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SUMMARY

This thesis studies the nature of distributive
nearlattices. By a nearlattice S we will always mean a
(lower) semilattice which has the property that any two
elements possessiné‘ a common upper bound, have a
supremum, Cornish and Hickman in their paper [14],
referred this property as the upper bound property, and
a semilattice of this nature as a semilattice with the
.upper bound property. Cornish and Noor in [15] preferred
to call these semilattices as nearlattices as the
behaviour of such a semilattice is closer to that of a
lattice than an ordiary semilattice. In this thesis we

give several results on nearlattices which certainly

extend and generalize many results in lattice theory.

In chapter 1 we discuss ideals, congruences and
other results which are basic to this thesis. We include
some characterizations of distributive and modular
nearlattices. We generalize the separation properties
given by M.H.Stone for distributive lattices. We also
show that the set of prime ideals of a nearlattice S is

unordered if and only if S is semiboolean.
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Chapter 2 discusses the skeletal congruences of a
distributive nearlattice. Skeletal congruences on
distributive lattices have been studied extensively by
Cornish in [11]. Here we extend several regults of
Cornish for nearlattices. We also introduce the notion of
disjunctive nearlattices, A distributive nearlattice S
with 0 is called disjunctive if for 0 £ a < b there is an
element x € S such that x Aa = 0 and 0 < x £ b, Then we
give several characterizations of disjunctive
nearlattices and semiboolean algebras using skeletal
congruences. Finally we show that a distributive
naerlattice is semiboolean if and only if
8 ----- > ker® is lattice isomorphism of Sc(S) onto KSc(S)

whose inverse is the map J ---> 8(J).

In chapter 3, we discuss on normal and n-normal
nearlattices. Normal lattices have been studied by
several authors including Cornish [8] and Monteiro [34];
while n-normal lattices have been studied by Cornish [9]
and Davey [16]. In proving some of the results we have
used Principle of Localization, which is an extension of
lecture néte of Dr. Noor on localization. This technique
is very interesting and quite different from those of the

previous authors.
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Chapter 4 studies the multiplier extension (meet
translation) of a distributive nearlattice. Previously
multipliers on semilattices and lattices have been
studied by several authors e.g, Szasz and Szendrie
[54,55,56] Kolibiar [29], Cornish [10] and Niemenen [37]
on a lattice. In a more recent paper, Noor and Cornish in
[39] studied them on nearlattices. Here we extend some of
their work. We also give a categorical result, where we
see that the multiplier extension has a functorial
character which is entirely different from that of the
Lattice Theory, c¢.f. Cornish [10, theorem 2.4]. 1In
section 2 of this chapter we discuss multipliers on
sectionally pseudocomplemented distributive nearlattices
which are sectionally in Bn’ -1 £ n £ » and generalize a
number of results of [10]. We show that S is sectionally
in B, if and only if M(S), the lattice of multipliers is
in Bn‘ Finally we show that for 1 £ n < e, above
conditions are also equivalent to the condition that S is
sectionally pseudocomplemented and for any n+l minimal
prime ideals

Pl’PZ’.‘.'...".’Pn”’
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CHAPTER — 1

IDEALS AND CONGRUENCES OF A DISTRIBUTIVE NEARLATTICE.
1. Preliminaries.

1.1. In this section it is intended.only to outline and
fix the notation for some of the concepts of nearlattices
which are basic to this thesis. We also formulate some
results on arbitrary nearlattices for latter use. For the
background material in Lattice Theory we refer the reader
to the texts of G. Gratzer [19], [18] and D.E. Rutherford

{481].

By a nearlattice S we will always mean a (lower)
semilattice which has the éroperty that any two elements
possessing a common upper bound, have a supremum. Cornish
and Hickman, in their paper [14], referred this property
as the upper bound property,and a semilattice of this
nature as a semilattice with the upper bound property. We
shall see latter, the behaviour of such a semilattice is
closer to that of a lattice than an ordinary semilattice.
For the sake of brevity, we prefer to use the term
nearlattice in place of semilattice with the upper bound
property.

Of course, a nearlattice with a largest element is

a lattice. Since any semilattice satisfying the



descending chain condition has the upper bound property,

all finite semilattices are nearlattices.

Now we give an example of a meet semilattice which

is not a nearlattice .

Example. 1In R? consider the set

8 = {(0,0)} v {{(1,0)} v ((0,1) v {(1,¥)} v > 1}

shown by the following figure 1.1

(0,10 1

L]

Figure 1.1

Define the partial ordering £ on § by (x, y) £ (xl, yl)

iff x £ x; and y 2 V). Observe that (S ; <) is a meet



semilattice. Both (1,0) and (0,1) have common upper
bounds. In fact {(1, y) | y > 1} are common upper bounds
of them. But the supremum of (1,0) and (0,1) does not

exist. Therefore (S ; <) is not a nearlattice,.

The upper bound property, appears 1in Gratzer and
Lasker [20],while Rozen [49,pp.17-20] shows that it is
the result of placing certain associativity conditions on
the partial join operation. Moreover, Evans in a more
recent paper [17] referred nearlattices as conditional
;attices. By a conditional lattice he means a (lower)
semilattice S with the condition that for each
x €8S, { yes:y £x } is a lattice; and it is very
easy to check that this condition is equivalent to the
upper bound property of S. Also, Nieminen refers to

nearlattices as "partial lattices" in his paper [38].

Whenever a nearlattice has a least element we will

denote it by 0. If Xys XgysereeyX are elements of a
nearlattice then by X V.iiaowdV X,» we mean that the
supremum of X;,.....,Xx, exists and x; VooV x is the

symbol denoting this supremum.

A non empty subset K of a nearlattice S is called a

subnearlattice of S if for any a,b € K, both a A b and



a Vb (whenever it exists in S ) belong to K ( A and V

taken in S ), and the A and V of K are the restrictions
of the A and V of S to K. Moreover, a subnearlattice K of
a nearlattice S is called a sublattice of S if a Vb € K

for all a, b € K.

A nearlattice S is called modular if for any
a, b, ¢c € S with ¢ £ a, a A (bV<c) = (aA DbV c
whenever b V c exists. S is called distributive if for
BNY X 3 Xp geeeey X
x A (x) V...V xn) = (x A x;) Vo.... Vix A x,) whenever

X V...V x, exists.Notice that the right hand expression

always exists by the upper bound property of S.

Lemma 1.2. A nearlattice S is distributive (modular)
if and only if (x] = { ¥y €S : y £ x } is a distributive
(modular) lattice for each x € S. a

Consider the following lattices.

d d

i 1.3
Figure 1.2 Figurs



Hickman in [23] has given the following extension of

a very fundamental result of Lattice Theory.

Theory 1.3. A nearlattice S is distributive if and
only if S does not contain a sublattice isomorphic to N;

or M. a

Now we give another extension of a fundamental

result of Lattice Theory.

Theory 1.4. A nearlattice S is modular if and only if

S does not contain a sublattice isomorphic to NV

Proof: Suppose S does not contain any sublattice
isomorphic to Ni. Then, (x] does not contain any
sublattice isomorphic to N; for each x € S. Thus, a
fundamental result of Lattice Theory says that (x] is
modular for each x € S as (x] is a sublattice of S.

Hence, S is modular by lemma 1.2.

Conversly, let S be modular. If S contains a
sublattice isomorphic to Ng, then letting e as the
largest element of the sublattice we see that (e] is not
modular [by Lattice Theory]. Thus by lemma 1.2 above, S

is not modular and this gives a contradiction.



This completes the proof. a

In this context it should be mentioned that many
Lattice theorist e.g. R.Balbes [5], J.Verlet [58],
R.C.Hickman [22] and K.P.Shum [53] have worked with a

class of semilattices S which has the property that for

each x, Biyereega € 8, if a Veuoo.oo V a, exists then
(x A al) Vo.ooo oV (x A ar) exists and equals
x A (81 V....V ar). [6] called them as prime semilattices

while [53] referred them as weakly distributive

semilattices.

Hickman in [23] has defined a ternary operation j by
j(x , v, 2z) =(xAy) V(yAz), on a nearlattice S
(which exists by the upper bound property of S}. In fact
he has shown that (also see lyndon [30] Theorem 4) the
resulting algebras of the type (S ; j) form a variety,
which he referred to as the variety of join-algebras and

following are its defining identities.

(i) i (x, x, x) = x
(ii) J (x, ¥, x}) = J§ (¥, X, v).
(iii) Jj (J (x, ¥, x), 2, J (x, ¥y, x))

J o(xy, J (v, 2, y), x)

(iv) J (xy ¥, z) = J (z, ¥y, x).



(v) Jo(J (xy ¥y 2)53 (xy ¥y %), § (%, v, 2))
=J (xy, ¥, x).

(vi)  J (J (x, ¥, %), ¥, 2) =] (%, ¥, 2).

(vii) J§ (x, ¥, § (x, z, x)) = J (x, ¥, x).

(viii) § (3 (x, v, J (w, ¥, 2)),J (x, ¥y 2),

i (x, ¥v,3(x, ¥, 2))) =3 (x, ¥y, 2).

We do not want to elaborate it further as it is

beyond the scope of this thesis.

We call a nearlattice S a medial nearlattice if for
all x, v, z €S, m (x, v, 2) = (x Ay) V(yAz)V(zA
x) exists. For a (lower) semilattice S, if m (x, ¥, 2)
exists for all x, y, 2 € S, then it is not hard to see
that S has the upper bound property and hence is a medial
nearlattice. Distributive medial nearlattices were first
studied by Sholapder in [51] and [52], and recently by
Evans in [171. Sholander preferred to call these as
median semilattices. There he showed that every medial
nearlattice S can be characterized by means of an algebra
(S ; m) of type <3>, known as median algebra, satisfying
the following two identities

(i) m (a, a, b) = a.
(ii) m (m (a, b, c), m (a, b, d), e)

=m (m (c, d, e), a, b).



Evans in [17] has studied nearlattices with the
property that for any a , b , ¢ € S, a Vb V c exists
whenever a Vb, b Vc and ¢ V a exists. He referred them
as strong conditional lattices. It 1is not hard to see
that these strong conditional lattices are precisely the

medial nearlattices.

A family A of a subsets of a set A is called a
closure system on A if
(i) A € A and

(ii) A is closed under arbitrary intersections.

Suppose B is a sub family of A. B is called a
directed system if for any X, Y € B there exists Z in B
such that X, Y Z. Ifu { X: X € B} € A for directed
system B contained in the closure system A, then A is
called algebraic. When ordered by set inclusion, an

algebraic closure system forms an algebraic lattice.

A non empty subset H of a nearlattice S is called
hereditary if, for any x € S and y € H, X £ y implies
x € H. When S does not have a smallest element we also
regard the empty set {®} as hereditary. Thus, the set
H(S) of all hereditary subsets of S is a complete

distributive lattice when partially ordered by



set-inclusion, where the meet and join in H(S) are given

by set-theoretic intersection and union, respectively.

The largest element of H(S) is S, while the smallest

element is {0},if 0 € S, and the empty set ,otherwise.
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2. Ideals of Nearlattices.

A non empty subset I of a nearlattice S is called an
ideal if it is hereditary and closed under existent
finite suprema. We denote the set of all ideals of S by
1(S). If S has a smallest element 0 then I(S) is an
algebraic closure system on S, and is consequently an
algebraic lattice. However, if S does not possess
smallest element then we can only assert that I(S) u {®}

is an algebraic closure system.

For any subset K of a nearlattice S, (K] denotes the

ideal generated by K.

Infimum of two ideals of a nearlattice is their set
theoretic intersection. Supremum of two ideals I and J in
a lattice L is given by I VJ = {x €L : x £ 1i V j for
some i € I, j € J}. Cornish and Hickman in {14] showed
that in a distributive nearlattice S for two ideals I and
J, IVJI={iVj:1i€I,je€d where i V j exists}. But
in a general nearlattice the formula for the supremum of
two ideals is not very easy. We start this section with
the following lemma which gives the formula for the
supremum of two jdeals. It is in fact exercise 22 of

Gratzer [19, p-54] for partial lattice.
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Lemma 2.1. Let I and J be ideals of a nearlattice S.
Let Ap=I v J,A ={ x € S:x £y Vz; vy Vz exists and

Yy 2 € An-l },

@
for n=1,2,..+v4..., and K = u A . Then K =I VJ.
n=0
Proof. Since A0 cC Al E A2 s s s wmmi
w e An Eeeveseosrsy K is an ideal containing I and J.

Suppose H is any ideal containing I and J. Of course,

A0 © H. We proceed by induction. Suppose An_1 = H for some
n 21 and let x € A .Then x = y V z with y , z € Ay
Since A £ H and H is an ideal, ¥y V z € H and x € H.

That is A, & H for every n. Thus, K =1 V J. 0

The following result is due to Cornish and Hickman

in [14 ,Theorem 1.1].

Theorem 2.2. The following conditions on a nearlattice
S are equivalent.
(i) S is distributive.
{(ii) For any H € H(S), (H] = { h, V...V h, : hy,.
.sh, € H}
(iii) For any I,J € I(S),
IVJ ={ q VieeouVa t a,.0000y 8 €T U J}.
(iv) I(S) is a distributive lattice.
Rajshahi University Libiary

Docunieatition Section

Decunent No 2226725 D- 1779
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(v) The map H ---> (H] is a lattice homomorphism
of H(S) onto I(S) ( which preserves arbitrary

supremum) . a

Observe here that (iii) of above could easily be
improved to (iii)’; for any I, J € I(S),

IVJI={({iVj:iel , jeda}.

Let If(S) from henceforth denote the set of all
finitely generated ideals of a nearlattice S. Of course,

I[(S) is an upper subsemilattice of I(S). Also for any

iy s orennorX € S, (xl, ....... ,x.] is clearly the
supmremum (x1] Visswsnns V (xl]. When S is distributive,
(X1’lon'xl] n (yl’llll’yn ]

((x;] Voo ooV (x, 1) 0 ((y)] V...V (v, 1)

\'4 (Xi A yi] for any Xj,....yX
i, J

!,Yl,.-.-,ynES

(by 1. 2.2) and so If(S) is a distributive sublattice of

I1(S), c.f. Cornish and Hickman [14].

A nearlattice S is said to finitely smooth if the
intersection of two finitely generated ideals is itself
finitely generated. For example, (i) distributive
nearlattices, (ii) finite nearlattices, (iii) lattices,
are finitely smooth. Hickman in [23] exhibited a

nearlattice which is not finitely smooth.
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By Cornish and Hickman (14)], we know that a
nearlattice S is distributive if and only if I(S) is so.
Our next result shows that the case is not the same with

the modularity.

Theorem 2.3. Let S be a nearlattice. If I(S) is modular

then S is also modular but the converse is not

necessarily true.

Proof: Suppose I(S) is modular. Let a, b, ¢ € S with c
< a and b V ¢ exists. Then (c] c (a].Since I(S) is
modular. So (a A (b V c)l=(al A ((b]l V (c]=((a] A (b)) V
(c]=((a A b) Vc]. This implies a A (b Vc)=(a A b) V ¢,

and so S is modular.

Nearlattice S of figure 1.4 shows that the converse

of this result is not true.

Pt

0
Figure 1.4 n
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Notice that there (r] is modular for each r € $S. But
in I(8), clearly {(0], (al, (a;, vl, (ay, bl, S} is a

rentagonal sublattice.

We now give an extension of a well known result of

Lattice Theory in presence of distributivity.

Theorem 2.4. Let I and J be two ideals in a distributive
nearlattice S. If I A J and I V J are principal, then

both I and J are principal.

It

Proof: Suppose I A J (x] and I V J = (y].Then by
[14],Theoreml.1] y = i V j for some i € I and j € J.Since
x £yand i £y, x Vi exists by the upper bound property
of S. Moreover x V j € J. Now (y] = I VJ 2(x Vil VJ
2(il] VJ 2 (y]. This implies I V J = (x Vi] V J. Again,
(x] =T AJT2a(xVil] AJ 2 (x] implies

IAJ=(xVil] AJ. Then from the distributivity of I(S)
two equalities imply that I = (x V i]. That is, I is

principal. Similarly, we can show that that J is also

principal. O

A filter F in a nearlattice S is a non-empty subset
of 8 such that if f, , fy € F and x € S with fl £ x,then

both f| A f, and x are in F. A filter G is called a prime
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filter if G ¥ S and atleast one of x|,
whenever X, Vio...V x exists and is in G. An ideal P in
a nearlattice S is called a prime ideal if P 4 S and

x Ay € P implies x € P or y € P.It is not hard to see
that a filter F of a nearlattice S is prime if and only

if S-F is a prime ideal.

The set of filters of a nearlattice is an upper
semilattice; yet it is not a lattice in general, as there
is no guarantee that the intersection of two filters is
non-empty.The join F, \' Fy of two filters is given by F|
VF2={s€S:SZf1/\f'2forsome f, € F; and fZEFz}'
The smallest filter containing a subsemilattice H of S is
{ s e S : s 2 h for some h € H} and is denoted by [H).
Moreover, the description of the join of filters shows

that for all a, b € 5, [a) V [b) = [a A b).

Now we will give an extension of a well known

Theorem of Lattice Theory due to M.H.Stone; c.f [41].

Theorem 2.5. Let S be a nearlattice. The following
conditions are equivalent:

(1) S is distributive.

(ii) For any jdeal I and any filter F of S, such that

I nF = ®, there exists a prime ideal P 2 I and



16

disjoint from F.

Proof: (i) implies (ii). Let T be the set of all ideals
containing I, but disjoint from F. T is non-empty, since

I €T.

Let C be a chain in T and let M = u { X : X € C }.
Let x, ¥ € M, then x € X, y € Y for some x , y € C. Since

C is a chain either X £ Y or Y c X.

Suppose X £ Y. Then both x , ¥y € Y. So if x V y exists,
then x Vy € Y M, as Y is an ideal. Now for p < x,

p € X as X is an ideal and p € M. Thus M is an ideal.
Moreover M contains I and F N M = &. So M is maximum

element of C.

Hence by Zorn's Lemma T has a maximum element P. We
claim that P is prime. If not, there exist a , b ¢ P, but
a A b€ P. Because of maximality of P, (P V (al]) N F + o.
(PV (bl])NF + ®. Then by [14, theorem 1.1], there exist
elements p V a € F and q V bl € F for some a; £ a and
b; £ b. Then by x = (p Va) A (a Vb)) € F and
p, q€P. Alsox = (pAq) V(pPADb) V(s Aq) V
(a1 A bl) implies F N P § @, which is a contradiction.

Hence P is a prime ideal.
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(ii) implies (i). Let x , ¥ , 2 € S, such that
y V z exists, Then (x A y) V(xAz) £x A (yVz)If

(x Ay) VixAz) <xA(y Vz).

Consider I ((x Ay) V(x Az)] and F =[x A (f V z)).

Then I N F = &, so by (i1) there exists a prime ideal

P 21 such that PN F = &.

Now (x A y) V(x A z) € P implies x A y € P and
x Az € P. Since P is prime, this implies either x € P or
vy V 2z € P and so x A (y V z) € P, which is a
contradiction to PN F = ®.Therefore (x A y) V (x Az) =

x A (y Vz) and so S is distributive. [

The following corollaries follow immediately from

above theorem.

Corollary 2.6. A nearlattice S is distributive if and
only if for any ideal I and a € S such that a € I, there

exists a prime ideal P 2 1 and a ¢ P. a

Corollary 2.7. A nearlattice S is distributive if and
only if for a, b € S with a ¥ b there exists a prime

ideal P containing exactly one of a and b. 0
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Corollary 2.8. A nearlattice S distributive if and only
if every ideal is the intersection of all prime ideals

containing it. 0O
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3. Congruences.

An equivalence relation 8 of a nearlattice S is a
congruence relation of the algebra (S; A) such that if
X% ¥; (8),for i=1,2, and both x V x, and y, V y, exist,

then x; VvV X, = ¥ \Y2 ¥y (9).

The set c(S) of all congruences on S is an algebraic
closure system on S x S and hence, when ordered by set

inclusion, is an algebraic lattice.

Cornish and Hickman [14] showed that for an ideal I
of a distributive nearlattice S, the relation 8(I),
defined by x = y (8(I)) if and only if (x] VI = (y] VI
is the smallest conngruece having I as a congruence
class. Moreover, the equivalence relation R(I), defined
by x = y (R(I)) if and only if, for any s € S, x As €1
is equivalent to y A s € I, is the largest congruence

having I as a congruence class.

Suppose S is distributive nearlattice and x € S. We
will use (% as an abbreviation for 8((x]). Moreover,!x
denotes the congruence, defined by a = b (:J if and only

if a A x = b A x.
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Cornish and Hickman [14] also showed that for any
two eleﬁents a,b of a distributive nearlattice S with a
£ b, the smallest congruence identifying a and b is equal
to 'Pa n Gb, and we denote it by ©6(a, b). Also, in a
distributive nearlattice S, they observed that if S has

a smallest element 0, then clearly Qx = 8(0, x) for any

X E S.
(1) Qa v %_= v, the largest congruence of S
(ii) Oarl‘?8 = ®, the smallest congruence of S and

(iii) 8(a, b)" =06, V¥ where a < b and $4 2

denotes the complement.

Now suppose S is an arbitrary nearlattice and E(S)
denotes its lattice of equivalence relations. For ¢l,
9, € E(S), ) \' 9, denotes their supremum; x = y (¢l Vv ¢2)
if and only if there exists x = Z gy Byrroeeos 12 =Y such
that z; | = z; (& or ¢z) for i = 1,2,..,n.

The following result was stated by Grazter and
Lakser in [20] without proof and a proof, different than
given below, appears in Cornish and Hickman [14]1 ; but

also see Hickman [22] and [23].
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Theorem. 3.1. For any nearlattice S, c(S) is a

distributive (complete) sublattice of E(S).

Proof: Suppose ®, ® € c(S). Define L to be the

supremum of ® and ® in the lattice of equivalence

n

relations E(S) on S. Let x vy (¥). Then there exists

X = Zp 9By 2, TV such that z;

(-] E zi(B or ®). Thus, for

any t € S, zi_l/\thi/\t'(Bord)) as 8, & € c(S).

Hence, x A t y A t(¥) and consequently ¥ is a

semilattice congruence. Then, in particular x Ay = x (¥)
and x Ay = y(F). To show that ¥ is a congruence, let
x £ y(¥), with x £ y, and choose any t € S such that both

x Vt and y V t exist. Then, there exists Zhy e o2y

such that x = z;, 2z, =¥ and z.] = 2 (® or ).

n

Put w, = z, Ay for all i = 0,....,n. Then

X = Wy, W = ¥, W W (8 or ¢). Hence, by the upper
bound property, w; V t exists for all i = 0,....,n

(as wi,tSth) and wi_th=int(90r ®) for all
i=1,...,n (as B8, & € c(8)), i.e., x Vt = y V t(7).
Then by [15; lemma 2.3] ¥ is a congruence on S.
Therefore, c{(S) is a sublattice of the lattice E(S).

To show the distributivity of c(S), let
x =y (8n (8 V8§)). Then x Ay = y (8) and (8, V 8,).

Also, x A y = x (8) and (8, VOZ).
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Since x Ay £ y (Gl‘V 92), there exist tgreoens , t such

that (as we have seen in the proof of the first part),

x ANy = tgr £, = v, 2t (8 or 8,) and

x ANy = ty £ t; £y for each i=0,....,n. Hence,

t,, = t; (8) for all i=1,..... ,n, and

so t;,; =t (0@ n 9” or (8 n 92). Thus,

x Ay = y((®8n 91) V (8 n 92)). By symmetry,

x Ay =2 x ((8n 91) V(e n 92)) and the proof completes

by transitivity of the congruences. O

In lattice theory it is well known that a lattice is
distributive if and only if every ideal is a class of
some congruence. Following theorem gives a generalization

of this result in case of nearlattices.

This also characterizes the distributivity of a

nearlattice, which is an extension of [14, Theorem 3.1].

Theorem 3.2. S is distributive if and only if every

ideal is a class of some congruence.

Proof: Suppose S is distributive. Then by [14,Theorem
3.1] for each ideal I of 5, 8(I) is the smallest

congruence containing I as a class.
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To prove the converse, let each ideal of S be a
congruence class with respect to some congruence on S.
Suppose S is not distributive. Then by Th.1.1.3 we have
either Ng ( figure 1.2 )} or Mg [ figure 1.3 .] as a
sublattice of S. In both cases consider I = (a] and
suppose I is a congruence class with respect to 8.Since
d e€I. d=a(8). Nowb=bAc=bA(aVc)=
bAf(dVe) =bAc=4d (8), i,e. b = d (8) and this
implies b € I, i.e., b £ a which is a contradiction.

Thus S is distributive. g

To prove (ii) of the next theorem, the following
lemma is needed. This lemma is also an extension of [14

Theorem 1.1].

Lemma 3.3. If {Ji} : i € A an indexed set, are ideals of
a distributive nearlattice S, then V Ji = {3 VooV J;
1 n
where the supremum exists for some
i,on--.,i EAB.nd j-GJ-' )-
1 n 1k i K
Proof; Let x , ¥y € R.H.S., if x V y exists then obviously

it is also of the same form. That is x Vy € R.H.S. Now

let x € R.H.S and y £ x. Then x = J; Vesws V_h for some
1 n
ji € Ji» k =1,2,....,n. So by the distributivity,
k k
y=yAx = (y A Jil) " S—— ji).

n
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Since y A j. € J;» this implies y € R.H.S. Thus R.H.S is

'k K

an ideal of S. This clearly contains each J;+» Finally,
let H be an ideal containing each Ji' Then for each

ijyeevyi € A and J; € I 3: N cawws V j. € H if it exists

K k 1 ‘n

n

and so R.H.S = H.

Therefore R.H.S. = V J; a

We omit the proof of (i) of the following theorem as

it is due to Cornish and Hickman in [14, theorem 3.6],

while (ii) is an extension of a part of their result.

Theorem 3.4, Let S be a distributive nearlattice then,
(i) for ideals I and J, ® (I n J) =8 (I) n 8(J).
(ii) for ideals Ji» i € A an indexed set,

8 (VJ)=Ve ().

Proof: (ii) since for each i € A, J; C 1" J;» so

%) (Ji) el 2 (VJi)' Hence V @8 (Ji) ce (V Ji)' To prove the
reverse inequality, let x <yandx =y 8 (V JQ. Then
(x] V (V Ji) = (y] V (VJi), and so y € (x] V (VUi). Then
by the above lemma, y = x V jilv,....,V jin

for some ij,..,i, € A. Then x = x V j; 8 (J; )
" 1 1

1 2 2

H

shwsnE X V.ji V...V ‘ji =y 8 (Ji)'
1 n n



25

n

Thus x =y V8 (J;) =V 8 (J;). This proves (ii). 0O
k=1 k

Following corollary'is an immediate consequence of

above theorem which is also a part of [14, Th.3.6].

Corollary 3.5. The mapping I--->8(I) is a homorphism
from the lattice of ideals to the lattice of

congruences. [

We now turn our attention to the permutability of
the congruences in a distributive nearlattices. Two

congruences 8 and ® in a nearlattice S 1is called

permutable if for any x, y, z € S with x = y (8) and
y = z(®), there exists t € S such that x = t(®) and
t = z(8). It is well known that in distributive lattices

the congruences of the form 8(I) and 8(J) always permutes
for any ideals I and J. Unfortunately we are unable to
establish such a result in distributive nearlattices. But
the existence of medians plays a fundamental role in
establishing such a result which is given in next
theorem. Recall that a nearlattice S is medial if

m(x, ¥, z) = (x Ay) V(yAz)V(z Ax) exists for all
X, ¥,2 € S. It is already mentioned in section 1. This is

equivalent to the fact that for all x , ¥y , 2 € S,
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x V y V z exists whenever x V vy, Yy Vz and z V x
exist.
Theorem 3.6. For any ideals I and J of a distributive

medial nearlattice S, 8(I) and 8(J) permute if i V j

exists for all i € I,j € J.

Proof: Suppose x = y 8(1) and y = z 8(J). Then

(x] VI =(y]l1VIand (y]VJ=(z]VJ, and so
x=(xAy) V(xAi) and z = (y Az) V (2 A j) for some
i eI, j €J., Consider

Pp=(xAyAz)V(ixAi)V (zAj). This element exists

as i V j exists and S is medial. Now,

z N J x Ay A je(J) and y = z 8(J).
Imply p S(x Ay) V(xAi)V(xAyAj) 8(J7)
=(x A y) V(x A i)= x. Again

x AN i

n

vy Az Ai®©(I) and x = y 8(I) imply that

P (v Az) V(yAzAi) V(z Aj) 8(I)
=(yAz)V(zAJj) = z.
Therefore, &(I) and 8(J) permute. 0

Thus we have the following corollary.

Corollary 3.7. Let S be a distributive medial
nearlattice. Then for a, b € S, 8, and 8, are permutable

if and only if a V b exists. a
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We conclude this section with the following
corollary which is an immediate consequence of above

corollary .

Corollary 3.8. The following conditions on a

distributive medial nearlattice S are equivalent.

(1) S is a distributive lattice.
(i1) For any two ideals J and K, 8(J) and 8(K)
are permutable.

(iii) For any s,t € 8, Gs and Qt are permutable. [
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4. Semiboolean algebras.

An interesting class of distributive nearlattices is
provided by those semilattices in which each principal
ideal is a boolean algebra. These semilattices have been
studied by Abbott [1], [2], [3] under the name of
semiboolean algebras and mainly from the view of Abbott’s
implication algebras ( an implication algebra is a

groupoid (I;-) satisfying:

(i) (ab) a = a,
(ii) {ab) b = (ba) a,
(iii) a (bc) = b (ac).

Abbott shows in [1, pp. 227-236] that each
implication algebra determines a semiboolean algebra and
conversely each semiboolean algebra determines an

implication algebra.

Following result gives a characterization of
semiboolean algebras which is due to Cornish and Hickman
in their paper of weakly distributive-semilattices [14]
( such semilattices were first studied by Balbes [5§]

under the name of prime semilattices).
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Theorem 4.1. [ Cornish and Hickman [14, theorem 2.2]. A
semilattice S is a semiboolean algebra if and only if the

following conditions are satisfied.

(1) S has the upper bound property.
(ii) S is distributive.
(iii) S has a 0 and for any x € S,
(X]' ={y€eS: yANx=01} is an ideal

and (x] V (x]t = S. a

A nearlattice S is relatively complemented if each
interval [x , y¥] in S is complemented. That is, for
x € t £ y there exists t° in [x,y] such that t A t° = x

and t Vt = y.

A nearlattice S is called sectionally complemented
if [0 , x] is complemented for each x € S. Of course
every relatively complemented nearlattice S with 0 is
sectionally complemented..It is not hard to see that S is
semiboolean if and only if it is sectionally complemented
and distributive. We denote P(S) by the set of all prime

ideals of S.
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There is a well known result in Lattice Theory due
to Nachbin in 1937. c.f. [19, Theorem. 22] that a
distributive lattice is boolean if and only if its prime
ideals are unordered. Following theorem is a
generalization to this result which is due to Cornish

and Hickman in [14].

Theorem 4.2. For a distributive nearlattice S with 0,

the following conditions are equivalent.

(i) S is semiboolean.
(ii) Jf(S) is a generalized boolean algebra.
(iii) P(S), the set of all prime ideals is

unordered by set inclusion. a

Now we extend the above result. For this we need a
lemma which depends on theorem 1.2.5, the separation
properties of nearlattices. This lemma was proved gy
Cornish in [8] for lattices. But in case of nearlattices
the proof is bit tricky.In Cornish’s proof, he has used
the ideal that if T is a sublattice of a distributive
lattice, then the ideal generated by T is exactly same as
the hereditary subset generated by T. But this is not

true in case of nearlattices.



Figure 1.5

In Figure 1.5, observe that for the subnearlattice
T =4{d,b,f } of distributive nearlatiice S, hereditary

subset generated by T is { 0, a,b,c,d,f } but (T] = S.

Lemma 4.3. If Sl is a subnearlattice of a distributive
‘nearlattice S and P1 is a prime ideal in Sl' then there

exists a prime ideal P in S such that PI= Sl n PpP.

Proof. Let I be the ideal generated by ﬁ in S. Then
I = (H] where H is the hereditary subset of S generated
by P|. Suppose x € I N (Sl - Pl). Then x € T and

X € Sl - Pl[ Then by Th.1.2.2,

X = hl V....V hn for some hl,....hn ¢ H. Again, hy € H

implies h-l < ti for some t; € P, i=1,2,...,n. Then

X = (x/\hl) V...V (x Ahn) < (x A t.l) V...V (x Atn)

31
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(this exists by the upper bound property) < x. Thus,

x = (x A tl) V .....V {x A tn) € P; which gives a
contradiction. Therefore, I N (Sl- Pl) =& , Then as SI_PI
is a filter in S, I N [SY—P” = ¢ where [S]-P” is the
filter generated by Sr{ﬁ in S.Then by Theorem 1.2.5,
there is a prime ideal P in S such that I = P and
(SI—PI) N P = &. Then Pl cInNn Si cPn Sl and P n Sl = Pl‘

Hence Pl = P N Sp. 0

Theorem 4.4. Let S be a distributive nearlattice, S is

relatively complemented if and only if P(S) is unordered.

Proof: Let S be relatively complemented and P,Q € P(S)
with P ¢ Q. Then there exists q € Q@ such that q ¢ P. Also
there exists r € S such that r ¢ Q, as Q is prime.
Consider the interval [pAq Ar ,r] for some p € P. Then
p AN g Ar £ g A r £ r. Since S 1is relatively
complemented, there exists t € [p A g A r, r] such that
qATrAt=pAqAr e€Pandt V(gATr) =r. As P is
prime and q A r ¢ P, so t € P. This implies
tV(qAr) =r €Q, which is a contradiction. Hence P(S)
must be unordered.

Conversely, Suppose P(S) is unordered. Consider
[a,b]. Let P;, Q be two prime ideals of [a,b]. Then by

above lemma there exist prime ideals P and Q of S such
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that P] = PN [a,b] and Q =Qn [a,b]. Since P, and Q
are prime, b ¢ P ,b ¢ Q. Also P, Q are unordered. Then
P, and Q| are also unordered. If not let P, £ Q. Then for
any x € P, (x Ab) V a exists by the upper bound property
as x A b, a £ band (x Ab) Vac P. Then

(x Ab) V a €Q and so x A b € Q. Since b ¢ Q and Q is
prime, this implies x € Q. This shows that P ¢ Q which is
a contradiction, Thus,Iﬁ and leust be unordered. Then
by [19,Theorem 22] [a, b] is complemented. Therefore S is

relatively complemented. a

We conclude this chapter with the following result
which is due to [14, Theorem 3.6]. This generalizes a
well known result of Hashimoto in Lattice Theory [19,

Theorem 9.8].

Theorem 4.5. For a nearlattice S with 0, S is semiboolean

if and only if I(S) is isomorphic to c(S). a

Corollary 4.6. For a distributive nearlattice S with 0,

following conditions are equivalent

(i) S is semiboolean.

(ii) For all ideals I, 8(I) = R(I). 0O
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CHAPTER —2
SKELETAL CONGRUENCES ON A DISTRIBUTRIBUTIVE NEARLATTICE

1. Introduction

Throughout this chapter we will be concerned with a
distributive nearlattice S, with 0 as its smallest
element. Skeletal congruences on distributive lattices
have been studied extensively by Cornish in [11]. For any
congruence 8 of c(S), B*denotes the pseudocomplement of
8. The existence of 9* is guaranteed by the fact that
c(S) is a distributive algebraic lattice.The skeleton
Sc(S) = {8 € c(S): 8 = ¢* for some
¢ € c(S)} = (B € c(5): 8 = 8“}. For a distributive
nearlattice S8 with 0, I(S) is pseudocomplemented. The
pseudocomplement Jt of an ideal J is the annililator
ideal J' = {x € 8: x A j = 0 for all j € J}. We also

denote KSc (S) = {Ker8® : 8 € Sc(S)}.

The kernel of congruence 8 is
ker® = {x € S: x £ 0(8)}. Of course, ker8(J) = J. For
a, b €8, <a,b> denotes the relative annihilator
{x € S: x A a £ Db). In presence of distributivity, it is
easy to show that each relative annihilator is an ideal.

Also note that <a, b> = <a, a A b>. For relative
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annihilator ideals of a distributive lattice we refer the

reader to see [33].

A distributive lattiqe L with 0 is called
disjunctive (weakly complemented and sectionally
semicomplemented are alternative terms) if for 0 £ a < b
there is an element x € L such that x A a= 0 and
0 < x £ b. For details on these lattices we refer the

reader to consult [11],[{26] and [50].

In section 1 we have studied skeletal congruences
for distributive nearlattices. We have shown that for any

y(GH(x, vy € S) if and only if for each

8 € c(s), X

b(®) , (x Ab) Va-=

a, b €8S with a £ b and a
(y A b) Va. We have also shown that for any ideal J both
(2] (J)‘ and 8 (Jt) have J‘ as their kernel. Moreover an
ideal J is the kernel of skeletal congruence if and only
if it is the intersection of relative annihilator ideals.

In section 2, we introduce the notion of disjunctive
nearlattices. Then we give several characterizations of
disjunctive nearlattices and semiboolean algebras using
skeletal congruences. Finally we show that a distributive
nearlattice is semiboolean if and only if 8&———>ker8

is a lattice isomorphism of Sc(S) onto KSc{(S) whose

> 8(J).

inverse is the map J
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2. Skeletal congruences of a distributive nearlattice.

Following theorems give a description of skeletal
congruences of a distirbutive nearlattice which also

extend several results due +to Cornish [11] for

distributive lattices.

Theorem 2.1. For a distributive nearlattice S with 0,

the following conditions held.

(i) For a <b (a, b €8),x =y (8 (a ,b)") if and
only if (x Ab) Va= (y Ab) Va, where 8(a ,b)” is the
complement of 8(a, b).

(ii) For any 8 € c(S), x = y (8‘) (x,y € S) if and

only if for each a,b € S with a £ b and a b(8),

(x A b) Va ?(y Ab) V a,

Proof: (i) Define a relation Blon S by x = y(Ol)if and
only if (x Ab) Va=(yAb)Va

(since a £ b,(x A b) V a and (y A b) V a exist by the
upper bound property of S). Here, 9] is obviously an
equivalence relation. Now, let x = y (8) and t € S.
Then,(x A b) Va = (y Ab) Vaandso [(x At)Ab]Va
[(x Ab) Val A[(t Ab) Va]

[(y Ab) Val A [(t Ab) Val = [{y A t) Ab] Va.
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This implies x At =y A t (81). Again, if x Vt, y V t
exist, then [(x V t) A b] V a

= [(x Ab) Va]lVI(tADb) Val

= [(y Ab) Va]lVI[(t Ab) Val]

=[(y V) Ab]l Va. ie. xVt=yVt (8).
Thus, 81 is a congruence. Clearly, Oa and Tb c 81. Hence

8, VY c8,.

Conversely, x £ ¥y (81) implies

x=xAbT¥% =y Ab8=y(}) i.e. x =y (6 V).
Therefore, 8, = 8, VY = 8(a,b)’.

(ii) Since ® =V { 8 (a,b); a < b, a = b(8)},
8 =n { 8 (a,b)': a < bja = b(B)}. But as c(S) is

distributive and ® (a,b) is complemented, G(a,b)* =

®(a,b)’ and hence the result clearly follows from (i). O

Theorem 2.2. Let S be a distributive nearlattice with 0.
Then for any ® € c(S). x = ¥y (8‘) if and only if

8(0 ,x) n ® = B(0, y) N 8 if and only if

Tx ne = Ty ne.

Proof: Define a relation ® on S by x =y (®) if and only
if Tx n & = Ty n ®. From Papert [46], ¢ is the

pseudocomplement of 8 in the lattice of congruence of the

semilattice (S; A). We now show that ® is a congruence.
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Suppose X = y(®) and x V t, y V t exist for some t € S.
Then, because of distributivity of §, TIVL= Y: n TL and
Tth = Ty n TL' Thus,Tx ne = Yy N 8 implies

Ty,n 8= yVt N 8 and hence x V't = y V t (g). This

implies @& = 9t in c(8).

Finally we know that 6, and ¥ are the complementary
and c(S) ié distributive. Now, in a distributive lattice
L, if a’, b’ are the complements of a and b respectively
then obviously, a A c = b A ¢ if and only if
a” Ac=b" Ac for any ¢ € L. Thus, x = y(® = 8‘0 if and

only if an o = G!FIG. 0

Theorem 2.3. For a distributive nearlattice S with 0,

the following conditions hold.

(i) For any ideal J, x =y (8(3)') (x, vy € 5) if
and only if (x] N J =(yl nJ, i.e., if and only if
.xAJj=yAj for all j € J.

(ii) For an ideal J, both G(J)‘ and B(J') have J' as

their kernel.

Proof: (i) By theorem 3.4 of chapter 1, for any two
ideals Jl and Jy of S5, 8 (JI n Jz) = B(Jl) n B(Jz). Thus,

Bxﬂ 8(J) = 8((x]) n B8(J) = 8((x] N J). Hence, by



39

theorem 2.2.2, x = y (B(J)*) if and only if

8((x] nJ) =8((yl nJ), i.e., if and only if

(x] nJ =(yl nJ, i.e if and only if x A j =y A j for
all j € J.

(ii) x € ker(8(J)") if and only if x = 0 (8(J))), i.e.,
if and only if x A j = 0 for all j € J (by (i)}), i.e., if

and only if x € 3, Thus, ker (G(j))t = J*, a

Theorem 2.4. In a distributive nearlattice S with 0,
the following conditions hold.

(i) An ideal J is the kernel of a skeletal
congruence if and only if it is the
intersection of relative annihilator ideals.

(ii) Each principal ideal is an intersection of

relative annihilator ideals.

Proof. (i) For any 8 € c(S), 8 = V {8 (a, b):

az=b (8) }. If 8 is skeletal, then

8 =6"=n (8 (a, b)) a<b; a=1b(8) ) and hence
ker® = N {ker(® (a, b)') : a < b; a = b (8))

=N {<b, a> : a £ b ; a b (G‘)} by (i) of theorem

2.2.1, and this completes the proof.
(ii) Since 9a= ® ((a]) is complemented, (a] is the
kernel of a skeletal congruence and hence the result

follows from (i). a
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3. Disjunctive nearlattices and semiboolean algebras.

A non empty subset Tlof a nearlattice S is called
large if x At = y At for all t € T, (x, vy € S) imply
X =y, while T is called join-dense if each z € S is the
join of its predecessors in T. Following result shows
that two concepts coincide when T is a convex
subsemilattice of a distributive nearlattice and hence an
ideal of a nearlattice is large if and only it is

join-dense.

Lemma 3.1. A convex subsemilattice J of a
distributive nearlattice S is large if and only if it is

join-dense in S.

Proof. Obviously, every Jjoin-dense subset of S is
large in S. Thus, let J be large in S. Suppose x € S and
{Ji} are its predecessors in J. Let t be an upper bound

of {ji}. Clearly, for any j € J, J; ANJj <x AJ<£Jj and
so x A j € J by the convexity of J. Thus, x AJg = dp for
some k. Hence, x A j £ t for all j € J ; it follows that
xAj=xANtAjfor all j € J. Since J is large,

x At = x, i.e., x £ t. This implies that x is the

supremum of {ji}. a
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Now, we give a characterization of join-dense ideals

in terms of skeletal congruences.

Lemma 3.2. An ideal J of a distributive nearlattice
S is join-dense if and only if 8(J) is dense in c¢(S),

. t
that is 8(J) = ®, the smallest element of c(S).

Proof. Suppose J is jofn—dense. Then by lemma 2.3.1,

vy (8(3')), then by 2.2.3,

J is large. Let x
x AN j=vyANj for all j € J. This implies x = y as J is

large. So 8 (J)t = ®. That is, 8(J) is dense.

Conversely, let 8 (J)* = @ Suppose x A Jj =y A J
for all j € J. Then again by theorem 2.2.3,
x =y 8 (J)t (z0) and so x = y. This implies J is large

and so by lemma 2.3.1, it is join-dense. a

Recall that a distributive nearlattice S with 0 is
disjunctive if 0 £ a < b implies there is an element

x € S such that x A a = 0 where 0 < x £ b.

From section 3 of chapter 1 we know that for an
jdeal I of a distributive nearlattice S, the relation
R(I) defined by x = ¥y R(I) if and only if for all

r €8S, x Ar € I is equivalent to y Ar el is a
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congruence of S. Moreover, it is the largest congruence

of S containing I as a class.

Proposition: 3.3 For an ideal I of a distributive

nearlattice S, S/R(I) is disjunctive.

Proof. If I is a prime ideal, then S/R(I) is a two
element chain {I, S-I} and so it is disjunctive (in facﬁ,

Boolean).

Suppose I is not prime, consider the interval

I c [x] €« [y] in S/R(1I), where x, y € S.

We claim that there exists at least one t ¢ I, such
that t A x € I. If not, then for all t ¢ I, x At ¢ I and
since [x Atl e[y A t]l, soy At ¢ I. This implies that
x = y R(I) and so [x] = [y], which is a contradiction.
Moreover, there exists a t ¢ I such that x At € I but
y At € I. For otherwise x = y R(I) would lead to another
contradiction. Put s = y A t. Then I < [s] £ [y] and

[x] A [s] = [x] Ay At]l =[x Ay At] =1 and this

implies that S/R(I) is disjunctive. 0O
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Following theorem gives <characterizations of

disjunctive nearlattices.

Theorem 3.4. For a distributive nearlattice S with 0,
the following conditions are equivalent.

(i) S is disjunctive.

(ii) For all a € S, (a] = (a]".

(iii) R((0]) = e.

Proof. (i) implies (ii). Suppose S is disjunctive.
For any a € S. Obviousiy, (a]l] C (a]“. To prove the
reverse inequality, let x € (a]". If x ¢ (al, then

x % aie., x + x A a. Then 0 £ x A a < x. Since S is
disjunctive there exists t with 0 < t £ x such that

t AxAa=01i.e, t A a = 0. This implies t € (af.
Since x € (a]", so x ANt =0, i,e. t = 0, which gives a

3
contradiction. Hence x € (al]. In otherwords (a] = (a]

for all a € S.

(ii) implies (iii). Suppose (ii) holds and

m

x y R((0]) for some x, y € S. If x ¢ vy, then either
x Ay < yor x Ay < x. Suppose x Ay < y. Then
(v1' c (x A y1*. Since (a] = (al® for all a € s,
(v1' + (x A y1'. Thus, (v1' © (x A y1'. So there exists

t € (x A y]' such that t ¢ (y]t. Then t Ax Ay =0
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but t A ¥y + 0, which implies x A y £ y R((0]), and so

x_# ¥y R((0])), which is a contradiction. Therefore,

R((0]) = .

(iii) Implies (i). Suppose R((0]) = o.
Let 0 £ x < y (x, y € S). Since R({(0]) = ®, there exists
t € S such that t A x = 0 but t Ay ¥ 0. For otherwise
x 2 y R((0]), which implies x = y and there is a
contradiction to our assumption. Thus we have
0 <t Ay £y, such that x At Ay = 0, and so S is

disjunctive. a

In chapter 1, we have already denoted the set of all
finitely generated ideals of a nearlattice S by If(S). Oof
course If(S) is a Jjoin semilattice of I(S). In [23]
Hickman exhibited a neariattice S for which If(S) is a
meet semilattice. But in [14] Cornish and Hickman have
shown that if S is distributive then If(S) is a
distributive sublattice of I(S), the lattice of ideals.
Following lemma was suggested to the author by supervisor

Dr. Noor.
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Lemma 3.5. A distributive nearlattice S with 0 is

disjunctive if and only if If(S) is disjunctive.

Proof. Let S be disjunctive and

(al,......,ar] < (bl""""bt] in If(S).

Choose x € (bl’ ...... ’bt] - (al,......,ar].

Then (al A Xyoeooooya A x] = (al,......,ar] n (x}] < (x].

Now, by the upper bound property of S,
(a.1 N x) Vivonans V (a. A x) = e (say) exists and
0 £ e < x. Since S is disjunctive, there exists d € S

such that 0 = d A e and 0 < d £ x. Thus (d] N (e] = (0]

and so (d] n (al,”....,ar] N (x] = (0]. This implies
that (d] n (a“......,ar] = (0]. Of course,

(0] + (d] = (x] & (b“......,bt] and hence, I, (S) is
disjunctive.

Conversely, let If(S) be disjunctive and suppose 0
£c<dg; c, d €S. Then, (0] = {c] = (d]. Since If(S) is
disjunctive, there exists (al,......,ag in IE(S) such
that (c]l N (al,......,ar] = (0], where
(0] # (aP......,ar] c {(d]. Now, by the upper bound
property of S, a Veeoo oV a = f (say) exists. Thus, we

have ¢ A f = 0 and 0 < f £ d, and which proves that S is

disjunctive. a
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The following theorem is an extension of Theorem.

2.1. of Cornish [11].

Theorem 3.6. In a distributive nearlattice S with 0,

the following conditions are equivalent.

(i) S is disjunctive.

(ii) Each dense ideal J (i,e. J* = (0] ) is Jjoin-
dense.

(iii) For each dense ideal J, G(Jt) = G(J)*.

(iv) For each dense ideal J, G(J“) = Q(J)“.

Proof. Since J* = (0] if and only if Ju = S and J is
join- dense if and only if B(J)t = @, obviously (ii),

(iii) and (iv) are equivalent.

(i) Implies (ii). Suppose J is a dense ideal and
xAj=yANj (x, vy €8) for all j € J. If x ¥ y, then
either x A y < x or x Ay < y. Without loss of
generality suppose X Ay < x. Since S is disjunctive,
there exists a ($ 0) € S, a £ x such that a A x Ay = 0.
Then, 0 = a Ax Ay A j=aAxAj for all j € J.
Hence, a A x = 0 as J is dense ; i.e., a = 0 which is a

contradiction. Thus J is join-dense.
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(ii) implies (i). For any a € S, (a] V (al® is
always a dense ideal. Thus, with (ii) holding, (al V (a]’
is join-dense. Then by lemma 2.3.2, o = 8 ((a] V (al"'
= (8(a] V 8(al)’ = 8((a])! n 8((al")'. Thus,
8((a1") = 8((a)® = 8,. Taking the kernel on both sides
we have (al’ C (a] by using Th.2.2.3 (ii). It follows

tt
that (al = (al] and hence S is disjunctive. 0O

Next theorem is an extension of 2.2 of Cornish
[11]. We omit the proof as this can be proved exactly in
a similar way the corresponding result of [11] was

proved.

Theorem 3.7. For a distributive nearlattice S wih 0,

the following conditions are equivalent.

(1) S is disjunctive.

(ii) For each congruence o, o' = 8(ker®)‘.

(1ii) For each ideal J, R(J)' = 8(3)

(iv) For each congruence o, ker(¢t) = (ker¢)'.

(v) For each congruence &, ker(¢") = (ker@)".
(vi) The kernel of each skeletal congruence is an

annihilator ideal. O
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According to section 4 of chapter 1 a nearlattice
S with 0 is called semiboolean if it is distributive and
[0, x] is complemented for all x € S. By 1.4.5 we know
that the lattice of all ideals of a nearlattice is
isomorphic to the lattice of congruences if and only if
S is semiboolean. Using this result we get the following

theorem, which is an extension of 2.3 of (11).

Theorem 3.8. The following conditions are equivalent
for a distributive nearlattice S8 with 0.

(i) S is semiboolean.

(ii) For each congruence 9o, o' = 8(ker ¢‘).

(iii) For each ideal J, G(J*) = G(J)*.

(iv) For each ideal J, G(J“) = B(J)".

Proof. (i) implies (ii). Suppose S is semiboolean.
Then by 1.4.5 I(S) is isomorphic to c(S). Hence for any

. :
congruence ¥, ¥ = ®O(ker?). Taking ¥ = &, we see that

(i) implies (ii).

(ii) implies (iii) follows from Th.2.2.3 (ii) and

(iii) ===> (iv) is obvious.

(iv) implies (i). Suppose (iv) holds. Put

J =(a] V (a]t. Then J' = (0] and so J* = s,
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Then by (iv), B((a] V (af)” =1, It follows that

’(.
8((a] ) n 8((a]")' = 6 and so 8((a)')' c 8((a])" -
ti
9a 5 Qa' Since ker‘fa = (a]’, we have 8((&}*) = Ta = 9:
it

, ©8 ((al)'. Thus 8 ((al")' = 8. But

and so Ga = 8
t
(al’ = (a)'"" . Now, by (iv), 8 ((a)H)" = 8 ((a]'*") =
3
8 ((al)). But 8" = 8((a])", and so 8 ((a1') = 8, = ¥,.
Now if 0 £ a £ b, then a = b (Tﬂ and so

_ b
a = b (8((al)). Then (a] V (a]® = (b] V (al' and so
b=aVj for some j € (a]‘. Then j A a = 0, and so
[0, b] is complemented. Hence S is semiboolean. a

The skeleton Sc(S) = {8 € c(S) ; B8 = o' for some
® € c(S)} = {B € c(8) ; 8 = 9“) is a complete Boolean
lattice. The meet of a set {Qi} C Sc(S) is N 8i ; as in
c(S), while the join is given by ¥ sz(V Bif' = (N 93).
and the complement of 8 € Sc(S) is 8'. The fact that
Sc(S) is complete follows from the fact that Sc(8S) is
precisely the set of closed elements associated with the
closure operation 8 --> 8u on the complete lattice c(S)

and Sc(S) is Boolean because of Glivenko's theorem, c.f.

Gratzer [ 19. Th.4,p.58].

The set KSc(S) = {ker® ; 8 € Sc(S)} is closed under
arbitrary set-theoretic intersections and hence is a

complete lattice. We will use the symbol ¥ to denote the
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Join in Sc(8) and in KSc(S). We also denote

A(S) = {J:_J € I(s) ; J = J"}, which is a complete

Boolean lattice.

The following theorems are extensions of 2.4 and 2.5

of Cornish [11] to nearlattices.

Theorem 3.9. For a distributive nearlattice S with 0,

the following conditions are equivalent.

(i) S is disjunctive.

(ii) The map 8 ----> ker® of Sc(8) onto KSc(S) is
one-to-one.

(iii) The map 8 ----> ker® of Sc(S) onto KSc(S).

(iv) The map & ----> ker® is a lattice isomorphism

of Sc(S) onto KSc(S), whose inverse is the map

7 ——=> 8 (N,

Proof. (i) implies (iv). Suppose S is disjunctive.

Then by Th.2.3.7 (vi) KSc(S) = A(S). By 2.3.7 (ii),
o = ¢“ = B(kertb)tt for any ® € Sc(S). Thus, the map

@ ---> ker® is one-to-one. Clearly it preserves meet.

Now using 2.3.7 (iv), for 8, ® € Sc(S), ker(8 X @)
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= ker((8 n ¢")") = (ker(8' n o))" = (ker® n ker @) =
((ker8)' n (ker ®)')! = ker® ¥ ker® as KSc(S) = A(S). Thus
8 ---> ker® is a lattice isomorphism. Moreover, by 2.3.7,
ker(8(3)") = (ker®(I™ = 3% = J for all J € A(S) =
KSc(S), while G(kertb)" = (I)" = & for all @ ‘E Sc(s).

Therefore J --->8 (J)“ is the inverse of 8 ---> ker®.
(iv) implies (ii) is trivial.

(ii) implies (iii). If 8 ---> ker® is one-to-one,
then it is a meet isomorphism of the lattice Sc(S) onto
the lattice KSc(S), then of course it is a lattice

ijsomorphism and so (iii).holds.

Finally we shall show that (iii) implies (i). If
(iii) holds, then of course 8 ---> ker8® is a lattice
homorphism of Sc(S) onto KSc(S). Hence KSc(S) must be
Boolean. Since for all a € S, (a] = ker(8,), the map

a ---> (a)] embeds S, as a join-dense subnearlattice, into

the complete Boolean jattice KSc(S). Therefore S must be

disjunctive. 0O

We conclude this chapter with the following theorem

which is also a generalization of [11. Th. 2.5]).
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Theorem 3.10. A distributive nearlattice S is
semiboolean if and only if the map @ ---> ker® is a
lattice isomorphism of Sc(S) onto KSc(S), whose inverse

is the map J ---> 8 (J).

Proof. If S is semiboolean, then of course it is
disjunctive and so by Theorem 2.3.9 the inverse of
0 ---> ker® is J --—> O(J)”. Now by 2.3.8 G(J)u E B(J“)
for any J € KSc(S). Since by Th. 2.3.7, J € A(S) so

1!
J =J . Thus J ---> 8(J) is the inverse.

Conversely, suppose J ---> 8 (J) is the inverse of
@ --> ker®. Then by 2.3.9 S is disjunctive and so
ker (8 (K)") = (ker® (K)f‘ = k" for any ideal K. This
implies K” € KSc(S). Then using the description of the
inverse, © (K”) = B(ker(® (K)“)) = 8 (K)u. Hence by

2.3.8, S is semiboolean. a
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CHAPTER — 3

NORMAL NEARLATTICE

1.Introduction.

Normal lattices have been studied by several authors
including Cornish [8] and Monteiro [34] [35]; while
n-normal lattices have been studied by Cornish [9] and
Davey [16].0n the other hand Cignoli in [6] and [7]
introduced the notions of k-normal and k-completely

normal lattices.

A distributive lattice L with 0 is called normal if
each prime ideal of L contains a unique minimal prime
jdeal. Equivalently, L is called normal if each prime
filter of L is contained in a unique ultrafilter (maximal
and proper) of L. L is called n-normal if each filter is

contained in at most n ultrafilters of it.

In this chapter we have defined normal and n-normal
nearlattices in the same manner. Then we have generalized
several results of Cornish [8] [9] and Davey [16].In
proving some of the results we have used principle of

localization [Th. 2.6], which is an extension of lecture
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note of Dr. Noor on localization. For some ideas on
localization see section 5 of Cornish [13].This technique

is very interesting and quite different from those of the

previous authors.
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2. Normal nearlattices.
Throughout this chapter all nearlattices are assumed

to be distributive.

For an ideal J in a nearlattice S with 0
gt = { yes : yAx =0 for all x € J }.

Ideals 1 and J of a nearlattice S are said to be
comaximal if I V J = S.

If P is a prime ideal in a nearlattice S with O then

O(P) is used to denote the ideal { y € S ; y ANx =0 for

some X € S-P }. Clearly O(P) = P.

A prime ideal P is said to be a minimal prime ideal
belonging to ideal I, if (i) I & P and (ii) there exists
no prime ideal Q such that Q@ £ P and I £ @ £ P. 1In
lattice theory some authors called it minimal prime

divisor of I

A minimal prime ideal belonging to the zero ideal
of a nearlattice with O is called a minimal prime ideal.
For the theory of minimal prime jdeals in a general

setting see Cornish [12].

LLemma 2.1. Let P be a prime ideal in a nearlattice S

with 0. Then each minimal prime ideal belonging to O(P)

is contained in P.

proof: Let Q be a minimal prime ideal belonging to O(P).
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If Q £ P then choose y € Q-P. Then from [ 27, lemma 3.1]
and by the distributivity of S it follows that
vy Az € O(P) for some z ¢ Q. Hence y A z A x = 0 for a

suitable x ¢ P. As P is prime, y A x ¢ P so

z € O(P) c Q. This is a contradiction. Hence Q c P. 0O

Proposition. 2.2. If P is a prime ideal in a nearlattice
with 0, then the ideal O0(P) is the intersection of all
the minimal prime ideals contained in P i,e

0(P) =n {Q; Qc P, Q is a minimal prime jdeal }.

Proof. If Q is prime and Q & P, then
0(P) c 0(Q) £ Q = P. Again, if Q is a minimal prime ideal
belonging to 0(P) then Q is a minimal prime ideal inside

P by the lemma 3.2.1.

Thus,{ @ : Q is minimal prime and Q € P } = {Q ; Q
is minimal prime ideal belonging to 0(P) }. Since L is
distributive O0(P) is the intersection of all minimal
prime ideals belonging to O0(P) ( ¢c.f. corollary 1.2.8 )

this establishes the proposition. a

Let F be a filter of a distributive nearlattice S.

It can be easily shown that the relation TFon S, defined

by x =y (¥) (x , y € 8) if and only if x Af =y AT,
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for so :
me f € F is a congruence on S. Let us denote S/¥(F)
by S; (the quoti .
F q lent lattice) Then ¥, : S---->S5; is the

natural epimorphism.

Lemma 2.3. SF is a distributive lattice.

Proof: Clearly,S; is a lower semilattice. Now, let

P, Q@ € SF' Then there exists x, y € S such that

P = TF (x) and q = TF (y), as TF is an epimorphism.
Clearly, x = x A f (TF) and y = y A £ (TF) for any

f € F.

So, ¥y (x) = ¥ (x A f) and ¥ (y) = T (v A f).
Now, (x Af) V(v A f) always exists in S, due to the
upper bound property of S. Thus, p V g9 exists. Moreover
quzTF(x/\f)VTF(yI\f)=T?((x/\f)V(YI\f)).
Hence Sy is a lattice. The distributivity of S clearly

follows from the distributivity of S. a

Lemma 2.4. Let F be any filter of a distributive

5. For any ideals I and J of S, the following

nearlattice
hold.
(i) TF (I) is an ideal of Sp .
(ii) ¥, (1) is a proper ideal ( i.e. F whole

lattice ) if and only if I n F = @.
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(i) B () Ve (3) =9 (1 V).

(iv) B (1) n ¥ (J) = ¥ (I nJ).

Proof: (i) For i, j e 1, ¥, (1) V ¥ (J)

=L GLAS) VI (GAL) =% [ (iAf)V (jAE£)] for
any f € F. Thus, TﬂI) is closed under finite supremum.
Now, suppose t € Sp and t < TF (i) for some i € I. Then,
t = ¥; (x) for some x € S, and t = ¥ (x) A Yy (1)

= TF (x Ai) € TF(I). Therefore, ﬁ (I) is an ideal of

SF.

(ii) If TF (I) is proper , then there exists
x € S, such that YF (x) does not belong to TF (1).
Suppose I N F$ ® and r € I N F. Since r € F,
x = x A r(TF). But x A r € I, and this implies
TF (x) € TF (1), which is a contradiction. Hence,

InNF-=2a.

Conversely, if TF(I) is not proper, then for any

f eF, T (f) € ¥, (I). Thus, ¥, (f) = ¥, (i) for some

i € I. Then, £ A f = i A f; for some f, € F and this

implies f A f| € INF, and so I N F § @,

(iii) and (iv) are trivial. a
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Th .
eorem 2.5. Suppose F is a filter of a distributive

nearlattice S. Then for any ideal J of S, T{l ¥, () =
{x € s x Af € J for some f € F } =n (P ; P is a

‘(minimal) Prime ideal belonging to J in S such that

PNF=2]}.

Proof: %' % (J) = {yes; ¥ (y) €¥ (J) ) =
{yes: y=x (TF ) for some x € J}) = {yesS:yATf
=x Af forsome fFEF, x€J })={yesS ;yAf e€J for

some f € F }. Now we consider two cases:

Case 1. Let J N F § ©. Then there exists x € J N F and
for any prime ideal P belonging to J, P N F § &. Thus,
{ P: P is a prime ideal belonging to J and PN F = & }

®, and so N { P : P is a prime ideal belonging to J and

PNF=® =S={yes:yAxeJ, x€eIJNF].

Case 2. suppose J N F = @. Clearly, { y €8 ; y AT €J
for some f ¢ Flecn {P:P is a prime ideal belonging
to J and P N F = & }. Let x € S be such that x A f ¢ J
for all f € F, and let G = [x) VF. If J N G5 & then
there exists t € J and t 2 X A f for some x; 2 x and for

some f € F. This implies X Af £ x Af £t and

consegquently X A f € J, which is a contradiction. Thus,

JnG=®. Then by Birkhoff Stone theorem, there exists
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& prime ideal P of S guch that J c Pand GNP = &. In

eff
ect, x ¢ Pand F n p = ® as F £ G. This completes

the proof, a

Theorem 2.6. Suppose F jis a filter of a distributive

nearlattice S. Also, suppose d=(P:Pis a prime ideal

of S, such that PN F = ¢ } and P = { P: P is a prime

ideal of Sp }+ Then € and Pare order isomorphic posets.

Proof: Let P €4 . Then !F (P) + Sy by 3.2.4.

Also, ¥, (x) A ¥, (y) €Y, (P) implies ¥; (x Ay) = p (a)
for some g € P. Then, x Ay Af =q A f for some f € F
and so either x € P or y € P. Hence, ¥, (x) € Y, (P) or
!F (y) € ﬂ.(P), showing that ﬁ (P) is a prime ideal of
Sp- Thus, Tr is a map from g to P and it is clearly
isotone. Again, for any p € P it is very easy to show
that %' (F) € Q and %! : P -—->{ is obviously isotone.
As ¥, : S---> § is onto, ﬂ.!rq = ILp. Moreover by 3.2.5
T{l Y, (Q) = Q for any Q €4 , and hence Y{l Y = Ig-

Therefore, P and 4 are order isomorphic. a

.

In the above theorem, S-P 2 F for all P € Q. Of
course in any nearlattice §, the map P--->5-P is an order
jsomorphism between the poset of prime ideals

reversing

and the poset of prime filters of S. Thus, we have the
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following important corollary which is an immediate

consequence of above theorem.

Corollary 2.7. For a distributive nearlattice S, the set

of prime filters of § containing a given filter F of S is

order isomorphic to the set of prime filters of S;. a

Principle of localization.

Theorem 2.8. Let S be a distributive nearlattice. Then
for each ideal J of S, J = n ( T{l TF (J) ) where F

F
ranges over the prime F filters of S.

Hence for any ideals I and J of S, !F (1) = !F (J)

for all prime filters F of S implies I = J.

Proof: For any filter F of S. Clearly T{l YF (J) =2 J.
Hence, J =N ( T{l ¥, (J) ) where F ranges over the prime
filters F of S. Now, let x € 2 ( %' ¥ (J) ). Then,

x € T{l ¥, (J) for all prime filters F of S. But, for
any filter Fof S, % % (J) = { y €8 : y Af € for
some f € F } by 3.2.5. Thgs, for any prime filter F of

s, x ANf| € J for some f; € F. If x ¢ J, then by Birkhoff

Stone theorem, there is a prime ideal Q of S
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such that x does not belong to Q and J £ Q. Then for any
f € 5-Q, x A f does not belongs to J £ @ which is a

contradiction as Q is a prime ideal of S. Hence x € J. O

Suppose S is a distributive nearlattice. For any
X,y €8S, we define <x , y> = { s €8S : s Ax £y } and
<x, J>={ s €85 : s Ax é J } for any ideal J of S. It
is easily seen that <x, y> and <x, J> are ideals of S.
Moreover, <x, y> is known as the relative annihilator

ideal c.f. Mandelker [33]. For any x in a nearlattice S

with 0, we denote (x]t ={y€es:yAx=01},

The following proposition is needed for the further
development of this chapter. We omit the proof as it is

easily verifiable.

Proposition.2.9. Suppose F is a filter of a distributive
nearlattice S with 0. Then the following condition hold.
(1) T ((x1) = (% (x)]
(ii) For any ideal J of S, ¥ (<x, J >) = < ¥ (x),
¥, (J)>.
(1i1) T, ((x1') = (F ol
(iv) ¥ (<x, y>) =< 7 (x), T (y) >, 0
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Recall that a distributive nearlattice S with
0 is normal if each prime ideal contains a unique minimal
prime ideal. Equivalently, a nearlattice S with 0 is
called normal if each prime filter of S is contained in

a unique ultrafilter.(i,e, maximal and proper filter)

of S.

The following theorem contains the main result of
this section. This generalizes the result of Th. 2.4, of

Cornish [8].

Theorem 2.10. Let S be a distributive nearlattice with O.
Then the following conditions are equivalent.
(i) Any two distinct minimal prime ideals are
comaximal.
(i1) S is normal.
(iii) O(P) is a prime ideal for each prime ideal P.
(iv) For all x , vy €S, xAy=20 implies
(x)' v (1" = s.
v)  (xAy1=x1PV
Moreover, if 1 € S so that S is a lattice, then for
all x , ¥ €5, X Ay = 0 implies there exists

x| s+ ¥ € S such that x A x, =0 =7y Ay and

xlvyl = 1.
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Proof: (i) <===> (ii) is trivial and (ii) <===> (iii)

hold by proposition 3.2.2.

(ii) implies (iv). Suppose (ii) holds. Then by corollary
3.2.7, for any prime fiiter F of S, Sp has a wunique
ultrafilter. Thus S; has a unique minimal prime ideal.
But the zero ideal of Sp ( as 0 € S) is the intersection
of all minimal prime ideals of Sg - Hence by uniqueness,
it is a (minimal) prime ideal of S;. Now suppose

X , ¥ €8S such that x A y = 0, and so

¥, (x) A ¥, (y) = ©. Then, either ¥ (x) = 5 or ¥, (y)=5.
Thus [ ¥ (x) 1' V ( % (v) 1' = S. Then by 3.2.9

¥, ( (x]t \Y (y]‘ ) = ¥, (8) and hence by 3.2.8

(x1' vV (31" = s.

(iv) implies (ii). Let P ,Q be distinct
ultrafilters of S containing a prime filter F of S. Then
PV Q =S otherwise PV Q will be a proper filter of S,
which contradicts the fact that P,Q are ultrafilters.

Thus, there exist x € P-Q and y € Q-P such that

x ANy = 0. Let t € (x]‘. Then, t A x = 0. Thus, t € S-P

(otherwise if t € P, then 0 = t A x € P which is

: t
impossible ) and s-p £ S-F. That is, (x] & S-F.

Similarly, (y]' c S-F. Therefore,

s = (x]' V(y]t c S-F, which is a contradiction.
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(ii) implies (v). Suppose (ii) holds. Then for

any prime filter F of S, the zero-ideal of Sp is prime

( This has been already shown in (ii) ==> (iv) ). For any

X » Y € 5 consider the following two cases.

Case 1. % (x A y) = G. Then, either ¥, (x) = 5 or % (y)
= 5. Hence,(¥% (x A y)1' = 5, and either (¥, (x)1' = 5, or
(% ()1 = Sp. Thus, (%, ( x Ay )1 =

(% (x)1' V (% (v)1'. Then, by 3.2.9, ¥ ((x A y1') =

%, ((x1' V (y1') and so ( x Ay 1' = (x)' V (y1" by 3.2.8.

Case 2. %‘( x Ay )ﬁ=6. Then, TF(x), TF(y) + ©. Hence
(TF (x Ay ) ]t, ( TF (x) ]t and ( ¥, (v) ]t are equal to
zero ideal of S ( as zero ideal is prime ), and so the

result follows trivially.

(v) implies (iv) is obvious.
Finally, (iv) and the stated condition are trivially

equivalent. O

A nearlattice S with O is called dense if (x]' = (0]
for each x $ 0 in 8. The following theorem is an

extension of 4.1 of Cornish [8].
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Theorem 2.11. For a nearlattice S with 0, the following

hold.

(i) If S is normal, then S, is normal for any

filter F of S.

(ii) 8 is normal if and only if for each prime

filter F of S, Sy is a dense lattice.

Proof: (i) Let T?(x), YF(y) € Sp be such that
Ty (x) A % (y) = 5. Then, x A y = 0(%), which implies
x Ay Af =0 for some f € F. Since S is normal,
(x1'V (yAf] =5 by 3.2.10.
Hence (% (x) 1" vy (v 1

=(% (x)1' V ( (v A D))

=% (xIPVIyA£) ) =% (5) =5

Thus, by 3.2.10 SF is normal.

(ii) Suppose S is normal. Let Tp(x) + 5 and
¥, (a) € ( % (x) 1'. Then % (a) A ¥% (x) = 5. But we
already know from the proof of (ii)===>(iv) in 3.2.10

that the zero ideal of S; is prime. Hence, ¥ (a) = s,

showing that SF is dense. ’

Conversely, let §; be dense for each prime filter

F of S. Suppose x , ¥y € S are such that x A y = 0. Then,

%, (x Ay) =% (0) =3



That is, ¥, (x)

YF(x) = 0 or

A YF (y) = © which implies
g .

p (¥) =5 as S; is dense. Hence, either

(%) 1 =800 (% (y) 1' =s,. Thus,

TF ( (K]t v (Y]* ) = SF = TF (S), and so by 3.2.8.

(x1* V (v1' =

S. Therefore, S is normal.

67
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3.Relatively normal nearlattices.

Definition 3.1. A distributive nearlattice S is called

relatively normal if each interval [x,y] with x < y is a

normal lattice.

Definition 3.2. A nearlattice S with 0 is called
sectionally normal if each interval [0,x] with 0 < x is

a normal lattice.

Katrinak [28, lemma 9, P.135] has shown that a
normal lattice is sectionally normal. Cornish in
[8, Th. 3.3] has improved that result. Our following

theorem is a nice generalization of their results.

Theorem 3.3. Let S be a nearlattice with 0. Then the

following are equivalent.

(i) S is normal.

(I1I) Each ideal J + S is a normal subnearlattice.

(iii) S is sectionally normal.

Proof: (i) implies (ii). If J is an ideal and x, y € S
L
with x A y = 0 then (x]‘ V (y] = S because of theorem

3.2.10. Hence J = J n s = (J N (X]*) Vi(Jn (y]’).
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¥ £
But J n (x] and J n (y]' are respectively
{z € J i zAx = 0} and {z € J; 2z Ay = 0} and it

follows from theorem 3.2.10 that J is normal.

(ii) implies (iii) is trivial.
(iii) implies (i). Let x, y € S with x Ay = 0. Let

r €S, then (r A x) A {r Ay) = 0.

Since § is sectionally normal, so (r] is a normal
nearlattice. Then r = (r A x]' ViirA y]t and so
r = p V q for some p € (r A x]* and q € (r A y]t. Then
ArAx=0andqArAy=0i.e. pAx =20 and
q A y= 0. This implies p € (x]* and q € (y]t. Therefore

r € (x]‘ Vv (y]t and so (x]t Vv (y]* = 8. 0O

For non-empty subsets A and B of a nearlattice
S, < A, B> denotes { x € 5 j X A a e€B for all a € A }.
< a, b > denotes < {a}, {b} >. As observed by Mandelker
[33] < a, b > is an jdeal due to distributivity of S.
When A and B are ideals clearly < A, B > is an ideal.
Moreover, < (al, (bl > = < a, b >. For any ideal J of S

following lemma summarizes some useful informations.
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Lemma 3.4. Let S be a nearlattice. Then the following

hold.

(i) <x, 3> =V« X, ¥ >, the supremum of ideals
yeJ
< Xy ¥ > in the lattice of ideals of S, for any

X € S and any ideal J in S.

(ii) { < x, a>V<y, a>}n [a, b] =
{ <x,a>n{a, bl V{<y, a>n [a, b] }, for any

x' y E [a-) b], a < b-

Proof: (i). Let p € <x,y> where y € J.

Then p A x £y

Suppose t € < x, J > ===> 1t Ax e J.

Now t € < x, t A x > where t A x € J.

Hence t € V < x, ¥ > and so (i) holds.
y€d

(ii) Let z be a member of the left hand side of
(ii). Then a £ 2 = C Vds<bwithcAx £ a and

d Ay < a. Then (¢ V a) Ax = (¢ A x) V (a A x)

=(cAx)VasaVacaand similarly (d V a) Ay £ a.

Thus ¢ V a € < x, a > N [a, b] and

(dVa)e<y, a>n [a bl soz = (c Va) V(dVa) is
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a member of the right hand side of (ii). The reverse

inequlity is clear and (ii) follows. a

The following theorem gives a characterization of a
relatively normal nearlattice which is also a

generalization of cornish [8, Th. 3.7].

Theorm 3.5. Let S be a distruibutive nearlattice. The

following conditions are equivalent.

(i) S is relatively normal.
(ii) PFor all x ,y €S < x, ¥y>V<y, x> =28
(iii) For all x, y, 2 € S,
< x ANy, z>=<%x,2>V<y, 2>,
(iv) For any ideal J of S

< x ANy, J>=<x%x,J3>V<y, J>.

Proof: (i) implies (ii). Let X, y € S. For any a € S,
consider I= [ x Ay Aa, a ] in 8. Now, x Ay A a =
(x A a) N(y Aa). Since I is normal, so by 3.2.10 there

x Ay Aa-=

exist r, s € I such that x AaATr

y ANaAsand r Vs = a. Since r, s £ a, we have
x ANyAa=xAr=y%y As. Thus x Ar £y and y A s £ x.

This implies a = r V s € < X, ¥ > V< y, x> and (ii)

holds.



72

(ii) implies (iii). Suppose b € < x Ay, z >.

Then by (ii) b = ¢ V 4 where ¢ € < x, y > and

d € <y, x>, Thus x A ¢ = x AyAcsxAyAb < z.

Hence c € < x, z >. Similarly d € < y, z >. It follows

that b = ¢ Vd e < x, 2 >V« Yy 2 >,

The reverse inequality always holds and so,(iii) is

established.

(iii) ===> (i). Let a, b €S, ( a < b ). Suppose
x, v € [a, b]. Such that x A y = a. Then by (iii)
[a, bB] N (< x, a>V<y, a>) =[a, b] N <x Ay, a>
= [a, bl] n < a, a >
= [a, b]

Hence by 3.3.4 and 3.2.10 S is relatively normal.

(iv) ====> (iii) is trivial as
<x ANy, 2z>=<xANy,(z] >
(iii) ===> (iv). By lemma 3.3.4 (1)

<x ANy, J>=V<xAy, t>.
ted

-V (<x, t>V<y, t>). Then applying lemma
ted

3.3.4 (i) again, < x Ay, J > = <x, J>V <y, Jo>,

i.e., (iv) holds. a
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Theorem 3.6, Let a , b and ¢ be arbitrary elements of
a nearlattice S. Let A,B and C be arbitrary ideals in S.

Then the following are equivalent,

(i) <c,aVb>=<c, a>V<c, b> whenever
a Vb exists.

(ii) < C, AVB>

]

<C, A>V<C¢C, B>

Proof: (i) ===> (ii). Let t €e<C, AVB >, Then for
anyc € C, tAc e€AVB. Thus tAc =p Vq for some
p € A and q € B. This implies t € < ¢, p V q > =

<ec, p>V<c, g>by (i) ©<C, A> V<C, B >.

j.e., <C, AVB>Cc<C, A>V<CC, B>

Reverse inequality is trivial.So (ii) holds.
(ii) ====> (i). Let a, b, c € S with a Vb exists,
then < ¢, a Vb > =< (cl, ((aVb]?>
= < (cl, (al V (b] >
< (cl, (al > V < (c], (b] >

]

<c¢c, a>V<c, b>. I]

Lemma 3.7. A distributive nearlattice § is relatively

complemented if and only if for all x, ¥y € S,

(x] V<x,52>=S5, where < x, ¥y > ={ 2 € 8 3

zAx sy L
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Proof: Suppose S jis relatively complemented. For
X, ¥y 2 € 5. Consider the interval [ x Ay Az, z ]. Let

w be the relative complement of x Azin[ xAyAz, z].

Then x AzAw=xAyAzand (xAz)Vws= sz Now

x/\ZA'W=xI\y/\zSYiI“P.'lLiea-sz/\wé‘<x, y >. Hence

z=(x/‘\z)Vw=(x/\z)V(w/\z)E(x]V<x,Y>-

Conversely, let_c €[ a, b ], a £ b. Then
b€ (cl] V<c,a>=8Sand sob=cVd,de<c, a>.
Then d A ¢ £ a and so (d V a) A b is the relative
complement of ¢ in [a, b]. Here d V a exists by the upper

bound property as both d, a < b. 0O

Lemma 3.8. The set of all prime ideals of a distributive
nearlattice S is unordered if and only if for all x, y in

S, (x] V <x, y> = S.

Proof: Suppose the prime ideal are unordered and there
exist x, ¥y € S such that (x] V<%, vy >% S. Therefore
(x] V<x, v¥y>€EP for some prime ideal P. Since the

primes are unordered, S-P is a maximal filter. But

x ¢ S-P and hence [x) V (s-P) = S and so y € [x) V (S-P).

Therefore y = x; A a for some X 2 x and q € S-P.

Then x A q xll\q=yandsoq€<x.y>=Pwhighis
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a contradiction.

Conversely, suppose (x] V< x, y > = S for all Xy, ¥

in 8. Let P and Q be primes such that P < Q and P ¥ Q.
Choose a € Q-P and b € P. Now, (a] A<a, b> = (a A b]
and b € P implies a A b € P. Thus (a] A< a, b> c P and
a € p. This implies < a, b > c P as P is prime., Therefore

<a, b>cQand (a)] £Q and so, S = (a] V< a, b> c Q.

Which is a contradiction. O

Corollary. 3.9. ( Gratzer and Schmidt [21a].
A distributive nearlattice S is relatively
complemented if and only if its prime ideals are

unordered. O

Following theorem generalizes Th-3.5, Th.3.7, and
Th.4.3 of Cornish [8] also c.f. [57 , section 5, p-83 ]

and Mandelker [33, Th.4, p-380].

Theorem 3.10. let S be a distributive nearlattice. The

following conditions are equivalent.

(i) S is relatively normal.

(ii) The set of all prime ideals contained in a

prime ideal is a chain.



(iii) Any two incomparable prime ideals are
comaximal.
(iv) The set of all prime filters of S containing
a prime filter is a chain.
(v) 8 is a chain for each prime filter F of S.
Proof: (i) ====> (ii). Suppose (i) holds. Then by Th.

3.3.5 < x, y>V<y, x> =8, for all x, y € S. If (ii)
does not hold, then there exist prime ideals P, Q, R with
P2Q, R ; and Q and R are incomparable. Let x € Q-R and
y € R-Q. Then < x, ¥y > E R and < y, Xx > E Q.

Thus § = < x, vy > V< y, x >cQVRcP %S, which is a

contradiction. Hence (ii) holds.

(ii) <===> (iii) is trivial.

(ii) <===> (iv) is also trivial.

(iv) ===> (v). Suppose (iv) holds. Then by 3.2.7 the
prime filters of SF form a chain for any prime filter
F of S. But, in a distributive lattice if the set of
prime filters form a chain, then the lattice itself is a

chain. Therefore Spis a chain for each prime filter F of

S.
(v) ===> (i). let F be any prime filter of S. By (v)
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SF 1s a chain, and so for any x, y in S, we have either

Tp (x) < T: (¥) or T (v) < ¥, (x). In either case,

<Fo(x), T (y)>v<TF(y),TF (x) > = § i.e.,
TF(<X,Y>V<y,x>)=TF (S), and so by the
principle of localization, < x, y > V< y, x > = S. Hence

by Th.3.3.5, S is relatively normal. 0

Theorem 3.11. If F is a filter in a relatively normal

nearlattice, then S/¥(F) is relatively normal.

Proof: Suppose S is relatively normal.
Let ¥ (x) , ¥ (v) € 8.
Then by 3.2.9, < ¥ (x) , ¥, (v) > Vet (v), TF (x) >

=TF<x,y>V‘FF<y.X>

TF[<x,Y>V<y,X>]

TF (S) as S is relatively normal.

S

1

F

Hence by theorem 3.3.5 SFis relatively normal. O
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4. n- Normal nearlattices.

Recall that an n-normal nearlattice is a

distributive nearlattice with 0 such that each prime

ideal contains at most n minimal prime ideals.

Equivalently a distributive nearlattice with 0 is

n-normal if each prime filter is contained in at most

n ultrafilters.

n-Normal lattices have been studied by Cornish in
[9] and Davey in [16]. Davey called these lattices as
Bd—lattices. To prove our main result we need the
following lemma 4.1 which is an extension of 2.3 of
Cornish [9). Since the proof of the lemma follows easily

from Cornish’s proof, we omit details.
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L . ;
emma 4.1 Let J be an ideal of a distributive

nearlattice S, For a given positive integer n > 1, the

following conditions are equivalent.

(i) For any Xpr Xjseenaennas, X, € S, which are

" . 3 0 3
pairwise in J" i.e.x A X; € J for any i ¥ j,

there exists k such that x; € J.

(ii) J is the intersection of at most n distinct

prime ideals. a

Following theorem provides a characterization of
n-normal nearlattices which also generalizes some of the

results of Cornish [9] and Davey [16].

Theorem 4.2. For a distributive nearlattice

S with 0, the following conditions are equivalent:

(i) Each prime filter of S is contained in at most
n ultrafilters of S, i.e. S is n-normal.

(ii) For any Xp, X{jyececeeearXy € S such that
x Aw =0 for (1§ 3h &= 012w g
520,142,000, ()t V) VLV (] = s,

(iii) For any distinct n+l1 minimal prime ideals

Pu' Pllonn-.pn, Puvpl V-oov Pn =S.
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Proof. (i) implies (ii). Suppose (i) holds. Then

by 3.2.7 for any prime filter F of §, Sy has at most

n ult j .
rafilters and so S; has atmost n-minimal prime

ideals. Since every ideal is the intersection of all of

its minimal prime divisors, the zero ideal of SF is the

intersection of at most n minimal(distinct) prime ideals.

Now, let Xy X|yeesosX, € S be such that x; A x; = 0
fori+j, i=20,1,...yn, j=20,1,...,n. Then
Yp (xi)l'\.'i'P (xj) = 0 ( zero of SF)’ for i ¥ j. Hence by
lemma 4.1 above, there exists k, 0 £ k £ n such that
TF (xk) = 0. Consequently, ( TF (%) ]* = Sp. Then

¥, ( (1 Vg1V Y ()

t
T, (xp1' Veooronn VT ()]

(%, (x)1' Veuor oV (B (x)1 = 8 = B (8).

t
Thus by 3.2.8 (x,0' V (x1" Veoon V(1 = 8.

(ii) ====> (i). Suppose (ii) holds and F is any

-prime filter of S. If (i) does not hold then let

F QO’ ,Q , where Qi'are ultrafilters of S. Notice
s » 0 o @ n

that & VQ.i =S5 forigJ- Thus for each Q;, Qj ;i F .

there exist x; € @ and X; € Q; such that x; A x; = 0. Then

it iS not hard to find elements yo 3y Yl, R R ,yn with yi
— : l. Th b . .
€ Q» such that ¥; A iy = 0 whenever i F J en by (ii),

' —-—
(v1' V (3" VoroensV (3] = 80
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. L]
Now, if t ¢ (yh] for some k ; 0 < k < n, then

t A vy = 0. This implj
Yy This implies t ¢ Qk’ otherwise 0 ¢ Ql; as
vy € Qk' Thus t € S—(% E S-F, and so (yk]t £ S-F for each

ki 0 <k 2n. Hence s = (y1' V(y,1' V.....v (v, © s-F,

which is a contradiction. Therefore, (i) holds.

(i) ====> (iii). Suppose (i) holds and
Py \' P, " P, * P+ S. Since each proper ideal in a
distributive nearlattice is contained in some prime

ideal, there exists a prime ideal P of S containing

Py \'} P| V.....V P . Then S-P is a prime filter which is
contained in n+l ultrafilters S—Po,....,S-Pn. This
contradicts (i) and so P \ P VeooolV P, = 8.

(iii) =====> (i). Suppose (iii) holds. If (i) does

not hold, there exists a prime filter F which is
contained in atleast n+l ultrafilters @ cevee Q) (say)
of S. Then S5-Qjy--vvev-- ,5-Q, are n+tl distinct minimal

prime ideals of S and (5-@y) VyeoesV (s-q,) & §-F, which

is a contradiction to (iii). Therefore (i) holds. O

Notice that the above theorem plays an important

role in case of pseudocomplemented lattices. For the

= i ii) of the above
class of pseudocomplemented B, lattices (ii)

theorem reduces to the condition of Gratzer and Lakser
e

[21, lemma 8].
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Definits
inition. Let S be g nearlattice with 0, S is

called sectionally nN=normal for n > 1 ir each initial

segment [0,x], x € S is an n-normal lattice

Following result generalizes theorem 3.6 of Cornish
[9]). Here proof of (i) ====> (ii) is bit tricky as the
rnearlattices are not that well behaved like lattices,

while the rest follows easily from Cornish’s proof.

Theorem 4.3. For a nearlattice S with 0 the following

conditions are equivalent.
(i) S is sectionally n-normal.
(ii) S is n-normal.
(iii) Each ideal J in S is an n-normal

subnearlattice.

Proof. (i) =====> (ii). Suppose that (i) holds. Let

Xgr XpperooecrXy € S be such that x; A X; = 0 for

i # j. Choose any ¥y € S. Consider I = [0,y]. Now

vy A xp, y/\xl,........,y/'\xn €1 and (y A x;) A (y/\xj)

= L) o= for i j. Since I is n-normal,
=y N (x; A xJ) 0 +

I (y A xo]+ V......V {(y A xn]*, by 3.4.2. Where

]

(y A xﬂ’ = {telit Ay A X; = 0 }. So

¢
vy € (y A xm]+ VooV (Y A xn], and hence

v e (y Axpl Ve i V(v Axd'. Thus v = g Veoronn Vo8,
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t
where ti € (y A xi]' Then ti Ay A X; =0,

t. Ax, = = i
so t; X; 0 as t, Ay-= t;. This implies t, € (xi]t. and

07 =ty Vet Vit e (5] Vel (x),
(51" Voot iV (x1" = 5

and

Hence,

» and so by 3.4.2, § is n-normal.

(ii) =====> (iii). Let J be an ideal in S and

SUPPOSe Xy X|y+++v.sy X € J are such that X; A xX; = 0 for

. v t
all i + j. Let (xi] ={y€eJg: yA x; = 0 }. Clearly,

(x;i]+ = (xif nJBy 3.4.2, (xﬂf Mamnwnn ¥ (xnf = S and so

J=3ns =30 ((x VooV (x,]%)

(30 (x1") Veori oV (3 0 (x, 1)

(xo]+ V.....V (xnf. Consequently, J is n-normal.
(iii) ====> (i) is trivial. a

Following theorem extends theorem 3.5 of Davey [16].

Theorem ;.4. For a distributive nearlattice S with 0

the following hold.

(i) If S is n-normal, then S is n-normal for any’
filter F of S.

(ii) S is n-normal if and only if for each prime

i inimal prime ideals.
filter F of S, Sp has at most n minimal p

Proof (i). Let Ty (xp)sec-ry (x,) € S be such that

¥, (x;) AT, (xj) - 5 for all i F J,

i = 0,..440n, .j = 0,00, Then xi AxJ =0 (YF) PaF emp
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i, J (i % j). This implies

X. A b A f = O fOl‘ S0 —
; \j & 0 ' . 0
)--..--,nu Then Xi A xj A f .
. . ,

L]
(g A £1 V (x, A £1' VooV (x, A £] = s,
Hence (¥, (x)1' V (¥, (x)1' vo..... V(T (x)1

(% (xy ATV (Y (x A8)1P VL.
o V(% (x, A DT
%, (g A1) VT (g AEN )V e,

oV R((x, A £1D)

by 3.2.9
=¥ [(x AEITV e coo Vo(x, A Y
— YF(S)=SF.

Hence SF is n-normal by 3.4.2.

(ii). This is trivial by Th.3.2.7. a

We conclude this section with the following result

which was given by Cornish in [9] and Davey in [16] for

lattices.
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Theorem 4.5, For any n+i elements XprX{seveee,x_ in
n

an n-normal nearlattice S

(XOA e e Axn]; = V (XO /\

0 2i <n

v Ax A gy Al x )

Proof. Pt by = xp A s Ax Axg Aeall A X,

for each 0 £ i € n,. Suppose that x € (xo N sssnains & x]*

n
Then x A DS A T /\xn = 0 so that for

i + J, (x A bi) A (x A bj) = 0. From the Theorem 3.4.2
x € (x A bo]’ VesasaesV [k A bn]t so that x = ay V....V a,

for some a; € S, such that a; Ax A b, = 0. Then

X = (aol\x) V iveo.. V (an/\x) and ai/\xe (bi]* and so

L

(xO/\ /\xn]* I:V (x, A ... Axi-l AXHIA ..../\xn]*
0 £ i n

1A

The reverse inclusion is trivial. 0O
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5. Relatively n-normal nearlattices.

Recall that a relatively n- normal nearlattice S is
a distributive nearlattice such that for each

x < vy (x, vy € 8) [x, y] is an n-normal lattice. For
relatively n- normal lattices we refer the reader to

consult Cornish [9] while Davey [16] preferred to call

them as relative Bn-lattices.

We start this section with the following
characterization of relatively n-normal nearlattices

which will be needed in our next theorem.

Theorem 5.1. Let S be a distributive nearlattice, the

following conditions are equivalent.,

(i) S is relatively n-normal.

(ii) For all xp x],..........,:% € S,
< Xl A XZ A-o--nA xn, x.o > V < Xo A XZ A-'.
...Axn, xl > V.....--.-V < XO I\ Xl A--...

'.OIA xn_ll xn > - S.

€ S
(iii) For all xg, xl,..“......,xm z ,

< xol\x1 Avvess A xy 22 F < x4 A xy Aov

ARy 2>V m Axg A gy B Wil

.....V(XOAXl A..-....Axn_l,z>
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Proof: i ==== ii
(i) ==> (ii). Let a ¢ s, consider the
interval I = [ x, A
o N xp AL I\xnl\a,a]ins.
For 0 £ i € n,the set of elements
t. = x A x A.....
i 0 ( A A X1 A Xy Aol A x3 A a, are

obviously pairwise disjoint in the interval I. Since I is

n-normal, so by 3.4.2 (t‘)]+ \") (t1]+ Vio.eeis sV (t 1t =
f

=1,
v t
where (t, J' = (t;] N I. Since 1 is n-normal.
t +
(tg]" Voo V(t] =1
so, a € (t)1' Vo......... V()
Thus, a = p, Vieeoonnn, \"4 P,
Where Py A ty = P At = ..., = p, Nt
= 0 of 1
—XOAxl A ----- A XnAa
Now, py A tg = xg A x A ovvnnnnn A x, Aa implies

Again py A t; = pDAxl A .oossnane N2 K B

< a.
= py A % A..ooovoo. A x as py

i < x, and
This implies py A x| I swwmm e A x 0

X >
SO poe<x|A...........Axn, 0

Y U AP ke
similarly, p € <% AxA-. 1’



Therefore a € < x, A
1 veennens A x
n’x0>vl0lll

v VO A xp AL,

R T
hence S = < X A

L T T Axn,x0>v‘..

L Y V(X A A
0 xl """"’Axn_ig Xn>

(ii) ====> (iii).
(iii) Supposeb&‘(xo/\...../\xn,z>.

Then by (ii) b = s V. sinanunaeV 8
n'

for some sy € < X A s ol Xy s Xg 2
SIE'(onsz ra--len,XI>

L e e e T T O S S T N S O S N U

Sn G ( XO A xl A . llllA xn-l 1] xn >l

ThUS, x1 A l'l'lA xn A So S Xo
XOAXZ Ao A an s £ X

¢ * o o 8 8 8 8 6 8 8 B P8 e ol LN R R R B

X| N aevasd X

Then xl/\le\...../\xn/\so

=X0AXIA co---AanSOSxOAXlA-u-nAanbS

Hence, S €<x1/\x2/\.....l\xn,z>
Similarly, Sl € < XO A XZ A -----A Xn y Z >

.ill..l"".'

--nou-na-!l"""""""'.-
LI

SnE<x0AxlAau-n-Axn_er>.

88

> and
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Therefore b € <
Xl A..-AX ,Z>V<X0AX2 A-v

ll'A
X 2 > V.....V(onxl A

"""'AXD_] vy Z Y.

Si . .
ince the reverse 1nequality always holds. Therefore

< . =
XBA Axn)z>-'<x1A---Axn,Z>V<xOAX2A--o

NPT A
Xpz >V oo 00V < Xg AL LA X0 2 D

(iii) ======> (i). Let a, b €S, with a < b.
Let Xgs»enosX € [ a, b] such that

x-/\x-=afora11i=}=.j.

o
®
-+
joR

—J

]

X sz LY SRR Vxn

A
I

Xy sz V' icwes Vxn.

LN I I I T O T 2 I I I B TN BN I O I B NN A A A

T T T R R I Y R T R N B N

d = XOVXIV-.-n- Vxn,l.

n

Note that dp, dl"""’ dn exist by the upper bound

property of S .Then a = di < b for all i. Now using

x;: A x. = a for all i ¥ j. We can easily show by some
1 J

routine calculations that

= d; A4 Y T ——, | dn.’

>4
=)
1

- R dl
do/\dzA"". A n

2
|

o i e A NN e e 688,

e e e o 0 0 s s v

e s s 8 0 00

xnzdoAdl A-nooonu-o'oAdn_lo
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Then [a, bl n { « Xpr a8 > V< Xj» a > V...V <x, a>}
n’

[ayb]ﬂ{<dl/\d2,\

o-lAdn| a >V<doAdzA “ s
inltAd’

n a)V(doAdlAn--onAdn_I,a>}'
[a, bl N < dy A d; A..

A d» a > ( by (iii) )

[&,b]ﬂ<a,a>

[a, b] N S = [a, b]

Hence by 3.4.2 [a, b] is n-normal. Therefore S is

relatively n-noraml. a

Following characterization on relatively n-normal
nearlattices are extension of some work of Cornish [9]

and Davey [16].

Theorem.b5.2. For a distributive nearlattice S with 0,

the following conditions are equivalent:

(i) S is relatively n-normal.
(ii) For any (n+l) pairwise incomparable prime

ideals PD,.....,Pn.Eﬁ Vieeswo VP =5,

(iii) Any prime jdeal of S contains at most

n mutually incomparable prime ideals.

P £: (i) <===> (ii). Suppose S is relatively n-normal.
roof: ===

P be (n+1) pairwise incomparable prime
c o2 Py

Let Pogvn--v-‘
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--o---,x

ideals. Th i
en there exists Xy o € S, such that

i=
ifj

Since S is relatively n-normal.

So by theorem 3.5.1 < X Aoe wmn s s A X,y Xp 2 V< xp Al

vee A x > Veeoooo oV ax Aveee Ax x> =S,
Let toE <x1 Alll...‘.Axn’ xo >I
Then t; A x, Acvovoon Ax < xp € Py

Thus t; A X Acvovvos A x, €P). Since P is prime

and X, Kisswe D x, € Py, so ty, € Py. Therefore

< x AL A X, X >c Py

Similarly < X% A 5w wify X, X > c P,

< XUAxl Ao Axp gy x 2 c P.

Hence POV........VPn=S.

Conversely, let any (n+l1) pairwise incomparable

prime ideals in S are co-maximal. Consider an interval

(a, b] of S. Let PID"""""P“ be (ntl) distinct

minimal prime ideals of [a, bl. Then by 1.4.3 there

exists prime ideals P[,,.......,Pn of S such that
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P0=Pon[a, b],

AL B N A L I I I R S SRR,

P’ =P 0 [a, b],

7/
. ’
Since P grecceerena P are incomparable, so

Pysee+.,P are incomparable. Now by (ii) Py VieiaV P, = S.
Hence, Py V.....V P’ = ( B, V.....VP ) 0 [a, b]
=S N [a, b]
= [a, b]
Therefore [a, b] is n-normal and so S is relatively
n-normal.

(ii) ======> (iii) is trivial.
Finally we extend a result of Davey [16, Th. 3.6].

Theorem. 5.3. If S is a relatively n-normal nearlattice,

then SF is also relatively n-normal for each filter F.

Proof: Suppose S is relatively n-normal.
Choose ¥, (xo),.....,TF (x,) € S.

Then < ¥ (%) Ao AT (%)) ¥, (%) >

V< ¥ (xp) A ¥, (xy) Ao AT (x,), % (x;) > Vissas
ce W VT () AT (x,) A AT (x,.1) ¥ (%)) >
=TF( < x /\le‘\.../\xn. x0>V<x0/\xz/\....

Y AN x1>V....V < xp N ox Ao N x5 x, >) (by 3.2.9)
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= YF (S) = SF by theorem 3.5.1.

Therefore by theorem 3.5.1, again, S is relatively

n-normal. a
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CHAPTER - 4
MULTIPLIER EXTENSION OF A DISTIRBUTIVE NEARLATTICE.

1. Introduction.

Multipliers on semilattices and lattices have been
previously studied by several authors including Szasz
[54] (551, Szasz and Szendrei [56], Kolibiar [29],
Cornish [10], and by Nieminen [37] [38] on a lattice.
Analogues on multipliers have been studied by many other
workers in various branches of algabra ; for references
we suggest the readers to consult the bibliographies of
Petrich [47] and Cornish {10]. In a more recent paper,

Noor and Cornish in (39] studied them on nearlattices.

Let S be a nearlattice and ® a mapping of S into
itself. Then ® is called a multiplier on S if
d (x Ay) =9 (x) A y for each x, y € § c.f. [39]. Each

multiplier on S has the following properties,

® (x) £ x, @ (0 (x) ) =29 (x) and x € y implies

o (x) £@ (v). Fach a € S induces a multiplier p, defined

by n, (x) = a A x for each x € S, which is called an

jnner multiplier. The identity function on S, which will

be denoted by t 1S always a multiplier. M(S) denotes the

set of all multipliers on §. It is obvious that M(S) has

a zero,denoted by @ if and only if S has a 0.
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In sectio y
n 1, we have given a description of

multi j .
pliers on nearlattices. Here we have mentioned

several results given by Noor and Cornish [39) and
Nieminen [38]. Then we give a categorical result, where
we see that the multiplier extension has a functorial

character which is entirely diferent from that of Lattice

Theory c.f. Cornish [ 10, Theorem 2.4 ].

In section 2 we studied multipliers on sectionally
pseudocomplemented distributive nearlattices and also on
distributive nearlattices which are sectionally in
Bn' -1 € n € @ and generalized a number of results of
[10]. We showed that S is sectionally in B if and only
if M (S) is in B . We also showed that for 1 £ n < o,
above conditions are also equivalent to the condition
that S is sectionally pseudocomplemented and for any n+l

minimal prime ideals Pp geerrererty P

Plvl.llll.llVPn*lzsl
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2. Multipliers on distributive nearlattices.

let S be a nearlattice and ® a mapping of S

into itslf. Recall that ® is a multiplier on S, if
® (x A y) = ® (x) Ay for each x , y € S. For a
multiplier & on S, M, = { x € 8! ®(x) = x } is clearly
and ideal of S. By Szasz [55, Theorem 3] M, determines @

uniquely.

The following result is due to Niemineen
[38, lemma 1]. It is also a generalization of a part of

proposition 2.1 of Cornish [10].

Lemma. 2.1. An ideal I of a nearlattice S generates a
multiplier ® on S, that is , M. = I, if and only if for
each a € S there is an element b € I such that

I n (a] = (b], and moreover, b = ® (a). a

If ® and A are multipiers on a nearlattice S, then
® A A and @ V A are defined by ( @ A X)) (x) =

@ (x) A A (x) and (o Vi) (x)=2? (x) VX (x). Notice

that @ (x) vV 1 (x) always exists by the upper bound

property of S5, as d (x), A (x) =X though @ V 4 is not

a multiplier. Also, ® (A (x) } =

o (A (xAx)) = o (A (x)Ax) =2 (x) A A (x).

necessarily
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As shown by Szasz and Szendrei [56, Theorem 3], M(S) is

a meet semilattice.

The following result is due to Nieminen [38].

Proposition 2.2. Let ® and A be two multipliers on a

nearlattice S. Then, ® V 1 is a multiplier on S if and

only if ( M, \Y My ) N (x] = (M N (x]) V(Mn (x]) for
each x € S. 0O

Next result is due to Noor and Cornish [(39]. For the
jdea of standard ideals in lattices we refer the reader
to consult [18] and [21b] , while a complete description

of these ideals in nearlattices can be found in [15].

Proposition 2.3. [ Noor and Cornish 39, corollary
3.3 ]. Let & be a multiplier on a nearlattice S. The
mapping ® V 4 is a multiplier on S for each

A € M(S) if and only if M, is a standard ideal of S.

Following result involves the ideas on direct

summands of a nearlattice given by Noor and Cornish in

[39]. For direct summand of a lattice we suggest the

reader to consult F. Maeda and S. Maeda [25] and M.F.

Janowitz (271.
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Proposition 2.4. [ Theorem 3.4. Noor and Cornish 39].

A nearlattice S with 0 has a decomposition into a
direct summand if and only if there are at least two
multipliers ® and A on S such that ® V 1 = 1+ and

® AL = o,

and both ® and A have a supremum with each

multiplier on S. 0

Next theorem is due to Nieminen [38, Theorem 3] also
see [39]. This is also a generalization of a part of

Cornish [ 10, Theorem -

Theorem 2.5. In a nearlattice S, the following

conditions are equivalent.

(i) The meet semilattice of all multipliers on S
is a lattice (in fact, distributive lattice).
(ii) Each multiplier on S is a join-partial

endomorphism of S.

(iii) (x] is a distributive sublattice of S for

each x € 8. In other words, S is

distributive. ad

The next result was also mentioned by Nieminen in

[38, Theorem 4] without proof. A complete proof of this
y

has been given by Noor and Cornish 138, Theoren: 3.6,
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Theorem. 2.6. Let S be a nearlattice. Each multiplier ®
on S has the property Lhat ¢ ( ¢ (y) Vz) = o (y)lV'¢ (z)

when ® (y) V z exists in S,.if and only if (x] is a

modular sublattice of S for each x € §. O

A subset T of a nearlatlice S is called finitely

Join-dense in § il each x ¢ S is Lhe join of a linite

numbers of its predecessors in T. Now we give the

following categorical result.

Theorem. 2.7. Let S and T be distributive nearlattices
and f : § ----- > T be a join-partial homorphism such

that £(S) is finitely join dense in T. Then the following

diagram is commutative, where u (s) = B, and nu(t) = n
f
S —> T
Mg Hy
J, 7

4(S) —> M(T)

M(r)
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for all s € S and t ¢ T, and for ® € M(S),

M(f)(®)(t) = fle(s))) V...... V £(®(s)) for t € T where

Moreover, M (f) : M (S)-----

when f is one to one.

Proof. Let t] st in T. Suppose
ty = f(al) ViwsaV £ (an) and t, = f(bi) V. senais vV f (bl)
where BpyeeessByy bl’ ...... ,,bI € S. Since t, £ty , so for

any & € M(S), £(®(a;)) < f(a;) £ t; <ty for all i,
i=1,.c0.yn.
Then  £(®(a;)) = £(&(g;)) At

= £(@(a;)) A (£(by) V....V f(b))

= (£(0(ay)) A £(b)) Veeeonn V (£(o(a;)) A £(b,))
= £(0(a) Ab) V .enn V £(9(a;) A b)

= fa, A ®(by)) Veeoeooonns V £(a; A ®(b,))

= £(a) AL £(8(b)) Veeveoeonnes V £(2(b,))]

£(a,) A M(E)(®)(t)
That is, f(¢'(ai)) < M (f)(@)(tz) for each i ;

§ wlhukan . Thus, M(£)(8)(t;) $ M(£)(®)(t;) and

hence M (f)(®) is well defined for every ® € M(S). Also,

it can be easily seen M(£)(®) is a multiplier on T.

Now for any a € S, M(f)(n)(a) = M(£f)(p,). Then for
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sny t €T, H(E)u)(t) = £(u(s)) V...

58 V) f(“a(sn))’
where t = f(sl) L' (AP f(s, )
n

;Sl,.......,snES.
Thus, M(f)(ua)(t) = f(a A 8 ) Vieoviivs..VE( aAs )
n

= f(a) A [ f(sl)V ....... oV f (sn) ]

=f (a) At = Bryy () = 1w (f (a) ) (t).
Thus, M(f)(n)(a) = uf(a), i,e., the diagram is
commulative.

Finally, suppose f is 1-1. Then without loss of
generality we can regard S as a finitely join-dense
subset of T. Define M(f)'1 : M(T)-=-—--- > M(S) by
M(f)'l (2) = l}s ( restriction to S). Here M(f)'l is

clearly isotone. Now, M(f)q (M(£)(®))(s)

M(£)(8)!(s)

= ®(s) for all s € S. That is M(f)'l M(f) idusr
Again, for a € T, if a = g Vi somm aws Va with a; € S,

then (M(£) M(£)H) (1) (a) = M(£)(M(£) (X)) (a)

ME)T (M) (a)) Veorron oV N (£)(R)(ay)
Ala) Veoooon VA(a) = May VeeooV oy )

( by 4.2.5 )
= A(a). Thus, M(f)H(ffl = id“” and hence M(f) is an
isomorphism. a

We refer a join-partial homorphism of the Theorem
e

2.7 above, a8 finitely Jjoin-dense homomorphism. Now,
. a ’

se S is a distributive nearlattice. Notice that the
suppo
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map € ;

e :
% (S) (the lattice of finitely generated

ideals of S) defined by €(s) = (s] is clearly a

monomorphism. Also, it ijg easily seen that e€(S) is

finit joi ;
ely join dense in I,(S). Thus, we have the following

result which is trivial from 4.2.7.

Corollary. 2.8. For a distributive nearlattice s,

M(S) is isomorphic to M(JﬂS)). O

Remark 2.9 : Suppose f : § —-—--——- > T and

g ! T —====- > R are two finitely join-dense homomorphisms
(S, R, T are distributive nearlattices ). Let r € R and
d € M{(S), and so M(f)(®) € M(T). Then,

r = g(tl)V.......V g(tl) where t; € T, whereby each

t, = f(s“) Vorwnpan ¥ f(smi) for suitable sjj,....y8 ;

i i
inS; i=1,.000..,m. Here, it is not hard to see that gf

is also finitely join-dense.

Now, as @ (Sﬁ) < 85 for all j = 1,.c00.y Ny,

. ist 3
i=1,0e00., m, f(Q(s“)) VeereoaooV f(Q(S“f) ) exists in
T for all i = 1,.,m, and is equal to M (f) (®)(t;). But,
v [(gf)(@(s;) ) V-.--V(gf)(¢(sn{))] =

Y )1 =V g(M(£)(@)(¢;))
GLE(B(sy)) VornnensonsV (005 DT =V &l ,

M (g)(M(£)(@))(r).

(gf) (@) (r) =

=< e 4

Honce, M(gf)(®) = M(g)(M(£)(2)) as r is arbitrary in §.
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Since ® is also arbitrary in M(S), M(gf) = M(g)M(f). This

h t i
shows that M is a functor ( which is different from that

of Lattice Theory, c.f. Cornish [10, Theorem 2.4] )

from the category A to the category B. The objects of A
are distributive nearlattices and the morphisms are the
Join-partial homomorphisms such that if £ 1@ S-=—->T

(f, S, T € A), then f (S) is finitely join-dense in T. On
the other hand, B contains distributive lattices as its

objects and the morphisms are usual lattice

homomorphisms.

In conclusion, we would like to note that in the
commuting diagram of 4.2.7, up 1is not a natural
transformation, as it does not have finitely join-dense

components.
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3 . H 3 3 . . .
ultipliers on distributive nearlattices which

are sectionally in B .
)

Lee in ([31] has determined the lattice of all

equational Subclasses  of the class of all

pseudocomplemented distributive lattices. They are given

by B-l c BO c B1 Cevvvve B ci..c Be where all the

inclusions are proper and Bo is the class of all
pseudocomplemented distributive lattices, B | consists of
all one element algabras, By is the variety of Boolean
algabras while Bn' for 1 £ n < @ consists of all algabras

satisfying the equation

( X sz Nivwwvus X

n
VYV Cx A Ax Ax A
i=1

Novssinondt X ) = 1 where x' denotes the

% n

itl

pseudocomplement of x. Thus Bl consists of all stone

algabras.

A distributive nearlattice S with 0 is called

sectionally pseudocomplemented if each interval [0,x],

X € S is pseudocomplemented. Moreover, S is said to be

-1 € n £ o, if each interval [0,x],

sectionally in Bn'

xESisian-
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Proposition 3.1, Proposition 3.2 and Theorem 3.4 we
" re

proved by Cornish in [10] for lattices. Here we extend

those results for nearlattices,

Proposition 3.1. If S is a sectionally

pseudocomplemented distributive nearlattice with 0, then

M(S) is pseudocomplemented.

Proof. For each o € M(S) and x € S, o(x) € {0,x].
Suppose o (x)* denotes the pseudocomplemented of o(x) in
[0,x]. Define ot: S-—----- > 8 by o*(x) = o (x)*for each
x € S. If a, b € S, then (a'(a) A b) A (a(a A b))

o'(a) Ab Ao(a) Ab =0 implies o'(a) A b < o(a A b)'

c'(a A b). On the other hand, ot(a A b) A o(a)

o (a Ab) Ao(a) =c(aAb) Acla) A b

o(a A b)} A o(a A b) = 0 implies

i

ot(a A b) = o(a){ = o‘(a). Since U.(a A b) £b,

so ot(a A b) s o*(a) A b. Therefore,

o' (a A b) = o' (a) A b, and so o' € M(s).

Now (o A o) (x) = o (x) A o (x) = 0 = @ (x)

y If o At = o, theno (x) A t(x) =0

implies c A o = @.

for each x € S. Since o (x), t(x) € [0,x], so

t i
c(x) S o (x)' =0 (x). This implies T S o, and S0 0 18

th seudocomplement of © in M(S). Therefore, M(S) is
e p

a

Pseudocomplemented.
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Proposition 3.2. i i
p 2 For a dlstrlhutive nearlattice S with

0, if M(S) is Pesudocomplemented then 5 is sectj 11
onally

pseudocomplemented,

Moreover, for each g € M(S) and x € S cﬁx) is the

relative pseudocomplemented of o(x) in [0, x]

Proof. Consider any interval [0,¥] in S. Suppose

x € [0,y]. Then 0 = @ (y) = (p, A u*,) (v) =

b (9) AL () = x Ay AW (9)= x AW (y) Now, if

x At =0 for some t € [0,y], then for all p € S,

(y, A ) (p) =x At Ap =0, and so B, Ay = @. This
implies B S pz. Thus, By (y) = p: (y), and sot =t Ay
< pa (y). Hence, pz (y) is the relative pseudocomplement

of x in [0,y]. Therefore, S 1is +the sectionally

pseudocomplemented.

t
Finally, for each x € S, © (x) A o (x) = 0. Also,

Ot(x) € [0,x]. Now, let t A o(x) = 0 for some t € [0,x].

Then for any p € S, (ut A o) (pP) = 1 (p) A o(p) =

t Ap Ao(p) =t A o(p) = t A x Ao(p) =t Ap Aa(x) =
H

0 = o(p). This implies M A o = o, and so I < o . Then

This shows that

a

v
lﬂ(x) < ot(x). Thus, t = t A x = o (x).

Ut(x) is the pseudocomplement of o(x) in [ 0,x].
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Corollary 3.3,

Suppose § is a sectionally

pseudocomplemented distributive nearlattice with 0. If x'

is the pseudocomplement of x in [0,y], then

*=d (y). o

Recall from chapter I that a distributive
nearlattice S with 0 is semiboolean if each interval

[0,x], x € S is boolean.

Theorem. 3.4. Let S be a distributive nearlattice with
0. For given n such that -1 £ n £ ®, the following

conditions are equivalent:
(i) S is sectionally in B.

(ii) M(S) is in B.

Proof. (i) implies (ii). The case n = -1 is trivial. The

case n = @ follows from proposition 4.3.1.

For n = 0, S is semiboolean. Then by proposition
4,3.1, M(S) is pseudocomplemented and for o € M (8),
Ut(x) = o(x)1 for each x € S, where o(x)* is the
pseudocomplement of o(x) in [0,x]). Since S8 is
semiboolean, o(x)' is also.the relative :o:f;jjéﬁt of
o(x) in [0,x]. Then (o Vo) (x) =-o(x) by
o(x) V o(x)* - x = t(x). This implies o Vo =1
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d i
and SO O 1is also the complement of ¢ in M(S). Th f
. erefore

M(S) is boolean.

Now suppose 8§ isg i i
sectionally in Bn; 1 £n< o.

For Gyysssesvenoy € M(8) and for each x e S, using

proposition 4.3.1,

n
%
[0y AeeiiA o) V'V (o Avel A o' Aiii i o) 1(x)

i=1

n
=(o; A iAot (x) Vy1(ol Y W Aot (x)
i=

n
((oy AeeiAha) (x))' VIV (o] AL A oY ALA ) (x))}

i=1

L &*
(x))'V V(o (x)A. . .AS (x)A. . .Ad (%))}

i=1

(OI(X) A Ao

& +
(o (x) Av..A o, (x))! v_\_/ (o;(x) A..-A oy(x)

i=1

K ssesns N gy (x))}

= x = +(x) |
A o)t V(o Aooho)t VooV (o Avenns

Hence, (o Ao

—— .1 otn)t = 1, and so M(S) in is B.

(ii) implies (i). The case n = © follows from
ijtion 4.3.2 For n = 0, M(S)~is boolean. Then by
propos .3.2.
ition 4.3.2, S is sectionally pseudocomplemented.
propositl .3
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S
uppose x ¢ [0,¥]. Then the Pseudocomplement pz of

H, is also the complement of M.

t .
X 1ls

Thus,lﬁ \ p: =t., If

the pseudocomplement of x in [(0,y], then by

corollary 4.3.3, y = 1(y) = Uﬁ \") ui) (y) =

t
B () Ve, (v) = (xAy) Vi = x v x'. This implies
'

x 1is the relative complement of x in [0,y] and hence S

is semiboolean.

Now suppose M(S) is in B i 1<n< e Let

X| yeeasX, € [0,y]. Then using proposition 4.3.1.

y= v(y) = [(pu Ao A X
1 n i=1 1 i

1 (v)

n
¢¥vV (m, Av.o oA, AL

L

A )

n

X

n
= (u AccA ) ()P VV A A, A A ) ()

' n i=1 1 i H

n
= (% AA x A VY g A AR () AA %, AY)!
1

i=1

n
= Gy AcA )t VY

(x; Avev Al (3D ALA %!
f=1 i

n
) +
(x; Ave-A x, )} vV (x Aven A ACCA X))

i=1

Which implies [0,7] is in B, and so § is sectionally

in B..
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Following lemmasg are needed for furthe
r

d i
5 as

it is trivial,

Lem 3.5. i i
ma 5. (i) Let s be a distributive nearlattice with

0. If 0 <
= X € S and the interval [0,x] is

pseudocomplemented, where yf is the pseudocomplement of

vy € [0,x], then in the lattice of ideals of S,

(v'1 = (1" n (x] and (y"1 = (y1" 0 (x].

(ii) If S is a distributive nearlattice with 0 and
g t
0 £ x € S is such that (y] n (x] is principal for each

y € [0,x], then [0,x] is pseudocomplemented and

(y]* n (x1 = (y1. O

Lemma 3.6. Let S be a distributive nearlattice with

0. For any r € S .and any ideal I,

((r1 n1)n(c]=1n(r].

Proof. Obviously R.H.S £ L.H.S. To prove the reverse

t
inequality, let t € ( (r] N I) N (r]. Then

t <rand t Ar Ai=0 for all i € I. This implies

t .
£ Ai =0 and sot € 1. Thus, t € I n (r] and this

completes the proof. a



0 is cal ini i j
led minimal Prime ideal if there exists no prime

ideal Q such that q ¢ p, -

Followling lemma Wwill also be needed for the proof of

the next theorem. This is an improvement of 1.4.3 and we

omit the proof as it can be done in a similar way.

Lemma 3.7. If Sl is a subnearlattice of a

distributive nearlattice S and Pl is a2 minimal prime
ideal in Sl’ then there exists a minimal prime ideal P in

S such that P = S, n P. a

We conclude this chapter with the following theorem

which is a nice extension of [10, Th. 4.5].

Theorem 3.8. Let S be a distributive nearlattice with 0,

For given n such that 1 £ n < o, the following conditions

.
.

are equivalent
(i) S is sectionally in B ;
(ii) M(Ss) is in B
(iii) For any Yy € 5, and for Xjyeeereeeey X € (v],

(v1 & ((x] Aceovi A (x, 'V (51" AL ol
A ) VeV g A A (x,19";
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(iv) For any Xipeoowna,,, X, €8,

(Gl Ao A 1) v g VA ) L

e VG A A (1Y) - s
(v)

S is Sectionally Pseudocomplemented and each

Prime ideal contains at most n minimal prime

ideals.
(vi) S is sectionally'pseudocomplemented and for any
n+l distinct minimal prime ideals Pioeeses PM!’
Pl V-.--o-vpn” =SI
Proof. (i) <===> (ii) have already been proved in

Theorem 4.3.4.

4
(i) implies (iii). Suppose 2 £ n. Let x; be the
pseudocomplement of X; in [0,y]. By lemma 4.3.5,
(%] AvvvnA (510 Acei A (%]
(x0 AveelA (510 A (3] Ave A (%]
(x;] Avoo A (KT AL A (x,]

(xf Acvvn At A A x T

i

Since (i) holds, so

n * :
(v] =((x, A ‘../\xn)+VV(xl AveoosAxh Avcc A x)')
Y = l N B ]

i=1



n
- t
Cog A AV VY ((, A At A Ax ) A(Y])

i=1

n
= Oy A A DT VY () ACA (1Y AL (x,),
i=1

by lemma 4.3.5 and as each X; £y. If n =1, then by (i)

and using lemma 4.3.5, we have

(v]

(xlf V le]

(x'1 V (x"]

(3 A (1) V1™ A (v
]tt

[ (xl]‘ vV (xl

(iii) Implies (iv). Firstly suppose 2 £ n.

_ b i1,
Let ST X, € S. Choose any r € S. Then y (1ii)

n
(r1c ((r Axd Ao (x Ax)) V~V1(( r A x)
=
A...A(r A xi]' A...A ((r A xn])', and so

n

A(r Ax DA VV (e Ax] AL

i=1

(r] = (((r A x] A

A ((r A xn])‘ A (r]))
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Now, by lemma 4.3.6.

({(r A ]l AL A (r A xn])'/\ (r] = ((xll [ P

¢
% v wl¥ (xn]) A (r].
Again for each | < is<n, rA X{ $ x; implies
1

(r A x,]' 2 (x]%.

Thus (e A Xl A A (e A x T AL A (e A x, ]

2 (r A x1] A...A(xif Ao, A(r A X,y and so
(2 A XD AA A ) A (A x 1) A (e
e A x] A A AL AlrAx 1) A (r]

= (Oq] A A A LA D A (e,

by using lemma 4.3.6 again.
Therefore, (r] c ((x;] Ac. A (x,1)'V ((x1" A...
sos o ) Vewna¥ 10T A sxnmas A (x,1M),

Which implies that

(0 AvcoA gDV g A (DY Ve (i)
Avivinnnnn. A (x 1M = s,

.If n = 1, then for any r € S, we have by (iii).that

1)
(r] c (r A XI]. V (I’ A x1]

1
((r Ax' n(e]) V(e Ax] 0 (r])

Thus, (r] "
((x2' 0 (e) V (x A )T 0 (r])

( by lemma 4.3.6 )

c (xﬂ. Vv (x”’..and hence

(x' Vx)t=s



(iv) implies (i -
i) follows exactly from the same

proof of [10, Th.4.5(iv) ===> (i)]

(V . i &
)  implies (vi).  Suppose (v) holds, and

P L A ) j i i
| ’Pml are distinct minimal Prime ideals, If

P v..ll.l.
| v Pml + S, then by 1.2.5, there exists a

prime ideal P containing PP.......,P*“ which
: n

contradicts (v),

(vi) implies (v). Suppose (vi) holds. If (v) does
not holds, then there exists a prime ideal P which
contains more than n minimal prime ideals. Then by (vi)

P = S which is impossible.

(iv) implies (vi). We omit this proof, as it can be
proved exactly in a similar way that Cornish has proved

(iv) ===> (vi) in [10, Th.4.5].

(vi) implies (i). Suppose (vi) holds and a € S. Let

Ql""“"le be n+l distinct minimal prime ideals in

(0,a]. By corollary 4.3.7, there are minimal prime

ideals P, in S such that @ = [0, a]l N Pifor each

1 < i £ n+l. Since Q; are distinct, all P; are also

Veu.olV P, ) =

distinct. By (vi), (al = (al A (P

(m]Amv””mvuﬂA%”=%v.m“v%r
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Since each interval [0,a] is pseudocomplemented, so [0,a]

c Bn by [31, Th.1], and hence § is sectionally in Bn'
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