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NOTATIONS AND CONVENTICNS

Bar indicates complex conjugation., Dot denctes differentis-

tion with respect to the argument.

Units are choogsen such that G = ¢

h=1, where G 1s

the Newtonian gravitational constent , ¢ 1s the speed of 1light

and h 3is the Plenck's constant,

We shall adopt the following abbreviations

Newman — Untdl - Tamburino

NUT - Kerr - Newman

NUT - Kerr — Newman - de Sitter
NUT - Kerr -~ Newman - Kasuya

Kerr - Newman - Kasuya - de Sitter

Kerr — Newman - de Sitter

NUT
NUTKN
HNUTKN
NUTKNK

HKNK
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ABSTRACT

The main contents of this thesis may be briefly summarized

as follows ¢

Chapter 1 contains a brief account of the Plebanskl space-
time . We specify there the various special class of spacetimes
covered by the Plebanski spacetime. Among the various special
cases of the Plebanskl spacetime a new spacetime discovered there
is the NUT - Kerr - Newman - Kasuya - de Sltter spacetime ., This
chapter also includes a discussion on the modification of the
Plebanskl spacetime and présmts the modified form of the Plebanski

spacetime ,

Chapter 2 deals with the separation of the variables of the
Dirac equation in an arbitrary curved background spacetime ., We dis-
cuss there some of the special cases of the separated Dirac equation,
The pertinent equation of the separated Dirac equation will be used
to derive the radial decoupled Dirac equations for the concerned
background spacetimes which will be useful in studying the problems

of Hawking radiation .,

Since our efforts ars concentrated on quantum field theory in
some Interesting spacetimes of general relativity which are not the
black hole spacetimes but include the black hole spacetimes as special
cases , we review in Chapter 3 , Hawking's quantum effects near the

event horizon of NUT- Kerr-Newman spacetime containing flat black
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hole spacetimes as speclal cases .

- Chapter / also reviews and extends the result obtained in
Chapter 3, The Hawking radiation of Dirac particles is studied in
NUT- Kerr- Newman de Sitter spacetime contailning black hole space-
times which are asymptotically flat as well as asymptotically de

Sitter as speclal cases.

Chapter 5 includes the investigation of Dirac particles in

Kasner - type spacetime .,

Chapter 6 presents Hawking's thormal radiation by black hole
near the horizons of the Plebanskl spacetime containing a large
number of spacetimes of which some are important fz;om the physical
point of view, The result obtained in this chapter not only encom-

passes the known results but also includes some new results . This

chapter ends with a concluding remarks .
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INTRODUCTIN

The problem of reconclling the description of the gravlitational
force embodied in Einstein'!'s general theory of relativity wifh quan tum
theory is a central issue in theoretical physics , There are two 8ppro-
aches in which quantum idea can be brought into relativity. In the
dynamic approach one requires the investigation of quantum equivalent
of Binstein's equation . Unfortunately there are some difficulties in
this approach to .quen‘hiza gravity itself , However,there i1s a great

deal of work going in this area and some progress has been made,

In the kinematic approach one tries to study the quantized
matter fields in the presence of the gravitational field, For example,
writing the Dirac equation in curved spacetime, one studies how Dirac
particles behave in a gravitational field such as that of a black hole,
The limitation of this approach is that it does not help us to quantize
the gravitational field itself..In spite of the limitations, one could
hope that the results obtained in this semi-classical approach may be
an int.}agral part of the full quantum gravity and the gravitational

field will be quantized.

Actually,the investigation of matter fields in curved spacetime
( Friedman - Robertson - Walker ) was initlated by Schrodinger [ 1 ] in
1939,although Rosenfeld [ 2 ] ‘seems to be the first to treat the

quantum mechanical interaction of matter and gravity. Following the



_zzz-.

original lead of Schrodinger , in the late sixtles Parker [ 3 ]
end Sexl end Urban'tke' [ 4] began discussion of the creation of
particles during the initial rapidly expanding phase of the universe ,
However,£he investigation of matter fields in curwed spacetime caught
fire when Hawking [ 5 ] in 1974 ,demonstrated how a black hole can
in fact lose mass by a process of quantum particle creation,Hawking's
quantum effects interpreted as the emlssion of a thermal spectrum of
particles near black hole event horizon , opened a new and exlsting

era in quantum gravity research,

Hawking [ 6 ] used the tecimique of quantum field theory on a
given background spacetime and showed that black holes oreate and emlt
particles at a steady rate and that the predicted rate 1s just ﬂldt of
the thermal emlssion of & body with the temperature é}% , where K

is the surface gravity [ 7 ] of the black hole .

Gibbons and Hawking [ 8 ] extanded- Hawking's [9 ] results
on thermal radiation by black holes near black hole event horizon to
the cosmological event horizon and deduced the thermodynemic properties
of black holes using the arguments of Bekenstein [ 10]. Subsequently,
several studles that attempt to relate the thermal properties of black

holes to quantum gravity have appeared [11, 12],

Hawking's result on thermal radiation by black holes have been
studied by different suthors in different types of spacetimes such as

Kerr [13] , Kerr-Newman [14] , Kerr-Newman=~de Sitter [15,16]
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spacetimes ., Recently phmed [ 17,18 ] studled Hawking radiation of
];irac particles near the horizons of NUT~Kerr-Newman and NUT- Kerr-
Newman - de Slttar spacetimes . 5hmed's works are interesting in that
Hawking's and Gibbons and Hawking's results could also be obtained
in the case of NUT and NUT - ae Ssitter spacetimes which have very
pecullar properties . Most recently Ahmed and Mondal [ 19] have
shown that Hewking's result on thermal radiation by black holes also
occurs in the case of Kasner - type spacetime ., In thls work Ahmed
and Mondal observed that particle i1s creating in Kasner spacetime
which is contraction phase of the Schwarzschild spacetime , So we
have seen that the partibles are creating in the contraction phase of
the universe which is in contradiction to the fact that particles are
created in the expanding phase of the universe . Particles should be
disappeared in the contraction phase of the universe whereas they are
being created . To overcome the awkward situation we have interpreted
the result as saying that souls of the particles are creating in the

contraction phase of the universe .

From the works of Ahmed [ 20] and Ahmed and Mondal [ 21]
it is clear that Hawking's result could be obtained in the case of
spacetimes which are not black hole spacetimes , The aim of this
thesis is to show that Hawking's and Gibbong® and Hawking'!s
results could also be obtained in a more general background space-

time viz ., Plebanski spacetime having horizons ,
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In Chapter 1 , the various special cases of the Plebanskl space-
time have been described, It has been shown that the Plebanskl space-
time includes a large number of solutions of Einstein or Einstein-
Maxwell equations with or without cosmological constant . Besides the
black hole spacetimes (asymptotically flat as well as asymptotically
de Sitter ) , the Plebanski spacetime includes many interesting space~
times which are not black hole spacetimes but are importent from the
physical point of view . While most of the verious special cases of
the Plebanskl spacetime have been discussed in the literature [22 ],
a number of new spacetimes (such as Kerr - de Sitter , NUT - Kerr -
de Sitter , NUT - Kerr - Newman — Kasuya - de Sitter spacetimes and
so forth ) do not appear to have been stated exﬁlicitly in the 11tera-
ture préﬁiously . It 1s shown that with approprlate speclalization of .
the parameters and coordinate tfﬁnsformation the NUT - Kerr - Newman -
Kasuya - de Sitter spacetime can be derived from the Plebanski space~
time . It is also shown that if the Plebanski spacetime is modified
then the modified form of the Plebanski spacetime yields the various

special cases of the Plebanskl spacetime in an elegant way .

As we would like to‘study Hawking radiation of Dirac particles
in curved spacetime , it is necessary to separate the Dirac equation
in the background spacetime considered , Kamran and McLenaghan [23 ]
separated Dirac equation in an arbitrary curved background spacetime
and obtained the decoupled quant;m field equations ., The second chap-

ter is devoted to study of the separation of variables of Dirac equa-
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tion and to show that the earlier results of the separated Dirac
equation of Chandrasekhar[24,25] and Page [26 ] are included in

the present general result ,

Teking the advantages of the separation of Dirac equation in
an arbitrary curved background spacetime we derive the radial decoup-
led Dirac equations in the NUT-—Kerr - Newmen , NUT=- Kerr - Newmaﬁ—
de Sitter , Kasner - type and Plebanskl background spacetimesin a
limiting procedure and then study Hawking radiation in Chapters 3 ,

L, 5 and 6,

Chapter 3 reviews the Hawking radiation of Dirac particles
near the event horizon of NUT - Kerr- Newman sl‘mcetime which inelu-
des the asymptotically flat hlack hole spacetimes as special cases .,
From this result it is clear that Hawking's result could be obtained

in the case of NUT spacetime ,

Chapter 4 also reviews the Hawking rediation of Dirac parti-
cles near the event horizon and cosmological horizon of NUT - Kerr -
N ewman -~ de Sitter spacetime which includes the black hole spacetimes
which are asymptotically flat as well as asymptotically de Sitter as
- speclal cases , Here it is observed that Hawking's result is also

valid in the case of NUT - de Sitter spacetime .

Chapter 5 includes our study of Dirac particles in Kasner -

type spacetime which gives very interesting results that particles

are created in the contraction phase of the universe .



Chapter 6 presents the Hawking radiation of -Dirac particles
noar the horizons of the Plebanskl spacetime , The result obtained
in this chapter includes the results of Chapters 3,4 end 5. This
result not only encompasses the results obtailned in [ 27—] but also

inoludes some new results . The last section of this chapter ends

with concluslve remerks .
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CHAPTER - 1

-PLEBANSKI SPACETIME

Plebanski [ 28 ] ' studied a class of solutions of Einstein-
Maxwell equations, In Boyer coordinates (ps9d,q,  )the Plobanski

spacetime is given by

2 2 2
) p +a 2 E 2 2 P +a? 2
d8° = ——————- dp”® + --é--~-2-( dr+ q°do )4 —omem — dq
X p~+4q Y
Y
2 2 _
- —:?‘—-—-———é(dfc - p dd) ) e o e (1015)
p +4q
where
2

X=x(p) =b-g?+2np-cp- - (r/3)p" .o+ (1.1b)
Y = ¥(q) =b+ed-2Mg+ea’- (M3)ah e oo (1l.1c)

with electric potential

b 2
Ap.-dxp' = ——————-—2— (d,.c - p dd ) s & & (1.2 )

Besides the cosmological constant A , the metrie (1.1) contains
six parameters b, e, g,M , n, € , Under the proper coordinate trans-

formation along with the sultable adjustment of the kinetical parameters
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b and € , the metric (1.1) gives many physically interesting
solutions of Binstein or Einstein - Maxwell equations with or without
;:osmological constant , The surfaces Y = 0 have been interpreted as

the horizon of the metric.

1.1 Some Propertles of the Plebanski Spacetime

The electromagnetic field assoclated with the metric is given by

e + ig

H:-—d{ —————— (d't—ipqtid)} 500(103)
q+ip :

The components of the Weyl tensor C( e) are

(1) (2) (4) (5)

¢ = G = C = G = 0 .
o o o (14)
(3) 1 F+% 9 T4+1% 2(Y - X)
c g e - -
6 p2+q°® p+q? q+ip (q + 1p)?
The components of Riccl tensor R,, are
= = = = = = = - 0
Ry3= Ryp=Ry3=Ryy= Ry =R =R,y =R,
. . {(pXx-4q%) -( ) } (1.5)
R = e mmmm—ey . mpymee—— (p X - qY) - X-X . s o 0 .
12 2 p) 2
2 p2+ q p +q
1 ¥ 1

Ry, = — —g———p+ == ((pk-af) -(x-1)]
347 5 38r a2 274 g2 ,
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The scalar curvature R is

' S = 2(R,, + R_, ) e oo (1.6)

where here and above dots denote differentiation with respect to the

argument.

Now we turn to the equation (1.4) . This equation can be
simplified further for 0(3)‘ . "Using equations (1l.1b) and (l.le)

we obtain from (1.4)

-2
e [ Ma+np-e®-g?-1(Mp-na)]  (L7)
(a©+ p°) (qa + 1p) .

Qmsequently if ahy of the constants M,n, e, g 1s not zero ,
the metric (1.1) is of Petrov type D. In the case 0(3) = 0,
the metric is conformally flat ., In addition to ¢{®) _ o , if also
Rab = 0 , then the metrio becomes flat ., The metric is asymptotically

de Sitter when A £ O but asymptotically flat when A =0,

A large number of solutions can be obtained by contracting the
metric (1.1) by appropriate limiting procedures . In the course of
this discuasion , we give the interpretation of the parameters involved
in the metric (1.1) end their correspondence to some well- known

solutions,
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1.2 Contractions of the Plebanski Spacetime

(a) We consider the coordinate transformation from x* = (p,9,9,1)

to x*=(¢,¢,q, v’) defined by

P=Pp

2
Lt P a0 =97eq,a=9 v=x(pJ9")/ ¢, « » o (1.8)

where P, i1s an arbitrary constant and e, denotes the contraction

parameter .,

Under the coordinate transformation given by (1.8) the metric

(1.1) reduces to the form

2 2
(( pg+ egp’) 4+ a "}
ds? = (2) ° dp"2
- e
e, X (p + e P")

~Ry (p.+ ) 2

€o ot EoP 2

+ 5 - { eodq:’+(p2+q’ )dd'}
{(pgt e p) "+ a B

+ . dq’
-1
((p o+ e p)2+a’23 7 1 (a)

-] , 2
- { (p e )+ 0’217 wa’){ax= (2p, P+ o PY2) A6} 7 (L.98)

where

2 , -2 2
€ Xl(po+t-:0p)=eo (b -g

+2n(py,+ €, p")

Ce(pyt e p) - (A/3) (py+ eoP) Y o . (19D)



{(p,+ eop’)2+q’2} Y (a’)

-1 A
= {(po+ eop’)2+ q’} (b+ 32—2Mq’+ £ q’z- -5- q’l') (1.9¢)

Simplifying we can write equation (1.9) in the form

2, ,2
(po+ €oP' )"+ " “} X 2 2?2
ds?= ((po* €0 dp’2+{ 1)2 tzfsodqﬁ(poi-q’ )do}
X (potegpP' ) +a

1
aq” 2 | ‘
4 e,————— — Yl {dq:’— (2p0 p'+ Eop'z) dd’} * o (1010&)
|
where .
: A
=2 2 4 .3 g .4
Xi=¢, X (py+ eop’) = a0+2p°p’- To p* === A P, &, P~ -3-e°p (1.10b)

Xy ={ (py+ o) +a? ) ¥ (a)

4
2 2 2 2 2
{(p +egp) 40 Y (o e -2B, P eq=YoP t B+ AR,

A
+92—2Mq’+eq’2- —-q’l") e o » (1.10¢c)
3
' A
-2 2 A .. (1.10d)
a = €, (b-g +2np°—ep°——3po)
2A
- 3 .« . (1.10e)
bo= g (m-epgm —7,)
. . » » (1.101)
Yo & +2/\p0 |
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with a_ s Bo and ¥ belng constents independent on &

Now if e, —» O , then we have from (1.10)

d p12
d8? = ( po+ q’2) ( ————- + xldd'z)
X
1
d q,2 2
+ ———--3Y,(d3’-2p_ p’de) e oo (1L31a)
I
where
2
- ’ - r
Xl = uo-l- ZBop Yop s s o (1'11b)

2, 2 2 2 4 2 ,
T, =(pg+a” ) (8" -y p +ApP +e -2Mq

e o+ o (l.1lc)

The metrie (1.11) can ultimately be put in the form

2 2 2 d piz ’2 qu2

ds® = ( p_+q7) ( ====== + X, dd ) +
' Xl Yl
) ra oal V2
- Y, (dx’-2p,p'de’) . oo (1.128)
where
) a 4+ 2 ﬂ p’ - Y p’2 . e o o (l'lzb)
1 o 0 0
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A 5 2 M+ in, e+ ig |2
T, =Y.~ = (" "+ 5p ) -2 Re( )+ (L.12¢)
3 & q’+ipo q’+ ipo_
LA 3 _ :
no = Topo - -3—_ pO e o o (1.12d)

The contracted solution given by equation (1.,12) in the coordinates

<% =(p’, ¢’y a’y 1/) 1s the gemeralized NUT solution.

(b) We now consider the coordinate transformation from x" =(p,%, q ,1)

to x'% =(p’, 8, q’, v/) defined by

2
p=py0=06"/e ,q=0q,+€6,9 t=1"-(a59¢ )/ /eq ... (L13)
where q g is .arbitrary constent and €, is the contraction

paranster .

Under the coordinate trensformation (1.13) the metric (1.1)
reduces to the form
L g

ds® = d p”
29—
{p'2+ (q +c,07)° 37 X(p)

2 2 ,-1 2 2
+ {p" "+ (q + e a’) ] Tx(p?) {4 (20 0+ e,9 )ds’}

2 %
dq’

-2
e, Y(a +eyq’)

-2 .
e, Y(ag+ega”)

2 2 o 2
(e, dt’~ (a5 + p’*) de’] e o« (1.14a)
(P24 (gt €0a’)°) ° °
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where
-1
{p' %+ (ay+ eoa’)?} X (p)

A
. =] 2 ,
= {p'%+ (a4 eOQ’)z} (b-g°+ 2np/'- e p’* - e p4) (1.14b)

/
e, YT(agt e a’)

o 2 z P (e e g™ (1140)
= B {b+e”~-2M(qy+ £,a’) + e (agp+ £oq”) —-3— qt €T .

Simplifying we cen write equation (1.14) in the form

2
d p' . 2 2
d8%s ——- 4 xz{ dr+ (29 q’i+ e _a’") d ¢!
x2
2 ) 2
p’“+ (q + €oa’) 2
+ dq
Y2
Y 2
- —— 2 [ Godftf- (qi'{' plz )d d’} P T (lolsﬂ)
p'2+ (qo+ £, q’) 2
where
- ‘
Y2 = €, Y(qo+ eoq)

2 . : .15b
rap ety - S AGgaTee g ATE, e (P
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x,={ 7 +(a + e,a’) 1} X (p)

1

-92-g2+2np’—ep'2——-/\p
3
1
-2 2 2 A
ay=€gq (b+e“-2Mq _+eq, --3_Aq°)
-1 2 3
pp=¢€, (eq -M - —B-Aq°)

2
=g - 2 A
T %o

with a_ , B4 and Ty being conastants independent on &,

1

Now if e, —% 0, ' then from (1.15) we have

ap'?
2 P , 12
ds® = ——--- +12(d1'+2q°q’dd )
s
2
d q’
$ (@24 p%) (- 1,20 %)
o Y 2
2

2
Y2= a.l+ 2 plq’ + qu’

+2 21
X,=(p'"+4a,)

Il.‘}

2 4 2 2 y 2
= - +e
{‘roq0+ Ag - e g<+ 2np P

2 2 4=1 2 2 4
{p’ +(q°+ €,9") } fageo- 28100t Tolot ANy

- __Ab’
3

!

(1.15¢)

(1.15d)

(1.15e)

(1.15f)

(1,162)

(1.16b)

(1.16¢)
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The metric (1.16) cen ultimately be put into the form

d /2
P
2 i\ 2
ds“= -———+X,( d 1+ 29,3 d¢’)
X
2
dq/Z 2
$(q24p?) (mmm=-¥,d0 ")
o . 2
Y
2
where
4 12
Y2=u1 +2p749 +qu
1 m_+ in e+ 1lg
X2=—-fl—v—-/\(p’2+5q2)+2Re(.---9 ————— ) = |————
3 g q_+ 1ip’

* 3
mo=~flqo + -3-/\ 45

This contracted solution given by (1.17) 1is the generalized

-ant_i - NUT solution ,

1.3 Cenonical forms of the Contracted Solutions

(a) Let us consider the generalized NUT solution given by (21.12)

and restrict the parameter vy g assoclated with it to the discrete

values

=2
]
-
-
o
-
1
)

(1.17a)

(1.17Db)

(1.17¢)

(1.174)
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Case I @ y =1

If weptt ag=1 4, B, = 0 end consider coordinate
trensformation from x’!= (p59’, ¢’y ) to F=(a,9,a,t)

defined by
p' = 08§, d'= ¢ , q'= q', ! = t’ + o @ (1018)

then the metric given by (1,12) tekes the form

2
2 2 dq
482 o (p° +q7) (dg° + sin?pdg? ) + —
. o ' Y
1
P 2
- Y, (dt-2p_ cos B d¢ ) ¢ o o (1.19a)
where
i A 2 o M+ ino e+ ig 2
Y1= l -— (g +5 po) -2 Ro( =———==) + -— e o o (1,19b)
3 qQ’+ ip qQ’+ ip
(v} [+
4 3
n'O = pQ - == A pO s o o (1.190)
3 5
Case II = y = 0
If we set a = 1 , By = 0 end introduce new coordinates
p’ = g cos ¢ , ¢/ = g sing ,1-’=t'+ pop’d’ . o o (1.20)

then the metric given by (1.12) reduces to the form
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dq’2
2 5 B 2 2 2
ds” = (p +q)(de +6 d¢" ) + -—-

2

2
- ¥, (at'+ p_e%das ) .+t (L.21a)

where
2
A 2 2 M + ino le+ igJ .
Yl = e ( q, + 5 P ) - 2 Re ( ; +' p I ¢ o o (1.21b)
3 ° Q" +1p, {(a'+1p}
A 3
n = - == A Pp e o« o (1.21c)
(o] 3 0
Case TII Y = =1

If weset a, m=~1, o= 0 and introduce - new coordinates

p' = coshg , ¢’/ = b 1:, = t’

e o o (1,22)
then we have (1.12) as
dq’2
d52 = (p2+ q’z) (de2 + sin h? 8 d¢2) +  ————
g Y
1
' 2
- Yl( dt’' - 2p_ cosh g de ) e o o (1.2318)
where
2
A 2 2 M+ ino e+ 1lg
le -1 - ——( q, + 5p ) - 2Re ( + ¢ s o (1'23b)
3 ° Q'+ 1ip q’+ 1p
o] o
* 1.2
no-:—po-_._/\-‘ po s o o (030)
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The equations (1.19) , (1.21) end (1.23) are the canonlcal

representations of the generalized NUT solutions.

Now we would like to provide some comments concerning the
interpretation of the generalized NUT solution described in

cancnlecal forms,

If p = 0 , then we have from (1,19)

2
d q ;
2 2
as?= q* ( de° + ein‘0dg?) + -—— - Y. af v oo (L24a)
Y 1
-
2
A o 2M e + g ;
Yl = 1 - -"'q’ - -"_+ s e o @ (1.24b)
3 q’ q

If g = 0 we recognize ( 1.24) as the Reissner - Nordstrom
solution with the cosmologicel constent A . The coordinate q’ plays
the role of the radiel veriable , The constent M eand e are inter-
preted as mvass and charge associated with this sclution . If g 1s
different from zero , then (1.24) represents a slight generalization
of the cosmological Reissner - Nordstrom solution 3 g 1s interpreted
as magnetic charge . For e = g = 0 the solution given by (1.24)
becomes the Schwarzschild solution generalized by the cosmological
constent . Further with e = g= A= 0 , we obtain from (1.24) , the

basic Schwsarzschild solution,

If p £ 0 tut e=g=0 , then the solution given by
o

(1,19) reduces to the form
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N
dq’
as” =(p§ +q?) (a0° + sin 2 d¢p2 ) + ————
b
1
’ - 2
- Y, (dt - 2p cosp d¢) . oo (1.258)
where
A 2 M+ in '
Ty= 1 - —(d" 4 5P ) - 2Ra( -----—--) e oo (1.25b)
3 qQ’+1ip,
4 3 -

The solution given by (1.25) 4is the NUT solution generalized by
the presence of the cosmologicael constent . The parsmeter n, coincides
with p, when. A=0, This parameter is the " NUT parameter or

magnetic mass parameter.

It is clear that the genéralized family of NUT solutions
described in the canonical form by (1.19) and obtained by a contraction
from Plebsnski spacetime (1.1) represents the combined NUT- Relsener-
Nordstrom solution with the cosmological constaxit , additionally
generalized by the possible preseﬁoe of magnetic monopole . The parameters
e and g have interpretation of the electric and magnetic charges

M and n, have interpretation of the mass end the NUT parameter.

If we put p_ = 0 in (1.21) then we have

d52

dq
= q’2 (d82 + 62d¢2 )+ —— - Y dt,z LY. (112651)
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where 2
A 2 2M e + g
Yl= i o q’ - ——— + "'"-'"'2_—""— « o o (l. 26b)
3 ql ql
Bquation (1,26) 1is the Kasner- type spacetime , an enisotrople
universe , Setting A=e =g =0 , equation (1,26) ocan be trens-
formed to Kasner form ,
Now if we set P, = 0 in (1.23) then we have
2 2,.2 2 2 dqlz 2
ds“= q’“(de” + sinh™ 9 d¢° ) + —— - Y, 4t ¢ & s [1.27a)
Y .
1
where
A 2 2M 92+ g2
Y1= - 1 - —, ql —_ 4 -""""'2__- * o o (1027b)
3 q’ qQ’

The solution (1,27)

presents Levl- Civita's

type of generalization

of the cosmologicél Reissner - Nordstrom solution with charges of

both types ,

the metric of a heavy tachyom .,

(b)

Now we consider

The Levl - Civita's metric is sometimes interpreted as

" generalized anti-NUT solutions " given by

(1,17) and restrict the parameter
Case I . s
vase. L. ] Yy 1

If weput ay;=1, B, =

“tF =(p’y ¢, 08, 1) in place of x'

Yy to the discrete values

0 and introduce new coordinates

B = (p’, ¢’y 9’y ') defined by
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Pl= pl’. d"—" ¢ ’ ql= Si‘nh e ’ T/= T’ ¢« o o (1.28)
then (1,17) reduces to the form
. a p12

ds®= ==-—+ X, ( d7’+ 2q sinh @ ap ) *

X,

2

2 @

+ (qi + 2 ) (dg - cosh © d¢2 ) e o o« (1.298)

vhere
A 2 m + in e+ 1ig 2
X2= -1- — (p +5a )+2Re(-———-—-—)— —————— e o o (1.29b)
' 3 a,+ iy’ q tip’
. 4 3

my = qQ + -— A q o o o (1-290)
C H — 0
ase IT Yl

If we now teke ay = 1 » By = 0 and introduce new
coordinates ® ' = (p’, ¥y, x5 1/) for x'F=(p, ¢, q, 1)
defined by
p’=p’, o=y, q'=x, /=7’ o ow e (1a30)
“then (1.17) reduces to the form

) d pzz 2
ds” = —————+X_ (dg/+2 qoxdy)
X
2
2
+(qf; +p’?%) (ax? - ay”) « o+ (L3la)
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where
A 2 5 m_+ in e+ig 2
I,= - -—( p""+ 59" ) + 2Re( ') - |- - e o o (1.31b)
o
3 q,+ ip q .t ip

- ! 4 3
m = == Aq * o o (1-310)
(o] 3 o
Case III ¢ Yy = - 1

In this case if we set a, = - l, Py= 0 and consider

the transformetion defined by
p'= P" d’= b q’= Sinhe y T'’= T e o o (1-32)
then we have (1.,17) as

2 ayp” 2
ds” = —————- + X ( dg/+ 2q sinh6 d¢ )

X 2
2
2 2 2
- ( q0+ p'z) (de - cosh 9 d¢2 ) e o o (10333)
whers
’ 2
A 2 2 mo+in e+ ig
X. = 1- —{p’ +5q )+2Re ( ) - e o o (1.330)
2 2 g atip’ o+ 1p
4

m = = q 4+ — A qB s o o (1.330)
o 0 3 (¢]

Equations (1.29) , (1.31) and (1.33) are the cenonical

representationsof the antl - NUT solgtion .
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If e put e=g=9 =A=0, thn the ' equation (1.33)
takes the form

d p’2 2
2 2 2 3
ds°= =+ X, dg¢/ “-p’7( de - cosh? p d¢ 2) e o o (1.348)
X
2
whei‘e
: 2n
x = 1 + o ¢« o o (10341))
2 p’

which is a solution of Binstein's equation in vacuum.

1.4 The Combined NUT - Kerr — Newman - Kasuya Spacetime

If* we set
2
8:1,,\:0, b=a_n2+g2 s e ¢ (1035)

then the metric (1l.1l) reduces to the form

2
2 p~+q” 2 X 2 2

ds” = —=—=—-dp" + -z~ (dr+q”dd)

X p +4

2, 2
p +4q 4 2
4 —m——— dq? - —-—m (dg-p d o )2 e oo (1.36a)
b4 p +a

X = 8.2 - (n —p )2 e o @ (1036b)
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2 2
Y = g —2Mq+a2-n +92+g2 e « o (1,36¢)

and the parameter a has the iInterpretation of angular momentum
per unit mass , The above equation represents the combined NUT -
Kerr — Newman - Kasuya spacetime in Boyer coordinates . For

n=oe =ge 0 the equation (1.36) reduces to the Kerr space-
time [29 ] .

If we perform the coordinate transformation

p = n+acosg , d-—¢/a
b e o o (1'37)
. (n2+a2)
qQ = T, T =t - 9
a
then we obtain from (1.36)
2
z sin™ @ 9
d32= ¥ d92 + —- dr2 4 ——-—— ( adt-pdg)
Y r
Y
- —-.( dt - Ad¢)2 e o » (1‘380')
z
where
2 2
f = 1 +(n+acosp)
2 2 2 2 2
Y = r*-2Mr+a“-n +e8 + g
e s o (1.38b)
p = r2+a2+n2

A = asin26 - 2ncosf .
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Bquation (1.38) represents the NUT - Kerr — Newman — Kasuya
(NUTKNK ) spacetime in Boyer - Lindquist coordinates . The
NUTKNK spacetime ‘includes

(1) Kerr - Newmen - Kasuya spacetime [ 30 ] whem n = O
(11) NUT - Kerr - Newman spacetime for g = 0

(i11) NUT - Kerr spacetime [ 31 ] with e = g = O
(iv) Kerr - Newmen spacetime [ 32 ] if n = g = 0

(v) Kerr spacetime [33] provided n= g = e = 0

[}
m
I}
o
il
o

(vi) Reissner - Nordstrom spacetime[34,35] for n
(vii) Schwarzschild spacetime [ 36 ] when n=g=2a=e=0
(viid) chﬁrged NUT spacetime [ 37 ] if a=¢g =0
(1x) NUT spacetime [ 38 ] for a= e =gm=0,

So we Beo that the NUTKNK spacetime includes all the black
hole spacetimes (iv) - (vii) , which are asymptotically flat . In

particular the NUTKNK spacetime contains the NUT spacetime which

has peculiar properties.
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1.5 The Combined NUT - Kerr — Newman « Kasuya — de Sitter Spacetime

Setting
N
e = 1 ———( a4+ 61n?)
3
5 [ ] e @ (1O39)
2 2
b = a2~n2+g - ----/\n2 (e.2+n )
3
end replacing n by
A 3a2n2 2n4 3 5 2 2
n + — ( —  + +42n° - 6n°p-8a"n+2np”°) e o o (1,40)
3 P P
the metric (1.1) can be brought to the form
2 ! 2 2
s P +q? X : 5 s PHA
ds“ = ———— dp? + gy (dp+q@dd )+ ———dg
X p +q2 Y
- ,
- __2;___..2(d.r_p2dd)2 e o« (1.418)
p~+q
where
2 A 2
X = [ef=(n-p)")1[14 —(n-p)"] . o+ (l.41b)
3
A
Y = (%4 a%+n%)[1- —(a%+5103)]
3
—2(Mq+n2)+92+ g2 e = @ (1'4'1(:)

Bquation (1.41) represents the combined NUT - Kerr- Newman - Kasuya-

de Sitter spacetime [ 39 ] in Boyer coordinates.
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If we now perform the coordinate trensformation

-1
p = n+acos y 6 = = d (¢ / a)
~ e« o o (1042)
-1 (n2+ 8.2)
qQ = T ) = 8 [ t- e ¢ ]
a
: A 2
where & = 1 4+ —-—— a8
3
then the metric (1.41) can be trensformed to the form
-2 2
ds? = ———=d 82 + -~ drl+ (adt -pdo)
Ag A
-2
a A 2
- __._-..r( dt - A d¢) ¢ o » (14438-)
b
where
N2
I = r2+(n+acose)
.
2 2
A = 14+ —--—8"cos § .
k 3 . o . (1.43b)
N : 2 2
A = (124 a4n?)[1- —(r%+50%)]-20r+n?)re"+e
r
: 3
o] = I‘2+ 82+ ri2

a sin2 @ — 2n cos

>
i
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The equation (1.43) represents the combined NUT - Kerr — Newman -
Kasuya - de Sitter spacetime [ 40 ] in Boyer - Lindquist
coordinates . We call the metric ( 1.43 ) as hot NUT - Kerr - Newman-
Kasuya ( HNUTKNK ) spacetime since the de Sitter spacetime has been

interpreted as being hot [ 41 ] . The HNUTKNK spacetime includes :

(1) NUTKNK spacetime for A =0
(11) hot Kerr - Newman — Kasuya (HKNK ) spacetime when n =20

(1i1i) hot NUT - Kerr — Newmen (HNUTKN ) spacetime for g= 0

=]
]

o
Il
o

(iv) hot Kerr — Newmen spacetime [ 42 ] with
(v) hot Kerr spacetime [ 43 ] if =n = g = e = 0
(vi) hot Reissner - Nordstrom spacetime for n=g=8a=20
(vii) hot Schwarzschild spacetime [ 44 ] for n=g=a=e6=0
(viii)hot NUT spacetime [ 45 ] for a=e=g=0.

So we see that the HNUTKNK spacetime includes the NUTKNK,
HKNK , HNUTKN , hot NUT spacetimes as well as all the black hole
spacetimes (iv) — (vii) which are asymptotically de Sitter . Further
if woe set A =0 , in the cases (ii) - (vii) we get the Kerr—

Newman — Kasuya , NUT - Kerr - Newman spacetimes and all the black

hole spacetimes whioch are asymptotically flat . In the limit A =0,
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the case (viil) reduces to the NUT spacetime which 1s considered

as homogeneous anisotropic cosmological model [ 46 ].

Thus the Plebanski spacetime (1.1) contains a large
number of solutions of Einstein - Maxwell equations with or without
_cosmological constant which are important from the physicel point of
view . The metric (1.1) contains some spacetimes with cosmological
parameter which may be found interesting from the point of view of

its inflationary scenario of the early universe [ 47 ].

1.6 A Modified form of the Plebanski Spacetime

In this section we present a new form of the Plebanski
spacetime ., We show that a simple coordinate trensformation brings the
Plebanski spacetime to a form which includes an additional parameter
other then the parameters present in the Plebanski spacetime , For
this purpose if we introduce the new coordinate ( p’, ¢, ¢, 1) in

place of the coordinate ( p, 9 ,q , v ) defined by

pP=p , a' =49, g/= vg, 8 = vd e w v Cleddh)

where v is a real constant , then the metric (1.1) takes the
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2 2 2 2
5 p +4q 5 p +4q X 5 2
ds? = —m—m=mm dP° + === @2 + —opm—m—os (d 7 + g7 dd )
X X v (p“+q7)
Y
2 2
= e — (dg =p dod) v oo (1.45a)
(p"+4q
N
x = b = g2+ 2np - E p2 - i pl.' . s & @ (1145b)
3
N
Y=b+92—2Mq +Eq2— -——q'4 e o o (1.45c)
‘ 3

where we have dropped the primes .

The equation (1.45) ocan be identified as the modified form
of the Plebanski spacetime [ 48 ] in Boyer coordinates . The
parsmeters M , n , e , g have the same interpretations as in (1.l)
and the paremeter v 1s the adjustable parameter like the parameters
b eand & in (l.1) . By the similar arguments as given in [ 49 ]
one can show that the metric (1.45) represents a clasa of solutions of

Einstein - Maxwell equations,

For v = 1 , the metric (1.45) gives the original Plebanski

metric (1,1) .

Setting

A A 2
v=l+_--a2,e=1—-—(a+6n2)

3 3 e oo (1.46)

5
b= a? —n2+g2 - -3—/\ nz(a2+n2)
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A 3 a2 2 2 n‘[+ 2 5 5
n+ - + +2n3-6n p-a“n+2np° ) ... (L47)
3 P P
and then accomplishing the coordinate transformation
p = n+acosb , d=—qb/a.
* ® @ (1048
( n?+ a?) )
q = T ’ g =1 = sesesese——— ¢
a
the metric (1.45 ) can be brought to the form
2 : 2 E P sin®o 2
48 = ——d 8~ + -—dr® + - 5= ((adt-p dg)
P Y (1+ =~a?)”L
' 3
i 2
e (dt = A d¢) e o @ (1-498')

(1+-g—a2)27-

where
2
i =r2+(n+acosﬁ)
A 2 D)
P = 1 4+ - &8 cos @
3
s & O (1-49b)
A 2 2
Y = (%4 a24n2) [1m (224 50%) 1-2(r4n®)+ o +8
2 2
p = T + =& +n2
2



CHAPTER - 2

SEPARATED DIRAC EQUATIN IN AN ARBITRARY
CURVED SFPACETIME

The separability properties of Hamilton- Jacobl and Klein- Gordon
equations have been studied by Carter [50,51 ] in the Kerr-Newman space-
time , Debever et al . [52 ] investigated the separability properties
of the Hemilton - Jacobi and Klein - Gordon equations in en arbitrary
curved background spacetime , The separability of Weyl neutrino equation,
Maxwell's equations and the perturbed Einstein gravitational field
equations has been established by Teukolsky [53 ] in the Kerr space-
time end using en analogous method , in the Plebanski - Demisnskl back-
ground [54 ] by Dudley end Finley [55 ] . Teukolsky's separation
of -the variables of the equations governing the electromagnetic , the
gravitational and the two~- compenent neutrino - field perturbations of
Kerr black hole has been centrasl to much of the later developments .
Following Teukolsky's separation method ,Chandrasekhar [56 ] separated
Dirac's equation in the Kerr spacetime and showed that the solutions
can be expressed in terms of certein radial snd anguler function
( satisfylng decoupled equations ). Chandrasekhar's result was immediately
extended by Page [57 ] to the Kerr - Newmsn spacetime end subsequently
analyzed by Carter and McLenaghan [58,59 ]. Recently Kamran and
McLenaghan [60 ] performed a systematic study of the separability pro-
perties of neutrino end massive charged Dix_‘ac equations and obtained a
system of coupled first order ordinary differential equatlons end a

system of decoupled second order ordinary differential equations ,
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In this chapter we study the separabllity properties of the
massive charged Dirac equation in an arbltrary curved background
- spacetime [ 61] end obtain the separated Dirac equation as a
system of decoupled second order ordinary differential equation
from which the pertinent equation will be used to derive the radial
equation for the metric concerned to study the Hawking radiation in
ths later chapters . ‘

Finally , we show how the gseparated Dirac equation of Page
[62] in the Kerr-Newman background and of Chandrasekhar [ 63] in
the Kerr background emerge from the general expression of the sepa-
rated Dirac equation in an arbitrary curved background spacetime

as speclal cases .

2.1 Arbitrary Curved Spacetime and Some Preliminaries

The general structures for the spacetimes which are solutions
of Einstein - Maxwell equations with cosmologicel constant have been
established by Debever and McLenaghan [ 64, 65 ] and Diaz and Salazar
I [66] + But recently Debever el al. [67,68 ] end Diaz [ 69 ] deter-
mined, in a systematic and unified memner , the complete set of solu-
tions of Petrov type D to the Einstein — Maxwell equations with cos-
mological constant . The obtained solutions contain , all known type
D metrics: for instance Plebanskl - Demianski solution [70] s
Plebanski solution [ 71] , Kinnersley gsolution [ 72 ] Carter solu-

tions [ 73, T4y 75) e=nd so forth .



For our purpose we consider the spacetime [76]in the

coordinates ( u, v, w, x)

& - 2 -2 -
d92 = —--:-2—[ fwz Zz(eldu+mdv) + (1- fz)g Z l(sldu+ mdv)dw
T
_ L 2 -2 -2
_fg4w dws - X VA (ezdu+pdv)2-x dxz] « ¢ o (2.18)
with
1l
A=A dx" = — [(e,G+ e, H)du+ (p G+ mH) dv ] e o o (2,1b)
P 7 2 1
vhere
W=wWw , X=X(x), T=T(w,x), G=G6(x) , H=H (w),
| 2 1/2
pep (W, men(x),g=[(1+22) /271" e (210

Z=12(w,x) = €qp (w) - €, (x)

2
and €1 €, and f are real constants satisfying e§+ [ ,\é 0

2
and all functions areg real wvalued ,

-

By specializing the constants and the functions appearing
in (2,1) a particular class: - of -spacetimes of the metric may be

deduced . For wexample if we set in equation (2,1) the following

- substitutions

5 ;
al=82=f=g=T=1,Z=w2+x2,p=w2,m=—x, X = VX,W =/Y

where X and Y are given by (1.1b) and (1l.1c) , we get the Plebanski

spacetime ,



- 37 3~

The spin coefficients for the metric (2,1) are given by [77 )

-1 -1/2 -1 1 4 o4

(W2) "WTz [r T,- —2 2 +-—- 2 e,m ]
2 LA 1 x

-1~V L oa -1,

W2) "xTz [—z-z eaPut i (=2 2g-T T )]
_ 2

1 —1/ g 1L 4 i
——WT3Z W- — 2 2. -T T, +-—12 €e.m (2.2)
2/2 2 v Yo 1"x ]

1 -1/2 -1 1 '

=1 -1 - -1 .

i B P G [—-z e, p +1(TT T, +-—2 2z _-X X
242 2 2 Tw X7, x )]
fp, Y= fe , m= 1t 5 B= a, K=d =Amv=0, f°al.

The derivative operators are given by
1 9 - G) G)

- -2 -1

1 V2 (e P (p - - e2———)+w—— ]
V2 du dw
L i L el 8 0 B -
ag [gRW (p—=-ep-—)-fW-—1] (2.3)
V2 B Bv ow

1 /2 -1 ) ) G)
---TZ/[X (e,———=m-—=)-1X -]
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2.2 Separation of the Dirac Equation

In the Newman — Penrose formalism +the Dirac equation can

be written in the form , using the Weyl representation for ¥

-1,;3 0 D+ -p - 1QA
0 - 3+ p-7 - 1
H \“= ip‘e b+p T QA[&
DT [A4p-y-1QAh, - (b+p-1)+1QA, - 1y
—(-5+n-a)+iQA4 D+e - p -1 QA 0
= = 7 ~
b+‘ﬁ—ﬁ—iQA3 P 0
o
A+F~-¥-1Q4, Pl 0
0 3% 0
-]
- 0
ip, 1L 1L

where p_ and Q are the mass and the electric charge of the

Dirac particle respectively .

We have from (2.1b), (2.2) eand (2.3)

(2.4)
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1 8 3] 8
1. -
D+E-p-iQA1=---TZ /2[w——+fg2(p—---82——-)

V2 dw du ov

1 -1 1 3 -
- =W 2 El( - pf+ im/)+ — W'— —WT 1
4 2 2

T, ]

_1QZ-1( 82G+ Blﬂ ) (2.5&)

: 1 (5 a a
-1/2 -
A+}1"T_1QA2 = =T 7 / [_fw__-+g2w1(p__—e__)

V2 : aw au 2av

4 -1 ’ I. 1 ’
+ —f W2 el(—p+im)-—-—fw
4 2

3 -1 -1 -
+ —— £ WT T"]—iqz (pG+mH) (2.5b)
2

1 _1/2 ) Ty 9 G)
= —T2% / [-1Xx-—+X (g]—-m-—)

>+ p-Tt - 1QA
3 V2 ax au av

1 - i 3 -1
- =X 2 1ez(p’- im’) = — 274 - 1iXT T, ]

A 2 2

(2.5¢)

1 -1/ 8 -1 G 3

-5+T1—u—iQA=--TZ/[iX—-+X (e-—-——m-———)
4 1

V2 ax au av

1 -1 i 3 =]
+—X2 e,(p-in) + — X- —1XT T ] (2.54)

A 2 2



where

dB

=2 40 3

Let us perform the transformation

Y = g

2 -
s /2, Yh g10g ( o!B

(4 Z)_l (El m’ dw + €

L}

and separating matrix defined by

1/2 -1

iB
U= 2 T

2
diag (e

»

2

H

iB
e s 8

p/ dx)

We obtain from (2.4) , (2.6b) end (2.7)

-1
Us HpS
-1 2iB
1, 1/2 -1 0
a
2 _y 2iB
0 ipeZJ/ T™te
—DW D:x
+ +
- D
DX w

-1B

. e e (2,6a)
-iB
e ) L] L} (2. 6b)
. (2.6c)
-21B -21B
e . s B (2.7)
+ o
DW DX
- -D_
x w
2-1 iB
Zl/ T e-2 0
2-.1--21B
0 ~ip ezl/ e
a

(2.8)
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where the operators

4 1 T a X Q& 1 5 3
= e Xo= 4 e m )t == (g == =@ ——m
x V2 ax 2 X X 1 av . au)] noe (2'.9!1)
. 1 (o1 8 X7 QG 1 8 8

= e[ - K=—=4 ==+ === ) 4 == (gq=—==m=— )] . .. (2.9b)
X J2 ax 2 X X loav au
PR [ a W' 1fQH ¢ 9
D [ — w ———f —— - ——— + - (p — - e ) ] ¢ & o (2'90)
L ) aw 2 gzw g2W 3 u av

1 : a fw’ 1QH 1 8 Q) |
D™= mmm [= £W e = —mm = PN (R S, | DR (2.94)
P

v /2 aw 2  g®w  g°w au  2av

The separability condition for the transformed equation

’
WD‘-“‘ = 0 1s that

G2 1 2B | [ p(x)+1g(x) J4 B (W) +1k(¥) ] (2.10)

where f (x) , g(x), h(w) and k(w) are real valued functions ,
But this condition is not sufficient for separability with \\)’_
given by

[ Hy (0) Ky (W)
s pr) | P2 K2

"\)‘ (u,V,W,X) = e Hl(x) Kl(w) )

(2.11)

H2 (x) K2 (w)

where a and p are a:rbitrary constants.
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Substituting (2,10) and (2,11) into wab'= 0 with

W, as given by (2.8) we obtain the following equations

o
D+

K
w 1

() Hy (1) =dpg [0 () + 1k (W) 1K, (W) Hy (%)

+ ([)); Hz(x) Kz(w) -1 p.e[ f(x) +1ig(x)] Hl(x)Kz(w) =0

() Hy(x) =1 pg [h(w) + 1k (w) ]k (W) Hy ()

+ DL Hy (x) Kq (w) =4 g [£(x) + Lg(x) ] H,(x) Ky(w) = 0

Bk, (W) By (x) =1 g [0 (w) -1k (W) ] Ky (w) Hy ()

o+
Dw K1

S B, (K () A [F () - 1 g (1) ] Hy) Ky(w) = O

(w) Hy(x) =1 g [ h(w) -1 k() ]K,(w) Hy(x)

=Dy Hy (0 Ky(w) =L [ £(x) -1 g() ] Hyx) Kp(w)=0

the operators

i 8. X Q¢ 1
[ X -+ — - —-~+——(Bel-am)]
V2 ax 2 X X
-1 a X Qe 1
———[X—-—+———+-—---—(ﬁ€1~um)]
V2 ax 2 X 4
—1—[w—9-+-”-’- 1 QE , AT (ap-pey) ]
/2 aw 2 g2 g2 W

i
1 a fy 1QH i
. [ - Y = = = = > + ) ( a p B 82) ]

(2,12a)

(2.12b)

(2.12¢)

(2.124)

(2.12e)

(2.12f)

(2.12g)

(2.12h)
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The relations (2.12a) - (2.12d) give then immediately

DKyl =i p [h(w)+1k(w) TK, (W) = pyK,(w)
Dy Hy(x) =1 p [ £(0) +1g(x) JH (0 ==p H (¥

; Kz(w) —ip.e[h(w)-i-ik(w) ]Kl(w)=p.2Kl(W)

DY By (1) =1 p [ £(0 +18(x) 1H,(x) == pyHy(x)
BT K, (w) =1y [h(w) =1k () 1Ky (8) = p3Ky ()
By Hy(x) ~1p [ £(x) -1g(x) JH(x) =-pyH ().

BY Ky (W) =1 pg[h (W -1k (MIK, () = n, Ky ()

Dt Hy(x) - 1p [ £(x) =18 (x) JHy(x) =-p, H(x)

Subtraction of (2.13g) from (2.13a) ylelds
k (w) = €y
and the addition of (2.13h) to (2.13d) ylelds
£f(x) = G,

where Cl and 02 are real constants .

(2.13a)
(2.13b)
(2.13c)
(2,13d)
(2.13e)
(2.i3f)
(2.13g)

(2.13h)

(2.14a)

(2.14b)



If
we now define gl(x) and hl(w) by

g, (x) = g(x) + o o - (2.15a)
and

hll(w) = h(w) + o, ¥ w oa (2.15b)
then the condition (2,10) can be reduced , after dropping the
suffixes , to the form

21/2 Tﬂ132i3= h(w) +1g(x) PR (2.16)

which is the separability condition for the existence of a

separable sclution ,

Substituting (2.16) into W_¥ = 0 with W as

4 D D
given by (2.,8) we obtain
- ip, [ (W) +1g(x)] 0 lij,
0 1p [h(w)+1g(0) ] - D
- D] 5 1pg [h(w) + 1g(x)]
L -b} bt 0
i Hy (x) K () | 0 1
= (D); H,y (x) Kp (W) 0
0 Hy (x) Kp (W) 0
~ipg [h(D+1e(x)] | | Hp () Ky (W) | 10 d
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—

“lpg h(w) +p g (%) 0 g:—
g iueh(")‘peg(x) - 3;
or,
B 8:, Dy 1pghw) = p,e(x)
o4 &
L - Dx D"+ Y
' i -
5 1 Ty mrm | o |
- 8; | Hz(x) Kl(w) 0
Y Hl(x) Kq (w) 0
~ipg b (W)+p, e(x) L_Hz(x) Ky () | | 0 ]
from which we obtain
: 1
— 1()): Kl(w) + ——— l()); Hz(x) =1 p.eh(w) +po8 (X oo (2.17a)
K2(w) Hy (x
1
___.].;.... B’; Hl(x) d ———— l?; Kz(w) = ip.e h(w) - g g(x) T (2.17b)
Hz(x) Kl(w)
1
.._.:E.._._ ]c)); Kz(w) - ——— ]?; Hz(x) = ip.eh(w) ~pg8(x) ... (2.17c)
Kl(w) Hl(x)
1l .
"'3-""" I())+ Hl(X) e ———— 8;- Kl(w) =—i P'eh (W) - p’e g(x) (2'17d)
H5(x) K (W)
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These relations imply +that

5F Ko (w) =14 h(

w B bo B (W) Ky (W) = A K, (W)

o 4 . 5 @ (2.18q)
D_ HZFX) “pg8(x) Hy(x) =- A Hy (%)

B By () * g (1) Hy(x) = H,(x)

o_ i on (2.18b)
Dy Kp(w) =L pgh(W Ky (W) == n,Ky (W)

D, Kp (W) = Lpgh () Ky (W) = Ay (w)

- « s s (2.18¢)
Dy Hy (0 - pgg () By (x) = agHy (%)

DY Hy (%) 4o (0 Hy(®) =, Hy(x)

. v o (2.184)
DZ Ky (W) =1 pgh (W) Ky(w) = A, K, (W)

where )\_1 5 >‘2 ’ x3 and )\4 ere the separation constants ,
However , 1t is manifest that the consistency of the foregoing

equations requires that
A_:)\ =-l '—'X =)\o ¢« o @ (2.19)

Wo are thus left with the following equations

D: Ky (w) =1 pgh(w) K, (w) = LK, (W)

- (2.20a)
1?; K, (w) -ip,eh(w) Kq (W) ==\ Ky (w)
D Hy(x) + p, & (%) Hy (x) = -1 H, (%)

"o (2.201)
](J); H, (x) + po € (x) Hz(x) = X Hy (%)
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The system of coupled first - order ordinary differentlial equations

(2.20) cen be written as a system of decoupled second— order

ordinary differential equations in the following forms

Lugl D] h(u)] o

> - D. K
D,’\r Dw Kl(w) X+ipeh(w) W 1(")
+[)‘2+{Peh("’)}2]f§1(w) =0 "
oi G Lp [0 n(w) ] o .
- n D K
D D, Kz("’) -)\+ipeh(w) w ra\¥
+ %+ (pgh 0 31206, = 0,
3"15’*}1(.) DILFLIR bt H, (%)
X - X
& x - A+ pgo8 (%) x 1
- [xz— {peg(x)}zj]ﬂl(x) = 0 .
o}
D
I()); l‘))f Hz(x) _ He[ - g (x) ] 8; Hz(x)
* At g ()

+ [ A= (n

o 80017 Hy(x) =0

The equations(2,20) and (2.21) reduce to the separated equations of

*

* .

(R.21a)

(2.21b)

(2.21c)

(2.214)

Chandrasekhar [78] , Pagé [79], Guven [ 80 ] when the constants and

the functions appearing in (2.1) are appropriately specialized.
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2,3 Reduction to Special Cases

Let us now discuss some of the speclal cases of equatioris

(2.20) end (2.21).

For the Kerr metric we obtain from equation (2,1),

el=1-:2=f=g=1,m(x):—xzp(w)=w2,
T(wyx)=1, H(w) = G(x) = 0, h(w) = W,Z=w2+x2,
g(x) = x, W(w = /I ,x(x) = /X, X= a®-x%,

where M 1s the mass parameter , a 1s the angular momentum

per unit mess parameter , ¢ 1is the energy of the Dirac particle

and m is eny arbitrary constant ,

From equations (2.12g,h) , (2.,20a) and (2,22) we obtain

- 3 1K w-=M
W2) WY{ —= 4 === e } Kl(w)=()\+ipew)K2(w)
ow Y 2X
=1 0 1K w =M
W2) WVY{-— - + FE, () = (A =1 pgw) Ky(w)

v Y 2Y

where
Y= w? -2Mu+t a? ,

K = (w2+ a2)d+amo.

(2.22)

(2.23)
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If we now allow the coordinate w to play the role of
the new radial variable r , then replacing w by r and letting
1/4

D e -1
Kl(r) = R, X 1/4 ’ Kz(r)=(J2) Ry Y

we obtain (2.23) , after simplification , as

3)
-+ 1 R = + 1 r R
( e K ) 5 ( A P-e ) A

) iK r-M _
Y ( - + )Rl‘z(l-iper)ﬂz
ar Y Y

where

Y = ;t"?—2!vir-1—a‘3.2 s

K =(r2+8.2)d+a.m

o
The equations (2.24) correspond to Chandrasekhar's equations

(40) [81] in the context of Kerr gecmetry .

Now from equations (2.12e,f) , (2.20b) and (2.22) we obtain

am_+ d (az- x2)

/)t i -
W2) “vVx [;;-—+ - - ;—x—]i H %)= (Ap, %) B (%)

am0+d(a2—x2) x

- 0
(2) h /X [ - = o= JHy (%) = (A = pex) (~1Hy(X))
ax X 2X '

(2.24)

(2.25)
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1l

If -in(X) = Sl(e)yﬂl(x) SZ(U)

and x = a cos b so that X a sin2 8

l

then we .obtain (2,25) as

3 1
( —- - mocosece- ad sing+ —cot 6 )54 (b) =v/2 (L +ap, cose)Sz(B)
90 2
(2.26)
3 1
(---+ m, cosecf+ ad sin 6 + -—cotB)SZ( 8) = =2 (\ - B, cos @ )sl(e)
ae 2
The above equations correspond to those first derived by Chandrasekhar
[82 ] in the context of Kerr geometry .
For the Kerr - Newmen metric we set
2
ep=ep=f=g=1, n(x)= -x*,p(W) = v,
T(wyx)=1, H(w) = ew, G(x) =0, h(w) =w,
2 2
Z=W +X, g(x):x,W(W)=~/Y,X(X)=»/X, e o o (2127)
C2
X=a"-x?, Y=w2—2Mw+a2+92, a=1d,

™
1

2
-—i(amo+da )

wvhere M 1is the mass parameter , a is the angular momentum
per unit mass parameter , e 1is the electric charge parameter,

¢ is the ene?:-gy of the Dirac particle and m, is any constant.
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Then from equations (2.12g,h) (2.21a) and (2.27)

4o obtain the following equation 3

7

3 iX Y d iK Y
J/1 [- + . IV [ + + 1Ky (W)
' W P 4L Y oW Y LY
1p, Y 8 - 1K Y’
+ ° [ + + ]Kl(w)
A+ dlp v aw X %X
2 2 2
+ 2 (X + P.ew )Kl(w)= 0 s o (2.28)

whers

w2—2Mw + a2+ 92

b
I

K=(w2+ az)d —eQu+amn,
and the prime denotes differentiation with respect to the argument ,

Now if w plays the role of the radial variable r , then
-1
replacing’ w by r and letting K, (r) = RY /4 » we find that

the equation (2,28) reduces to an exceedingly compact form

2
d dR T ¢ d R K = i(r - M)XK
T o (ST ) + [ — - 10 Q
dr dr A ip,r dr Y
p, K
$ 21004 S -2 (@ +p2r?)IR=0 (2.29)
k+iper
where 2
Y= r°-2Mr+ a4+ o2,

-
]

(1‘2+ az)d—eQr+amo.
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If /2% 2% » #2 Bor B g o then the equation (2.29)
corresponds to Page's equation (20) [83 ] in the context of

Kerr = Newman spacetime ,

For e = 0 , the equation (2.29) reduces to the
Chendrasekhar's equation (45) [ 84] in the case of Kerr

metric .

When both e =0 and p = 0 , the equation (2.29)
corresponds to Teukolsky's equation (4.10) [85] for

neutrinos,
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CHAPTER - 3

HAWKING RADIATION OF DIRAC PARTICLES IN
NUT-KE RR-NEWMAN SPACE TIME

Hawking!s [ 86] thermal radiation by black holes near black hole
ovent horizon have been studied by different authors in different types
of asymptotically flat background spacetimes . Chandrasekhar's [87]
work provided the possibility of attacking the problem of Hawking evapora-
tion of Dirac particles to the Kerr black hole spacetime . Liu Iiao and
xu Dienyan [ 88] based on Chandrasekhar's work studied the Hawking
evaporation of Dirac particles in the Kerr background . Page [89 ]
extended Chandrasekhar's work to the Kerr - Newman black hole . Zhac
zheng et al.[90 ] based on Page's work extonded the work of Liu Lis}o
and Xu Dianyan to the spé.catime describing the Xerr - Newman bla-.cl-;
hole . Ahmed [91 ] taking the advantage of the separabllity of the
Dirac equation in an arbitrary curved background spacetime performed by-
Kamran end McLenaghan [92 ] extended the work of Zhao Zheng et als
to the NUT - Kerr — Newman (NUTKN) spacetime which includes all the
black hole spactimes vl.'hich are asymtotically flat . Ahmed's work ars
interesting in that Hawking's thermal radiation by black holes can also
be obtained in the case of NUT spacetime which has peculiar properties .
In this chapter we review Ahmed's work which serves a useful purpose in
providing with a firm basis for the work on Hawking's thermal radiation
Near the event horizon of asymptotically flat background spacetimes ., We
use equation (2.21a) and derive the radial decoupled Dirac equation in
the NUTKN 1imit and study Hawking radiation near the event horizon of

NUTKN spacetime.
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3.1 The NUTKN Spacetime

In the coordinates ( u, v, w, X ) the NUTKN spacetime 1s

i x2+ a 5 . v 3 X 5 5
dsz = ———— dx™ + ————=—=dw "™ + 5 (du+ w=dv)
X Y x“+ w
Y
- —--———'-2—'( du - x2 dV)2 e s @ (3018‘)
x2+ W
whare
}(:az—'(n-x)2 e o s (3.1D)
Y = w2—2Mw+ az—n2+ e2 . o » (3.1c)
with electric potential
ew
A odzt = —5 (du—xzdv) i 48 LEE)
B x4+ w . '

The NUTKN spacetime contains four real parameters s the mass
porameter M, the NUT (magnetic mass ) parameter n , the angular
momentum per unit mass parameter a , the electric charge parameter

e, The NUTKN 'spacetime includes
(1) Kerr - Newman spacetime when n =0

(i1) Kerr spacetime with n =e =0
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(111) Relssner = Nordstrom spacetime if n =a =0
(iv) gchwarzschild spacetime for n wa =€ = 0
( v) NUT Kerr spacetime provided e = 0
(vi) NUT spacetime when a= e = 0.
Thus we see that the NUTKN spacetime contains all the black

hole spacetimes ( Kerr — Newman , Kerr , Relissner - Nordstrom ,

Schwarzechild ) which are asymptotically flat.,

3,2 Radial Wave Equation

To obtain the NUTKN spacetime and the radial decoupled Dirac
equation in this background spacetime it suffices to set in equations

(2.1), (2.21a) , (2.12g) and (2,12h) the following substitutions 3

e=€tx=f=g=1, m(x)a—xz, p(w) = w™,
T(w,x)=1, H(w) = ew, G(x)= 0. h(w)=w,
2 2 =

g(x)=x, 2= w<+x°~, a= id,ﬁ:-iA,- . (3.3)

A= am0+d(a+n)2 y W(w)=VY , X(x)= VX,

Y=w2-2Mw+a2—n2+32, }(-—.az-(n—x)2
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whers ¢’ is the energy of the Dirac particle and m, is any

arbitrary cons tant,

From equations (2,21a) , (2.12g,h) and (3.3) we obtain

the following equation

o 1k Y = 8 1K x’] 5
JY [ - + - VY [ + + K. (w
dw Y 41X dw Y 4y 1L
ipeY 0 iK Y’/ ’
+ | + + 1K_(w)
x+ipew 0 w Y LY 1
2 2 2 .
+2( A +}ie w )Kl(w)= 0 * o @ (3.4&)
wherae
2
K = w ¢ - A-eQw
2 b
A= am  + s( a+n) _ # m % (3.4b)
Y = w2 - 2M».r+a2—n2+e2

and prime denotes differentliation with respect to the argument,

If w’ plays the role of the radial variable r , then

-1
replacing w by r and letting K,(r) = ¥ /4 R(r) we
find, after some further simplifications, that equation (3.4)

becomes
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2
dR i Y dR K 2 2 2
ﬁf-(ﬁ---)— A #[-—--2(0"+ ")
_ dr dr A+ 1pgr dr 4
K d K
+——-—ﬁ§—-——+ iA/-Y-""( "-"'")]R=O o o o (3058-)
At dlp, T ar V1
2
K = r ¢ - A=-9eQr
° o * (3'5b)
2
Y = r2-2Mr +a2—n2+e

The equation (3.5) reduces to the radial decoupled Dirac equation

obtained by

(i) Page [93] for the Kerr - Newman black hole when n =0,

V2N 2k, W2 g ke

(11) Chendrasekhar [ 94] for the Kerr black hole provided

e=n=0.

Introducing the coordinate

d Y d
= e o o (3-6)
d¥ r?+ (a+n)? dr
the equation (3.5) , near the horizon,reduces to
e 2 (3.7)
_______ & ( g -0 ) R: 0 e o o .
4T 2 0

wherae
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2
(a+n) o+ A _BQI‘+ (3.8)
g = m——— + > - p) o o ® 3'
© ri + (a-i-n)2 ri+ (a + n)

and T called the event horizon is the positive root of Y =0,

provided M? > a?-n®4 o2 . The other root of Y = 0, denoted

by r_ 1is called the Cauchy horizon,

If n= 0, the equation (3.7) reduces to the wave equation
obtained by Zheo Zheng et al. [ 95] for the Kerr - Newman black
hole., For n=-e =0, the equation (3.7) reduces to the wave
equation obtained by Liu Liao and Xu Dianyan |[ 96] for the

Kerr black hole ,

3.3 Hawking Thermal Spectrum

Now we turn  to the wave equation (3.7) . The solution of

this equation can easily be found to be

R~exp [t 1(s-06,)T] . e s k5I)

We now write the radial wave function

N

'q)r= axp [-—id( t i I'l)] ° 'e o (3-10)
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wyhere

- (d"'do) r
r =  memmmemTTTETT
1 ¢

We resolve \br into ingoing and outgoing waves as

b7 e e (- te( b4 F)]

W e [-te(4-F)))

Introducing the Eddington - Finkelstein coordinates
-\

we obtain

in 2
b, ~ exp(-10v)

out

‘br ~ exp [ - iov+ 21(0—‘00)?‘ ]

4 » equation (3.6) can be integrated to give

? o 1ng )
= === In(r-r
2 K¢ +
where
(\ B }_ r,-T_
+ oY —
2 ri +(a+n)2

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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is the surface gravity [97] near the event horizon of the NUTKN

spacetime.

Just ouside the event horizon

“’Io'ut" G—id.v (r- I‘+)i(d— do)/)(;' o « o (3.19)

We now extend the outgoing wave outside the horizon to the
region inside, Since on the event horizon the outgoing wave function
is not analytic and can not be straightforwardly extended to the
region inside , it can be continued enalytlically to the complex

plane by going round the event horizon,

Hence inside the event horizon

¢out"' é'idv(r i(d-do)ﬁq eﬂ(d—do)/’(_;_

= F ] « o« (3.20)

Introducing the step function

1 for x > O

y (x) = { . e o (3.21)

0 for x < O
the outgoing wave function can generally be written as

out t
bp = N [y(r-r)t, (r-rz)

by (e, - 1) q,iut (r, -r) exp{—%(d—oo)}] (3.22)



out

Jhere ¥ is the normalized Dirac wave function. Expression (3.22)
r

t
soscribes the splitting of ¢ = into two components :

’ . 2
(a) @ flow of positive energy particles of strength | - outgoing

from the svent horizon eand

(v) a flow of positive energy particles propagating in the reverse
time , since inside the event horizon , r represents the time axis
due to the interchange of time and space . This can be interpreted
as a flow in time of negative energy particles ingoing towards the

singularity region ,

This shows that a wave function near the event horizon gives

rise to the creation of Dirac particle-entiparticle pair [98,99 ].

Obviously,from the normalization condition , we obtain

21
2
<¢gut’ ¢:ut>=Nr{exp[-—-——(d—do)]+l}=l e o & (3.23)
Ky
21
2 -1
or , Nr={ oxp [ == (0 —0,) ]+ 1 }
K
1 -1
={exp[-——-——(o—do)]+1} 000(3024)
b1y
where
T = ____.i_.—-- * o o (3-25)



g the temperature near the event horizon of the NUTKN spacetime,

pquation (3.24) 1s the Hawking thermal spectrum formula

near the event horizon of the NUTKN spacetime [100] .

in the proper limits the relation (3.24) reduces to the
Hawking thermal spectrum of Dirac particles near the event horizon

of’

o
i
o

(1) Kerr — Newman black hole [101] for
(11) Kerr black hole [102] if n=e= 0

(111) Reissner — Nordstrom black hole when n =a

[}
o

(iv) sSchwarzschild black hole provided n = a

Il
@
]
o

(v) NUT Kerr spacetime with e=0
(vi) NUT spacetime if a=e=0-.

Thus we observe that Hawking's thermal radiation occurs noﬁ

only in black hole spacetimes but also in NUT Kerr and NUT

spacetimes,

3.4 Discussion

e observe particle emission near the eveat horizon r. of

the NUTKN spacetime which is not black hole spacetime but includes

all the black hole spacetimes which are asymptotically flat, The
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partiCIB flux has thermal character which is evident from the formula
given by (3.25) . The surface gravity Kn+ is the 1limit of the product
of two .quantities 3 the magnitude of proper acceleration of a ptatlo-
nary observer and the redshift factor , Thus particle emisslion can be
jnterpreted as the escape of particles to infinity that an observer just
outside the horizon sees on account of his acceleration , This fact
manifeats that the thermal emisslon is closely related to the therm%l
properties of the vacuum state, Finally,we conclude that Hawking's
thermal radiation by black holes holds good to the spacetimes which are
not black hole spacetimes but include black hole spacetimes as speclal

cases .
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CHAPTER - 4

HAWKING RADIATION OF DIRAGC PARTICLES IN
NUT - KERR— NEWMAN - DE SITTER SPACETIME

Hawking's [103] work on thermal radiation by black holes near
black hole event horizon has been extended by Gibbons and Hawking [104]
to the spacetime of cosmological event horizon , Xu Dianyan and Wang
Huiya [105] and Shen You Gen [106] extended Gibbons and Hawking's
work to the Kerr-Newman de Sitter spacetime ., Recently Ahmed [107]
carried on this work [108] to the NUT-Kerr-Newman de Sitter space-
time-. Ahmed's works [109] are interesting in that Hawking's and
Gibbons and lHawking's thérmal radiation could also be obtained in
the case of NUT de Sitter and NUT spacetimes which have peculiar
properties . In this chapter we study Ahmed's work on Hawking
radiation of Dirac particles near the horizons of NUT- Kerr-— Newman -
de Sitter spacetime which includes all the black hole spacetimes
(asymptotically flat or asymptotically de Sitter) ., We call the NUT-
Kerr- Newman - de Sitter spacetime as hot NUT- Kerr—Newman ( HNUTKN )
spacetime since the de Sitter spacetime has been interpreted as being
hot [110] . This work also provides a basis for the extension of the
work on Hawking's thermal radiation by black holes near the horizons
of asymptotically de Sitter background spacetimes.Using equation (2,21a)
we derive the radial decoupled Dirac equation in the HNUTKN limit and

.then study Hawking radiation near the horizons of the HNUTKN spécetime.
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4.1 The HNUTKN Spacetime

e—

In the coordinates (uy vy wy x) the HNUTKN spacetime 1s

glven by

x2+ w2 2 X 4+ W 5 X 2
g8~ = ——m————- dx~ 4 ———— dw < + ————=— (du+ w<dv)

2
X Y xX“+ w
Y
— ———2 —————— (du—xde)z [} T ) (1’..18.)
pd +w2
where
' A
2
x = [af-(@=-x)"1[1+ — (n=-x%)] .o« (4ab)
, 3 .

2., 2, 2 N2 2 2, , 2

Y = (w*+a“+n%)[1---(w"+5n Y]-2(Mw+n" )+ e (4.1c)
3
with electric potential
ew

A d.zp = ——m————— (du-xzdv) * o (4.2)
b x2+ w2

Besides the cosmological constant A, the INUTKN spacetime
contains : the mass parameter M , the NUT (magnetic mass } para-
meter n , the angular momentum per unlt mass parameter a end the

electric charge parameter e ., The INUTKN spacetime includes

(1)  hot Kerr - Newman spacetime for n=0

(11) hot Kerr spacetime when n =e =0



-3 66 3=

(iii) hot Relssner - Nordstrom spacetime for n= a =0
(1v) hot Schwarzschild spacetlime with n=8a=e=20

(v) hot NUT spacetime if a =6 = 0.

Thus we see that the HNUTKN spacetime includes all the black
hole spacetimes (1) - (1iv) which are asymptotically de Sitter .
Further if we set A =0 , in the cases (1) - (iv) , we get all
the black hole. spacetimes which are asymptotically flat, In the

1imit A= O , the case (v) reduces to the NUT spacetime.

4.2 Radial Wave Bquation

To obtain the HMNUTKN spacetime and the radial decoupled
Dirac eguation we set in equations (2.1) 5 (2.21a) , (2.12g) and

(2.12h) the following substitutions @

81=52=f=1g=1, m(x)=-x2,p(W)=W2,T(W:x)=1,
H = 2 2
(W) =ew, G(x) =0, h(w)=w,g(x)=x, Z=w"+X,
a:id,ﬁ:—iA,'A=amo+d(a+n)2, X(x)= VX , .. (4.3)

A
Wiw) =Y, X=[a2—(n-x)2,][1+-—(n'x)2]r
3

A
Y= (w24 824 n?) [1-— (w2 + 5n2)]-2 (Mw+n?)+ e
3
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¢ 1s the energy of the Dirac particle end m_, 1s any

conStant i

from equations (2.21a) , (2.12g ,h) and (4.3) we obtain

after cumbersoms caloulations

) iK Y']f &) 1K Y’

ST [ -4 === =]/ Y[ =t =4 1 K (W)
ow Y 4% 5w Y 4Y T
1p, Y 3 1K el

¥ [ + -+ ]Kl(w)

)\+ip.ew 0w Y 4 Y

+2(;\2+p§ W) K (W) =0 v oo (hetn)

e (4. 4b)

o]
]

A
(w2+ a?+ nz) [l"-s— (w2+ 5n2 ) ] -2 (Mu+ n?) + g

and prime denotes differentiation with respect to the argument.

If w plays the role of the radial variable T , then
replacing w by r and letting Kq (r) = R I"l/[' we obtain
equation (4.4) after some algebraic calculations and

rearranging the terms in the following form
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2
4R 1p, Y d R 1~ k2 5% 5 g
Sy e (T =) = B et [ =2 W 7T
dr dr A+ ip r dr Y
)
4 K p d K
+ _—"”—-E—--*‘iﬂﬁ --_(—-_)] R= 0 e o o (4.5&)
A+ iper ar /Y
eqQr
K = I'zd - A - -
: C e oo (4a5Db)
2. 2 A a 2 2
y = (r?+a“+n°)[1- —=(r"+5n )]-2 (Mr+n9+ e
3

which represents the radial decoupled Dirac equation for the

HNUTKN spacetime .

The equation (4.5) reduces to the radial decoupled Dirac

equation obtained by

(1) Xu Dianysn end Weng Huiya [111] end Shen You- Gen [112]

for the Kerr — Nowman de Sitter spacetime when n =0

(11) Khanal [3113] for the Kerr de Sitter spacetime if

n=98=20

(i11) Page [114] for the Kerr - Newmsn spacetime provided

/\.=n=0, ~/2)\"— l’ Jz\p.e "'p-e

(iv) Chendrasekhar [115] for the Kerr spacetime when

AN = @ = n = 0.
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In troducing the coordinate

d Y d

— = . o @ (4'6)

ar r24 (a+n)° dr
the equation (4.5) , near the horizon,reduces to

2

d R 2 2

(_i_;\_z_ 4+ 4 ( g - 60) R= 0 s o (407)
where

2
(a+n) g+ A eQr,
6, = +

r? + (a+n)2

3 3[rf+ (a+n)2]

and r, called the event horizon , is the smaller of the

tyo positive values of r for which Y=20, provided the roots
are real ( 1. e. -}\-— > M2 > a?- n?+ 92) . The larger
positive value of Y = 0 denoted by r++ represents the

cosmological horizon,

If n =0, the equation (4.7) reduces to the W;B.Ve equation
obtained by Xu Dianyan and Wang Hulya [116] and Shen Ym_l
Gen [117] for the Kerr - Newman de Sitter spacetime . For
A=n =0, the equation (4.7) reduces to the wave equation
obtained by Zhao Zheng et al, [118] for the Kerr — Newman black
hole , When A=n=8e=0, the equation (4.7) reduces to the
vave equation obtained by Liu ILiamo and Xu Dianyen [119] for the

Kerr blak hole,
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be3 Hawking Thermal Spectrum

m———

The solution of the equation (4.7) can easily be found to be

R~ewp[fi1a(o-0,)]T e oo (4.8)

Now we can write the radiel wave function as

b, = exp [—id(_ti?l)] “ ¥ ou (4.9)

where A
A(0-dg) T

d

We resolve 1!>r into ingoing end outoing waves as

in N\
Voo~ exp[-1a(t+T) ] e oo (410)
out =
b, ~exp[-10(t-T))] .5 s (1)

Introducing the Eddington - Finkelstein coordinates

. Caas 412
we obtain

in .

Y .~exp (-107V) ' . o e (4.13)

out

¢r~exp[-idv+213(d-oo)?] C e (4.14)
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Integrating equation (4.6) y mear r = T ,we obtein
r = ==——-——= 1ln r-r ) v o o (415
21K + Aa15)
+
where

A

< a -

68 [ro+ (a+n)?] 4 r*‘.’)(r"'— S

is the surface gravity [120] of the event horizon of the HNUTKN
spacetime . Here r_ 1s the inner black hole horizon end r

is snother cosmological horizon ,

Just outside the event horizon we have

1bout-, —isv )(1/\(+)(d - )

~ € (r“r+ oco(llvolé)

r

We now extend the outgoing wave outside the horlzon to the
region inside . ‘Since on the event horizon, the ocutgoing wave
function is not analytic end can not be straightforwvardly extended
to the region inside, it cen be continued analytically to the com- -

plex plene by going round the event horizen .

Hence ingide the event horizon

1lloutl ~ e-iﬂv ( r+_ r )(i/"(-{‘-) (d - dO ) e( TT/(;) (d - do) .' s o (4'17)



Introducing the step funetion

1 y X

y (x) = { v e e (4e18)
0

, x<0

W
o

the outgolng wave function can generally be written as
out
RS A CEL AL NS L

n
by (e, =) (- r) onp -K.-;(d-do)}] N )

out
where \br is the normelized Dirac wave function .

. BExpression (4.19) describes the splitting of ¢out into
. r

two components g

(a) 'a flow of positive energy particles of strength N;Z.

outgoing from the event horizon and

(b) a flow of positive energy particles propageting in the
HNUTKN background gravitational field in the reverse time , since
inside the event horizon , T represents the time axls due to the
interchange of time and space . This can be interpreted as a flow
in time of negative energy antiparticles ingoing towards the
slngularity region . This shows that a wave function near the event
horizon gives rise to the creation of Dirac particle antiparticle

p&ir [ 121 ].
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From the normalization condition , we have

out M il (2l (e-6 0141} =1 ( 4. 20)
<p, P > =N jexp K+d %o = .
2 1 -1
or Ni._.{exp[-a(d-qo)]+1}
1 -1
= {exp [ == (o - do) 1+ 1} . @ (4.21)
b T4 '
where
T, = ——\—(:3—- PR (4.22)
+ zﬂ(;) .

T+_ being the temperature of the region inside the event horizon,
K’b is the Boltzmenn's constant , Equation (4.21) 1is the
formula for the Hawking thermal spectrum of Dirac particles in

the HVUTKN spacetime [ 122.)..

In the limits

(1) n =0, the relation (4.21) will give the Hawking thermal

spectrum of Dirac particles in HKN spacetime [123 ]

(11) n=e =0, we get from (4.21) the Hawking thermal spectrum

of Dirac particles in the hot Kerr spacetime
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(141) n=2a=0, the rolation (4.21) gives the Hawking thermal

gpec trum in hot Reissner = Nordstrom spacetime

(iv) n=a=e-= 0 , the relation (4.21) is the Hawking thermal

gpectrum in the hot Schwarzschild spacetime .

Further in the limits A =0 , in the cases (1) - (vi) we

will get the Hawking thermal spectrum formulas for
(1) Kerr - Newman spacetime [124]

(11) Kerr spacetime [ 125]

(41) Reissner Nordstrom spacetime

(iv) Schwarzschild spacetime .

In the 1limit a = e = 0 , the relation (4.21) will give the
formula for the Hawking thermal spectrum in the hot NUT spacetdme.
Further in the 1imit A= 0, we get the fornula for the Hawking

thermal spectrum in the NUT spacetime .

Following in the similar way we could have

L _ e oo (4e23)

where

Ky = - (r -r) (5, -7 ) (5= ) (424)
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15 the surface gravity of the cosmological horizon , In the proper

1iﬁits (4.24) goes for the results obtained in [126] .

Lol piscussion

We observe partlcle emission near the horizons r, and ;;+
of the HNUTKN spacetime which 1s not a black hole spacetime but
includes all the black hole spacetimes which are asymptotically flet
as well as asymptotically de Sitlter as speclal cases . In the next
chapter we shall show that Gibbons and Hawking's thermel radiation
by black holes occurs in the case of Kasner - type spacetime which

describes an anisotropic model of the universe,
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CHAPTER - 5

HAWKING RADIATION OF DIRAGC PARTICIES IN
KASNER- TYPE SPACETIME

. Hawking's [127] investigations of quantum effects interpreted
"ms the emission of a thermal spectrum of particles near a black hole
event horizon has been extended by Gibbons end Hawking [128] to the
spacetime of cosmological event horizons including the de Sitter

spacetime , which has attracted renewed interest as a model of the

early universe . In Chapter 3, we have observed that Hawking's [129]
result on thermal radiestion by black holes holds good in the case of

‘ NUT - Kerr - Newman spacetime which includes all the black hole space-
times (asymptotically flat ) as well as NUT spacetime as speclal cases.
Whereas in Chapter 4, we have observed that Glbbons and Hawking's
[130] result holds good in the case of NUT — Kerr — Newmen ~ de Sitter
spacetime which includes black hole spacetimes(asymptotically flat as

well as asymptotically de Sitter ) and NUT de Sitter spacetime as

special cases , In the present chapter we have attempted to show that
,' Hawking's [131] and Gibbons and Hewking's [132] results on the
thermal radiation by black holes that have been found to occur in the
case of NUT - Kerr -~ Newman eand NUT - Kerr — Newman - de Sitter

spacetimes also occur in the case of Kasner - type spacetime , an

anlsotropic universe .
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5,1 The Kasner - Type Spacetime

We consider the spacetime

2
) dr 2
d52= rz(de2 + 92d¢2)+ —5— ~-Adt . .. (5.18)
whers
2 2
1 2M e"+ g
B o= —omATP e oy .« . (5.1D)
3 r r

Besides the cosmological constant A , the spacetime given

by (5.1) contains three real parameters : the mass M ,the elec—

tric charge e and the magnetic charge g .

The spacetime (5.1) can be transformed to the Kasner form

when we put A=e=g=0, Equation (5.1) can be written in

the form
2
2 2 2 r Y
- ds®= r (de + o d¢2)+-—— dr2————dt2 e+« (5.22)
Y r2
where
A
3

The surfaces Y = 0 are the horizons of the metrie (5.2) .
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5,2 Rodial Wave Equation

it , we
From equations (2.21a) , (2.128 ,h) in the limit ,

obtain the redisl ( w~ r) decoupled Dirac equation in the

case of Kasner - type spacetime as follows ¢

2
2 d R K
d"R d 1p X 2 2 2
Y e+ I (/T) - e J——+ [ —-2(+p r")
dr2 dr A+ dlpgr dr Y
R U d K
+ .__e_————--n- + i ﬁ———-( —-——)] R= 0 e e @ (5.3)
)\+ip,er dr A/_i

K= 1‘26 -eQr

Y=--§—r4—2Mr + 0%+ g2

where ¢ 1s the energy of the Dirac particle , » 1s the
separalion constant , kg and Q are the mass and the electric

charge of the Dirac particle respectively.

With the coordinate transformation

e “wow s (5ed)

equation (5.3) reduces near the horizon to the form
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2
d R 2 e o @ (5' 5)
o= + (6 =0,) R =0
~2
dr
where
- o @ .
d == s o T L e L] (5. )
L r
+
and T, called the event horizon , is the smaller of the two
positive values of r at which Y= O, provided the roots
are real . The larger positive value of Y =10, denoted by
Ty represents the cosmological horizon,
5.3 Hawking Thermal Spectrum
The solution of equation (5.5) can easily be found to be
R"exp[ii(d-do)]? e o . (5.7
Now we can write the radial wave function as
o= | + o
\br‘exp[—id(t.—rl)] s e (5-8)
where
A 6 = Oy A
1. = —— F e oo (5.9
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i ing waves as
We resolve ﬂ)r into ingoing and outgoing

b0 e [-1e( b+ F) ]

4 em (-1 (t-F)) ]

Introducing the Eddington - Finkelstein coordinates

v = t+ I'l
we obtaln
in
v, ~ exp(~-1iav)
out A
tbr “'exp[-idV-l-Zi(d-do)I']
Near r =r, , equation (5.4) cen be integrated to give
N 1
T = =———- 1n( r—r+)
2K,
where
A
;(’_I_: - -6-);—2( r+—r++)(r+—r_)(r+—r_
+

is the surface gravity of the event horizon of the Kasner-type

spacetime . Here r_ 1is the inner black hole horizon and r_ _

is another cosmological horizon,

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)
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Just outside the event horizon we have

‘b ~

out -idv(r_r )(i/’(-’i-)(d-do) o o @ (5-17)
e +
¥
We now extend the outgoing wave outside the horizon to the
region inside . Since on the event horizon the ocutgoing wave
function is not analytic and cannot be gtralghtforwardly
oxtended to the region inside , it can be continued analy-

tically to the complex plane by going around the event horizon,

Hence inside the event horizon

i - ) (g~
¢§ut” e'i"v(r+—r)( /K )(o=0) e(w/lC:)(c d) (5.18)
Introducing the step function
i 4 for x >0
y(x) = { v ¢ o L5.75)
0] for x <0

we can generally write the outgoing wave function as

out out
. =N, {y(r- r+)\bru (r - r+)

+y(r - r) ‘\’:.Ut(lur- r) exp [ -Té‘— (¢ =61} e o o (5.20)
~ %
pout

where is the normalized Dirac wavé funetion,
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Expression (5.

two components g

(a) A flow of positive - energy

outgoing from the event horlzon .

(b) A flow of positive — energy partioles in the Kasner- type
background in the reverse time , since inside the event horizon , r

represents the time axlis due to the interchange of time and space .

ou
20) describes the splitting of ¢

This can be interpreted as a flow in time of negative — emnergy

2
perticles of strength N,

into

particles ingoing toward the singularity region, This shows that a

wave function near the event horizon gives rise to the creation of

a Dirac particle - entiparticle pair [133] .

Obviously,from the normelization condition we have

out  out 2 2w
<¢. s b, 7=Nr{exP["'<T(d-do)J+1}=l
LK
2 21 =1
or, N o ={ep[-—=(o-0,)]+1}
+
1 -1
=fexp [——(o0-0_) ]+1]}
b I, ©
where

(5.21)

(5.22)

(5.23)
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is the temperature of the region inslde the event horizon  and

on (5.22) is the formula for

T
+

K. 1is Boltzmenn's constant , Equatd
b

the Hawking thermal spectrum of Dirac particles in the Kasner = type

spacetime [134 ]

Following in a similar way , we have

T — ___'{-\.tj— ¢« o o (502[&)

where
'd . ( (5.25)
= - g.;_z—-_ (r++- r+)( iy r_) e T ) e e S
+ 4+

is the surface gravity of the cosmological event horizon .,

5.4 Remarks

From this work it has appeared that an anisotropic model like
Kasner- type spacetime gives rise to particle creation .The Kasner-
t:fpe spacetime is due to the contraction of the Schwarzschild space-
time generalized with the cosmological constent and eleotz"ic and
magnetic monopole charge., This result of particle creation in the
Kasner - type spacetime goes beyond the idea that in the contraction

phase it 1s necessary that the matter should disappear, To avoid
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this situation, it could be said that particles do not disappear
in the process of contraction but become immaterial . It will be
nore interesting to say that " immaterial souls " of particles

ar:e created during contraction.
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CHAPTER - 6

HAWKING RADIATION OF DIRAC PARTICIES
IN PLEBANSKI SPACETIME

In the preceding three chapters we have seen that Hawking's
and Gibbons and Hawking's thermal speétzwn of Dirac particles near
the event horizon and the cosmological horizon of black hole space-
times holds good near the eveﬁt horizon and the cosmolegical horizen
of NUTKN , HNUTKN and Kasner- type spacetimes . In the present
chapter we shall generalize these results and show that Hawking's
and Gibbons and Hawking's thermal radiation by black holes holds
good also in a more general bacﬁgrcund spacet,imé viz, Plebanski
spacetime ., Using equation (2,21a) we derive the radial decoupled
Dirac equation in the Plebans}“gillimit and then study Haewking radia-

tion near the horizons: oj_f the metric .

6.1 The Plebanski Spacetime

In the coordinates ( u, v, w, x) the Plebanski spacetime is

given by
2
2 x2+ w2 5 X + W 2 X 2
HE ™ m e dx ™ + =——————— dw + "—2—‘---5 (d‘ll + W dV)
X Y XxXT+ W
Y 2
- ———— (du - xzdv‘) « e @

x+w2

(6.1a)




- o §-~-

where
A
2 .
xzb—g2+2nx"'€x - """XA e o @ (6-]-b)
3
A .
2
I=b+92-2Mw+ew-—-—-w4 o s o (6.1c)
3
with electric potential
" ew 2
A dx =z =me———— ( du-x“dv) .« oo (6.2)
¢ x2+ \.'2

Besides the cosmological constant A,, the metric given
by (6.1) includes : the mass parameter M, the NUT (magnetic
mass ) parameter n, the electric charge parameter e, the mag-
netic charge parameter g andAthe kinetical parametei‘s b and
¢ . The metric is of Petrov type — D and the surfaces Y =0

are the horizons of the metric [135] .

With suitable adjustment of the parameters and appropriate
coordinate transformation the metric (6.1) gives many of the
physically interesting solutions of Einstein or Einstein -

Maxwell equation which has already been discussed in Chapter 1.

6.2 Radial Wave Equation

To obtain the Plebanski spacetime and the radial decoupled
Dirac equation in this background spacetime , we set in equations

(2.1) , (2.21a),(2.12g) end (2.12h) the following substitutions:
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]

H(w):BW: G(x)

VI a = 19, p = -14 ,

w(g):/Y,X(x)

Y =b+e2'-2Mw+ew2 - -;\-wl’,
X =b-g'2+2nx-ex2 - —;\—xl*

where o 18 the energy of the Dirac particle and A is the

ar‘bi trary constent ,

From 'equations (2.21a) , (2.12g, h) and (6.3) we obtain

the following equation

3 1K v’ 6 1k Y’
VI [ - + - 1VY [ + + ]Kl(w)
Ow Y 4 Y dw Y LY
ip X 0 iK Y’
+ g [ + o=+ —= ] Kq (W)

N+dp,w dw Y 4 Y

2
e
whers
2
K = w g - A - eQw
A
2
Y = b+92—2Mw,+sw = --‘-w4

' 2

O,h(w)=w, g(x)=x, Z2=w"+x",

(6.3)

(6.4)
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If w plays the role of the radial variable r , then replacing

.w py r and letting Kl(r) = RY_l/l* we obtain (6,4) as

d d R 1p,Y d R K 2 o
JI —(/Y ) - -4l -2 (AT + TR
. dar dr A+ dlp, r dr Y
K kg d K
F s +1V/Y —(-=)]R=0
x+ip.er dr Y

K:rzd—A—eQr

2-2Mr+sr2— ——r4

Y=b+ e
Under the coordinate trensformation (1,42) along with the
adjustment of the parameters (1.39) and (1.40) the equation
(6.5) transforms to the radial decoupled Dirac equation for the
NUT - Kerr- Newman — Kasuya- de Sltter spacetime which reduces to

the radial decoupled Dirac equation obtained by

(1)  Ahmed [136] for +the HNUTKN spacetime when g=0

(11) Xu Dianyan end Weng Hulya [137] for the Kerr- Newmen -

de Sitter spacetime if n=g =20

(ii1) Khanal [138] for the Kerr- de Sitter spacetime provided

n=e=g_—_0

(6.5)
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(1v) Page [139] for the Kerr - Newman spacetime when v/2 A= A,

V2 Pe ™ Mg 9 A=n=g=0

(v) chandrasekhar [140] for the Kerr spacetime if

Q.
<
[ 7

= ‘ : e .. (6.6)

the equation (6.5) near the horizon Y = 0 , reduces to

the following form

dzR
2
—————+(d—d) R’:O e o (607
4T ? © )
where
[x g + A eQr
o = | e e ] ’ ¢ o o (6'8)
o I,2*_}{2 r2+x2 r=r,

and r+ , called the event horizon , is one of the positive
valugs of r for which Y =0 , provided the roots of

Y=0 are real.

Under the coordinate transformation (1.42) accompanied
by the adjustment of the parameters (1.39) end (1,40) , the
equation (6.7) will be trensformed to the wave equation for

the HNUTKNK spacetime .
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6 3 Hawking Thermal Spec‘trum

The sclution of equation (6.7) 1is evidently

R

1]

exp [ £ 1 (0-0,)]

A
r

Now we wrlte the radial wave function

where

We resolve il!r

cexp [ -1g( t 2 1?1 ) ]

and ocutgoing waves as
A
s t+ry) ]

o (t-7))]

Y. =
A
A (6 =g )T

1 ]

into ingoing

in
b, o~ oexp [ -1

out
l‘)r ~exp[—i

Introducing the ®mddington -

we obtain

Finkelstein coordinates

g V)

cv+21(o—oo)?]

L]

(6.9)

(6.10)

(6.11)

(6,12)

(6.13)

(6.14)

(6.15)

(6.16)
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/

4 on integration of equation (6.6), we find near r = r

No +
that the equation takes the following form
1
T = —— In(r-1) e oo (6,17
2K
+
where
= - [ ] * o @ (6018)
* 2 r2+ x2 or r=r,
is the surface gravity [141] near the event horizon of the
Plebanski spacetime .
Just outside the event horizon
out -1 (1 /K3) (6 - o,)
‘br ~ e IV r - r+) + © “ " (6.19)

By analytically continuing the outgoing wave outside the horizon

to the reglon inside we obtain inside the event horizon

out,  _jgv, ﬁ\(iﬂq)(°‘<%) (/K6 -q.)





































