected subset of an fts X. If there exist fuzzy
closed sets f and k in X such that fl+k=f+k =1,then f/A=1 and k/A=1.

Proof: If f(x,)#1 and k(y,)#1 for some x,,y, € A, then

F () +k(yp) =1 and f(xo)+kj(x0)=1-
This imply that f'(y,)#0 and k'(x,)#0. Thus f'/A and k' /A are not non — Zero

fuzzy open sets in A such that f "/ A+k | A<1, which contradicts the fact that A is a

fuzzy super — connected subset of X.
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Theorem 4.3: Let X be an fts and A< X be a fuzzy super — connected subset of
X such that g, is a fuzzy open set in X' If A is a fuzzy regular open set in X, either
u,<Aor p, s1-4.

Proof: If 2 =0 or 1 then the result holds. Suppose that 2#0 and 4 #1. Let f=2 an
k=1-A.Then f and k are such that f'+k=f +k' =1. By the previous theorem

u,<f or u,<k.So, p, < f'or p,<k',as p, is fuzzy open. Therefore u, <A' =4

or g, <(1-2) <(1-2) =1-4.

Theorem 4.4: Let {O,},.,be a family of subsets of an fts X such that each g, is fuzzy

open set. If ﬂOar #® and each O,is a fuzzy super - connected subset of X, then

aeAd

an is also a fuzzy super - connected subset of X.
aed

Proof: Let ¥ = UOa and suppose that Y is not a fuzzy super - connected subset of X.

aed

Then there exists a proper fuzzy regular open set J, in the fuzzy subspace Y of X.
Each , , is fuzzy open in X. So, each x4, /Y is fuzzy open in Y. Also each O, is
a fuzzy super - connected subset of the subspace Y as it is so in X. Therefore by previous

result for each a € 4 either g, /Y <4, or 4 /Y <1- A, . Suppose x; € nOa . Then

aed

either A, (x,) =1 or 4,(x,)=0. If A,(x,)=1, then g, /Y <4, forevery a€ A . Hence
1Y =V, (tty, 1Y) S 2y . But Ay <, 1Y . So, A, =1, which is prohibited since 4, # 1.
By a similar argument, if 4,(x)=0 then we shall get A, =0, which is also a

contradiction.
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Theorem 4.5: If A and B are fuzzy super - connected subsets of an fts X and /4 or

',/ A#0,then AU B is a fuzzy super - connected subset of X.
Proof: Suppose that ¥ = AU B is not a fuzzy super - connected subset of X. Then there
exist fuzzy open sets A and & such that 1/ #0,6/Y #0, and AlY+6/Y <1. Since A

is a fuzzy super - connected subset of X either A/4=0 or 6/4= 0. Without loss of
generality assume that 5/ 4 =0 In that case since B is also fuzzy super - connected, we

have (i) A/ A#0, (ii) /B =0, (iii) §/ A= 0 and (iv) Alb=0. Therefore

AlA+ puyl A<] (Because A/B=0)

If 4,/ A#0 then (i) and (v) imply that A is not a fuzzy super - connected subset
of X. Similarly if z,/B#0, then (ii) and &6/B+,/B<1 imply that B is not a fuzy

super - connected subset of X. We thus get a contradiction.

Theorem 4.6: If {4, },_, is a family of fuzzy super - connected subsets of an fts X such

that [/\,,,E Y Aﬂ} #0. Then UAa is a fuzzy super - connected subset of X.

aeA

Proof: Suppose ¥ ={4,},., is not a fuzzy super - connected subset of X. Then there

exist fuzzy open sets 4 and & in X such that

AIY #0 (i)
SIY#0 (ii)
and AIY+31Y <1 (iii)

Equations (i) and (ii) imply that there exist S and yin A such that A/4,#0 and
6/4,#0.
Case - I: If =y, then 4, will not be a fuzzy super - connected subset of X, which is

prohibited..




CHAPTER -5 Stronger Forms of Connectedness in FTS 59

Case - IL: If B #y,then

0+ [AaEA :uA,,}. = AaeAJuiAa

implies that z'4, A gt'4, #0. S0 44,/ A, # 0. Hence by the previous theorem A, & A4, is
a fuzzy super - connected subset of X. On the contrary it can be seen that A/ 4, U 4, #0,
54,04, #0 and AlA, A, +6/14,04, <1 So A,wA4, is not a fuzzy

super - connected subset of X.

Theorem 4.6: Suppose an fts X is fuzzy super - connected and C is a fuzzy super -
connected subset of X. Further suppose that X - C contains a set V such that z, /X — C
is a fuzzy open set in the fuzzy subspace X - C of X. Then CuUV is a fuzzy
super - connected subset of X.

Proof: Suppose ¥ =C UV is not a fuzzy super - connected subset of X. Then there exist
fuzzy open sets 4 and J§in A such that /Y #0, 6/Y # Oand A/Y+6/Y<1.AsCisa
fuzzy super - connected subset of X, either A/C=0or 6/C=0.

Without loss of generality assume that A/C = 0. Therefore

A1V %0 (i)

If we define a fuzzy set 4, in X as 4,(c)=A(x) if xeV, 4,(x)=0 if xe X-V, then
2, isopen in X as A4, = A A 4, . So 7, is a fuzzy regular closed set in X. Now we show
that 7, is a proper fuzzy set in X. /Y +6/Y <1 implies 4, +5<1.So 4, +&<1I.

Therefore 4, #1 as 8§#0. Also if 4, =0, then 4, =0, so 1/V'=0, but by (i),
A/V #0. Thus X is not a fuzzy super connected space, which is a contradiction.
Theorem 4.7: If A and B are subsets of an fts X such that s, < u, <7z, and A is a fuzzy
super - connected subset of X then so is B.

Proof: Easy.
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5. Fuzzy Strong Connectedness:
Definition: An fts X is said to be fuzzy strongly connected if it has no non - zero fuzzy

closed sets f and ksuch that f+k <1.If X is not fuzzy strongly connected then it will

be called fuzzy weakly disconnected.

Theorem 5.1: An fis X is fuzzy strongly connected iff it has no (non - zero) fuzzy open

sets A and & suchthat A#1,d#1land A+62=1.

Proof: An fts X is fuzzy weakly disconnected

< if it has no non - zero fuzzy closed sets f and ksuch that f+k<1.
& if it has no non - zero fuzzy open sets 2= f" and & = k"such that A = 1,5 #1

and A+0 =1.

Remarks 5.1: Fuzzy strong connectedness implies fuzzy connectedness, however the
converse is not true. Also the following example shows that fuzzy strong connectedness

and fuzzy super - connectedness are unrelated.

Example 5.1: If X =[0,]] and for 0<x<1, A(x)=§, 4 ={0,1,4} and 1, ={0,1,A'}

then (X,) is fuzzy connected, fuzzy super - connected, but not fuzzy strongly

connected and (X,1,) is fuzzy strongly connected but not fuzzy super - connected.

Theorem 5.2: If 4 X and X is an fts A is a fuzzy strongly connected subset of X iff
for any fuzzy open sets A and § in X, p, SA+6 implies either A <, or @, <6.
Proof: If A is not a fuzzy strongly connected subset of X, then there exist fuzzy closed

sets f and k in X such that

(i) f/4+#0
(ii) £/ A#0 and
(iii) f/A+k/A<].
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Ifweput A=1-f and 6=1-k, then AlA=1-f1A, §/A=1-k/A. So (i), (ii) and
(iii) imply that gz, <A+8 but u, £ and u, $4.

Conversely if there exist fuzzy open sets A and & in X, p,<A+05, but
pokrand p, 48, then 2/A#1,6/4%1 and A/A+5/421. So A is not fuzzy

strongly connected.

Theorem 5.3: If F is a subset of an fts X such that g, is fuzzy closed in X, then X is

fuzzy strongly connected implies that F is a fuzzy strongly connected subset of X.

Proof: Suppose that F is not so. Then there exist fuzzy closed sets f and k in X such

that

(i) f1A#0
(i) k/A#0
(iii) f/A+k/A<1.

(iii) implies that (f App)+(kAp)<I1, where by (i) and (i) (fAp:)#0,

(k A p) # 0. So X is not fuzzy strongly connected, which is a contradiction.

Remarks 5.2: One can prove a similar result for a subset G of a fuzzy super - connected

space X if y,; is fuzzy open in X.

Theorem 5.4: If X and Y are fuzzy topological spaces and a function F from X onto Y is
fuzzy continuous, then X is fuzzy strongly connected implies Y is fuzzy strongly
connected.

Hint: Inverse image of a fuzzy closed set in Y under F is a fuzzy closed set in X.
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Theorem 5.5: A finite product of fuzzy strongly connected spaces is fuzzy strongly

connected.

Proof: Let (X,#(X)) and (¥,7(Y)) be fuzzy strongly connected topological spaces. We
show that (X x ¥,#(X xY)) is fuzzy strongly connected. suppose not. Since the members
of {(X xY) are precisely of the type AxJ, where A(x) € 1(X), 8(x)et(Y), there exist
non - zero fuzzy sets A,uet(X) and &,m () such that AxS&#1, uxn#1 and for

every xe X, yet

min{A(x),6(y)} + min{x(x), p(p)} 21 -=--mmrmmmmmees (i)

Avpet(X) and SvyerY). Xand Y are fuzzy super connected, so if Avu=#1 and

5vn#1 then there is x, € X and y, €Y such that (lv,u)(xl)<—;- and (S v r;)(yl)<%,

which implies each A(x,),x(x,),6(»,) and n(y) <%. So for x=x, and y=y,, (i) does

not hold. If Av z =1 then for each xe X,

A(x)=1and pu(x)=1 (ii)

Now we show that 2 #1. Suppose 2=1.S0 Axd#1and Y is fuzzy strongly connected

implies that there exists y, €Y such that &(y,) <%. Now uxn#1. So either p#1

orn=#l.

Case - I: If p#1, then as X is fuzzy strongly connected, there is x, € X such that

2y <}5. So for x = x,, y =, (i) is not true.

Case - II: If 7#1, then since §#1 and Y is fuzzy strongly connected there is y, €Y

such that 8(3,) +7(),) <1.So forany xe X and y=y,
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min{A(x), S(y)} +{#(x), n(y)} =1
() +n(y) <1

This is a contradiction because of (i). Thus A =1 is not possible. Similarly, we can prove

that u#1. By (i) A+u>1. So (X,7(X)) is not strongly connected, which is a
contradiction. Therefore Av z=1 is not possible. Similarly we can show that 5 v 7 =1

is not possible.

Remarks 5.3: An infinite fuzzy product of fuzzy strongly connected spaces may not be

fuzzy strongly connected.

Example 52 Let X_=[0.1], #=1,2,3,~———~ such that

. n
T2+’

t(Xn)={0=1:a'n}! n:]32535 _____

if xelX,

Aﬂ (x)

Then each (X,#(X,)) is fuzzy strongly connected. But the fuzzy product space

X=[]x, is not so as #(X) contains a member V% P7.(4,)#1 such that

n=l1

(Va1 P7'0(4,))(x) =% where xe X .

Remarks 5.4: In the general topology any product of strongly connected spaces is

strongly connected. thus in the fuzzy setting we have a divergence.
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