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SUMMARY

This thesis studies the nature of a sectionally
pseudocomplemented distributive nearlattice. By a
nearlattice S we  will always mean a meet semilattice
together with the property that any two elements
possessing a common upper bound, have a supremum.
Cornish and Hickman in their paper [14] referred this
property as the upper bound property, and a semilattice
of this nature as a semilattice with the upper bound
property. Cornish and Noor in [15] preferred to call these
semilattices as nearlattices, as the behaviour of such a
semilattice is closer to that of a lattice than an ordinary
semtilattice. Of course a nearlattice with a largest element
is a lattice. So the idea of pseudocomplementation is not
possible 1n case of a general nearlattice. But for a
nearlattice with a smallest element we can talk about
sectionally pseudocomplemented nearlattice. Moreover,
we can discuss on relatively pseudocomplemented
nearlattices. In this thesis, we give several results on
sectionally (relatively) pseudocomplemented nearlattices
which certainly extend and generalize many results in

lattice theory.

Chapter one discusses ideals, congruences,

semiboolean algebras, sectionally (relatively)



(ii)

pseudocomplemented nearlattices and many other results

on nearlattices which are basic to this thesis. We also

include a treatment of localization.

In chapter two we give a description of generalized
Stone nearlattices. We have also studied normal
nearlattices and distributive quasi-complimented
nearlattices. Generalized Stone lattices have been studied
by Katrinak [27], Cornish [13] and many other authors.
Here we extend several results of [13] and [27] to
nearlattices. We have given a characterization of minimal
prime ideals of a sectionally pseudocomplemented
distributive nearlattice. Then we show that a distributive
nearlattice S with 0 is generalized Stone if and only 1f it

is both normal and sectionally quasi-complemented.

Chapter three introduces the concept of relative
annthilators in nearlattices. Relative annihilators in
lattices were studied by several authors including
Mandelker [33] and Varlet [57]. For a, b € S, we define

<a, b> = {x € §/ a A x £ b}. According to Mandelker

[33], < a, b > is known as an annihilator of a relative to b
or simply a relative annihilator. Cornish [13] has used the
annihilators in studying relatively normal lattices. Hers
we have studied the relative annihilators in nearlattices.
In terms of relative annihilators ,we have characterized

modular and distributive nearlattices. Then we have



(111)
generalized some of the results of [33]. We have shown

that in a distributive nearlattice S, <a, b> v <b, a> = S5

for all a, b € S if and only if the filters containing any
given prime filter form a chain. Relatively Stone lattices
have been studied by several authors including Mandelker
[33], Varlet [58] and Gritzer and Schmidt [23]. Since then
a little attention has been paid in this topic. Here we
have given several characterizations of relatively Stone
nearlattices which are certainly the generalizations of
above authors work. We also show that for a distributive
nearlattice S in which every closed interval s
pseudocomplemented is relatively Stone it and only if any

two incomparable prime ideals of S are comaximal.

Chapter four is concerned with sectionally B -
nearlattices and relatively B_ - nearlattices. Cornish in
[8] have studied n-normal lattices. Then Noor in [41] has
extended the idea to nearlattices and generalized some
results of [8]. By [41], a distributive nearlattice S with 0
is called n-normal if every prime ideal contains at most n
minimal prime ideals. Sectionally B,-lattices and
relatively B,- lattices have been studied by Davey in [16]
. In this chapter we havE given several characterizations
for sectionally B_-nearlattices and generalized many
works of Davey [16] and Cornish [8]. We show that a

distributive nearlattice is sectionally in B, if and only if

it is n-normal and sectionally pseudocomplemented. We
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a distributive nearlattice S is relatively in B, if and only
if any n+1 pairwise incompatable ptime ideals are

comaximal.

A very interesting type of ideals called the a-ideals
have been studied in chapter five . Annulets and a-ideals
in lattices were studied extensively by Cornish in [11] .
Here we discuss annulets of a distributive nearlattice with
0 and o-ideals in a distributive nearlattice. Then we
generalize and extend a number of results of [11]. We
conclude the thesis with the result that a distributive
nearlattice S with 0 is generalized Stone if and only if

each prime ideal contains a unique prime o - ideal.
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CHAPTER ONE

IDEALS AND CONGRUENCES

1 Preliminaries

The intention of this section 1s to outline and fix the
notation for some of the concepts of nearlattices which are
bastic to this thesis. We also formulate some results on
actbitrary nearlattices for later use. For the background

material i1n lattice theory we refer the reader to the text of

G. Birtkhoff [7],G.Gritzer [19],[20] and D.E. Rutherford [48].

By a nmearlattice S we will always mean a (lower)
semilattice which has the property that any two elements
possessing a common upper bound, have a supremum.
Cornish and Hickman, in their paper [14], referred this
property as the #pper bound property, and a semilattice of this
nature as a semilattice with the upper bound property. We shall see
later, the behaviour of such a semilattice is closer to that of
a lattice than an ordinary semilattice. For the sake of
brevity, we prefer to use the term nearlattice in place of

semilattice with the upper bound property.

Of course, a nearlattice with 2 largest element is a
lattice. Since any semilattice satisfying the descending chain
condition has the upper bound property, all finite

semilattices are nearlattices.



Now we give an example of a meet semilattice which is

not a nearlattice.

Example : In R? consider the set

$={(0,00} v {IL0O}uv{(01)}vily/y>1
shown by the figure 1.1.

0.1 e
. 4 ®
{0.0) (1.0)
Figure 1.1

Define the partial ordering € on S by (x,y) < (%15 1)
if and only if x £ x; and y £ y;., Observe that (5; <) is a
meet semilattice. Both (1, 0) and (0,1) have common upper
bounds. In fact { (1, y) / y >1} are common upper bounds
of them. But the supremum of (1, 0) and (0, 1) does not

exist. Therefore (S ; £ ) 1s not a nearlattice.

The upper bound property appears in Gritzer and
Lakser [21], while Rozen [47] shows that it is the result of

placing certain associativity conditions on the partial join



operation. Moreover, Evans in a more recent paper [17]
ceferred nearlattices as conditional lattices. By a conditional
lattice he means a (lower) semilattice S with the condition
that foreachx € S, {ye S/ y<Sx}isa lattice; and it 1s very
easy to check that this condition is equivalent to the upper
bound property of S. Also Nieminen refers to nearlattices

as “Partial lattices” in his paper [39].

Whenever a nearlattice has a least element we will

denote it by 0. If xy , xg y------=-----"-- , X, are eclements of a
nearlattice then by XV X; V ---------mom-moos VvV x,, we mean
that the supremum of Xy , Xy ,------=="""" , %, exists and
BV XKy V —m-mmmomsmmoooosees Vv x_, is the symbol denoting this

supremum.

A non- empty subset K of a nearclattice S is called 2
submeariattice of S if for any a, b € K, both a A b and a V b
(whenever it exists in S) belong to K (A and Vv are taken in

S), and the A and v of K are the restrictions of the A and Vv

of S to K. Moreover, a subnearlattice K of a nearlattice § 18

called a sublattice of S if a Vv b e K for all 2, b € K.

A nearlattice S is called modular if for any a, b, ¢ €3

withc<a,aAn(bvc)=(a A b) V ¢ whenever b Ve exists.



A nearlattice S is called distributive if for any

whenever X V X 5 V -mommmmmmmmmoono- v x, exists. Notice

that the right hand expression always exists by the upper

bound property of S'.

Lemma 1.1.1. A nmearlattice S is distributive (modular) if and

only if (x] = {y €S/ y<=x} isadistributive (modular) lattice

for each x € S.0

Consider the following lattices:

© e
b
c i c
a
N5 MS
d d
Figure 1.3

Figure 1.2



Hickman in [25] has given the following extension of a very

fundamental result of lattice theory .

Theorem 1.1.2. A nearlattice S is distributive if and only if S

does not contain a sublattice isomorphic to Ng or Ms U

Now we give another extension of a fundamental result

of Lattice 'Theory.

Theorem 1.1.3. A nearlattice S is modular if and only if S does

not contain a sublattice isomorphic to Ny

Proof : Suppose S does not contain any sublattice
isomorphic to Ng . Then (x] does not contain any sublattice

isomorphic to Ng for each x € § . Thus a fundamental result

of lattice theory says that (x] is modular for each x € § as

(x] 1s a sublattice of S. Hence S is modular by Lemma 1.1.1.

Conversely, let S be modular. If S contains a sublattice
isomorphic to Njg, then letting e as the largest element of
the sublattice, we see that (e] is not modular [by Lattice
Theory]. Thus by Lemma 1.1.1, S is not modular and this

gives a contradiction. This completes the proof. O

In this context it should be mentioned that many
Lattice theorists e.g. R. Balbes [4], ]J. C. Varlet [55], R. C.
Hickman [24] and K. P. Shum [51] have worked with a class



of semilattices S which has the property that for each

Ry B Hggy e S ST d, € &,

if a; Vag Vceemme e V a, exists then

(x A 33 ) V (X A 8y )Vermomommmeme- VvV (x A a, )exists and
equals X A (a; V ayV —-ommmmmmomooes Vv a, ). [4] called them as

prime semilattices while [51] referred them as weakly distributive

semilattices.

Hickman in [24] has defined a ternary operation j by
i(x, 7 2) = (£ Ay) V (y A 2), on a nearlattice S (which exists
by the upper bound property of S).In fact he has shown that
( also see Lyndon [32], Theorem 4] ), the resulting algebras
of the type (S ; j) form a variety, which is referred to as the
variety of join algebras and following are its defining
identities.

@) j(x, % 5) =x

(i) j (%, 3, %) = (¥, % 7)

) j (5 &%), 20 (K%)= § &0 2 7), %)

(iv) j (x5 2) = j (2 > %)

)G & ys2),i®ynx),iEyz) =) I)

)G &)y z) =i 2)

(vii) j (5 ¥, § (% 2, %) =) (% ¥ %)

(viii) (G (%3] (52))5i (Fs752)5 § (%5 15§ (%5 75 2)))

=i (%3 2).



We do not want to elaborate it further as it is beyond

the scope of this thesis.

We call a nearlattice S a medial nearlattice if for all
X, 7,2 € S,m (x,y5,2) =(x ANy)V (yAnz)V (zAX)exists.
For a (lower) semilattice S, if m (x, y, z) exists for all
X, ¥, z € S, then it is not hard to see that S has the upper
bound property and hence is a nearlattice. Distributive
medial nearlatticves were first studied by Sholander in [49]
and [50], and recently by Evans 1n [17]. Sholander preferred
to call these as median semilattices. There he showed that
every medial nearlattice S can bé characterized by means of
an algebra (S ; m) of type <3>, known as median algebra,
satisfying the following two identities:

(i) m (a, a, b) = a

(i) m (m (a,b,c), m(a, b, d), €) =m (m (c,d,e), a, b).

A nearlattice S is said to have the three property if for
any a, b, ¢ € S, a v b v ¢ exists whenever a vV b, b v ¢ and
cv a exist. Nearlattices with the fhree property were
discussed by Evans in [17], where he referred it as stromg

conditional lattices.

The equivalence of (i) and (iii) of the following lemma

is trivial, while the proof of (i) <=> (i1) is tnductive.



Lemma 1.1.4. [Evans [17]) | . For a nearlattice S the following
conditions are equivalent :
(1) S has the three property.
(ii) Every pair of a finite number n (2 3) of elements of S
possess a supremum ensures the existence of the supremum of

all the n elements.

(111) S is medial .0

A family A of subsets of a set A is called a closure system
on A if |
(i) A € A and

(11) A is closed under arbitrary intersection.

Suppose B is a subfamily of A. B is called a directed
system if for any X, Y € B there exists Z in B such that

X, Y cZ.

If U {X:X e B} € A for every directed system B
contained in the closure system A , then A s called
algebraic. When ordered by set inclusion, an algebraic closure

system forms an algebraic lattice.

A non- empty subset H of a nearlattice S is called
hereditary if for any x € S and y € H, x Sy implies x € H.
The set H (S) of all hereditary subsets of S is a complete
distributive lattice when partially ordered by set- inclusion,

where the meet and join in H (S8) are given by set



theoretic intersection and union respectively. The largest

element of H (S) 1s S, while the smallest element is the empty

set @.

For the following 3-element nearlattice S(Figure 1.4),

H(S) = {®’ {O}’ {O’ ﬂ.}, {0’ b}7 {0’ a” b}}

a b
S
{0,a} {0,b}
{0}

0
S

()

H(S)

Figure 1.4
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2.Ideals of Nearlattices .

A non- empty subset I of a nearlattice S 1is called an
sdeal if it is hereditary and closed under existent finite
suprema. We denote the set of all ideals of S by I(S). If §
has a smallest element 0 then I(S) is an algebraic closure
system on S, and is consequently an algebraic lattice.

However, if S does not possess smallest element then we can

only assert that I (§) v {D}is an algebraic closure system.

For any subset K of a nearlattice S, (K] denotes the

ideal generated by K.

Infimum of two ideals of a nearlattice is their set
theoretic intersection. Supremum of two ideals I and ] in a
lattice L is given by
Iv]= {xeL/xSivjforsomeiEI,jE]}.Cornish
and Hickman in [14] showed that in a distributive nearlattice
S for two ideals I and J,

Iv] = {ivj/iGI,jE]Whereivjexists} . But in a
general nearlattice the formula for the supremum of two
ideals is not very easy. We start this section with the
following lemma which gives the formula for the supremum
of two ideals. Tt is in fact exercise 22 of Griitzer [19, p 54]

for partial lattice.
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Lemma 1.2.1. Let 1 and ] be ideals of a nearlattice S. Let

Ay = TUJ, A, ={x€ S/xSyVz,; yV zexists and

y,z € A 4} forn =1, 2,------- , and K = U A,. Then
n=0

K=1v].

Proof : Since Ay € A C A, C ---------- c A, C ------ K

is an ideal containing I and J. Suppose H is any ideal
containing I and J. Of course, Ay € H. We proceed by
induction. Suppose A, ; € H for some n 21 and let

x € A, Then x £y vz withy, ze A, Since A,; Cc H

IN

and H is an ideal, y vz € H and x € H. Thatis A, c H

for every n. Thus K =1 v ]J. i

Lemma 1.2.2. and corollary 1.2.3. were suggested to

the author by his supervisor professor A. S. A. Noor.

Lemma 1.2.2. Let K be a non empty subset of a nearlattice S.

Then (K] = U {A,/ n >0}, where Ag={t € S / t =j (ky, t, kj)

n=0

for some ky, k, € K} and A= {t € S/t=| (ay, t, ay) for some
a,,8, € A 4} forn > 1.
Proof : For any k € K clearly k= j(k, k, k) and soK ¢ A,.

Similarly, for any a € A, 4, a = j (a, 2, a) implies that

A., € A, Thus,
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Kc Ay Ay © --mmmmmmmeemme C A E A, C e Let

tel Agjn = 0,1,2,. ... ,and t; € S such that t; < t.
n=0

Then t €A_ for some m 20. Clearly, t; = j (t, ty, t) and so

t, € Anhsq. Thus, UA, is hereditary. Now, suppose,
n=0
t;, t, € U A, and t; V t; exists. Let t;€ A, and t, € A, for
n=0 .

some r,s = 0 with r £ s (say).Then, t;, ty € A and

ty V ty = (ty, t; V ty ,tp) says t; V t; € Agiy.

Finally, suppose H is an ideal containing K. If x € A,,
then x = j (ky, %, k) = (k; A x) v (k; A x) for some
k,, k, € K. As K ¢ H and H is an ideal, ky A x, ko nx € H
and so x €H .Again we use the induction. Suppose An; & H
for some n = 1. Let x € A_ so that x = j (aj, %, a5 ) for some
a;,a, € A,_;. Then x € H as a;, a, € H and

x = (a; A X) V (ap A x).0

Corollary 1.2.3. A non empty subset K of a ncarlattice S is an

ideal if and only ifx € K whenever x is an element of S such that

_x=j (k,,x,k;) for same k;, k€ K.

Proof : Since the only if part is obvious, suppose x € K

whenever x is an element of S and x = (k;, 3, k;) for some
k,,k, € K. Then clearly, Ay (of Lemma 1.2.2)cK. Now for

any x € Ay, x = | (a;, %, 8,) for some ay, 35 € A, c K. Thus,



13

x € K and so A; ¢ K. Hence, using induction we obtain that

(k] = G A, c K;ie K= (k]. Therefore K is an ideal.D

n=0

We now give an alternative formula for the supremum

of two ideals in an arbitrary nearlattice .

Lemma 1.2.4. For any two ideals K, and K, ,

K,vK,= U B, whereBy=f{x €S/ x=j(k,x ky)s
n=0

ke K} and B, = {x €S/ x=j(by,x by); by, by & By}
andn =0, 1, 2, ——cmcemmmmen- :

Proof : Clearly,

Suppose b e U B, and b; < b; b, € S. Then b € B, for
n=0 :

some m 2 0. Also, b, = j (b, by, b) and so by € B,,. Thus,

G B, is hereditary. Now, suppose ty, t; € G B, such that
n=0 n=0

t, V t, exists. Then there exists r, s > 0 such that t; € B, and
t, € B,. If ¢ < s then ty, t, € B, and

ty V t, = j (t;, t; V ty, ty ) implies that t; vV t; € By, Hence,

B, is an ideal.
n=0

Finally, suppose H is an ideal containing K; and K,. If
x € By then x = (k;, %, ky ) = (k; A x) v (k; A %) for some

k, € K, and k, € K, Since H is an ideal and K,;, K, ¢ H,
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clearly x € H. Then using the induction on n it is very easy

to see that H D B, for each n.0

Theorem 1.2.5. Cornish and Hickman [14, Theorem 1.1]]. The
following conditions om a mearlattice S are equivalent :

(1) S is dz'strflmtiw.

(ii) For any H € H (8),

(H] = {h; Vv -=--——--- vh,/hy,------- , h, € H}
(i11) For any 1, ] € J (S),
Iv]=1{ayVv--am-- Voa,/ ay, ----- ,a, € I v]}

(iv) J (S) is a distributive lattice.
(v) The map H ------- > (H] is a lattice homomorphism of

H (S) onto ] (S) (which preserves arbitrary suprema) . U

Observe here that (iii) of above could easily be
improved by 1. 2. 4 to (iii)/. Forany I, ] €] (S),
Ivj={ivj/ielje]}.

Let J¢(S) from henceforth denote the set of all finitely

generated ideals of a nearlattice S. Of course J¢(S) ts an upper

subsemilattice of J(S). Also for any

Xy, Bgy--=---mm--mmmm- » By € 8, (R, Rgy =o=-wemeo- » X] is clearly
the supremum of (%] Vv (%3] V --------- v (x,]. When S is
distributive, (x4, xg, ~--------- > Xo] O (Y15 Yo, ------ > Ynl

=((11]V (XZ]V """"" v (Xm]) M ((YI] v (yZ] Vomm--- V(Yn])



=V (%; A yy] for any x4, xg, ------ Xm> Y1» Y2 5===""" yn € S (by
74

1.2.5) and so J¢(S) is a distributive sublattice of J(S).
c. f. Cornish and Hickman [14].

A nearlattice S is said to be finitely smooth if the
intersection of two finitely generated ideals is itself finitely
generated. For example, (i) distributive nearlattices, (11)
finite nearlattices, (iii) lattices, ate finitely smooth. Hickman

in [24] exhibited a nearlattice which is not finitely smooth.

By Cornish and Hickman [14], we know that a
nearlattice S is distributive if and only it I(§) is so. Our next
result shows that the case is not the same with the

modularity.

Theorem 1.2.6. Let S be a nearlattice. If I(S) is modular then S is

also modular but the converse is not necessarily true.

Proof : Suppose I(S) is modular. Let a, b, ¢ € S with c¢<a
and b v c exists. Then (c] € (a]. Since I(S) is modular. So,
(an(bvel= @A (B V()

= ((a] A (b]) v (c] = ((a A b) Vv c]. This implies that

an({(bvec)=(aAnb)ve, and so S is modular.

Nearlattice S of figure 1.5 shows that the converse of

this result 1s not true.
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a, ] k
a) b

| Fig 1.5 :

Notice that (] is modular for each r € S. But in I(S),

clearly {(0], (a;], (a1,¥],(22,b],8 } is a pentagonal sublattice. U

A filter F of a nearlattice S is a non empty subset of S
such that if f;, f, € F and x € S with f; < x, then both {;A £,
and x are in F. A filter G is called a prime filter if G # S and
at least one of =z, x5, ------ x, is tn G whenever

X4V Xy V o—emmmmmmee- VvV x, exists and 1s in G.

An ideal P in a nearlattice S is called a prime ideal if
P#Sand x Ay € P implies x € Pory € P. It is not hacd to
see that a filter F of a nearlattice S is prime if and only if

S -F is a prime ideal.
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The set of filters of a nearlattice is an upper
semilattice; yet it is not a lattice in general, as there is no
guarantee that the intersection of two filters 1s non empty.
The join Fy v F, of two filters i1s given by
F,vF,={seS/s2f Af,for some f; € F;, £, € F,}.
The smallest filter containing a subsemilattice H of S is
{s € S/ s 2h for some h € H} and is denoted by [H).
Morseover, the description of the join of filters shows that

for all a,b € S, [2) v [b) = [a A b).

Following theorem and corollary is due to Noor and
Rahman [45] which is an extension of a well known theorem

of Lattice theory due to M. H. Stone; c. f. [19, Theorem 15,

pp 74].

Theorem 1.2.7. Let S be a nearlattice. The following conditions are
equivalent:

(1) S z'.r- distributive.

(i1) For any ideal 1 and any filter ¥ of S, such that

I~ F = O, there exists a prime ideal P D 1 and disjoint from

F. O

Corollary 1.2.8. A nearlattice S is distributive if and only if

every ideal is the intersection of all prime ideals containing if. [
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3. Congruences.

An equivalence relation ® of a nearlattice S is called a
congruence relation if x; = y; (®) for i=1,2 (x;,y; € S),then

(i) xy A%y =y Ay, (@), and

(i0x; V x, =y, V y, (®) provided x; vV x, and yyVv y,

exist.

It can be easily shown that for an equivalence relation
® on S ,the above conditions are equivalent to the
conditions that for x,y €S if x =y (® ), then

(YxAt=yAt(@®) forallte$ and

Gi') x vt=y vt (®) for all teS provided both xvt

and yvt exist.

The set C(S) of all congruences on S is an algebraic
closure system on SxS and hence, when ordered by set

inclusion, is an algebraic lattice.

Cornish and Hickman [14] showed that for an ideal I of
a distributive nearlattice S, the relation @ (I), defined by
x =y (® (D) if and only if (x] v I = (y] v I is the smallest
congruence having I as a congruence class. Moreover the
equivalence relation R(I), defined by x =y (R (I)) if and only
if foranys € S, x A's € I is equivalent to y A's € I, is the

largest congruence having I as a congruence class.
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Suppose S is a distributive nearlattice and x € §, we will
use ®, as an abbreviation for ® ((x]). Moreover ¥, denotes
the congruence, defined by a = b (¥,) if and only if

aANX=DbA X

Cornish and Hickman [14] also showed that for any two
elements a, b of a distributive nearlattice S with a< b , the
smallest congruence identifying a and b is equal to ¥, n @,
and we denote it by ® (a,b). Also, in a  distributive
nearlattice S, they observed that if S has a smallest element
0 , then clearly ®, = ® (0, x) for any x € S. Moreover, it is
easy to see that :

(i) ®, v ¥, = 1, the largest congruence of S.

(i1) ®, N ¥, = ®, the smallest congruence of § and

(iii) ® (a, b)) = ®, v ¥, where a < b and /’ denotes

the complement.

Now suppose S is an arbitrary nearlattice and E(S)

denotes its lattice of equivalence relations . For
d,, D, € E(S), ©; v ©, denotes their supremum;
x =y (®, v ®,) if and only if there exists

X T Zg, Zyy -mmmm-m-m-- , 2z, = y such that z; ;, = z; (®; or ®,) for
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The following result was stated by Gritzer and Lakser
in[21] without proof and a proof, different than given below,
appears in Cornish and Hickman [14] ; also see Hickman [24]
and [25].

Theorem 1.3.1. For any nearlattice S, C(S) is a distributive
(complete) sublattice of E(S).

Proof : Suppose ®, ® € C(S). Define ¥ to be the supremum
of ® and @ in the lattice of equivalence relations E(S) on S.
Let x = y (). Then there exists x = z4, 2y, --------- zZn = ¥
such that z; ; = z; (® or ® ). Thus, for any teS,

z; A t=z; At (O or ©) as @, De C(S).

Hence x A t = 3y A t (¥) and consequently ¥ is a
semilattice congruence. Then, in particular x A y = x (Y )
and x A y =y (y). To show that |y is a congruence, let
x =y (), with x < y, and choose any t € S such that both
x V t and y vV t exist. Then there exists zg,21,29,--------- Z,
such that x = z,, z, = vy and z; ; = z; (® or @ ). Put
w; =z, Ay forallt =0,1, ------ , n. Then x = wy, w, = vy,

1

w, 4 =w; (0 or ®). Hence by the upper bound property,
w; v t exists for all 1t = 0, 1, ----, n (as w;, t Sy VvV t) and
w,,Vvt=Ew Vvt (®or®)foralli=1,2, -oooomeoo , n (as

@, ®eC(S),iexvi=yvt (Y) Then by [15,
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Lemma 2.3] ¥ is a congruence on S . Therefore, C(S) is a

sublattice of the lattice E(S).

To show the distributivity of C(S), let
x=7 (® N (0, v 0®,)). Then x A y=y (®) and ((®; v ©,).
Also, x Ay = x (®) and (®, v @,).

Since x A y =y (®; v ©,), there exists tg, tyy------- ks
such that (as we have seen in the proof of the first part),

EAY Sty t, =y, 4y =t (0 or @) and x A YT tg St Sy

for each1 =0, 1, -----en-- , n. Hence, t; ; =t; (®) for all
1= 1,2, --onemmmm- , n, and so t,y = t; (® N B,) or (BN B,).
Thus, x Ay=7y (® N ) v (®n B,)). By symmetry,

XAy x (( ® N ®,)) v (® n ©,)) and the proof completes

by transitivity of the congruences.[]

In lattice theory it is well known that a lattice is
distributive if and only if every ideal is a class of some
congruence. Following theorem gives a generalization of

this result in case of nearlattices.

This also characterizes the distributivity of a near

lattice , which is an extension of [14, Theorem 3.1].

Theorem 1.3.2. S is distributive if and only if every ideal is a

class of some congruence.
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Proof : Suppose S is distributive . Then by [14, Theorem
3.1] for each ideal I of S, ® (I) is the smallest congruence

containing I as a class.

To prove the converse, let each ideal of S be a
congruence class with respect to some congruence on S.
Suppose S is not distributive. Then by Theorem 1.1.2, we
have either Ng (Figure 1.2) or Mg (Figure 1.3) as a sublattice

of S. In both cases consider I = (a] and suppose I is a
congruence class with respect to @. Since d € I, d = a (8).
Nowb=bAc=bA(ave)=bAa(dvec)=bac=d(®)

i. e, b = d (®) and this implies b € I, i. e, b £ a which is a

contradiction. Thus S is distributive. [

Following theorem is due to Noor and Rahman [45].

Theorem 1.3.3. For a distributive nearlattice S, the mapping

| J— — ©® (1) is an embedding from the lattice of ideals to the

lattice of congruences. W
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4, Semiboolean algebras.

An interesting class of distributive nearlattices is
provided by those semilattices in which each principal ideal
is a Boolean algebra. These semilattices have been studied
by Abbott [1], [2], [3] under the name of semiboolean

algebras and mainly from the view of Abbott’s implication
algebras [an implication algebra is a groupoid (I ; .)
satisfying :

() (ab) a = a,

(11) (ab) b = (ba) a,

(111) a(bc) b(ac)]

|

Abbott shows in [1,pp.227-236] that each implication
algebra determines a semiboolean algebra and conversely

each semiboolean algebra determines an implication algebra.

Following  result gives a  characterization of
semiboolean algebfas which is due to Cornish and Hickman
in their paper of weakly distributive semilattices [14] (such
semilattices were first studied by Balbes [4] under the name

of prime semilattices).
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Theorem 1.4.1. [Cornish and Hickman [14, Theorem 2.2]]. A
semilattice S is a semiboolean algebra if and only if the following
conditions are satisfied :

(1) S has the upper bound property.

(i1) S is distributive.

(i11) S has a 0 and for any x € S,

(x]*={yeS/yAx= 0} is an ideal and (x] v (x]* = S.U

A nearlattice S is relatively ramplemented if each interval

[%,7] in S is complemented. That is, for x< t <y, thete exists

¢/ in [, ¥] such that t A ¢/ = xand t vt = y.

A nearlattice S with 0 is called sectionally complemented if

[0, x] is complemented for each x € 5. Of course every
relatively complemented nearlattice S with 0 1s sectionally
complemented. It is not hard to see that S is semiboolean if
and only if it is sectionaﬁ& complemented and distributive.

We denote the set of all prime ideals of S by P(S).

There is a well known result in Lattice Theory due to
Nachbin in 1947, c. f [19, Theorem 22, pp-76] that a
distributive lattice is Boolean if and only if its prime ideals
are unordered. Following theorem is a generalization to this

result which is due to Cornish and Hickman in [14].
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Theorem 1.4.2. For a distributive nearlattice S with 0, the
following conditions are equivalent :

(1) S is semiboolean.

(i1) J¢(8) is a generaliged Boolean algebra.

(i11) P(S), the set of all prime ideals is unordered by sel

inclusion.J

Noor and Rahman [45] has proved the following

theorem which is an extension of above result.

Theorem 1.4.3. Let S be a distributive nearlattice. S is relatively

complemented if and only if P(S) is unordered.l]

We conclude this section with the following result
which is due to [14, Theorem 3.6]. This generalizes a well

known result of Hashimoto in Lattice Theory [19, Theorem

8, pp-91].

Theorem 1.4.4. For a nearlattice S with 0 the following conditions
are equivalent.

(1) S is semiboolean.

(ii) I(8) is isomorphic to C(S).

(iii) For all ideals I, ® (I) = R(I).U
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5. Principle of localization.

Principle of Localizations are extensions of lecture
notes of my supervisor Dr. Noor on localization. For some
ideas on localization see section 5 of Cornish[12]. This will

be needed for the developement of this thesis.

Let F be a filter of a distributive nearlattice S. It can be
easily shown that the relation Yyp on S, defined by
x =y (Yg) (x, y € S) if and only if x A F =y A f, for some
f € Fis a congruence on S. Let us denote S/y(F) by Sg (the

quotient lattice). Then W : S ----— Sg is the natural

epimorphism.

Lemma 1.5.1. Sg is @ distributive lattice .

Proof : Clearly Sg is a lower semilattice. Now, let

p ,q € Sg. Then there exist x, y € S such that p = Wi (3),

q = Ygr (y), as Yr is an epimosphism. Clearly x = x A { (Y5)
and y =y A £ (yg) forany f € F.

So, g (x) = yg (x A ) and Yg () = W (y A f). Now,

(x A £) v ( A f) always exists in S, due to the upper bound

propesrty of 8. Thus , p v q exists. Moreover,



27

pva=wrxAD VY FAD=wr(xArDV D

Hence Sg is a lattice. The distributivity of Sg clearly follows

from the distributivity of S. 0

Lemma 1.5.2. Let F be any filter of a distributive nearlattice S.
For any ideals 1 and ] of S, the following hold :

(i) wg (1) is an ideal of Sg.

(i) W (1) is a proper ideal (i. e, # whole lattice) if and only
if I F =0,

(i) wg @) v we ) = we AV ])-

(vi) wg () nwp () = wrp TN ]).

Proof : (i) Fori,j e I, yg (i) V ¥r (j)

—Wr GAD VY GAD=we ((iADV(AD) forany

f € F. Thus, ¢ (I) is closed under finite supremum. Now,
suppose t € Sp and t £ Y (i) for some i € L. Then t = Yg (%)
for some x € S, and. t = Wi () A Wg ()= Wg (x A i) € g (I).

Therefore, W (I) is an ideal of Sp.

(i) If yg (I) is proper, then there exists x € S, such
that g (x) does not belong to yg (I). Suppose I N F # O
and r e IN F. Sincer € F,x=x At (Yg). Butx A r €1, and
this implies Wy (x) € Yyg (I), which is a contradiction. Hence

InF=0O0.
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Conversely, if Wy (I) is not proper,then for any fe F,
yr () € yr (I). Thus, yg (f) = Y (i) for some i € I. Then,
f A f,=i Af, for some f; € F and this implies f A f; e I N F

and so I N F # O.
(111) and (iv) are trivial. O

Let ] be an ideal of a nearlattice S . We say that a prime
ideal P of S is a prime divisor of J it J € P. A prime divisor P
of J is called minimal prime divisor if it does not properly
contain another prime divisor of J . If 0€S , then a minimal

prime divisor of (0] is called minimal prime ideal. For the

theory of minimal prime ideals in a general setting see

Cornish [13 ].

Theorem 1.5.3. Suppose F is a filter of a distributive nearlattice
S. Then for any ideal J of S, W 'wr (J) = {x €S/ x A f €] for
some £ € F}y = n {P /P is a (minimal) prime divisor of J in S
such that P n F = @},

Proof: yr  wr (J) = {y € S/ ws () € ¥r (N}
={ye S/y=x (yg) for some x € J}={y € S/y A f = x A { for
some f e F,xe])={ye€S/ynfe] for some fe F}. Now

we consider two cases :
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Case 1. Let ] n F #®. Then there exists x € ] N F and for
any prime divisor P of J, P n F # @. Thus,

{ P/ Pisaprime divisor of Jand Pn F = ®}= @, and so
N {P /P is a prime divisor of Jand PN F=®} =35

={yeS/ynxe],xe]nkF}

Case 2. Suppose ] n F = @. Clearly, {y € S/y A f € ] for
some f € F} ¢ n {P/ P is a prime divisor of ] and

PN F=®}. Let x € S be such that x A f & ] for all fe F,
and let G = [x) v F. If ] n G # ®, then there exists t € ]
and t 2 %, A f for some x; 2 x and for some f € F. This
implies x A f € x, A f <t and consequently x A f € ], which
is a contradiction. Thus, ] n G = ®. Then by Theorem
1.2.7, there exists a prime ideal P of S such that ] € P and

G P=® Ineffect, x 2 Pand FN P =@ as F ¢ G. This

completes the proof. 0

Theorem 1.5.4. Suppose F is a filter of a distributive nearlattice
S. Also, suppose Q ={P/P is a prime ideal of S, suck that

PNEF=0} and P:{j) / ]_9 is a prime ideal of Sg}. Then Q and P

are order isomorphic posels.

Proof : Let P € Q. Then yg (P) # Sg by 1.5.2. Also,
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We () A Wr () € wp (P) implics W (x A y) = g (@) for
some q € P. Then, x A yAf =qAf for some f € F and so
cither x € P or y € P. Hence, yg (x) € Yg (P) or

Ve (y) € Wi (P), showing that yg (P) is a prime ideal of Sg
Thus, Wy is a map from @ to P and it is clearly 1sotone.
Again, for any P € P it is very easy to show that

qu'l (_I-’) € Q and 1|JF'1 : P ----— @ is obviously isotone. As
Wy : S ----— Sg is onto, Yg lpp'l = I,. Moreover, by Theorem
1.5.3,lpF_11pF (Q)=Q for any Q€ @, and hence wF_l yr = I,

Therefore P and Q are order isomorphic .0

In the above theorem, S - P o F for all P € @ Of

course in any nearlattice S, the map P ----—> 5 - P is an order
reversing i1somorphism between the poset of prime ideals
and the poset of prime filters of S. Thus, we have the
following important corollary which 1is an immediate

consequence of above theorem.

Corollary 1.5.5. For a distributive nearlattice S, the set of prime
filters of S containing a given filter B of S is order isomorphic to the

set of prime filters of Sg. U

Theorem 1.5.6. Let S ke a distributive nearlattice . Then for each

ideal ] of S, ] = () (qu'1 yg (J)) where F ranges over the prime
4

filters of S.
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Hence for any ideals 1 and ] of S, wr (1) = yg (]) for all
prime filters F of S implies 1 = ],

Proof : For any filter F of S, Clearly \|JF,'1 Ve (J) 2 J. Hence
J < n (lllp-1 Wg (J)) where F ranges over the prime filters F
F

of S. Now, let x € ﬂ (qJF_1 Ye (J)). Then, x € (qu_l ye (1)
F

for all prime filters F of S. But, for any filter F of S,

we W ()={ yeS / y A f e ] for some fe F} by Theorem
1.5.3.Thus,for any prime filter F of S,xAf;€ ] for some

f, e F.If x ¢ J, then by Theorem 1.2.7, there is a prime
ideal Q of S such that x does not belong to Q and J € Q.
Then for any f € § - Q, x A [ does not belong to J] € Q
which is a contradiction as Q is a prime ideal of S . Hence

XEJ.D

Suppose S is a distributive nearlattice . For any x, y €5,

we define < x,y>={s €S8 /sAxSy} and
<x,]>={seS/s/\x€-]} for any ideal J of 5. It is

easily seen that <x, y> and <x, J> are ideals of S. Moreover,

< x, 7 > is known as the relative annihilator ideal c. f.

Mandelker [33]. For any x in 2 nearlattice S with 0, we

denote (x]* = {y € S/ynzx= 0.}
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The following proposition is needed for the further
development of this thesis. We omit the proof as it 1s easily

verifiable.

Proposition 1.5.7. Suppese F is a filter of a distributive
nearlattice S with 0. Then the following condition hold :

() wr (=D = (g ()]

(i) For any ideal ] of S, wg (<x, J>) = < yg (x), Wg () >
(111) g ((=]*) = (vr () ]*

(iv) W ( <z, y>) = <wg (x), We (y) >.0
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6. Sectionally pseudocomplemented nearlattices.

Pseudocomplemented lattices have been studied by

several authors [23], [26], [28], [29], [30], [31].

On the other hand [9], [34], extended the notion of

pseudocomplemeﬂtation for meet semilattices.

Let L be a lattice with 0 and 1. For an element x € L
element x* € L is called psexdocomplement of x if x A x¥=20

and x Ay =0 (y e L) implies y £ x *

A lattice is called j);eudwomp/emeﬂted if its every element

has a pseudocomplement.

For a nearlattice S if 1 € S then S becomes a lattice. So

the idea of pseudocomplementation is not possible in case
of a general neaclattice. But for a nearlattice S with 0, we

can talk about sectionally pseudocomplemented nearlattices.

A nearlattice S with 0 1s called sectionally

psendocomplemented if interval [0, x] for each x € S is

pseudocomplemented Of course every finite distributive

nearlattice is sectionally pseudocomplemented. Sectionally

pseudocomplemented nearlattices have also been studied by

[46]. Following Figure 1.6 gives an example of a distributive
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nearlattice with 0 which 1s not sectionally
pseudocomplemented.

In R? consider the set :
E={0,y)/0<y<5uvu{2,vy5)/0=<y<5} v {(,)5),
(4, 5), (3, 6)}.

Define the partial ordering £ on E by (x, y)S(xy, yy) if
and only if x £ x; and y £ y; .Here E is clearly a distributive
neaclattice. This is not a lattice as the supremum of (3, 6)
and (4, 5) does not exist. Consider the interval [0, P].
Observe that in this interval (2, 0) has no relative
pseudocomplement.  So, (E, <£) 1is not sectionally

pscudocomplemcntcd .

3.6) ¢

A a (25 é* —®
(0-2) ) P(3.5) 4.5)

0(0.0 (2.0)
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Though we can not talk about pseudocomplementation
in a distributive nearlattice S with 0, I(S) the lattice of ideals

of § 1s pseudocomplemented as it is a distributive algebraic

lattice.

A nearlattice S is called relatively pseudocomplemented if

interval [a, b] for each a, b € S, a < b 1is

b

pseudocomplemented .

Theorem1.6.1. IfS is a distributive sectionally psendocomplemented

nearlattice, then Sg is a distributive psendocomplemented lattice.

Proof: Suppose S is sectionally pseudocomplemented. By

Lemma 1.5.1, Sp is a distributive lattice. Let [x] € Sg, then

0 c[zx] c F..Now0<xnf<H forallf e F

Let y be the pseudocomplement of x A f in [0, f], then
y A x A f = 0 implies [y A f] A [x] = [0], that is
[y] ~ [x]= [0].

Suppose [z] A [x] = [0], for some [z] € Sg, then
2 A x=0 (yp) This implies 2 A x A £/ = 0 -ooooees (i) for
come £/ € F. Since z=zAFf (wp)rsoznf/=znf
(i) for some £/ € F. From (i) and (ii) we get
z A XA £/ A€/ =0 and 2Af A i/ =2 A f A £ A f”.Setting

g = & A ¢! we have z A g = 2 A g A f, which implies



zAg<fandzAgAnxAf=080,0=LzAng<T{ and zngSy.

Hence, [z A gl c[y] . But[z] = [zAg]asg e F
Therefore, [z] € [y], and so Sy is a pseudocomplemented

distributive lattice .U

We conclude this chapter with the following theorem.

To prove this we need the following lemma:

Lemma 1.6.2. Let S be a distributive relatz'velj

relative pseudocomplement of y in [z , z]. Then for any ¢ € S,

s At is the relative psendocomplement of y At in [x At 2 A o]

Proof: Suppose t A r is the relative pseudocomplement of
y Arin[x A1,z A 1] Since s is the relative
pseudocomplement of y in [, z],50 s Ay = x . Thus ,

(s Atf) A (yAr)=xArc This implies s ArStATL Again,
x<sv{tar)SzandyA (sVv (tArx))
=(y/\s)v((y/\r)/\(t/\r))=xv(x/\r)implies
sv(tAr)Ss,i,e.s=sv(t/\c).Hence t Ar<s,and so
t Ar<s Ar Thisimplies tAr=sA r.Therefore s Ar is

the relative pseudocomplement of y Ar in [x A £,z Ar ].0
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psendocomplemented neariattice. Let x < y < z in S and s be the
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Theorem 1.6.3. IfS is a distributive relatively pseudocomplemented
nearlattice, then Sy is a distributive relatively pseudwamp/emented

lattice.

Proof: By Lemma 1.5.1, S is a distributive lattice. Let

[x] , [y]  [2] €Sg with [x] € [y] € [2]. Then [x]=[x A y] and
[y] = [y A 2].Thus, x =x Ay (yg)and y =y A z (yg) . This
impliesx Af =xAyanfandyang=yAzAgforsome
f,ge L. ThenzxAfAag=xaAnyAnfAngand
yAanfAag=ynzaf g, andso
xnfrgsynfangszafag,thatis

x/\hSyAhSzl\h where h = f A g €.

Suppose tis the relative pseudocomplement of y A h
in [5A h,z A h]l. Then t Ay A h = x A h, and so [tJA[yn h]
=[x A h]. That is ,[t] A [y] = [x] as y =y A h (¥g ) and
x=x A h (Yp).Moreover [t] A [z] = [t] A [z A h]
= [t A z A h] = [t] implies [x] € [t] € [z]. We claim that [t] 1s

the relative pseudocomplement of [y] in [[x],[2]] 1n SF.

Suppose [s] A [y] = [x] for some [s] € [[x],[z]]. Then
s Ay=x (Yg) and sos/\y/\f/=x/\f/ for some
f/ € F. Again [s] € [z] implies s = s A z (¥g), and so
s/\g/=s/\2/\g/forsomcg/e F.Thens/\y/\f//\g/
—xnf Ag andsaf ag =saz Al Agl Thus,

s/\y/\k=x/\kands/\k=s/\zl\kwhere



k=f Ang’ e F These imply
xAhAkS<sAhAaAak=SzanhAak

and (s AhAak)n (yanhnank)=xAnhAk Then by above
lemma, s A h A k<tAak. Hencé

[s] =[s A hAak]cl[tak]=[t] and so [t] 1s the relative
pseudocomplement of [y] in [[x],[y]]. Therefore, S is

relatively pseudocomplemented. [
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CHAPTER TWO

GENERALIZED STONE NEARLATTICES

Introduction: Generalized Stone lattices have been
studied by several authors including Katrinak [27] and
Cornish [13]. In this chapter we generalize the concept to

nearlattices.

A distributive pseudocomplemented lattice L s

called a Stone lattice 1f ¥ v x*¥* = 1 for each x € L.

A distributive lattice L with 0 is called a generaliged

Stone lattice 1f (x]* v (x]** = L for each x € L.

We call a distributive nearlattice S with 0 a

generaliged Stone nearlattice if (x]*v(x]*¥*=S8, for each x € S.

Normal lattices have been studied extensively by
Cornish in [13]. In [44] Noor and Latif extended the idea
to nearlattices. According to [44], a distributive
nearlattice S with 0 is called normal 1f its every prime

ideal contains a unique minimal prime ideal.

In this chapter we have generalized several results of
[13] on generalized Stone nearlattices by introducing the
notion of quasi-complemcntcd nearlattices. We have also

proved that a distributive nearlattice S with 0 s
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generalized Stone if and only if it is both normal and

sectionally quasi-complemented.

In section 1 of this chapter we have given a
characterization of minimal prime ideals of a sectionally
pseudocomplemented distributive nearlattice. Then we
have shown that every generalized Stone nearlattice is
normal. Moteover we show that every sectionally
pseudocomplemented distributive nearlattice is
generalized Stone if and only if every two minimal prime

ideals are comaximal; i.e. normal.

In section 2 we have studied distributive quasi-
complemented mnearlattices. We have proved that a
distributive nearlattice S with 0 is generalized Stone if
and only if it is both normal and sectionally quasi-

complemented.
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1. Minimal prime ideals,

Recall that a nearlattice S with 0 is called
sectionally pseudocomplemented if [0,x] is
pseudocomplemented for each x € S. For any y €[0,x], we
will denote the relative pseudocomplement of y in [0, x]

by y+. Also, for any y € [0, x] we denote

(Y]+= {t e [0,x]/yAt=0}.
For any x € S, set D ((x]) = {y £ x / y =0} where y"

is the relative pseudocomplement of y in [0, x].

A prime ideal P of a nearlattice S is called minimal if

there does not exists a prime ideal Q such that Q < P.

The following lemma is an extension of a
fundamental result in lattice theory; c.f.[19, Lemma 4 pp.
169]. Though our proof is similar to their proof, we

include the proof for the convenience of the reader.

Lamma 2.1.1. Ler S be a nearlattice with 0. Then every prime

ideal contains a minimal prime ideal.

Proof : Let P be a prime ideal of S and let ~4 be the set
of all prime ideals Q contained in P. Then g is nonvoid,
since P € o94. 1f C is a chain in 3 and

Q=n(X/ X e C), then Q is nonvoid, since 0 € Q and

Q is an ideal; infact Q is prime. In deed, if a A b € Q for
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some a, b € S, then a A b € X, for all X € C; since X 1s
prime, either a € X or b € X.Thus either Q=n(X / a€ X)
or Q = n (X /b e X), proving that either 2 or b € Q.
Therefore we can apply to o9 the dual form of Zorn’s

Lemma to conclude the existence of a minimal member of

. 0

Two ideals I and ] of a nearlattice S are called

comaximal 1f 1 v ] = 8S.

To prove the next theorem we need the following
Lemmas which are due to [46]. These results are also

generalizations of [10, Lemma 4.3].

Lemma 2.1.2. Let S be a distributive nearlatiice with 0. Let

0<xeS and the interval [0,x] is psendocomplemented. If y' is

the relative psendocomplement of y in [0, x], then

(3 1=(31* A (5] and (771 = (y)** A (x].0

Lemma 2.1.3. Let S be a distributive nearlattice with 0. For

any £ € S and any ideal I, ((r] A 1)* A (c] = I* A (c].0

Following theorem is a generalization of [19, Lemma

5, pp.169].
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Theorem 2.1.4. Let S be a sectionally psewdocomplemented
distributive nearlattice and P be a prime ideal in S. Then the

following conditions are equivalent :
(1) P is minimal
(ii) x € P implies (x]* @ P
(iii) = € P implies (x]** € P
© (iv) P D ((t]) = D for all t € S-P.

Proof : (i) implies (ii) and (ii) implies (ili) are trivial
from the proéf of [19, Lemma 5, pp.169].

(iii) implies (iv). Choose any t € S-P. Let
x € P D ((t]). Then x° = 0, and so " = t. Also by
(iii),(x]**CcP. Thus by Lemma2.1.2,(t]=(x" 1= (tIA(x]** CP,
and so t € p, which gives a contradiction. Therefore

P D ((t]) =@ forall t €S-P.

(iv) implies (i). If P is not minimal, then there exists
Q c P for some prime ideal Q of S. Let x € P-Q. Since
Q is prime, so (xIn(x]* = (0]€Q implies that (x]* €QC P.
Thus, (x] v (x]* € P. Choose any t € S-P. Then
(] A ((x] v (z]*) P and so (t A x] v ((t] A (x]*) € P.
Now by Lemma 2.1.3, (t] A (x]* = (t] ~ (t A x]* and by

Lemma 2.1.2, (t] A (t A x]* = ((t A x)+], where (£ A x)+ is
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the relative pseudocomplement of t A x in [0, t]. This
implies (t A x) v (tAx)" € P.But (tAx) Vv (tA )
=(tax) A(tax)" =0 implics that (t A x) v (t A x)7 €D((t]).
Hence P n D ((t]) #®, which is a contradiction,

Therefore, P must be minimal.O

Normal lattices have been studied by several authors
including Cornish [13] and Monteiro [35], [36]. In [44]
Noor and Latif extended the idea to nearlattices.
According to [44], a distributive nearlattice S with 0 is
called normal if its every prime ideal contains a unique
minimal prime ideal. Equivalently, a distributive
nearlattice 8 with 0 is called normal if each prime filter
of S is contained in a unique ultrafilter (maximal and

propef) of S.

Following theorem gives a description of normal

nearlattice which is due to [44].

Theorem 2.1.5. For a distributive nearlattice S with 0, the

fo//awz'ng conditions are egﬂz’ualent.

(i) S is normal.

(11) Each prime ideal of S contains a unique minimal prime
ideal.
(iii) Each Prime filter of S is contained in a unique

ultrafilter of S.
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(iv) Any two distinct minimal prime ideals are comaximal.
(v) For all x, y € S, x A y=0 implies (x]* v (y]* = S.
(vi) (= A y]* = (x]* v (y)* fer all 3, y € §. U

Consider the following distributive nearlattices with

0. Observe that in both S; and S, , (b] and (d] are distinct

e
C
d d c
a b a b
0 0
S1 S2
Figure 2.1 Figure 2.2
minimal prime ideals. Moreover, (b]v(d]=S; but

(b]v(d]#S, . Therefore,5; is normal but S, is not. Also
observe that in S, , {0,a,b,c,d} 1is a prime ideal whice
contains two prime ideals (b] and (d], and so S, 1s not

normal.

Recall that a distributive nearlattice S with 0 1s a
gencralized Stone nearlattice if (x]* v (x]** = S for each
x € S.

Katrinak in [27, Lemma 8] has proved the following

result for lattices. We generaliza it to nearlattices.
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Theorem 2.1.6. A distributive neariattice S with 0 is a

generalized Stone nearlattice if and only if each interval [0,x],

0 < x € S isa Stone lattice.

Proof : Let S with 0 be a generalized Stone and let
pel0,x]. Then (p]* v (p]** = S. So, x € (pI* v (p]**
implies x=tr v s, for some r € (p]*, s € (p]**. Now re(pl*
implies £ A p= 0, also 0 < ¢ < x. Suppose t € [0, x] such
that t A p = 0, then t € (p]* implies t A s = 0. Therefore,
tAx=tA(cvs)=(tAar)Vv (tas)=(tAr)vI=tarxr
implies t = t A r implies t < t. So, tr is the relative
pseudocomplement of p in [0,x],i.e, r=p+.Since s € (p]**

and r € (p]*, so sAr=0. Let q€[0, x] such that q A r = 0.

Then as x = £ Vs, so q A x=(q A 1) V (@ A s) implies
q = q A s implies q < s. Hence, s is the relative
pseudocomplement of r = p+ in [0, x] 1. e, s = p++
implies x = r v s = p+ v p . Thus [0, x] is a Stone

lattice.

Conversely, suppose [0, ], 0 < x € S is a Stone
lattice. Let p € S, then p A x € [0, p]. Since [0, p] is a
Stone lattice, then (p A x)+v (p A x)++ = p, where (p/\x)+
is the relative pseudocomplement of(pAx) in [0,p].
Therefore p € ((pln(pr x1*) v ((p] N (p A x]**). So, we
can take p = ¢ v s, for r € (pAx]*,se(p n x]**.Now,

re (pAx]* implies tApAx=0 implies tAx=0 implies re(x]*
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and se(pax]**. Now pax<xzx implies (pAx]**C (x 1*%,
and so s€(x]**.Therefore p = r VvV s €(x]*v (x]*F and
so, S € (x]* v (x]**. But (x]* v (x]** c S is obvious.

Hence (x]* v (x]** = S and so S is generalized Stone. U

Following theorem s a generalization of [13,

proposition 5.5(b)].

Theorem 2.1.7. Let S be a distributive nearlattice with 0. If

S is generalized Stone, then it is normal.

Proof: Let P.and Q be two minimal prime ideals of S.
Then P, Q are unordered. Let x € P-Q. Then

(x]A(x]* = (0] € Q implies (x]* C Q. Since P is minimal,
so by Theorem 2.1.4, above (x]** < P. Again, as S is
generalized Stone, so (x]*v (x]**=8.This implies Pv Q=3

and so by Theorem 2.1.5, S is normal.l

Following lemma is due to [46, Lemma 2.8] and so

we omit the proof.

Lemma 2.1.8. If S, is a subnearlattice of a distributive

searlattice S and Py is a minimal prime ideal in Sy , then there

excists a minimal prime ideal P in S such that P,=5 NP. 0

Theorem 2.1.9. A sectionally pseundocomplemented distributive
nearlattice S is generalized Stone if and only if any two minimal

prime ideals are comaximal.
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Proof: Suppose S is generalized Stone. So by Theorem

2.1.7 any two minimal prime ideals are comaximal.

To prove the converse, let P, Q be two minimal

prime ideals of 5. We need to show that [0,x] is Stone,
for cach x € S . Let P,,Q; be two minimal prime ideals 1n
[0,x] . Using Lemma 2.1.8. there exist minimal prime
\deals P,Q in S such that P,= P n [0, x], Q¢ = Q » [0, x].
Therefore Pyv Q,=(PA[0,x])V(QN[0,x]) =[P v Q] » [0, ]
=S n [0, x] = [0, x].

Therefore by [20, Theorem 6. p.115], [0, x] is Stone.
So, by Theorem 2.1.6 above, S is generalized Stone.l

Thus we have the following corollary.

Corollary 2.1.10.4 distributive nearlattice S is generali:{ed

Stone if and only if it is sectionally pseudocamp/emeﬂted and

normal.l}

Thus the nearlattice $; of Figure 2.1 is in fact a
generalized Stone nearlattice, as it is both sectionally

pseudocomplemented and normal.
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2. Quasi-complemented nearlattices.

Quasi-complemented lattices have been studied by
several authors including Varlet [56], Speed [52] and
Cornish [13]. These lattices are generalizations of
pseudocomplemented lattices. Here we generalize these to

nearlattices.

A distributive nearlattice S with 0 is called guasi-
complemented 1f for each x€8 there exists x/ €S such

that x A x = 0 and ((x] v (x/])* = (0].

A distributive nearlattice S with 0 is called
sectionally quasi-complemented if each interval [0,x], x€3S 1s
quasi-complemented. Of course every  sectionally
pseudocomplemented nearlattice is sectionally quasi-

complemented.
Following theorem generalizes [13, Proposition 5.5].

Theorem 2.2.1. Let S be a distributive nearlattice with 0.
Then S is quasi-complemented if and only if il is sectionally

guasi-complemented and possesses an element d such that

(d]*=(0].

Proof: Suppose S 15 quasi-complemented. Then there

exists an element d such that 0Ad=0 and

(d]* = ((0] v (d])* = (0].
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We now show that an arbitrary interval [0,x] is quasi-
complemented . Let ye[0,x]. Then there cxists y' €S such
that y A y/ = 0 and ((5] v (5')* = (0]. Put z = x Ay
ThenzAy=(xAy)Ay=xA(yAy)=0andze [0 x]
If w €[0, x] and (w] A ((] V (2]) = (0], then (w A y] = (0]
c(wAz)=(w A x Ay = Ay ] Thus (w Ayl v (wAY]
= (0], and so (w] A ((5] v (3']) =(0]. Hence w=0, and so

[0, x] is quasi-complemented.

Conversely, suppose S is sectionally
quasicomplemented and there exists an element d€S§ with
(d]* = (0]. Let x € S and consider the interval [0, d].
Then x A d € [0, d]. Since S is sectionally quasi-
complemented, so there exists an element e [0, d] with
sadaz’= 0 and {y € [0,d] / y A ((xAd)Vx y =0}= (0].
Now let ze((x]v(x 1)*. Then z A £=0 for all re(x] v (x .
Since (x A d) v 2’ € (x]v(x],soz/\((x/\d)Vx)
Thus, z A d A ((x A d) v x/) =0 and z A d € [0, d]; s0
2 A d = 0. This implies z € (d]* =(0]. Hence z = 0 and

/

s AndAx’ =0 implies x A x/ =0. Therefore S is quasit-

complemented.D

Following result is also a generalization of [13,

Theorem 5.6]
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Theorem 2.2.2. If S is a quasi-complemented and normal

nearlattice then it is a genem/z'{ed Stone nearlattice. The

converse of this is true if there exists d€S such that (d]*= (0].

Proof : Let x € S. Then there exists x/ € S such that
2 Ax’ =0and ((x] v &'D* = =1* A (x']* = (0]. Then by
an easy computation we have (x]** = (x']*. Since S is
normal, so by Theorem 2.1.5, (x]* v (x']* = S, and so

(z]* v (x]**=S. Therefore, S is generalized Stone.

Conversely, suppose S is generalized Stone. Then by
Theorem 2.1.7, S is normal. Also by Theorem 2.1.6, S is
sectionally Pseudocomplemented, and so it is sectionally

quasi—complemented.

Hence if there exists d € S with (d]* = (0], then by

Theorem 2.2.1 S is quasi-complemented. 0

Following result is a generalization of [13, Theorem
5.7]. Of course Cornish’s [13] work was a generalization
of Varlet’s [56] and Speed’s [52] work. That was also an

extension of Grédtzer and Schmidt’s [23] characterization

of Stone lattices.

Theorem 2.2.3. A nearlattice S with 0 is genera/i{ed Stone if

and only if it is both normal and sectionally quasi-complemented.
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Proof: Suppose S is both normal and sectionally quasi-
complemented. Consider any interval [0,x], x € S. Since S
is normal so by [44], (x] is a normal sublattice of S. Let

t € [0,x]. Since [0,x] is quasi-complemented, so there
exists t' € [0,x] such that t A t/ = 0 and (t v t/]+ = (0],
where (t Vv t/]+ is the relative pseudocomplement of (tvt/]
i [0, x]. This implies (t]" A (¢/]7 = (0], and so by an easy
computation we have (£/]7 = (1]"7 . Since (x] is normal
iod t A t! =0, so by Theorem 2.1.5, (" v (']" = (=I;
That is (t]+v (t]++=(x]. Then x = p V q for some p € (t]+
and q € (t]++. Then p At = 0. Also for any r € (x], if

¢ e (t]*, then q A £ = 0. Then from x = p Vv q we have

= xAf=pAr and sor < p. Hence p is the relative

pseudocomplement of t in [0, x]. Therefore [0, x] is

++
and so

pseudocomplemented and p = t*. Similarly g = t
« =t v t77. This shows that [0,x] is 2 Stone lattice for

cach x € S. Therefore by Theorem 2.1.6, S is generalized

Stone.

Converse is trivial by Theorem 2.1.6 and 2.1.7.0

Corollary 2.2.4. A distributive nearlattice S with 0 is
generalized Stone if and only if it is normal and sectionally

pseudwamplemented.lj
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A nearlattice S with 0 is called dense if (x] *=(0] for
each x # 0 in S . The following theorem 1s an extension

of Theorem 4.1 of Cornish [ 13 ].

Theorem 2vdsrs = FoF a distributive sectionally
psendocomplemented nearlattice S , the following hold:

(i) If S is generalized Stone then Sy is Stone for any filter
F of S .

(i1) S is gemeralized Stone 'if and only if for each prime
filter F of S, Sg is a dense lattice.

Proof : (i) Let W (x), Wr (y)€ Sk be such that

Y. (x)A¥z (y) = 0. Then, x Ay = 0(¥p), which implies
that x A y A f=0 for some f € F. Since S is generalized
Stone, then by Theorem 2.1.7, S is normal, so

(x]* v (y A f]* =S, by Theorem 2.1.5. Hence

(¥r (x)]* v (Ye NI = (¥r (x)1* v (e (5 A DIF

= ¥, (x]* v 0 ~ §%) =¥ (S)=Sp. Thus, by Theorem
2.1.5, Sp s normal.Again, since S5 s sectionally

by Theorem 1.6.1, Sg 1s

Pseudocomplemcntcd, then

Hence by Theorem 2.1.5 and G.

pseudocomplemented

Grétzer [20, Theorem 6, pp- 165] Sg is Stone.

(i) Suppose S is generahzed Stone. Let ¥g (x);‘-'a sl

¥Yr (q) € (¥e (x)]* Then Vg (q) A Ye (x) = 0. Then by

d Theorem 2.1.5, F is contained in a
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unique ultrafilter of S. Thus by Theorem 1.5.5, Sg has a

unique ultrafilter; and so Sz has a unique minimal prime
ideal. But the zero ideal of Sz (as 0 € S) is the
intersection of all the minimal prime ideals of Sg. Hence,
by uniqueness, it is (minimal) prime ideal of Sg. Hence

Y: (q) 26, showing that Sg is dense.

Conversely, let Sy be dense for each prime filter F

of S. Suppose x, y € S are such that x A y = 0. Then,

Y. (x A y) = ¥ (0) = 0. That is ¥g (x) A ¥s (y) = 0
which implies that ¥p (x) = 0 or ¥ (3) = 0 as Sg is
dense. Hence, either(¥p (x)]* = Sy or (¥r (3)]* = Sp
Thus by Theorem 1.5.7, ¥y ((x]* v (y]*) = Sz = ¥ (5),
and so by Theorem 1.5.6 (x]* v (y]* = S. Therefore S is

normal. Again, since S 1s sectionally

pseudocomplemented, so by Theorem 2.2.4, S is

| generalized Stone.lU



CHAPTER THREE
RELATIVE ANNIHILATORS IN NEARLATTICES

Introduction : Throughout this chapter we will be
concerned with the relative annihilators in nearlattices. For
a, b € S, we define < a, b> = {(x €e S/ a A x S b}.
According to [33], <a, b> is known as an annibhilator of a
relative to b or simply a relative annibilator. It is very easy to
see that inpresence of distributivity <a, b> is an ideal of S.
Relative annihilators in lattices have been studied by many
authors including Mandelker [33] and Varlet [57]. Also
Cornish [13] has used the annihilators in studing relative

normal lattices.

In section 1 of this chapter we have studied extensively
the relative annihilators in nearlattices.We also include
characterizations of modular and distributive nearlattices in
terms of relative annihilators.Then we have generalized some
of the results of [33] on celative annihilators. We have shown
that in a distributive nearlattice S, <a,b> v <b, a> = S for
all a,b €S if and only if the filters containing any given

prime filter form a chain.

For the background material in Lattice theory see
Gratzer [19].Mandclkcr [33], Varlet [58] and Gritzer and

Schmidt [23] have studied relatively Stone lattices. In section
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2 we have introduced the notion of relatively Stone

nearlattices.

Recall that a pseudocomplemented lattice L s called a
Stone lattice if for each x € L, x* v x** = 1. We call a
distributive nearlattice S a relatively Stone mearlattice if each

closed interval [x,y] with x <y (x, y € 8) is a Stone lattice.

In section 2 we have given several characterizations of
relatively Stone nearlattices. We show that for a distributive
nearlattice S in  which every <closed interval s
pseudocomplemented is relatively Stone if and only if any

two incomparable prime ideals of S are comaximal.
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1.Some characterization of relative annihilators in

nearlattices .

Recall that a nearlattice S is distribuitve if for
all x,y,z€8,x A (y v z) = (x A y)Vv(x A z )
provided y Vv z exists. Since for all x,y,2z € S,

(x Ay) Vv (x A z) always exists by the upper bound
property, we give an alternative definition of distributivity of

S by the following Lemma.

Lemma 3.1.1 . A nearlattice S is distributive if and only if for all
t, X, 7,2 €S, tA((x Ay)V (X A z))

-_-(t/\x/\y)v(t A X AN zZ).

Proof : Suéposc S is distributive . Then obviously,

tA((xAy)Vv(x A z))= (tAx A y)Vv(t A xAz).

Conversely, suppose S has the given property. Let
a, b, c € S with b v c exists. Sett = b v c. Then
an(bvec)=an((t Ab)Yv(tnc))
—(antAb)v(antAac)=(aAb)v( anc)

Therefore S is distributive 0
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Recall that a nearlattice S is modular if for all

%, 7,2 €S withz £ x and whenever Yy V z exists then

EAN(y Vv z)= (x A y) v z. Like Lemma 3.1.1, we can also

easily characterize modular nearlattices by the following

result.

Lemma 3.1.2 . A neariattice S is modular if and only if for all
t, X, y,2 €S with z £ x,xA((tAy)V (tAz))

= (xAtAy)V (tAz).

Proof : Suppose S is modular. Then obviously,

xA{((tAay)v (tAaz)=EAtAY) V(LA z).

Conversely, suppose S has the given property. Let
a, b, c € S with ¢ £ aand whenever b vc exists. Set
t=bwvec,then an(bvc)=an((tab)v(tnc)
=(a/\t/\b)v(t/\c)=(a/\b)Vc.ThereforeSis

modular .0
Now we generailize Theorem 1 and Theorem 2 of [33].

Theorem 3.1.3 . For a nearlattice S the following conditions are

equivalent :
(i) S is distributive.
(ii) <a,b> is an ideal for all a, b € S.

(i11) <a, b> is an ideal whenever b S a.
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Proof : Since (i) implies (ii) and (ii) implies (iii) are trivial,

we shall prove only (it1) implies (1).

Suppose (ii1) holds. Let t, x, y, z € S. Then
(tAaxAny )v(taxaz )< x implies
<x, (tAxAy)V (tAxAz)>isan ideal. Again
taxay )S(tax A y) v(t n x A z) implies
tAy €<x, (tAxAy)V(tAxTAZ )>.
Similarly t Az € < x, (t A x Ay )V (t A x A z)>.
Hence (tAy)V(tAz)e <x, (tAXAYIV(tAXAZ)>.
Thus, x A ((tAay)Vv(tAaz)S(tAXAY)V(tAXAZ).
Since the reverse inequality is trivial, so
sA((tAy)V{tAaz))=({tAxAay)V (tAxAz)

Therefore by Lemma 3.1.1, S is distributive.ll

Theorem 3.1.4. A nearlattice S is modular if and only if whenever
b<a iftanxe (b]and tAy € < a, b > for any t € S,

then (t A x) V(tAy)e<a, b>.

Proof : Suppose S is modular. Since t Ay € <a, b>, so

antAy<b AlsotAxsbsa Thus by modularity of S,
an ((tAx)V (EAY)) = (antAy)V (tAXx)SDb,

and so (t A X) V (t Ay) € <a, b>.

Conversely, let the given condition holds, suppose
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t, X, 5,2 € S with z<x. Then (tAaz)v (tAaxAy)<x

and t Az € ((tAz)Vv (tAzxAy)]. Also,

tARAYS (tAz)V (EAxAY)

implies t Ay e < x, (t Az)v (t Ax Ay >. Then by
hypothesis (tAz) v (tAy)e <x, (tAz)V (tAXAY)>.
This implies = A ((t A )V (t Az)) £ (t Ax AY) V (t A 2).Since
the reverse inequality is trivial, so by Lemma 3.1.2, S 1s

modular.l

Following result is 2 generalization of a Lemma of [33]

in section 3.

Lemma 3.1.5 . Iz any distributive nearlattice S, each of the
following conditions on a given filter F implies the next.
(i) For all a, b € S, there exists an element x € F such that
a A X andb N x are comparable.
(i1) The filters containing F form a chain.
(i11) F is prime.

(iv) F contains a prime filter.

Proof : (i) implies (ii). Suppose (1) holds. If (ii) fails then
there exist noncomparable filters G and H containing F.
Choose elements a € G —H and beH -G .Then by (i) there

exists x € F such that a A x and b A x are comparable.

Suppose aAx<bazx Since x € F-G,s0 anzxeG.
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Then a A x<b implies b € G, which gives a contradiction.

Therefore (i1) holds.

(i1) implies (iii). Suppose (ii) holds. Let a, b € § with
a v bexistsand avb e F.Let G=F v [a) and H = F v [b).
By (ii), either G € H or H ¢ G. Suppose G ¢ H. Then a €H,
and so a = x A b for some x € F. Since x,av b € F,so
x A (avVv b-) € F. Thus by distributivity of S,
(x/\a)v(x/\b)-: (x A a) va=ae€ F. Therefore F is

prime.
(i11) implies (iv) 1s trivial .d

For a lattice L, the identity < a, b> v <b, a> = L for

all a, b e L is well known in Lattice theory. This identity in

fact, characterizes relatively Stone and relatively normal

lattices ; c.f. [33] and [13].

Theorem 3.1.6 . For a distributive nearlattice S the identity
< a, b> v <b, a> = 8§ for all a, b € S holds if and only if all

the conditions of Lemma 3.1.5 are equivalant.

Proof : Suppose the identity holds . We need only to show
that (iv) implies (1) of Lemma 3.1.5. Let a,b € S. Suppose P

is a prime filter contained in F. Choose z € P. Since
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<a,b>v <b,a>=S8,s502z=zxVyforsomexE€ <a,b> and
y € < b, a > Since P is prime , either x € P or y € P.
Suppose x € P. Then x € F, and x € <a, b> implies

aAx< b and so aAx<b A x. Therefore (i) holds.

Conversely, suppose all the conditions of the Lemma
3.1.5 are equivalent. Let there exist a, b € S such that
I = < a, b> v <b, a> is a proper ideal of S. Then by
Theorem 1.2.7, there exists a prime filter P disjoint from L.
Then by (iii) implies (i), there exists x € P such that a A x
and b A x are comparable . Suppose 2 A X <b n x. Then

a Ax<bimplies x € <a, b> which is a contradiction as

PAI= @ Therefore < a, b> v <b, a> = s. O

We conclude this section with the following

generalization of [33, Theorem 4].

Theorem 3.1.7. For any distributive nearlattice S, the following
conditions are equivalent :
(i) For all a, be$S, <a b>v<b,a>= S.
(i1) For any prime filter P and for any a, b € S there exists
x € P such tb.at a Ax and b A x are comparable.

(m) The filters containing any given prime [filter form a chain.
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Proof : (i) implies (ii) easily follows from the proof of first
part of Theorem 3.1.6 ; while (ii) implies (iii) holds by
Lemma 3.1.5.

(iii) implies (i). Suppose (iii) holds. Let for a, b eSS,
I = <a, b> v <b a> be a proper ideal of S. Then by Stones

representation theorem there exists a prime filter P disjoint
from I. Let G = P v [a) and H = P v [b). By (iii) either

G c H or HgG.SupposeGgH.ThenaePV[b)
implies a = x A b for some x € P.Then 2 € <b,a>,
which is a contradiction as P n I = ®. Therefore

<a, b> v <b a> =8.0
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2. Relatively Stone nearlattices.

We start this section with the following characterization

of relatively Stone nearlattices, which is a generalization of

[33, Theorem 5].

Theorem 3.2.1. Let S be a distributive nearlattice in which every
closed interval is pxeudowmplemented. Then the following conditions
are eguivalent :

(i) S is relatively Stone.

(ii) Forall x,y €S, <x,y> V <y, x> = 5 s

Proof : (i) implies (ii). Suppose S is relatively Stone. Let
x,yeS.ForanyaeSconsiderI:‘[xAy/\a,a]inS
Let + denotes the pseudoconlplement in I. Now ,

XAy Aa= (xAa)A(yAa). Since I is Stone , so by [19;
Theorem 3, pp.16I] 2= (xAyAa) = ((xra)v(yna)) *
'—‘(x/\a)+v(y/\a)+.Thus a = rVv s where f:(xl\a)+,
s = (y/\a)+.Then x AaAf=yAaAs=XAYyAa
Since 1, s = a,wehavex/\y/\a=x/\f—_—y/\s.This
implies x A = yand y A s S x and so

a=erE<x,y>v<y,x>.Hence(ii)holds.

(ii) implies (i). Let [a,b] be any closed interval 1n S and

let + denotes pseudocomplement in [a, b]. Let x € [a, b]. By
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++ + +

hypothesis <x* , x , x'> = S. Hence by [14;

>V<x+

Theorem 1.1] b =t Vv s for some r € < x +, = " > and

s + .
s € x" ", x >.Since a, , s < b, so by the upper bound

) . -+
property a V r, a V s exist.Now A x < x " and
4+ + ++
s Ax t<xt . Thus, s A (avr)<x . Moreover

3 + . .
x A(avVv r) £x is obvious. Hence

+ ++ + :
x Afavr)£x A x7 = a. Since a Vv r € [a, b], so
A
av < x .Similarly avs < x . Hence
_ + 4 “ -
b=(ave)Vv(avs)sx VX < b.This implies
+

++ : :
<7 v &7 = b and so [a, b] is a Stone lattice. In other words,

S is relatively Stone. O

Definition 3.2.2. A filter F of a nearlattice S is called meetl
irreducible if F = G A H implies pither B = G or B = H, where G
and H are filters of S.

Theorein 3.9.3 . LetS be a distributive nearlattice. A filter F of

S is prime if and only if it ic meet irreducible.

Proof : Suppose F is prime and F = G A H for some filters
G and H of §. If G # F. Then there exists g €G such that

g ¢ F. Suppose h cH .Then forany f € F,g AT EG and

h A f eH. Hence (g/\f)v(hAE)eGAH=F.But
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g/\fﬁéFasgS‘E'F.SinceFisprimesoh/\fethich

implies h € F. This implies H € F. As F ¢ H is obvious, so
F =H. Therefore F is meet irreducible.

Conversely, suppose F is meet irreducible. Let
a, b € S such that a v b exists and a Vv b € F. Set
G =Fv [a) and H = F v [b), clearly, F £ G A H. Now, let
x€ GAH, then x2f;, Aa,x2f, Ab, for some f£,, £, €F.
Hence, x2f;, Af,na x2f Af,Ab. Putf=1f Afy,
then we get x 2 fAna, x2f Ab, which implies that

x 2 (fna) v (fAb).

Now (fAa) v (fAab)=fnA(aV b), as S is distributive
and a v b exists. Therefore, (f A a) v(E A b) €F as

av b e F. Hence x € F.

Therefore, G A Hc F,and so G A H= F. Since F 1s

meet irreducible, so either G = F or H = F, that 1s either

a€ Forb e F. Hence F is prime .0

Following theorem generalizes a result of [58].
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Theorem 3.2.4 . In a distributive nearlattice S, the following

conditions are eguiva/ent.

(i) Any proper filter which contains a prime filter is prime.
(ii) For any pair of non-comparable prime ideals P and Q,
Pv Q=53

Proof : (i) implies (ii). Let S be a distributive nearlattice and

let P and Q be two non-comparable prime ideals in S such
that P v Q # S. Then by Theorem 1.2.7, there exists a prime
filter F disjoint from the ideal P v Q. 8 — P and § - Q are
non-comparable prime filters such that

(S - P) A (5-Q) = G o F, where G is a filter and by
assumption (i), G 1s prime, which 1s impossible. Because,
then by theorem 3.2.3 ,G is meet-irreducible. Hence for any

pair of non-compatable prime ideals P and Q, P v Q = 3S.

(ii) implies (i). Let 8 be a distributive nearlattice and let
there exists a prime. filter F and a non-prime proper filter G
such that F c G. Thus, G is not meet irreducible. Then
there exist filters A# G and B # G such that G = AN B.
So, we can -find two elements a and b such that a € A,ag B
and b € B, b ¢ A. Then by Theorem 1.2.7 again, there
Cvists a prime filtec A; containing A and disjoint from (b]
and a prime filter B, containing B and disjoint from (a]. A,

and By contain G and are non-comparable. Thus by

assumption (1), (S - A) v (S- B,) = S. Which would imply
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that any element of F is the join of two elements not
belonging to F, hence a contradiction as F is prime. This

completes the proof.l]

Recall that two prime ideals P and Q of a neatlattice S

are said to be comaximal {f P v Q = 3S.
Following result is due to [42, Theorem 2.7].

Theorem 3.2.5 . For any distributive nearlattice S the following

conditions are equivalent :
(i) Foer all a,b € S, <ab>v<b,a> =3.

(i1) The filters containing any given filter form a chain. g

Theorem 3.2.6 . Let S be a distributive nearlattice in which
every closed interval is p&eudowmp/emented. Then the following
conditions are equivalent! :
(1) S is relatively Stone.
(i1) The set of all prime ideals contained in a prime ideal is a
chain.
(111) Any two incomparable prime ideals are comaximal.
(iv)The set of all prime filters of S containing a prime filter
is a chain.
(v) Any proper filter which contains a prime filter is prime.
(vi) S g is a chain for each prime filter F of S.
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Proof : (i) implies (ii). Suppose (i) holds. Then by Theorem
3.2.1, <x, y> v <y, x> = S for all x, y € S. If (ii) does not
hold, then there exist prime ideals P, Q, R with P 2 Q, R
and Q and R are incomparable. Let x € Q -R and yeR- Q.
Then < x,y > (;_:R.and <y,x>¢c Q. Thus
S=<x,y>v<y,x>gQVRgP#—'S,whichisa

contradiction. Hence (ii) holds.

(it) & (i) and (1) < (iv) are trivial.

(i1i) < (v) holds by Theorem 3.2.4.

(iv) implies (vi) .Suppose (iv) holds. Then by
Corollary 1.5.5, the prime filters of Sg form a chain for any
prime filter F of 5. But, in a distributive lattice if the set of
prime filters form a chain, then the lattice itself 1s a chain.

Therefore Sg is a chain for each prime filter F of S.

(vi) implies (i). Let F be any prime filter of S. By (vi) Se
is a chain, and so for any x, ¥ in S, we have either
Ye (%) € W (y) or Wr (y) S.yp (x) . In either case,
<‘I’F(X)a‘l’1=(}’)>V<‘PF(Y),‘I’F(X)>=SF-
i.e.wF(<x,y>v<y,x>)=qu(S),andsobythe
principle of localization, <x, y> V <y, ¥~ = S. Hence by

Theorem 3.2.1, S is relatively Stone.l

Theorem 3.2.7. If F is a filter in a relatively Stone nearlattice

S, then Sg is relatively Stone .
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Proof : Suppose S is relatively Stone. Let ywg (x) , We(y)€ Sk
Then by Proposition 1.5.7,

SVYp (X)), Ve (1) > V<V (), Vr (x) >

=Yg <X, 7>V VY <y,xXx> = VYg [ x,y >V <y,x>]

Vg (S) =8, as S is relatively Stone.

Hence by Theorem 1.6.3 and Theorem 3.2.1, Sg s

relatively Stone.Ul

We conclude this section with the following examples .
Notice that both the nearlattices are relatively

pseudocomplemented. In nearlattice of Figure 3.1, notice

S] SZ

Figure 3.1 Figure 3.2
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that (a], (b] and (c] are only prime ideals. Here both (a] and

(b] are incomparable with (c] . Moreover,
(a] v (c] = (b] v (c] =8,;. Therefore 5; 1s relatively Stone.
But for nearlattices of Figure 3.2, obscrve that (a] and (b]

are incomparable prime ideals . But (a] v (b] # S, Therefore,

S, is not relatively Stone .

Also notice that though Sy is relatively Stone, it is not

generaliged Stone as 0 & Sy .



CHAPTER FOUR

NEARLATTICES WHICH ARE SECTIONALLY
(RELATIVELY ) IN By

Introduction : Lee in [31] has determined the lattice of all
equational subclasses of the class of all pseudocomplemented

distributive lattices. They are given by

where all the inclusions are proper and By is the class of all
pseudocomplcmcntcd distributive lattices, B_; consists of all one
element algebras, By is the variety of Boolean algebras while By,

for 1 € n < ® consists of all algebras satisfying the equation

A4 (Xl Nmmmmmmmmmmmem VANED ST RRVAN Xi* N Xjpqg N oo AN Xn)* '—"1,
where x* denotes the pseudocomplements of x. Thus B, consists

of all Stone algebras.

A nearlattice S is said to be sectionally in By, 1<n< o,if

each interval [0, %], x € S is in By

A distributive nearlattice S is said to be relatively in B,

1< n <o if its each interval [a, b], a, b € 5, a< bisin B

Cornish in [8] have studied n - normal lattices. Then Noor
in [41] has extended the idea to nearlattices and generalized

some results of [8]. By [41], 2 distributive nearlattice S with 0 is
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called n- mormal if every prime ideal contains at most n minimal

prime ideals.

Sectionally B, - lattices and relatively B, - lattices have

been studied by Davey in [16].

In section 1, we have studied sectionally B, - nearlattices.
We have given several characterization to sectionally
B_-nearlattices. We show that a distributive nearlattice 1s
sectionally in B, if and only if it s n- normal and sectionally

pseudocomplemented.

In section 2, we have shown that a distributive nearlattice S
is relatively in B, if and only if any n+1 pairwise incomparable
prime ideals are comaximal which is a generalization of some

works of Davey [16] and Cornish[8].
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1. Nearlattices which are sectionally in B,.

We start this section with the following lemma which is an
extension of 2.3 of Cornish [8] and which will be needed in the
proof of our next theorem. Since the proof of the Lemma 4.1.1.

follows easily from Cornish’s proof, so we omit the proof.

Lemma 4.1.1. Lef ] be an ideal of a distributive nearlattice S. For a

given positive integer n >1, the following conditions are equivalent:

(i) For any xg, Xy, ----=========~ , X, € S, which are “ pair wise in

J “ie. x A% €] forany i #j, there exisis k such that x, € J.

(1) J s the intersection of at most n distinct prime ideals. O

Following theorem s a generalization of a result of

Cornish [10, Theorem 4.5].

Theorem 4.1.2. Let S be a sectionally p.reudocoﬂzp/emented distributive
nearlattice . For given n such that 1 £ n < o, the following conditions

are equivalent :

(i) S is sectionally in By,

(ii) For any y € S, and for x| Xp, -==--=--===-===- X, € (vl
] € (=] A -mmmeee A (xn]) * v ((Rq]* A-mmmooes A (x])*
A kel v ((®] A ----mmemme- A (%, F)*



(iv) Each prime ideal contains at most n minimal prime ideals.

(v) For any n+1 distinct minimal prime ideals

B yomememem= Prags [y Wmmmmsmess v Py =S

(vi) For any g, Xq, -=-----=-=- , X, € S such that x; A x; = 0 for
(0 £ s i= 051, Zpprmoeeemr nyj=0,1,2,---------- n;
(o ]*V (xq]*V ----------- v (x,] ¥ = S.

Proof : (i) implies (i1). Suppose 2 < n. Let x* be the
Pseudocomplement of x; in [0, y]. By Lemma 2.1.2,

(B} Ao memmemmsms AERITEA------- A (5]

= (A AERIEAQGIA----- A (%]
=(g]A-------"---"- A(ETIA- A (%n]

= (R A-m-mmm /\xi+/\ ——————— A %]

(y]= (x5 A - Ax) v \/ N — P T g A x)"]
= (=) A = /\xn)]vi/l'((xll\ ------- Ax T A e A )]
= (g A === A X]* A DV \/ ((xy A =---- Azt A - Az ]*
< (=1 ] Ammmem A @d)F vV (] A e A (] A A ()

=1

= ((x4] A= A (x, DFV (4] A - A (x]F A ---- AxDD*,
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by Lemma 2.1.2 and as each x; < vy. If n = 1, then by (1) and
using Lemma 2.1.2 we have (y] = (xfr V x4 ++] = (x1+] \Y% (x1++]

= (& A GD v (& AGD e (x]* v (3]
(11) Implies (111) Firstly suppose 2 < n. Let xq, ------- ,X, € S.

Choose any r € S. Then by (11)

(r] € (( £ AR JA---mmm- /\(f/\xn])*vi/l((r/\xl]/\ ........
NCEE I A (£ A x])*, and so,

(] = (((£ A %] A =mmemmmmes A (e A xd VA G VY (A xi]
—— AL A K] FA-mmmmmmmee A (£ A x])*A (e])

Thus, (£ A %] A--mmmmm-mmms A (L AE]F A e NEXEN
(AR A o G ) L A (£ A x4], ans so,
((£ A R]A-mmmmmmmes A (8 A x]F A smmmmmenes Al A= )* A (1]
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Lemma 2.1.3 again.

Therefore, (1] © ((x1] A-------- A G )* V(1] A - (xa])*
¥ RER— N — A (2,]*)%, which implics that
(A A E)* v ((]* Ammmeee ) L A ——
V(@A A (9 = S,

If n = 1, then for any r € 5, we have by (i1) that
(r] € (£ A x>V (£ A X J**.
Thus, (] = (£ A x,J* 0 (@) V(£ A 5] 0 ()

= ((xl]* M (f]) v (A 5 ]** N (;]) c (x]* Vv (xl]**,
by Lemma 2.1.3 and hence (x}* Vv (x,]** = S.

(iii) implies (i) follows exactly from the same proof of [10,
Theorem 4.5 (iv) implies (1)].

(iv) implies (v). Supposc(iv)holds,and N e R
are distinct minimal prime ideals. If Py vV --------- v Poyy # S

then by Theorem 1.2.7, there exists a prime ideal P containing

P,,--mmmmm - . P_,,, which contradicts (iv)-

(v) implies (iv). Suppose (V) holds. If (v) does not hold,
then there exists a prime ideal P which contains more than n

minimal prime ideals. Then by (v) ,P = S, which is impossible.
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(iv) implies (vi). Suppose (iv) holds. Then by Corollary
1.5.5, for any prime filter F of S, S; has at most n ultra filters
and so Sg has at most n minimal prime ideals. Since every ideal
is the intersection of all of its minimal prime divisors, the zero

ideal of Sg is the intersection of at most n minimal (distinct)

prime ideals.

Now, let %, Xy, ---=---=-====-=-- , X, € S be such that
xi/\xj=0f§ri¢j,i=0,1,2, ----------- n;j=0,1,2,------- n.
Then Wg (x) N Wg (55) = 0 (the zero of Sg), for i # j. Hence by
Lemma 4.1.1, there exists k, 0 £ k £ n such that Wg (%) =9.

Consequently, (Wg (x)]* = Sg. Then

Wi ((xo]* Vv (x1]* V -ommmmmmes v (50]%)-

= Wi (mol* VW (si]* Ve v owr (x*

= (Wg (®))* v (Wg (x)]* V - v (Wg (x)]* = Sg = Wk (5)-
Thus, by Theorem 1.5.6, (xg] * V (x]* V -—=----=--- v (x,]* =S.

(vi) implies (iv). Suppose (vi) holds and F is any prime
filter of S. If (iv) does not hold then let F € Qg ,------------- , Q.
where Q; are ultrafilters of S. Notice that Q; v Q; = § for i # .
Thus for each Q;, Qj, 1 # i, there exists x; €Q; and x; €Q; such
that xi/\xj=0.Then it is not hard to find elements yo,yq15-------- \Vn
with y; € Qi 75 € Q> such that y; A y; = 0 whenever i # . Then

by (vi), (ol* V (al* V e v (yaJ* = 8. Now, if t € (y]* for
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some k; 0 £ k < n,then t A y, = 0. This implies t&Q,, otherwise
0e Q as yx € Q. Thust € S-Q, € S-F,and so (y,]* S - F
for each k; 0 £ k < n. Hence S=(yo]*v(y ]*Vv -------- v( ya)*eS- F,

which is a contradiction. Therefore (iv) holds.

(iii) implies (v). We omit this proof, as it can be proved
exactly in a similar way that Cornish has -provcd (iv) implies (vi)

in [10, Theorem 4.5].

(v) implies (1). Suppose (v) holds and a € S. Let
Qyy--r-------- Q,4+1 be nt+1l distinct minimal prime ideals in [0,a].

By Lemma 2.1.8, there are minimal prime ideals P;in S such that
Q, = [0,a] N P; for each 1 = i < n+1. Since Q are distinct , all P;

are also distinct. By (v), (a] =(a] A [R § momemmimins VP, 1)

:((Q]Apl) V mmmmmmmos v ((9] N Pn+1) = Ql V ommmmmmmmme v Qn+1'

Since each interval [0, a] is pseudocomplemented, SO

[0, a]eB, by [31,Theorem 1] and hence S is sectionally in B,. O

Thus we have the following corollaries :

Corollary 4.1.3. A4 nearlattice which is sectionally in By is

n- normal. U

Corollary 4.1.4. A distributive nearlattice S with 0 is sectionally in B

if and only if il is normal and sectionally psendocomplemented. 0
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Following theorem extends Theorem 3.5 of Davey [16].

Theorem 4.1.5. For a distributive sectionally pseﬂdammp/emeﬂted
nearlattice S the following conditions hold:

(1) If' S is sectionally in B, then S¢ is in B, for any filter
F of S. '

(it) S is sectionally im B, if and only if for each prime filter F of

S, Sg has at most n minimal prime ideals.

PIOOf : Let l'pF (XO)’ \I"F (Xl): ““““““““ DWF (Xn) c SF be such that
Ve (R) A WE (%) = 0 foralli#j,i=0,1,2,----mmum- n;
j=0,1,2,---------- n.

Then x; A %= 0 (Yp) for each i, j (i #i). This implies
2 A x A L. =0 for some f;; € F. Set f= A f;, where
AT AN ij A

1j3

1=0, 1,2---emm- fi; § = 0, 1, 2, ~mosmmme= n.Thenxi/\xiAEZO.

(g A f1* Vv (%) A F]* Voo v (x, A f]* =S,

Hence (Wg ( xo)]*V(Wr ( x)]*V--mmmmmmmme v(We (=x)]*

= (Wp (k0 A DIV (Wg (x1 A D]F V —moemmes V(W (50 A DT
= g ((xo A %) Vv wg (59 A B5) Voo vV Y ((xq A f]¥)

by Theorem 1.5.7.

= g [(% A f]* V (% AS]FV —mmmmmmmmmeee v (x, A ]*].

= g (S) = Sp. Hence Sk is sectionally in B by Theorem 4.1.2.
(ii) This is trivial by Theorem 1.5.5.00
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2. Nearlattices which are relatively in B

We start this section with the following characterization of

nearlattices which are relatively in B, . This will be needed in our

next theorem.

Theorem 4.2.1, Let S be a relatively psendocomplemented distributive

nearlattice. Then the following conditions are equivalent :

(i) S is relatively in B

(i) For all Ry, Kjy ——n-mmsssmem , X, € S,
< Xy A Xg N\ ==-----es A Xy, Xg 2V < Xg A Xg A-mmmmmmmmoos N X, X412
V mmemmmmmmm V < Xg A Xg A-mmmmm=oomms A KXo 1, Xg> = 8

(iii) For all xg, Xy,--------- X, ZES,< Xg A Xy A------ % FpsZ >
= Ry A X Memmmm e A Xy 2>V < XgA Xg A mmmmmmmmmes A X, 22
\VAREEEEEEEEEE V < Xg A Xy A--mmommes A X1y 27

Proof : (i) implies (ii). Let 2 € S, consider the interval
I = [xp A Xy A-mmmmmommmmnms /\xn/\a,a]inS.ForOSi<n,theset

of elements t; =Xy AXy A-----=-==-- A X4 A KjpqA-mmmmmmms A X

are obviously pairwise disjoint in the interval 1. Since I is in By,

so by Theorem 4.1.2. (t0]+ \ (t1]+ A \% (t,,]Jr = I, where
] = (t]* N 1. So,2 € G v (t,]". Thus,
a=pgV Py V-----------" V p,, where

Po A tg= p1 Aty = -mommmmmmme = paAty, =0o0fl
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= XN Xg Ammmmmmmmmoe e NX, N\ a
Now, pg A tg = Xg A Xy A--o-mmmomom N x, A a implies pgo A tg S X
Agam>P0/\to“Po/\X1/\ -------------- AN X, N a

= po A Xy A-mmmmmmmmmmmmees A X, 38 po S 2
This implies, pg A By A-----mmmmmmmmm- A x, £ %9 and so
Po € < g A ---mm-e-- A X, Xo>. Similarly,
p1 € <Xp A XpN--m-mmoo A Ry, X172
Pn € <Eg A Xy A-mmmmmooo — PETY. Therefore
a € <%y N---------- INE TS TedR VAR S HIVAND O 104 S N Xp, %17
VR V <Xg A Xy A-mmmmmmmmmmmmoes A %,.;, X,> and hence

S=<xy A--m------o- A X, X9V <Eg N X A-mmmmmmmmm = A X, , %17

N -G s VvV <X A Xy NA--mmmmotmToos A Xn1s Xn”

(if) implies (iii). Suppose b € <xg A Xy N-----===-" N Xy, 2.

Then by (i) b = sg Vv §q V-mmommm777777777 V s,, for some



By B KEj A By fiom s A X, Xo>
sy € <Ko N Xp NArmmmmmmmmoes A X, XS
sn E <X0AX1 A """""""" A Xn_l,Xn>.
Thus, x; A Xg N =-=---=-===- A X, N sg S X
Xy A By A----mmmmmoooos A Xy A sy S Xy
XOAXIA ------------- /\anl\snan
Then, ; M B Heo—mmmmomm= A X, A Sg = Xg A Xy A-mooommoes A X, A Sg
Ab<z

83
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51 € <Xg N\ Xy A----omomommenon A X, z>

s, € <Xg A By N\ -----mmmmomommees A Ky g, 2>

Therefore, b € <x; A Xy A---------- A Xy, 2>V

<EgAXy A--=---=-- Py BB Wit A% <x0/\x.1/\ —————————— ARy 1, 27
S0, € Xg A Xy A --mmr-m=zmmms A X, 2>

C < Xy A Xy A--mmmmmmmmmoes A X, , 22

vV < xg A Xg A------mommmoooos N Xy, 22

WV —mmmmmmmmmmmm—mmmmm o V<X AE A= mmm B By 1 2 25

Since the reverse inequality always holds. Therefore

< Ry AN Ky Ammmsmmmmmemmms By gy 2
= < Xy A By A -mrmmmmme A Xy, 2>V < Xg A Xg Ammmmmmees A X,, 2>
N/ e e S V<X0/\X1/\ """""""""" N Xq15 27

(111) implies (1). Let a, be S with a <b. Let

Xg, X~ """ y Xp € [a, b] such that % A X; = a for all 1 # 4.
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diy =% V Xy V oo &
dy = XV Xy V mommmmee VX,
Note that dg, dy, dy,------------ ,d, exists by the upper bound

property of S. Then a £ d; £ b for all 1. Now using

X A x T oa for all 1 # j. We can easily show by some routine

calculations that xg = d;A dy A--mmmmmmmm--- A dy

%, = dg A dy A-mmmmemeom- Ad,

x, = dg A dy A-memmmmmaeee- Ad,

Then [a, b] M { < %¢, 8> V < X, 8> V --ooommmmmmeos v < x,, 2>}
=[a, b] " { <dy Ady A -mmmmmeme- Ndy, 2>

v < dg A dy A —mmommemmamme- Ad,, 8> V —commmmmmoeees Y,
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=[a, bl <dyAndiAady A A d,, a>, [by (iii)]
= [a, b] A < a,a> =[a,b] N S = [a b].
Hence by 4.1.2,[a, b] is in B,,. Therefore S is relatively in Bn.O

Following characterization on nearlattices which are

relatively in B, are extensions of some work of Cornish [8] and

Davey [16, Theorem 3.4].

Theorem 4.2.2. For a relatively p.reudocomp/emeﬁted distributive

nearlattice S, the following conditions are equivalent :

(1) S is relatively in B,
(11) For any n+1 pairwise incomparable prime ideals

. TR P, Py VDV oo v P_ =S.

(ii1) Any prime ideal of S contains at most n mutually
incomparable prime ideals.
Proof : (i) implies (ii). Suppose S is relatively in B,. Let
I , P.  be n+1 pairwise incomparable prime

ideals. Then there exists Xg, X, ---==-====--=- , , € S such that

=

x; € P - P,. Since S is relatively in B, Then by Theorem
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N x,€ Py Since Py 1s prime and

 AEA T e . ANz, & Py,sotye Py Therefore
<Kq A Xg A-cmmmmmmmmeme e A X, Xg > € Py.Similarly,
LXg N\ Bg Nermoromansmamas A X, X4 > C Py

<Xp A Xq AXg A--mvmmmmmmmmmnee A X, X9 > C Py

< Rg A Xy A Ry N mommmmmmmmmns A X, Xy > C Py

Henee, Py v By ¥ Pg Vorrrronomsmmms v P, =5

(ii) implies (i). Let any n+1 pairwise incomparable prime
ideals in S are comaximal. Consider an interval [a, b] of S. Let
PO/: Py jrmmmmemmmmmmm e ,Pn/ be n+1 distinct minimal prime ideals

of [a,b]. Then by Lemma 2.1.8, there exists prime ideals

Py, Pys---m-mmmmmmm- , P of S such that PO/ =Py [a b],
P,/ = Py [a, b]. <oommmmmmmmeeeee ,P,/=P, [a,b] Since
PO/, P1/> ------------- ,Pn/ are incomparable, so Pg,Py,-----mmmmmo- P,



Hence POIVPI/V ____________ VP /_(POVP

—

S m [a, b] = [a, b]. Thetefore [a, b] is in B_ and so S is

relatively in B
(11) = (111) is trivial. [
Finally, we extend a result of Davey [16, Theorem 3.6]

Theorem 4.2.3. For a relativiey psendocomplemented distributive
nearlattice S, if S is relatively in B, then Sg is relatively in B, for each
filter F of S.

Proof : Suppose S is relatively in B,. Choose

Vg (%0)> WF e , Wg (%) € S. Then

< yr (%) N Wg (Bg) Mo mmmm i wmos o= A Wi (%), Wr (%) =

V < Wi (%) A YE (Xg) A-mmmmmm e A Wr (%) Wr (x1) >

N oot v < WF(XO)A“PF(Xl)A ____________ ‘A‘lpF(xn-l)7WF (Xn) >
= wF (<X1 N X2 I\ mmem—————— AXnDXO > Vv <X0;/\X2f\ ————————— /\Xn,X1 >
Vomomo oo A B AXg 1,%, >) (by Theorem1.5.7)

= g (S) = Sg ,by Theorem 4.2.1.

Therefore by Theorem 1.6.3 and Thmeorem 4.2.1 again, Sp is

relatively in B, 0



CHAPTER FIVE

ANNULETS AND o - IDEALS IN A DISTRIBUTIVE
NEARLATTICE.

Introduction: Annulets and a-ideals in a distributive lattice
have been-studied extensively by W. H. Cornish in [10]. In a
distributive lattice L with 0, set of all ideals of the form (x]*
can be made into a lattice A, (L), which is by [10] called the

lattice of annulets of L.

A, (L) is a sublattice of the Boolean algebra of the
annihilator ideals in L. According to Banaschewski [5] the
lattice of annulets is no more than the dual of the so called
lattice of filters. Subramanian [ 54, section 4.3, p 20]
studied h-ideals with respect to the space of maximal l-ideals
in an f-ring. Of course Cornish's o - ideals and his h -ideals
were both suggested by the z-ideals of Gilman and Jersion
[18, chapter.— 2]. On the other hand, Bigard [6] has studied
a-ideals in the context of lattice ordered groups. In this
chapter we have studied annulets and o-ideals of nearlattices

and generalized several results of [10].

By a "dual nearlattice" we will mean a join semilattice
with the lower bound property. That is, 2 dual nearlattice S
is a join semilattice together with the property that any two

elements possessing a common lower bound, have an
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infimum. So the concept of a dual nearlattice is dual to the

concept of a nearlattice.

By [10], for an ideal J in L we define

o (J) ={(x]* / x €]}. Also for a filter F in Ay (L),

o < (F) = {x € L/ (x]* € F}. It is easy to see that a (J) is a
filter in Ay (L) and o (F) is an ideal in L. An ideal J in L is
called an o - ideal if a“a (J) =7J.

In section 1 we have studied annulets of a distributive
nearlattice with 0 and generalized several results of [10]. We
have shown that for a distributive nearlattice S with 0, A, (S)
is relatively complemented if and only if S is sectionally

quasi—complemented.

Section 2 deals with o.-ideals in a distributive
nearlattice. We include several generalizations of results 1n
[10]. We have shown that a distributive nearlattice S with 0 1s

gencralizcd Stone if and only if each prime ideal contains a

unique Prime a - ideal.
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1. Annulets
For a distributive nearlattice S with 0, I (S) the lattice
of ideals _OE S is pseudocomplemented. An ideal J of § is

called an annibilator ideal if ] = J**. The pseudocomplement

of an ideal J is the annihilator ideal

J*={xeS/zx A j =0 forallje]}. Itis well known by
[ 19, Theorem 4, pp. 58] that the set of annihilator ideals

A (S) is a Boolean algebra, where the supremum of J and K
in A (8) is given by J v K = (J* n K*)* Ideals of the form
(x]* (x € S) are called the annulets of 8. Thus for two
annulets (x]* and (1% (215 v_ (1% = ((x 1% 0 (y])*
=((zxz A yI¥)*=(x Ay ]*. Hence the set of all annulets
Ay (S ) of Sis a join subsemilattice of A (S). But Aq (S) 1s
not necessarily a meet semilattice. But for any x, y € Sif

X V y exists then (x]*r\(y]*:(x v oy I*.

Proposition 5.1.1. Lef S be a distributive nmearlattice with 0.
Then Ay (S) is a dual nearlattice and it is a dual subnearlattice of
A (S). Moreover Ay (S) has the same largest element S = (0]* as

A (5).

Proof : We have already shown that Ay (S) is a join
subsemilattice of A (8). Now suppose (x]*2(t]* and (y]*2(t]*
for some X, ¥, t € S. Then (x]* N @I*=(E]* N (y1* ) M_(t]*

= ((]* v_(%) 0 (G1* x (%) = (=2 g* N (y A tF
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= ((x AV (A O] as ((xAt) v (3 AL) exists by the
upper bound property of S. This shows that A, (S) has the
lower bound property. Hence A, (S) 1s a dual nearlattice and

so a dual subnearlattice of A (8). O

Proposition 5.1.2. Let S ke a distributive nearlattice with 0.
Ao (S) has a smallest element (then of course, it is a lattice) if and

only if S possesses an element d such that (d]* = (0].

Proof: If there is an element d € S with (d]* = (0] then

clearly (0] is the smallest element in Ay (S).

Conversely, if A, (S) has a smallest element (d]*, then
for any x € S, (x]* = (x]* v (d]* = (x A d]*. Thus = Ad =0
implies (x]* = (0]* = S, so that x = 0, and hence (d]* =(0].0

Following result gives a characterization of a normal

nearlattice which is a generalization of [11, Proposition 2.2]

Theorem 5.1.3. A distributive nearlattice S with 0 is normal if

and only if Ad (S) is a join subsemilattice of 1 (S).

Proof: By Proposition 5.1.1, Ay (S) is a join subsemilattice
of A (S), and for any x,y € 5, (x]* ¥ (y1* = (= A y]*. Now
by Theorem 2.1.5. S is normal if and only if (x A y]*

= (x]* v (y]* for all x,y € S. This proves the theorem.l
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A distributive nearlattice S with 0 is called disjunctive if
for 0 £ a < b (a, b € S) there is an element x € § such
that a A x = 0 where 0 < x £ b. It is easy to check that S is
disjunctive if and only if (a]* = (b]* implies a = b for any

a, b € S. Thus we have the following result.

Proposition 5.1.4. A disjunctive normal nearlattice S is dual

isomorphic to Aq (S).Hence S has a largest element ( in that case S

is @ lattice) if and only if there exists d € S such that (d]* = (0].

Proof : If S is normal, then by Theorem 5.1.3, Ay(S) is a
join subsemilattice of I (S), and for any =,y € S,
(x Ayl* = &V O Also for any nearlattice S,
x]* N GI* = = Vv yl* if x v vy exists in S. Hence the map

x-—> (x]* is a dual homomorphism from S onto Ag(S). I£ S 1s
disjunctive then obviously this map is one-one and so is a

dual 1somorphism.
Second part is trivial. O

Recall from chapter 7 that a distributive nearlattice S
with 0 is quasicomplemented i{f for each x € S there is an
x/ES such that x A x/ = 0 and (x]* M (x/]* = (0]. The

following result generalizes [11, Proposition 2.4].
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Theorem 5.1.5. A distributive nearlattice S with O is gquasi-
complemented if and only if Ay(S) is a Boolean subalgebra of A (S).

Proof: Suppose S is quasi-complemented. Then by Theorem
2.2.1, S has an element d such that (d]* = (0]. Then by

Proposition 5.1.2, Ay(S) has a smallest element and so it is a
sublattice of A (S). Moreover for each x € S there exists

< €S such that x A x/ = 0 and (x]* n (x/]* = (0]. Then

x]* v &/1* = (= A x']* = (0]% = S. Therefore Ag(S) is a
Boolean subalgebra of A (S).

Conversely, if Ay (8) is a Boolean subalgebra of A (3),
then for any x € S there exists y € S such that
(x]* A (y]* = (0] and (s]* v_ (y]* = S. But
(z]* v (y1* = (= ~ y]% and so x A y = 0. Therefore, is

quasi- complemented .U

Now we generalize [11, Proposition 2.5]. To prove this
we need the following lemma. The proof of the Lemma is

trivial.

Lemma 5.1.6. Let 1 = [0, x], 0 < = be an interval in a
distributive nearlattice S with 0. For a € I,
(a]+ ={yel/yna=0} is the annibilator of (a] with respect
to 1. Then (i) if a, b €1 and (a]*c (b]" then (a]* < (b]*
(i) if w €8, (w*n I=(wA x]".0
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Theorem 5.1.7. For a distributive nearlattice S with 0, Ay(S) is
relatively complemented if and only if S

complemented.

15 sectionally quasi-

Proof : Suppose A, (S) is relatively complemented. Consider
the interval I=[0, x] and let a € I; then (x]* € (a]* < (0]*= S.
Since the interval [(x]*, S] is complemented in Ag (S), there
exists w € S such that (a]* N (w]* = (x]* and (a]* ¥ (w]* = S.
Then (a]* v (w]* = (a A w]* gives a Aw=0.Then a A w A x=0
and w A X e' I. Moreover, intersecting (a]* N (w]* = (x]*

with (x] and using the Lemma 5.1.6, we have

(a]+ N (w A X ]+ = (0]. This shows that I is quasi-
complemented.
Conversely, suppose 5 is sectionally  quasi-

complemented. Since Ay(S) s distributive, it suffices to

prove that the interval [ (a]*, 8] is complemented for each a
€ S. Let (b]* € [(al*, S]. Then (a]* < (b]* € S, s0

(b]* = (a]* v (b]* = (2 A b]*. Now consider the interval

I = [0, a] in S. Then a A b € L. Since T is quasi-
complemented, there exists w € I such that w A aAb =70
and (w]" A (aab)” =(0]= (a]*. This implies

(wv (anb)] = (", as WV (2 b) exists in S. Then by

Lemma 5.1.6, (a]* = (w Vv (a A b)]* = (Ww]* N (a A b]*
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= (w]* N (b]*. Also from w A a A b =0 we have w A b = 0,

hence (w]* v (b]* = S. Therefore Ag(S) is relatively

complemented.[]

Since by Theorem 2.2.3, a nearlattice S with 0 is
generalized Stone 1f and only if it is both normal and
sectionally quasi-complemented, combining 5.1.7. and 5.1.3.

we have the following result :

Theorem 5.1.8. A nearlattice S with 0 is a generalized Sione
nearlattice if and only if Aq(S) is a relatively complemented dual

subnearlattice of 1 (S). O
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2. a - Ideals

In this section we introduce a special class of ideals.

We start with the following proposition.

Proposition 5.2.1. Let S be a distributive nearlattice with 0,
then the following hold:

(1) For an ideal1 in S, o (I) = {(x]* / x € 1} is a filler in
Ay (S).

(i1) For a filter F in Ay(S), a% (F) = {x € S/ (x]* € F}
is an ideal in S.
(i) If I,, I, are idealsin S then Iy < 1, implies thar o (I;) C
o (I,) ; and if Fy, Fy are filters in Ay(S) then Fy < Fy implies
that o (F,) € o (F,).

(iv) The map T — oo (I) {= a“(a (1)} is a closure

operation on the lattice of ideals, 1.e.

(a) a“a(aa (D) =a"a I),

(b) I c a“a (1),

(c) I © ] implies that o (I) € ao (J) for any ideals
I,J € S.

Proof : (i) By Proposition 5.1.1, Ay(S) is a join semilattice
with the lower bound property. Let (x]*, (y]* € o (I), and
(t]* € Ay(S), where x,Y € I,t € S. Then
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(& ]F) A v (51%) =(e A x]* A (E A g]*

=((t A )V (EAY)I*ea (1), as (t A x) V(t Ay) e 1. Also, if
(x]* € a (I) and (t]* € A((S) with (x]* ¢ (t]*, then

(t1* = (t]* v (x]1* = (t A 5]* ea (I). So, & (I) is a filter in

Agq (S).

(i) Let x,y € o (F) and t € S, then (x]*, (y]* € F,
and (t]* € Ay(S). Since F is a filter of Ay(S), so
((t1* v (=]*) A ((tJ* ¥ (y]*) € F implies that
((t A x) v (t AY)]* € F implies that (t A x) v (tAy) € a* (F).

Also, if x € o (F) and t € S, with t < x, then
(t]* 2 (x]* and (x]* € F implies that (t]* € F. So, t € a“ (F).

Hence (x"(F) is an ideal in S.

(111) Let (i]* e a(l,), then x € I; ¢ I, implies that
(x]* € o (I,) implies that a (I;) c o (I,). Let = € a“(Fy),
then (x]* € F; ¢ F, implies that x € a® (F,) implies that

a (F;) € a(F,).

(iv) is trivial, O

In a join semilattice $; with the lower bound property

(i.e. S; is a dual nearlattice) a non-empty subset F of S; is

called a filter if
(i) for any x,y € F, x Ay E F if x Ay exists and

(ii) x € Fand y2x(y € S,) implies that y € F.
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Observe that this definition is dual to the definition of an

ideal 1n a nearlattice. Now we give an equivalent definition of
a filter in a dual nearlattice which is very easy to prove. This

will be needed for further development of this section.O

Theotem 5.2.2. In a dual nearlattice S, a non-empty sub set F of
Sy é5 a filter if and only if (i) for fe F and x 2 f (x € Sy) implies
that x € F, and (i1) for any £, f, € F and x € S,
xvi)a(xvi,)eFO

For an ideal I in a nearlattice S, a (I) = {(x]* / x € 1}
1s a filter in Ay(S) and conversely for a filter F in Ay (S),

a® (F) = {x € S/ (x]* € F} is an ideal in S.

An ideal I of a nearlattice S is called an «a -ideal if

a o (I) = I i.e. a-ideals are simply the closed elements with

respect to the closure operation of the Proposition 5.2.1,

Proposition 5.2.3. The a-ideals of a nearlattice S with 0 form a
complete distributive lattice isomorphic to the lattice of filters,

ordered by set inclusion of Ay(S).

Proof : Let {I;} be any class of o- ideals of S. Then
a“a (I,) = I, for all i. By Proposition 5.2.1 (iv),

M Ii - a‘_a ( (‘WI,) Again a*—a (ﬁIi) = CL'—OL (Il): Ii
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for all 1 implies that a“q (N)) c N1, and so

«— : — .
a a (NL) = N 1. Thus N I, is an o-ideal. Trivially lattice
of a- ideals is distributive. Hence o- ideals form a complete

distributive lattice. 0

For an a- ideal I, a“a (I) = I. Also, it is easy to see
that for any filter F of A((S), a“a (F) = F . Moreover, by
Proposition 5.2.1(iii), both o and a“ are isotone. Hence the

lattice of 0- ideals of S is isomorphic to the lattice of filters

of Ag(S).

Corollary 5.2.4. Let S be a distributive lattice with 0. Then the
set of prime o - ideals of S are isomorphic to the set of prime filters

of Ay(S). O

Now we give a characterization of o- ideals of a

nearclattice which generalizes [11, Proposition 3.3]

Proposition 5.2.5. For an ideal 1 in a distributive nearlattice S

with O the following conditions are equivalent :
(1) I is an o -ideal.
(ii) for x,y € 8, (x]* = (y]* and x € 1 implies y € 1.

(i1i) I = U 1 (x]¥* (where U = sel theoretic union).
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Proof : (i) implies (ii). Suppose I is an a-ideal, then
a“o (I) = 1. Let x, y € S, (x]* = (y]* and x € 1. So,
(x]* € (I) implies that (y]* €a(l) implies that

y € ot o (I) = 1.

(11) tmplies (i). Let I be an ideal of §. I c oo () is
always true. Suppose x ea“a (I) then (x]* ea (I) implies
that (x]* = (y]* for some y € I. So, by (ii) x € I implies that

a‘"or,(I) c I implies that oo (I) = I.

(11) implies (iii). Clearly T € w,e; (x]**. If x € I and
y € (x]** then (x]* < (y]* implies that (y]* = (x]* v (]*
= (x Ayl Then X Ay € 1l implies that y € I. Thus

Uyer (x]** € 1. So I = u, (] .,

(i11) implies (ii). If x, y € S, (x]* = (y]* and x € I, then
(x]** = (y]** implies that € (x]** < I implies that e I.
P y p y

This completes the proof. [

Proposition 5.2.6. In a distributive nmearlattice S with 0 the
following conditions are equivalent :

(1) each ideal is an «-ideal.

(i1) each prime ideal is an «- ideal.

(111) S is disjunctive.
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Proof : (i) implies (ii). Suppose P is any prime ideal of S,
then by (i) P is an o - ideal, that is o<« (P) = P. Let I be
any ideal of S then we have I=n (P/P 2 I) implies

a“a )= a“a( (P/P2I1))=n (@“a(P) / P 21I)

=N (P/P2I)=Iimplies that a“a (I) = I. So I is an

o- 1deal.

(11) implies (1) is trivial.
(i) implies (ii1). For any x, y € S, let (x]* = (y]*. Since

(x] is an - ideal, so by definition of a- ideal, y € (x].

Therefore, y £ x. Similarly x <y, and so x = y. Hence $

i1s disjunctive.

(111) timplies (i). Suppose I is any ideal of S. By 5.2.1, I
c a“a (I). For the reverse inclusion, let x € a*a (I). Then
by definition (x]* € a (I), and so (x]* = (y]* for some yel.
This implies x = y, as S in disjunctive. So x € I, and hence

a“a (I) = I. Therefore I is an o - ideal of §. O

Proposition 5.2.3 1mplies that there i1s an order
isomorphism between the prime - ideals of § and the prime
filters of Ay(S). It is not hard to show that each a - ideal is

an intersection of prime o- ideals.
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Following theorem is a generalization of [11, Theorem
3.6]. It was proved for bounded lattices in [38] and
announced in general in [37]; an explicit proof is given in

[22, p.276]. We need the following lemma which is due to
[11, Lemma 3.5].

Lemma 5.2.7. A distributive nearlattice S with 0 is relatively
complemented if and only if every prime filter is an witra filter

(Proper and maximal).

Proof : By [45, Theorem 2.11] S is relatively complemented

if and only if its prime ideals are unordered. Thus the result

follows. U

Theorem 5.2.8. Let S be a distributive nearlattice with 0. Then
the following conditions are equivalent :

(1) S is sectionally guasi-complemented.
(11) each prime « - ideal is a minimal prime ideal.

(111) each o - ideal is an intersection of minimal prime ideals.

Moreover, the above conditions are equivalent to S bheing quasi

- :omp/ementéd if and only if there is an element d € S such that

(d]* = (0].

Proof: (i) implies (ii). Suppose S is sectionally quasi-
complemented. Then by Theorem 5.1.7, Ay (S) is relatively
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complemented. Hence its every prime filter is an ultra filter.

Then by Corollary 5.2.4, each prime o - ideal is a minimal

prime ideal.

(ii) implies (iii). It is not hard to show that each ideal
of S is an intersection of prime o - ideals. This shows (i1)

implies (111).

(ii1) implies (ii) is obvious by the minimality property of

prime o - ideals.

(11) implies (i). Suppose (ii) holds. Then by Corollary
5.2.4, each prime filter of Ay(S) is maximal. Then by Lemma
5.2.7, A((8) is relatively complemented, and so by [11,

Proposition 2.7], S is sectionally quasi-complemented.O

We conclude the thesis with the following result which

is a generalization of [11, Theorem 3.7].

Theorem 5.2.9. A nearlattice S with 0 is a generalized Stone

nearlattice if and only if each prime ideal contains a unique prime

a - ideal.

Proof : Since minimal prime ideals ate «o- i1deals, so by the
given condition every prime ideal contains a unique minimal

prime ideal. Hence S is normal. Also, by the given condition
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each prime a- ideal contains a unique prime o- ideal. That
is each prime - ideal contains no other prime - ideals
than itself. Since each minimal prime ideal is also prime

- tdeal, so by the condition, each prime o- ideal is itself a
minimal prime ideal. Hence by Theorem 5.2.8, S is

sectionally quasi- complemented. Therefore, by 2.2.4., S is

generalized Stone.

Conversely, 1f S i1s generalized Stone then by Theorem
2.1.8, S is normal. So each prime ideal contains a unique

minimal prime ideal. Thus the result follows as each minimal

prime ideal is a prime o- ideal. [
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