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Abstract

Electroencephalogram (EEG) can reflect not only the activity which is specific

for a cognitive task during an experiment but also the electrical background ac-

tivity of the brain. The EEG signals recorded from the scalp surface are usu-

ally contaminated by different physiological signals which are termed artifacts.

Among the artifacts the electrooculography (EOG) makes serious obstacle to many

neuroscience experiments including the application for brain-computer interfaces

(BCIs). It has noticeable higher energy at lower frequency compared to target

EEG signals. This research presents a hybrid wavelet based algorithm to suppress

the ocular artifacts from EEG signals. The hybrid wavelet transform (HWT)

method is designed by the combination of discrete wavelet decomposition (DWT)

and wavelet packet transform (WPT). The artifact suppression is performed by

the selection of subbands obtained by HWT. Fractional Gaussian noise (fGn) is

used as the reference signal to select the subbands containing the artifacts. The

multichannel EEG signal is decomposed by HWT into a finite set of subbands.

The energies of the subbands are compared with fGn of the desired subband sig-

nals. The EEG signal is reconstructed by the selected subbands consisting of

EEG components. The experiments are conducted for both simulated and real

EEG signals to study the performance of the proposed algorithm. The results are

compared with recently developed artifacts suppression algorithms like stationary

subspace analysis (SSA), discrete wavelet transform (DWT) and empirical mode

decomposition (EMD). However, the existing EMD method has been successfully

used in the field EEG artifact suppression using a data-adaptive subband filtering

approach. But the higher computation burden of EMD processing is the main

obstacle to online implementation of brain-computer interfacing (BCI). To resolve

such limitation, the proposed HWT with higher computation speed is introduced

in this study. In this thesis, BCI experiment is conducted to test the cleaning

performance followed by the BCI classification with EEG signal. For the motor

imagery EEG classification, linear discriminant analysis (LDA) is used. The ex-

perimental results prove that the classification performance increases noticeably

with the cleaned EEG data, using the proposed algorithm. It is found that the

proposed method performs better than the methods compared in terms of perfor-



mance metrics (signal to artifact ratio and mutual information), computational

cost and classification accuracy. Therefore, this study shows that the proposed

HWT based system performs better than other techniques for elimination of blink

contamination from EEG signal.
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Chapter 1

Introduction

The electrical activity of human brain captured by electroencephalography (EEG)

exhibits a significantly complex behavior with strong non-linear and dynamic prop-

erties. The communication in the brain cells take place through electrical impulses.

It is measured by placing the electrodes on the scalp of the subject. The cortical

nerve cell inhibitory and excitatory postsynaptic potentials generate the EEG sig-

nals. These postsynaptic potentials summate in the cortex and extend to the scalp

surface where they are recorded as EEG. A typical EEG signal, measured from

the scalp, will have amplitude of about 10− 100µV and a frequency in the range

of 1− 100Hz. Besides, the clinical applications the use of EEG signals as a vector

of communication between men and machines represents one of the current chal-

lenges in signal theory research. The principal element of such a communication

system, more known as “Brain Computer Interface”, is the interpretation of the

EEG signals related to the characteristic parameters of brain electrical activity.

The identified electrical signals along the scalp by an electroencephalography

which are activated from non-cerebral origin are termed as artifacts. EEG data is

almost always contaminated by such artifacts. The amplitude of artifacts can be

quite bulky relative to the size of amplitude of the cortical signals of interest. This

is one of the reasons why it takes considerable skill to properly interpret EEGs

clinically. Some of the most common types of biological artifacts include: ocular

artifacts (includes eye blinks, eye movements and extra-ocular muscle activity),

cardiac ECG (electrocardiography), muscular EMG (electro-myogram) artifacts.

The EMG and EOG (electro-oculogram) artifacts are produced by facial muscle

movementand, eye movement respectively. The cortical EEG signals are unavoid-

ably combined with the electrical activity of the muscle tissue on the skull. Muscle

artifacts are characterized by high frequency and low energy activity relative to
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the local background activity. Among different artifacts, the muscular artifacts

are more dominating and become potential obstacle to the further processing of

the EEG signals. Hence, it is a challenging research issue to develop an efficient

method to suppress the muscular artifacts from the raw EEG signal for the appli-

cation in BCI.

The triumph depends on reliable handling of the noisy, non-linear, and non-

stationary brain activity signals for extraction of features and effective grouping

of motor imagery (MI) action as well as translation to the corresponding intended

actions for MI based brain-computer interfacing (BCI). In this paper, EEG signal

processing and classification performances are offered for motor imagery based

brain-computer interface. EEG signals have been acquired placing the electrodes

following the international 10-20 system. The acquired signals have been pre-

processed removing artifacts using hybrid wavelet transform (HWT) leading to

better signal to artifact ratio (SAR), mutual information and classification accu-

racy compared to SSA, DWT and EMD. EEG signals have been decomposed into

subbands that are further processed to extract features. The extracted features

have been used in linear discriminant analysis to characterize and identify MI

activities.

This chapter introduces the background of the current study by describing

both invasive and non-invasive EEG signals at first, followed by the motivation of

this thesis by describing the challenges faced during preprocessing of these EEG

data due to artifacts and the limitations of the existing methods to handle the

issues. Then the objectives of this thesis are presented.

1.1 Brain Computer Interface (BCI)

A Brain computer interface is a communication structure of hardware and software

that allows cerebral activity alone to restraint computers or peripheral devices.

The present immediate aim of BCI study is to provide communications capabilities

to severely disabled people who are totally paralyzed or locked in by neurological

neuromuscular syndromes, such as amyotrophic lateral sclerosis, brain stem stroke,

or spinal cord injury. A brain computer interface (BCI) is also called a brain
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Figure 1.1: Basic BCI outline [3]. BCI system holds four basic components. It contains signal

acquisition, signal preprocessing, feature extraction, and classification method.

machine interface (BMI). It is a transmission system that assists individuals to

interact with their surroundings, without the involvement of external nerves and

muscles, by using control signals generated from EEG activity. BCI creates a fresh

non-muscular channel for relaying a persons intentions to external devices such as

computers, speech synthesizers, assistive appliances, and neural prostheses. It

is particularly attractive for individuals with severe motor disabilities. Such an

interface would improve their quality of life and would, at the same time, reduce

the cost of intensive care.

A basic BCI layout is illustrated in Figure 1.1. The brain computer interface

is an artificial intelligence scheme that can distinguish a definite set of shapes in

brain signals ensuing five successive stages: signal acquisition, preprocessing or

signal enhancement, feature selection and extraction, classification, and the con-

trol interface. The signal acquisition stage captures the brain signals and may

also perform noise reduction and artifact processing. The preprocessing stage pre-

pares the signals in a suitable form for further processing. The feature extraction

step identifies discriminative features in the brain signals that have been recorded

from human brain. Once measured, the signal is mapped onto a vector having

effective and discriminant features from the detected signals. The extraction of

this attention-grabbing information is a very challenging task. Brain signals are

mixed with other signals coming from a finite set of brain activities that overlap

in both time and space. Moreover, the signal is not usually stationary and may

also be distorted by artifacts such as electromyography (EMG) or electrooculog-

raphy (EOG). The feature vector must also be of a low dimension, in order to

reduce feature extraction part difficulty, but without relevant information loss.

The classification stage classifies the signals taking the feature vectors and choice
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good discriminative features. It is therefore important to achieve effective pattern

recognition, in order to decode the users intentions. Lastly the control interface

stage translates the classified signals into meaningful commands for any linked

device, such as a wheelchair or a computer [147].

A BCI system can be classified as an invasive or non-invasive BCI according

to the way the brain activity is being measured within this BCI [Figure 1.2].

In invasive technology, electrodes are neurosurgically implanted either inside the

users brain or over the surface of the brain, while in non-invasive technologies,

the brain activity is measured using external sensors [194]. In this manuscript we

focus on EEG as the measurement technology.

Figure 1.2: Signal acquisition system. If the sensors used for measurement are positioned within

the brain, i.e., under the skull, the BCI is said to be invasive. On the contrary, if the measurement

sensors are placed outside the head, on the scalp for instance, the BCI is said to be non-invasive.

This whole architecture is summarized in Figure 1.1. The above description

defines an online BCI. However, it should be noted that before operating such

a BCI, a considerable calibration work is necessary. This work is usually done

offline and aims at adjusting the classification algorithm, calibrating and selecting

the optimal features, selecting the applicable sensors, etc. In order to do so, a

training data set must have been recorded earlier from the user. Certainly, EEG

signals are highly subject-specific, and as such, immediate BCI systems must be

standardized and adjusted to each user. The training data set should contain

EEG signals recorded whereas the subject performed each mental task of interest

several times, according to given commands. The recorded EEG signals will be

used as mental state examples in order to find the best calibration parameters for

this subject.
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1.2 Electroencephalography

There is nothing so stable as change

(Bob Dylan)
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Figure 1.3: Low amplitude and high freuency EEG signal, recorded using electrode. A typical

EEG signal, measured from the scalp, will have amplitude of about 10− 100µV and a frequency

in the range of 1− 100Hz. EEG recording provides high temporal resolution.

EEG is the method of recording electrical activity through the scalp due to

firing some of the neurons in the brain. These electrical activities are captured over

a short period of time through multiple electrodes set on the scalp directly on the

cortex. EEG is measured as the most common scheme for brain signals recording

because it has high temporal resolution, easy to use, safe, and reasonably priced.

The EEG signal is illustrated in Figure 1.3 where single electrode is used.

Signals recorded by EEG have very weak amplitude, in the order of some

microvolts. It is thus necessary to strongly amplify these signals before digitizing

and processing them. A 12-bit analog to digital converter (ADC) with sampling

frequency ranging from 100Hz to several hundred is used to digitize EEG signal.

Typically, EEG signals measurements are performed using a number of electrodes

which differs from 1 to about 256, these electrodes being generally attached using a

flexible cap. There are two types of electrodes for measuring EEG which are active
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Figure 1.4: 10-20 system and electrode positions [160]. Location and nomenclature of the inter-

mediate 10% electrodes (10/20 electroencephalography system), as standardized by the American

Electroencephalographic Society. The letters specify the spatial location as A = ear lobe; Fp =

frontal polar, etc.

electrodes or passive electrodes. Passive electrodes require an external amplifier

to amplify the measured signals. On the other hand, active electrodes usually

have an embedded amplifier. The main purpose of using either embedded or an

external amplifier is to reduce the influence of the environment noise as well as

the weakness of the signals due to cable movement. One of the major problems

of EEG is that it needs gel or saline liquid to reduce the impedance of skin-

electrode contact. The problem with the gel or the liquid is that it dries with

time. However, currently there are some dry electrodes that are invented and

might solve the problem of old electrodes. For reliable signals, it is expected

that the distance between the electrodes have to be between 1cm and 2cm for

low signal to noise ratio (SNR). In addition, EEG is able to detect changes in

the brain signals within millisecond where an action requires almost 0.5 − 130

milliseconds to propagate across a neuron. The contact between the electrodes

and the skin is generally enhanced by the use of a conductive gel or paste. This

makes the electrode montage system a generally boring and lengthy process. It

is exciting to note that BCI researchers have recently proposed and validated dry
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electrodes for BCI, that is, electrodes which do not need conductive gels or pastes

for use. However, the performance of the resulting BCI (in terms of maximum

information rate) were, on average, 30% lower than the one obtained with a BCI

based on electrodes that use conductive gels or pastes. Electrodes are generally

placed and named according to a standard model, namely, the 10-20 international

system (see Figure 1.4). This system has been initially designed for 19 electrodes;

however, extended versions have been proposed in order to deal with a larger

number of electrodes.

With more experience with EEG recoding, 10-20 system, shown in Figure 1.4,

it is recommended as a standard layout. The 10-20 refers to specific anatomic

benchmarks or inter-electrode distance, such that it is 10% to 20% of the front-to-

back or right-to-left head perimeters. EEG is usually defined in terms of activity

types which are rhythmic activity and transients. The rhythmic activities are

divided into certain frequency bands. These bands are verified to have certain

biological significant or certain distribution over the scalp. In addition, it turns

out to be a kind of nomenclature that EEG signals that falls below 1Hz and

above 20Hz are considered as artifactual [160]. EEG measures the sum of the

post-synaptic potentials generated by thousands of neurons having the same radial

orientation with respect to the scalp (see Figure 1.3). The first EEG measurements

on a human subject have been directed in 1924 by Hans Berger. It is at that time

that he worked out the name of electroencephalogram. His essential discovery was

available in 1929.

1.3 Brain Rhythms

EEG signals are composed of different oscillations named ”rhythms”. These

rhythms have distinct properties in terms of spatial and spectral localization.

In healthy adults, the amplitude and frequencies of such signals change with age,

race and geographical location. Thus, previous statistical analysis must be done,

in order to find mean brain patterns for EEG signal processing. There are six

major frequency bands in brain rhythms, from low to high, these are:

• Delta rhythm: Delta (δ) waves ranging from 0.5 to 4 Hz. This is a slow
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rhythm with a relatively large amplitude, which is mainly found in adults

during a deep sleep.

• Theta rhythm: Theta (θ) has an amplitude that is greater than 20µV and

falls within the range of 4 to 7.5 Hz. This is slightly faster rhythm observed

mainly during drowsiness and in young children. It is generated with idling,

creative inspiration, unconscious material, drowsiness, and deep meditation.

• Alpha rhythm: Alpha (α) is a wave with amplitude of 30-50 µV and

change rate between 8 to 13 Hz. It is usually associated with relaxation,

concentration, and sometimes in attention. These are oscillations which

appear mainly in the posterior regions of the head (occipital lobe) when the

subject has closed eyes or is in a relaxation state.

• Mu rhythm: Mu (µ) is found in the alpha wave frequency range where the

recorded amplitude over motor cortex is maximum. It is usually associated

with suppression indicates that motor neurons are working. It is located in

the motor and sensorimotor cortex. The amplitude of this rhythm varies

when the subject performs movements. Consequently, this rhythm is also

known as the sensorimotor rhythm.

• Beta rhythm: Beta (β) is associated with alert, thinking and active con-

centration and falls in the range between 14 to 26 Hz. This is a relatively fast

rhythm which is observed in awaken and conscious persons. This rhythm is

also affected by the performance of movements, in the motor areas.

• Gamma rhythm: Gamma (γ) could be detected at somatosensory cortex

with frequency greater than 30 Hz. It is also shown during short term

memory matching of recognized objects, sounds, or tactile sensations [160].

This rhythm is sometimes defined as having a maximal frequency around 80

Hz or 100 Hz. It is associated to various cognitive and motor functions.
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1.4 Measurements of Brain Activity

It is required to operate a BCI consists in measuring the subjects brain activity.

Up to now, about half a dozen different kinds of brain signals have been identi-

fied which is suitable for controlling BCI. This section first describes the different

available techniques for measuring brain activity i.e., easily observable and con-

trollable for BCI. Then it describes the brain signals that can be used to drive a

BCI.

1.4.1 Techniques for Measuring Brain Activity

(A) Overview of measurement techniques used for BCI

Many techniques are available and used, in order to measure brain activity

within a BCI. Among these methods, MagnetoEncephaloGraphy (MEG),

functional Magnetic Resonance Imaging (fMRI), Near InfraRed Spectroscopy

(NIRS), ElectroCorticoGraphy (ECoG) or implanted electrodes, placed un-

der the skull. However, the maximum used method is by far ElectroEn-

cephaloGraphy (EEG). Indeed, this method is relatively cheap, non-invasive,

portable and provides a good time resolution. As a result, most current BCI

systems are using EEG in order to measure brain action. Thus, in this thesis

work, we have focused on EEG-based BCI designs.

(B) Invasive and non-invasive BCI

It should be noted that a large and rapidly growing part of BCI research is

dedicated to the use of implanted electrodes which measure the brain activ-

ity (most widely used EEG technique) of groups of neurons. At this time,

most of this research has focused on the design and evaluation of invasive

BCI for primates. However, recent results have exposed the usability of such

systems on humans. Implanted electrodes make it possible to obtain signals

with a much improved quality and a much better spatial resolution than

with non-invasive methods. Indeed, some invasive methods can measure the

activity of single neurons while a non-invasive method such as EEG measures

the resulting activity of thousands of neurons. As such, it is recommended
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that invasive BCI could obtain better results, in terms of performances (in-

formation transfer rate, accuracy, fiability, etc.), than non-invasive methods,

and especially than EEG.

However, this report still needs to be confirmed and still now it is a topic of

debate within the BCI community. Certainly, even if EEG-based BCI are

based on much noisier and coarser signals than those of invasive BCI, some

studies have reported that they can reach similar information transfer rates.

The key difficulty of invasive BCI is exactly the fact that they are invasive

and the subject endures a surgery operation in order to use the method.

Moreover, limited lifetime of implanted electrodes makes the subject bear

regular surgery operations in order to replace the electrodes. At that time,

the use of implanted electrodes might be hazardous for the health of the

subjects. Finally, numerous ethic problems are occurring when implanting

electrodes in a humans brain. From these points of view, non-invasive BCI,

and most especially EEG-based BCI becomes the most used and the most

popular BCI systems. In the following of this manuscript, we will focus

exclusively on non-invasive BCI based on EEG.

1.4.2 Neurophysiological Signals Used to Drive a BCI

In order to associate a command to one or several specific neurophysiological sig-

nals, the aim of BCI is Identifying in the brain activity measurements of a given

subject. Various signals have been considered and some of them were revealed as

relatively easy to identify (automatically), as well as relatively easy to control for

the user. In the following of this manuscript we will also denote a neurophysio-

logical signal as a mental state or as a brain activity pattern. These signals can

be divided into two main categories:

(A) Evoked potentials

Evoked signals are generated unconsciously by the subject when he observes

a specific external stimulus. These signals are also known as evoked poten-

tials (EP). The main advantage of EP is that, different from spontaneous

signals, evoked potentials do not require a specific training for the user, as
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they are automatically generated by the human brain in response to a stim-

ulus. As such, they can be used efficiently to drive a BCI since the first use.

However, as these signals are evoked, they require using external stimula-

tions, which can be uncomfortable, cumbersome or fatiguing for the user.

The main signals of evoked potentials are the steady state evoked potentials

(SSEP) and the P300. These two potentials are described further in this

section.

Steady state evoked potentials:

The SSEP is one kind of brain potentials that appear when the subject per-

ceives a periodic stimulus such as a flickering picture or a sound modulated

in amplitude. SSEPs are defined by an increase of the EEG signals power

in the frequencies being equal to the stimulation frequency or being equal

to its harmonics or sub-harmonics. Various kinds of SSEP are used for BCI,

such as steady state visual evoked potentials (SSVEP), which are by far the

most used, somatosensory SSEP or auditory SSEP (see Figure 1.5 for an ex-

ample of SSVEP). These SSEP appear in the brain areas corresponding to

the sense which is being stimulated, such as the visual areas when a SSVEP

is used.

Figure 1.5: The SSVEP ans its harmonics.
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An advantage of this kind of signals is that they can be used without training

within a BCI. It is possible to use a large number of stimuli in order to obtain

and use a large number of mental states for the BCI, as stimuli with different

stimulation frequencies will lead to SSEP with different frequencies. As a

result, it assists the user to have a large number of commands which makes

the whole system more suitable. This explains the collective attention of the

BCI community for SSEP, and more especially for SSVEP. For example, a

BCI application based on SSVEP can use several flickering buttons displayed

on screen, each button having a unique flickering frequency. In such an

application, the user should draw his attention on the button he wants to

activate. Indeed, it is known that the user draws his attention on this SSVEP

corresponding to a given button are enhanced.

Figure 1.6: A P300 (enhanced by signal averaging) occuring when the desired choice appears.

P300

The P300 consists of a positive waveform appearing approximately 300 ms

after a rare and relevant stimulus (see Figure 1.6). Typically, it is generated

through the odd-ball paradigm, in which the user is requested to attend to a

random sequence composed of two kinds of stimuli with one of these stimuli

being less frequent than the other. If the rare stimulus is relevant to the
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user, its actual appearance activates a P300 observable in the users EEG.

This potential is mainly found in the parietal regions.

As like as SSVEP-based BCI, several buttons or objects are displayed on

the users screen in P300-based BCI applications. These buttons or objects

are randomly highlighted on the screen. The user is instructed to count the

number of times that the button he wants to activate is highlighted over a

finite time period. The desired button is highlighted by a rare and relevant

stimulus only when the trigger is applied at the appearance of the P300.

Thus, when a P300 is detected in the EEG signals, the system identifies

the button desired by the user was highlighted 300 ms earlier. The P300

is generally used in a kind of virtual keyboard which is known as the P300

speller. No training is required for the subject in order to be used P300. But

P300-based BCI applications need the user to continuously focus on fast and

repetitive visual stimuli, which can be fatiguing and inconvenient.

(B) Spontaneous signals

Spontaneous signals are voluntarily generated signals by the user following

an internal cognitive process without external stimulation. There are two

types of spontaneous signals: the most used signals are sensorimotor rhythms

and other called neurophysiological signals (such as slow cortical potentials

or non-motor cognitive signals.

Motor and sensorimotor rhythms:

Sensorimotor rhythms are brain rhythms related to motor actions, such as

arm movements, for instance. These rhythms are mainly found in the α (

' 8-13 Hz) and β ( ' 13-30 Hz) frequency bands, over the motor cortex,

which can be voluntarily controlled in amplitude by a user. Considering these

sensorimotor rhythms will be used in BCI then, two different strategies have

been proposed in order to make the signal user control:

• Operant conditioning: A subject can change his sensorimotor rhythms

amplitude willingly through a long training known as “operant condi-

tioning” (see Figure 1.8). In order to reach this goal, the user is free to

select the mental strategy which is comfortable for him. In this case,
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Figure 1.7: Time series of a typical µ component.

Figure 1.8: Power spectrum of the µ component shown in Figure 1.7. [225].

motor imagery (see below) is one possible approach which is often used.

The role of feedback is essential for operant condition. Using the oper-

ant conditioning, the user is able to understand how he should modify

his brain activity in order to control the system. When operant condi-

tioning based BCI is used, the power of the µ and β rhythms in different

electrode locations are linearly combined in order to build a control sig-

nal which will be used to perform 1D, 2D or 3D cursor control. The

main problem of this method is that it needs very long training time

(training time may be several weeks or even several months). How-

ever, very good performances (in terms of information transfer rate)

are obtained when this training is completed.

• Motor imagery (MI): We are able to imagine almost everything. Sitting

at my desk and overlooking a canal in down-town Dhaka, I can at the
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same time easily imagine that I walk outside the city on a country road.

I can imagine scenes or objects that are not there, or no longer there.

I can mentally perform actions which I can not perform in reality. I

can imagine myself as a perfect dancer although reality has taught me

that my motor networks are very reluctant to learn the repetitive and

rhythmic motor patterns needed for that type of skill. Although this

imaginative power can be used in the visual, auditory, and tactile do-

mains. I will give attention solely on the imagination of motor imagery

movements.

Motor imagery is an intellectual development in which a subject imag-

ines that he or she performs a movement of various body parts result-

ing in sensorimotor cortex activation without actually performing the

movement and without even tensing the muscles. It is a dynamic state

during which motor action is internally activated without any motor

output. In other words, the conscious activation of brain regions is

required by motor imagery. The imagery is also involved in movement

preparation and execution, attended by a voluntary inhibition of the

actual movement [141].
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Figure 1.9: The motor imagery EEG signals [189].
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For a subject, implementation of motor imagery consists in imagining move-

ments of his own limbs (hands or feet for example). The signals resulting

from performing or imagining a limb movement have very specific temporal,

frequential and spatial features, which makes them relatively easy to recog-

nize automatically. For instance, imagining a left hand movement is known

to trigger a decrease of power (event related desynchronisation (ERD)) in

the µ and β rhythms, over the right motor cortex. The motor imagery EEG

signals are illustrated in Figure 1.9. Advance machine learning methods

were recently developed to compute a subject-specific model for detecting

the performance of motor imagery. The top performing algorithm is the

filter bank common spatial pattern from BCI Competition IV dataset 2 for

motor imagery.

Slow cortical potentials: The characteristics of slow cortical potentials

(SCP) are based on the slow event-related direct-current shifts of the elec-

troencephalogram. The shifts in the electrical negative direction redirect

the depolarization of large cortical cell assemblies, reducing their excitation

threshold. They are very slow variations of the cortical activity, which can

last from hundreds of milliseconds to several seconds. Based on the oper-

ant conditioning, it is possible to learn to make these variations positive or

negative (see Figure 1.10). According to the positivity or negativity of the

potential, SCP can be used to generate a binary command in BCI. If the

operant condition is used to control SCP then the signal requires generally

a very long training time. The training time of operant conditioning of SCP

is longer than motor rhythms. However, SCP would be considered a more

stable signal.

Non-motor cognitive tasks: There are large number of non-motor cogni-

tive processing tasks that are used to drive a BCI. For example, these tasks

are-mathematical computations, mental rotation of geometric figures, visual

counting, mental generation of words, music imagination, etc. All these men-

tal tasks generate specific EEG signal variations, in specific cortical areas

and frequency bands, which make them relatively easy to identify.
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Figure 1.10: The upper line indicates negative shifts; lower line, positive shifts.

1.5 Artifacts

Electrical signals are recorded along the scalp by an EEG, but that originated

from non-cerebral origin are called artifacts. It is observed that EEG data is

almost always contaminated by such artifacts. The amplitude of artifacts is quite

large relative to the size of amplitude of the cortical signals. The most common

types of biological artifacts are ocular artifacts (includes eye blinks, eye movements

and extra-ocular muscle activity), cardiac ECG, muscular EMG artifacts. Figure

1.11, Figure 1.12, and Figure 1.13 shows the most common artifacts. The EMG

and EOG artifacts are produced by facial muscle movement and eye movement

respectively.

1.5.1 Sources of Artifacts

EEG recordings are often contaminated by different forms of artifacts. In EEG

recording, the artifacts are of several types that come from different sources. In

broad sense, artifacts in EEG can be originated from internal and external sources

and contaminate the recordings in both temporal and spectral domains with wide

frequency band. Internal source of artifacts are due to physiological activities of

the subject (e.g. ECG, EMG/muscle artifacts, EOG) and its movement. External
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Table 1.1: Different types of artifacts and their origins.

Artifacts types and sources

Physiological/Internal Extra-physiological/External

Ocular Cardiac Muscular Others Instrumental Interference Movement

Eyeblink,

Eye

move-

ment,

Eye

flutter,

REM

sleep,

etc.

ECG,

Pulse

Chewing,

Swal-

lowing,

Clench-

ing,

Sniffing,

Talking,

Scalp

contrac-

tion,

etc.

Glosso-

kinetic,

Skin

Respi-

ration,

etc.

Electrode

displace-

ment,

Cable mo-

tion, Poor

ground,

etc.

Electrical,

Magnetic,

Sound,

Optical,

EM waves

etc.

Head

movement,

Body

movement,

Limbs

movement,

Tremors,

Other

move-

ments,

etc.

source of artifacts are environmental interferences, recording equipment, electrode

pop-up and cable movement. Also some artifacts may be presented in several

adjacent channels (global) while some of them can be found only in single-channel

(local). In addition, some artifacts look as regular periodic events such as ECG or

pulse artifacts (regular/periodic) while some others may be extremely irregular.

A summary of different artifact types and their origins is presented in Table 1.1.

[86].

1.5.2 Artifact Characterization in EEG

In order to reduce the influence of artifacts on the EEG signal, it is very essential

to know what are the most common types that may be recorded during EEG

recording. Artifacts can be strongly separated from other possible categorizations

are physiological and non-physiological or technical origin. The artifacts during

EEG recording are of various types that come from different sources. In broad

sense, artifacts in EEG can be originated from internal and external sources. The
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Figure 1.11: EEG recording corrupted by ocular artifacts [105].

sources and types of artifacts are discussed detail in next chapter.

1.6 Artifact Suppression

Artifact removal is the process of recognizing and eliminating artifacts from brain

signals. An artifact removal method should be able to remove the artifacts as

well as keep the information of neurological signal intact. There are a wide range

of techniques for detecting and/or removing artifacts in EEG. Among them, the

simplest techniques based on thresholding of the various parameters calculated

from the EEG signal, fully automated techniques. There are, for example, stan-

dard and adaptive filters regression methods (both in the time domain and in the

frequency domain), PCA-based approaches, blind source separation approaches,

algorithms based on ICA, and various hybrid methods. Recently, independent

component analysis (ICA) techniques have been used to correct or remove EEG

impurities. These techniques attempt to “unmix” the EEG signals into some num-

ber of underlying components. Depending on the behaviors or natures of EEG,

there are many source separation algorithms. Fully automated artifact rejection

methods, which use ICA, have also been developed [92]. EEG contamination by

muscle has been shown to be far more prevalent than last few years. By compar-
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Figure 1.12: The contaminated EEG data by muscle activity [22].
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Figure 1.13: ECG signal

ing data from paralysed and unparalysed subjects, muscle artifacts are dominant

particularly in the gamma range above 20 Hz. However, Surface Laplacian has

been shown to be effective in reducing muscle artifacts, particularly for central

electrodes. The arrangement of Surface Laplacian with automated techniques are

known as hybrid method that is used for reducing muscle components using ICA

proved particularly effective in a follow up study [52].
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1.7 Existing Methods for Artifact Removal

In this section we give an overview of the measured EEG signal, the different kinds

of artifacts that may affect the recordings, how these sources combine in the scalp

EEG and finally, existing ways for validating artifact removal methods.

Unfortunately, EEG signal is often contaminated by different biological mea-

sures of non-interest. Among them, muscular or myogenic activity arising strongly

opaque EEG signals from the contraction of head muscles. It is particularly dif-

ficult to correct this type of artifact which is induced by perturbation because

myogenic activity is of high amplitude (possibly several times larger than the

EEG signal), wide spectral distribution, and variable topographical distribution.

Therefore, it is a challenging preprocessing step prior to qualitative or quantitative

EEG analysis for denoising of EEG. A simple algorithm is introduced that com-

pares high frequency activity in each epoch with the activity level in a local window

to detect bursts of myogenic activity. If it exceeded the local background activity

by a certain factor, the window is considered artifactual. The artifact detection

algorithms are empirically adjusted by applying different factors such as artifact

thresholds, sensitivity and specificity. Without a priori (or very little) knowledge

about the sources themselves and about the mixing process, it is very difficult to

minimize the disturbances due to muscular activity in EEG signals can be con-

sidered as a blind source separation (BSS) problem, which consists in estimating

the original sources underlying the multi-channel EEG signals. BSS techniques

have been applied in various domains including the denoising of EEG as found

in the recent reviews. Among the existing BSS algorithms, four main ones have

emerged to specifically tackle the difficult problem of EEG data denoising. The

ICA was successfully applied to EEG denoising for muscular activity. It has been

introduced for removing a wide variety of artifacts from multichannel EEG signals.

However, the method requires visual inspection of ICA components and manual

classification of the interference components. This can be time-consuming and

is not desirable for real-time artifact suppression. In particular, these techniques

require multichannel EEG and cannot be applied to a single-channel recording.

More recently, another BSS approach called canonical correlation analysis (CCA)
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is also proposed to remove muscle artifacts from EEG and improve the inter-

pretation of EEG channels. For the detection of epileptic shapes, elimination of

different kinds of noises and for the removal of particular electrophysiological ar-

tifacts, such as ocular movement, and heart signal, the wavelet transforms (WT)

has been used with respect to the EEG background. Finally, a fourth method

called empirical mode decomposition (EMD) has appeared as a promising tool in

the particular field of EEG data denoising which is not suitable for real time im-

plementation. Most of the existing methods of muscular artifact suppression suffer

from high computational load. An efficient model based approach is demanding

to implement the BCI system in real time applications.

Regression analysis is a method using a multi-modal linear model between

observed and a reference signal. It is a traditional way of identifying artifactual

data and consequently removing such data that do not belong to the model. There

are common methods for removing some physiological artifacts such as ocular

and cardiac artifacts from measured artifact-contaminated EEG signal and an

artifact reference signal. As a result, regression analysis is widely used artifact

removing method to remove ocular artifacts from EEG signals. It observes that

the measured EEG signals are a linear superposition of EEG and EOG signals.

The part of any EOG component which is present in the EEG signal is estimated

and then removed using the least squares criterion. It has a drawback that the

method requires the recording of source signals from the EOG channels to remove

ocular artifacts. For this case, the muscle artifacts which originated from different

muscle groups are difficult to identify from the source EEG signals. For this

reason, different reference channels from multiple muscle groups are required. This

in turn can greatly increase the complexity of the algorithm [226]. In addition,

EEG signal being non-linear and non-stationary process, linear regression is not

the best choice for analysis in such applications. Moreover, it can only be used to

treat few particular types of artifact; not all types.

Another popular approach for artifact removal method is blind source sep-

aration (BSS) [67, 92], including ICA or maximally uncorrelated (for CCA) al-

gorithms. Blind source separation is a method to estimate original signals from

observed signals which consists of combination of original signals and noise. The
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hidden factors such as sets of random variables, measurements, or signals are re-

vealing using another blind source separation technique ICA which is a statistical

and computational technique. It is assumed that the sources are linearly indepen-

dent. ICA defines a generative model for the observed multivariate data, which is

typically given as a large database of samples. The main problem with ICA-based

artifact detection and removal method is that, it is not automatic. In this method,

manual intervention is needed to reject ICs with visually detected artifacts after

decomposition. By uniting ICA with another balancing method such as wavelet

transform or EMD or using a classifier like SVM or even with a help of reference

channel, it (i.e. artifact detection and removal) can be work automatically [230].

However, even in such case, the independent component with artifacts may also

contain some residual neural signals. Also it introduces distortion to the neu-

ral signal during signal reconstruction after completely rejecting that particular

IC. Another problem is that it cannot operate on single channel data, since the

number of recording channels must be at least equal to the number of indepen-

dent sources. Another factor that limits the choice of ICA for artifact removal in

applications that require online/real-time implementation of the algorithm is the

computational complexity. Finally the involvement of iterative process in com-

puting ICA algorithm makes it difficult to perform robustly. E.g. ICA may be

useful to remove global artifacts such as ocular artifacts [55, 65, 14, 108, 101] or

sometimes other physiological artifacts, but not external artifacts. There are few

works reported the use of modified [108] or constrained ICA [167, 178, 2, 89] for

automated and better performance in artifact detection and removal.

Constrained ICA (cICA) [90] or ICA with Reference (ICA-R) incorporates

prior knowledge about the source signals, making a semi-blind source separa-

tion problem. This is done by imposing temporal or spatial constraints on the

source mixture model. The temporal, spectral or time-frequency information of

the biomedical measurements such as heart beat morphology, frequency bands

of EEG activity and temporal dynamics of certain high amplitude artifacts are

available [90].

Correlation analysis or CCA is another BSS method for separating a number of

mixed or contaminated signals that uses second-order statistics (SOS) to generate
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components derived from their uncorrelated nature. By looking for uncorrelated

components, the approach uses a weaker condition than statistical independence

sought by the ICA algorithm. Temporal correlations is absent in ICA into ac-

count while CCA addresses this point by being capable of finding uncorrelated

components. In addition, have maximum spatial or temporal correlation within

each component [175]. Both methods provide qualitatively the same results, but

CCA method is more computationally efficient.

Morphological component analysis (MCA) decomposes the recorded signal into

components that have different morphological characteristics where each compo-

nent is sparsely represented in an over-complete dictionary [175]. If the wave shape

or morphology of MCA is known then it is stored in a database and applicable to

certain known artifacts. The effectiveness of this method greatly depends on the

available artifact-template database. In [129, 227, 228], MCA is used to remove

ocular artifacts for real time and some of the muscle artifacts originating from jaw

clenching, swallowing, and eye-brow raising and in [180], it is also used to remove

ocular artifacts (eye movement and blink artifacts) from the EEG raw signal. The

raw EEG signal was derived from signal morphology characterized as slow and

smooth change of EOG time series.

To address the weakness of ICA-based artifact correction methods another ef-

fective BSS method, stationary subspace analysis (SSA) is used [210, 70]. The

SSA is a time sequence study method, can be used to identify high-dimensional

EEG measurements that are the underlying stationary and non-stationary brain

sources. The stationary sources found by SSA can significantly increase the re-

stricted BCI performance [211]. Frequently used SSA algorithms are based on

exploiting higher-order statistics (HOS)[152]. The SSA reveals their spatial char-

acteristics using topographic maps corresponding to stationary and non-stationary

brain sources. The EOG signals are considered as low frequency and high energy

trend in the recorded EEG signals, the SSA is performed better to suppress it from

mixing. The components that are determined to be related to the ocular artifacts

are projected back to the EOG data which is subtracted from EEG signals. Hence

it is very evident to employ SSA for EOG identification and suppression. But it

is used for multiple channel data to partition the whole space into stationary and
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non-stationary subspaces [229]. The stationary channels are considered as EEG.

Other component based techniques that have appeared in the literature are

multiple source eye correction (MSEC) [8, 9], multivariate singular spectrum anal-

ysis (MSSA) [32] and sparse component analysis (SCA) [64, 59], include among

others for artifact removal from the EEG. The MSEC determines signal topogra-

phies in the presence of predefined artifact topographies [82] by spatio temporal

dipole source analysis. Eye activity in EEG and event-related response data can

be estimated and corrected in the presence of brain activity using the resulting

spatial vectors together with a brain model [9].

Based on embedding a signal into a higher dimensional space, singular spec-

trum analysis (SSpA) is a nonparametric spectral estimation method that later

represented by the signal trajectory matrix formed with time-delayed versions of

the signals. By clustering the columns of this trajectory matrix, artifacts are re-

moved using singular value decomposition. The trajectory matrix is constructed

by concatenating the trajectory matrices from each individual signal in the mul-

tivariate signal set [32, 199] for MSSA. In order to solve the BSS problem [109],

SCA assumes sparsity of the sources in some (transformed) domain .

It is quite popular to analyze time-frequency of non-stationary time-series data

in biomedical signal processing, e.g. in EEG signal processing. The reason of us-

ing simultaneous time and frequency domain analysis is that the frequency and

statistics of time-series data vary with time because of the non-stationary proper-

ties of this type of signal. Therefore, any quick change in frequency values can be

captured in a particular temporal window for any signal components (e.g., either

artifact or seizure [161, 186]. A time-frequency representation of ocular artifacts

(OAs) including blinks and saccades found in EOG and observed that frequencies

up to 181Hz can be present in a subject’s EOG for certain tasks which is proposed

in [149]. It is suggested that if EOG is used for ocular artifact removal from EEG,

then EOG should be sampled at least 362 Hz to avoid aliasing.

Short-window or short-time Fourier transform (STFT) is the common time-

frequency representation. However, this method is not as effective as it has iden-

tical time-frequency resolution at all frequency values. The bandwidth of EEG

signal is around 0.5-120 Hz and most of the artifacts appear in the lower frequency

25



Chapter 1 – Introduction

region (< 10 Hz). Therefore, STFT cannot provide high frequency resolution in

lower frequency region which is required. The good solution of this problem is

to use wavelet transform since it provides a decent time-frequency resolution for

EEG signals [86].

It is assumed that the signal and artifacts are uncorrelated in adaptive filtering.

A signal correlated with the artifact which is generated from the filter using a

reference signal and then the estimate is subtracted from the acquired EEG [193].

The proper functioning of the algorithm depends on the choice of the artifact

reference and it may be obtained from EOG recordings for the removal of eye

movements or blinks [29], or from EMG recordings for the removal of muscle

artifacts [32].

As like as an adaptive filter, Wiener filter doesn’t require the use of an external

reference signal, however, it assumes that both the signal and artifact are station-

ary linear random processes with known spectral characteristics and also the signal

and artifact are uncorrelated. The neural signal shows non-stationary characteris-

tics and it is believed to originate from a complicated non-linear stochastic process.

Due to the uncertainty of different types of artifact sources, the spectral charac-

teristics cannot be determined accurately, although the spectral characteristics of

EEG rhythms are known. In addition, the Wiener filter cannot be implemented

in real-time application. So it is not a good choice using wiener filter for artifact

removal in applications that require real-time processing.

Bayes filtering based on the system is Markov [193] and assuming it is a proba-

bilistic system estimation method from noisy observations. These filters are capa-

ble of working without a reference signal and operate in real time that overcome

some of the limitations of the aforementioned techniques in that way. Bayes filters

are similar to Kalman filters and particle filters and it is not directly implementable

due to their complexity. However, Kalman filters and particle filters have been

used for EEG artifact removal for instance in [140] and in a nonlinear fashion

in [171]. Bayes filters first estimate the state at a given time and then obtain a

feedback in the form of noisy measurements [193], which is used to predict a new

a priori estimate. The algorithm needs to be calibrated.

The spatial filter PCA reduces data dimension and highlights specific features
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of data which is usually difficult to identify in the spatially unfiltered data as

the new components are created by weighted combinations of all EEG channels.

Based on PCA, two recent articles have proposed artifact removal method. The

paper [202] reported the use of robust PCA after preprocessing is done based on

wavelet denoising and band-pass-filtering; while [203] compared PCA with ICA

for artifact removal and originate ICA performs better than PCA. Both these

articles have evaluated their method qualitatively; therefore, it is not possible to

comment exclusively on the efficacy of PCA in detecting and removing artifacts.

One important limitation of PCA (or SVD) is that it fails to identify ocular or

similar artifacts when amplitudes are comparable since PCA depends on the higher

order statistical property [167] from EEG. In [221], spatial filters-two common

spatial pattern (CSP) filters by making use of fuzzy sets reduced the root mean

square estimation error and significantly increased the EEG signal quality.

In the recent time, literature is an option that has gained attention for multi

channel [2, 17, 60] and single channel processing [134, 206, 192] using a combina-

tion of algorithms to remove artifacts from the EEG. It has become very popular in

recent years that researchers are very keen to use the advantages of different meth-

ods by combining them into a single method for artifact detection and removal,

i.e. hybrid method which has two or more stages.

This hybrid method is formed by combining two popular methods: wavelet

transform and blind source separation. This hybrid is mainly encouraged from the

fact that only BSS based separation of artifactual components (e.g. ICs) is often

inaccurate since the separated artifactual component also contains residual neural

information. Therefore, such component will introduce significant distortion in re-

constructed EEG signal which are completely rejecting. Hence, the multi-channel

datasets are converted into ICs or CCs and then possible artifactual part is de-

composed to different frequency bands of detail coefficients by wavelet transform.

After that, the artifactual coefficients of higher amplitude are denoised by thresh-

olding which eventually preserve the residual neural signals of low amplitude. The

related articles are [17, 119, 69] for wavelet-ICA, [159, 231] for wavelet-CCA. On

the other hand, there are related hybrid methods that can be applied to single-

channel EEG data by reversing the order of wavelet transform and BSS blocks.
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E.g. [125, 15] reported that first signal is decomposing into wavelet coefficients

then artifactual coefficients are passed through BSS block to separate artifacts

from neural signal. However, typically the former way is more known to the re-

search communal as wavelet enhanced ICA or wavelet enhanced CCA. Please note

that the type of wavelet transform can be DWT, CWT, SWT or sometimes WPT

[12].

The combination of BSS and EMD is another hybrid method instead of wavelet

transform. The difference is that usually the first stage is to decompose the signal

into IMFs by EMD or EEMD and then apply BSS (ICA or CCA) on the IMFs

to identify artifactual component followed by rejecting the artifactual IC or CC.

Such methods are reported in [192, 230, 20].

It is reported in [178], a hybrid BSS-SVM algorithm where certain carefully

chosen features are extracted from separated source components and then fed into

a SVM classifier to identify artifact components followed by removing them for

eye blink and ECG artifact removal. Lastly, to reconstructing artifact-free EEG,

the rest of the source components are re-projected.

In [101], it is reported that a hybrid approach is made by combining BSS and

regression-based adaptive filtering (with VEOG and HEOG as reference channels)

for elimination of ocular artifacts. Similar methods have been used in [65] to

remove ocular artifacts by combining ICA and adaptive filtering.

To remove ocular artifacts, another hybrid approach is made by combining

ICA and auto-regressive exogenous (ARX) was proposed in [214]. In this method,

ARX is used to reduce the negative effect induced by ICA by building the ARX

multi-models based on the ICA correlated signals and the reference EEG that are

selected prior to the artifact-contamination.

In [145], it is reported that EOG artifact removal used a hybrid method named

as wavelet neural network (WNN) which is the combination of wavelet decompo-

sition and artificial neural network. In this method, the reference EOG channel is

only required for ANN classifier throughout training session.

Another method combining DWT and ANC (adaptive noise canceler) is pro-

posed in [153] to remove eye blink artifacts. In this method, the ocular artifact

reference is resulting from DWT decomposition and then used in the adaptive fil-
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ter as reference. On the other hand, Navarro et al. [143] used the combination of

EMD and adaptive filter (with RLS algorithm) to remove ECG artifacts not EOG

from EEG recordings. To remove EOG and EMG artifacts from EEG, the authors

in [75] presented a new way by using a hybrid combination of adaptive neural fuzzy

inference system (ANFIS) and functional link neural network (FLNN). The AN-

FIS generally has two parts: a non-linear antecedent and a linear consequent;

however, in their proposed system to enhance the non-linear approximation abil-

ity, the second part is replaced with the FLNN. Then an adaptive filtering system

adjusts the parameters of both ANFIS and FLNN.

It is impossible to explain all existing methods on artifact removal from the

EEG for lack of time and space even if we try to be comprehensive in literature.

Otherwise, we have explained the most usual methods to remove EOG, EMG and

ECG impurity from the EEG.

Depending on the need for human intervention or not, artifact removal algo-

rithms can be classified as semi-automated or automated. Semi-automatic meth-

ods can only be used for off-line applications because they require visual inspec-

tion of the measured signal or of the components obtained by the artifact removal

method. In general, an automated execution is usually preferred. So, to be able

to run an algorithm in an online application only when to avoid introducing sub-

jectivity in the process.

In order to get automatic identification, multiple procedures and artifacts cor-

rection have been developed, however no single one views out among the others.

In real life measurements, there are multiple types of signals and contaminants

that are mixed in undetermined ways. As a result, automating of existing algo-

rithms is not easy, as mentioned throughout the text. In this way, some standard

methods have limited application unless they can be readily adapted to specific

scenarios. Regression and filtering approaches need a reference channel if they are

meant to operate automatically [193, 173]. On the other hand, based on values

for typical characteristics of the EEG signal or artifacts and deviations from nor-

mality [33, 42, 136], component based methods are more versatile in that they can

be made automatic via a reference signal.

An automation may be performed by computing the correlation of certain
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ICs with either reference [213, 82], or by combining signal features and correlation

[166, 165], when a reference waveform exists or a prototype signal can be generated.

Mostly, the EEG signal is decomposed and the derived components are based

on the spatial and temporal probabilistic characteristics which are compared to

standard values for background EEG and based on the combination of thresholds,

artifacts may aid to automate an algorithm. A completely automatic ICA-based

algorithm for identification of artifact related components in EEG recordings,

ADJUST [136], works quite consistently following this idea. Similar approaches are

presented in [33, 42]. Another alternative, consists in performing a training phase

followed by a clustering step, implemented in [32, 146]. In those papers, a reference

channel is needed for the training phase that is either measured or achieved from

clean epochs of the same recording or from epochs of another recording that holds

similar types signal or artifact components to those of interest. Clustering is

performed based on the likeness of the temporal dynamics of ICs termed by their

auto mutual information.

To conclude, WT and EMD can be automated more easily and in a common

manner using thresholds [168]. For the WT, the SURE [44] shrinkage rule and a

soft thresholding strategy seem to provide good results [168]. Inspired on wavelet

thresholding and with respect to EMD, the writers of [103] use an algorithm that

assesses the noise level and filters each IMF.

Most of the EEG based applications require automated information processing;

specially it is an online/real-time implementation. In addition, manual identifi-

cation of artifactual component or epoch is very time-consuming and laborious

for multi-channel long-term data sequences. Therefore, many signal processing

techniques have been proposed along with some useful apriori signal or artifact

statistics/characteristics have been utilized. Among them, BSS-based techniques

sometimes act as semi-automated when it requires some training or parameter se-

lection for identification of artifactual component. Although there are few papers

presented that propose automated identification of ICs after ICA [217]; however,

they have the need of training samples for supervised classification and also need

an additional information in the form of contact impedance measurement [10]. In

order to make the whole process automated, there are some methods that includes
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ICA method for an automatic artifacts detection, then there has to be another

stage.

Online/Real-time implementation demands the algorithm to be fast enough

and to have low-enough complexity for such application. Here, online imple-

mentation refers to the algorithms implemented in software platform capable of

online/real-time processing, not in hardware platform. However, some EEG-based

applications such as wireless ambulatory EEG monitoring may require on-chip

implementation of the artifact detection/removal algorithm. In such case, the

computational complexity has to be minimum which is a great challenge and so

far according to the best of our knowledge no real-time hardware implementation

has been performed [86].

BSS-based methods require multi-channels to function. Therefore, such meth-

ods cannot be used in low-channel (e.g. 4-6) or single-channel based applications

(e.g. in ambulatory monitoring of epilepsy patient). On the other hand, wavelet

transform and EMD-based techniques can work with single-channel analysis by

decomposing a single data sequence into multiple components (approx./detail co-

efficient for wavelet decomposition and IMF for EMD) [86].

Generally, used artifact removing methods need a dedicated artifact channel to

remove artifact. In order to remove ocular or cardiac artifacts, the reference chan-

nel often provides satisfactory complementary information to identify ECG/EOG

artifacts. Besides, real-time contact impedance measurement can provide the com-

plementary information about artifacts due to electrode pop, movement or loose

connection. Some movement tracking devices such as motion captured camera,

accelerometer and/or gyroscope can help to detect motion artifacts [86].

It is an important matter in developing any artifact removal algorithm is ro-

bustness. Different types of artifacts can contaminate the EEG differently in dif-

ferent recording environments. Some factors that should be considered for robust-

ness are artifact-SNR, type of artifact, duration of artifacts, subject-variability,

environmental variability, application-specificity, etc.

Spatial distribution or topographic mapping helps to identify the origin of

many artifacts (e.g. ocular artifacts are dominant in frontal EEG channels) [190].

In addition, some artifacts may appear in several nearby channels (global artifacts
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such as eye blink) where some appear only in one channel (i.e. local artifacts).

Therefore, spatial features along with their spectral content are important to iden-

tify artifacts from EEG signals [136, 181].

Still now, it is an active area of research to develop methods for artifact de-

tection and removal in EEG applications and for this significant amount of efforts

have been made. Most of the artifact handling method removes single type ar-

tifact, some of them cannot work for single-channel EEG, few methods require

training data, some need a dedicated reference channel, some are designed for

general purpose applications that often leads to overcorrection of data and some

of them are not fully automated. Currently available some of the major software

plug-in GUIs are FORCe, FASTER, LAMIC, PureEEG, OSET, MARA, AAR,

ADJUST and ERPLAB.

Fully online and automated artifact Removal for brain-Computer interfacing

or FORCe is the most recent method reported in [34] that is based on a unique

combination of WT, ICA and thresholding. Compared with two other state of-

the-art methods namely LAMIC and FASTER, FORCe has been shown to be

better than other and is capable of removing different types of artifacts including

eyeblink, EOG and EMG. One of noticeable features of FORCe is that it does

not require any reference channel and can operate on fewer numbers of channels

which makes it suitable for ambulatory EEG applications.

On the contrary, FASTER is an unsupervised algorithm for parameter esti-

mation in both EEG time series and in the ICs of EEG [148]. In this method,

the achieved sensitivity and specificity is > 90% for finding of EOG and EMG

artifacts, linear trends and white noise in the contaminated channels.

Another method LAMIC is a clustering algorithm developed for automatic ar-

tifact removal from EEG [146]. It includes data decomposition by a BSS algorithm

called TDSEP, which is a temporal extension of ICA. Then the decomposed com-

ponents are clustered using the similarity of their lagged auto-mutual information

(AMI). This is inspired from the fact that EEG and artifacts are different from

their temporal dynamics point of view. The clustering procedure follows the usual

steps of hierarchical clustering.

An automatic EEG artifact removal algorithm for epilepsy monitoring is PureEEG
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by utilizing an iterative Bayesian estimation scheme [71] that is based on a neu-

rophysiological model. It targets to remove all types of artifact without requiring

any manual intervention. It is reported by the authors that the performance of

PureEEG method significantly improves the readability of EEG recordings after

artifact elimination.

An open-source electrophysiological toolbox named as OSET is used for biomed-

ical signal generation, modeling, processing, and filtering [170]. Using this method

cardiac artifacts are detached from any bioelectrical signal including EEG. To de-

tect and remove EOG artifacts from multi-channel EEG, semi-blind source sepa-

ration techniques is used.

Multiple artifact rejection algorithm is called MARA that is actually an open

source MATLAB-based EEGLAB2 plug-in which automatically identify the artifact-

contaminated ICs for artifact removal [218, 217]. A supervised machine knowledge

based algorithm is MARA that learns from labeled components by experts and

utilizes six features based on spatial, spectral and temporal domain. It is used

for all types of artifact. EEGLAB2 is an open-source MATLAB-based interac-

tive GUI toolbox for analyzing and processing continuous and event-related EEG,

MEG and other electrophysiological signals. It uses ICA, time-frequency analysis,

artifact rejection, event-related statistics and different modes for visualizing the

averaged or single-trial EEG data [40].

Automatic artifact removal (AAR) is a MATLAB toolbox which joined as

a plug-in into EEGLAB, includes various types of artifact removal methods for

eliminating only EOG and EMG artifacts [61]. In order to remove simply EOG

artifacts, regression-based methods such as conventional re-cursive least squares

(CRLS), least mean squares (LMS), stable re-cursive least squares (SRLS) are

used. Spatial filters based techniques have been adopted for removing both EOG

and EMG artifacts.

ADJUST, reported by Mognon et al. [136], is an EEGLab supported plug-in for

automated EEG artifact detection. This algorithm is based on the combination of

specific spatial and temporal features of stereotyped artifact to identify automat-

ically the artifactual ICs after ICA is executed. Four different artifact types (i.e.

eye blink, vertical eye movement, horizontal eye movement and generic discontinu-
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ities) are chosen for extracting features such as temporal kurtosis, spatial average

and variance difference, maximum epoch variance, spatial eye difference. The main

feature of ADJUST is that it is completely automated and unsupervised with re-

ported accuracy of 95.2% in classifying all of the four artifacts. The clean ERP

topographies are successfully reconstructed from heavy artifact-contamination.

ERPLAB is also EEGLAB-compatible open-source toolbox for analyzing ERP

data, which has artifact rejection capability in both manual and automated man-

ner [112].

1.8 Recommended Scheme

In order to choose the appropriate artifact handling method, required specification

to be satisfied given the computational resources and recording environment are

available to consider the particular application. In EEG applications, there are

one or two types of artifacts that affect the later stage information decoding or

processing, thus it is not wise to attempt to identify and remove all the artifacts

as other artifacts may not (or minimally) harm for a particular signal processing

purpose. If any reference channel is available in the targeted application, then

regression or adaptive filtering technique may be a favorite solution. In the case of

EEG monitoring, when number of channels are fewer, no reference channel is avail-

able and wireless EEG transfer preferred, in such case it is recommended to use

computationally cheaper method that can work without reference and on single

or few channels, e.g. wavelet-based methods. Since BSS-based methods may not

perform satisfactorily with less number of channels because it needs multichannel.

In some applications, if it is possible to have some a priori knowledge about ar-

tifacts and some training data are available, and the application only requires to

identify artifacts not to remove them, then machine learning based classifiers can

be good choice. When EEG recording holds high-volume channels, then principal

component analysis (PCA) may be preferred to reduce the dimensionality before

applying any artifact reduction methods, as for example BSS-based methods. If

the application is based on offline analysis, then we can afford some computational

expensive techniques such as ICA or EMD.
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The existing artifact detection and removal methods have been presented

broadly with their comparison, advantages and limitations. Still now it is an active

area of research to handle artifacts present in the typical EEG recordings and none

of the existing methods can be considered as the perfect solution. Most of the so-

lutions and adjustment do not consider for the particular application. Although,

maximum elimination algorithms provide good performance and they are only

suitable for offline analysis because of their high computational complexity and

unsupervised nature. It is not possible for particular applications which method

requires a dedicated reference channel. To observe the effects of artifact contami-

nation to the desired signal processing method and further studies are required to

characterize the properties of commonly encountered artifacts. Some applications

e.g. classification/identification of two classes are required to identify artifacts

and not to remove them. In this case, a more accurate mathematical model of

the preferred event(s) to be identified is essential in order to easily ignore other

non-brain signals (i.e. artifacts or interferences). Finally, application-specific so-

lutions with reasonable complexity, optimized performance and most importantly

with feasible solutions will need for future plan.

1.9 Thesis Motivation

1.9.1 Artifact Reduction from Scalp EEG

Nowadays, it is an active area of research to develop methods for artifact detection

and removal in EEG applications where significant amount of efforts have been

made. Most of them handle single type of artifact, many of them cannot work

for single-channel EEG, some of them require training data, some require a ded-

icated reference channel, some are designed for general purpose applications that

often leads to overcorrection of data and some of them are not fully automated.

The proposed artifact reduction method for clean EEG application is automatic,

independent of artifact types, does not require a reference channel, can work for

both single and multi-channels. The method uses hybrid wavelet transform with

adaptive threshold parameters which relies on some spectral information of pure

EEG. In order to separate artifacts from contaminated EEG, it utilizes adaptive
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threshold method. The proposed method is to preserve the clean EEG at all time

and then to reduce artifacts as much as possible.

1.9.2 Artifact Reduction in BCI Experiments

Brain computer interface (BCI) is establishing a direct link between human brain

and an external computerized device to allow communications for the person suf-

fering from brain/spinal cord related injury/disease. EEG is the most popular

brain signal recording techniques in BCI research. It is widely used because of

its non-invasive nature along with other attractive features such as fine temporal

resolution, simple to use, portability and lower cost. In EEG-based BCI applica-

tions, the EEG recording is often contaminated by different types of artifacts that

can misinterpret the BCI output. Recently, many efforts/algorithms have been

made to develop suitable methods for artifact detection and removal from EEG

in the field of signal processing technique. However, there has no universal and

complete solution been proposed yet (e.g. some of them can only remove ocular

artifacts, some of them require an additional reference channel whereas some of

them cannot work on single-channel, etc.) which indicates the future need for the

removal of algorithms to be application-specific such as BCI applications [85].

This thesis also presents a distinctive artifact detection method for BCI ap-

plication based on adaptive threshold method. Successively a removal method is

also proposed which is based on hybrid wavelet transform based denoising and

relies on the subband approach and EEG signal enhancement for improved motor

imagery classification particularly for BCI applications. The proposed method is

demonstrated with both real and synthesized database and extensive quantita-

tive measures show the efficacy of this method with obtained satisfactory results.

Moreover, the proposed method is also compared with some of state-of-the-art

methods and proves its superiority over others both in terms of performance met-

rics and computational time. The artifact removal effect on real BCI database has

also been proved that it can substantially improve the classifier accuracy in BCI

experiments.

From above discussion, it is clearly shown that the available EEG artifact

removal methods have some practical limitations for real time applications in
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BCI experiments. The present research is very important in signal preprocessing

platform to reliably detect and eliminate artifacts in non-invasive EEG recordings

that mainly motivate the study presented in the thesis.

1.10 Thesis Objectives

Based on the problem definition mentioned above, the aim of this thesis is to

provide methods for improving the quality of EEG signals which are widely used in

basic neuroscience studies, diagnosis of different neurological diseases and modern

BCIs (both invasive and non-invasive). The target of this research project is

the development of the novel online methods to preprocess and clean EEG from

multichannel signals. The model based approach e.g. hybrid wavelet transform

can be employed to achieve the goal of this research. The work presented in

this PhD manuscript belongs to the framework of BCI research. More precisely,

it focused on the study of EEG signal processing and classification techniques

in order to design and use BCI for interacting with virtual reality applications.

Indeed, despite the valuable and promising achievements already obtained in the

literature, the BCI field is still a relatively young research field and there is still

much to do in order to make BCI become a mature technology. Accordingly, the

specific objectives of this thesis are as follows:

• Study of artifacts present at EEG recordings and characterize them in a

systematic way.

• Analysis of the effects of artifacts on EEG signals.

• Propose an artifact detection and removal algorithm for cleaning EEG.

• Observe the after-effects of artifact removal on later-stage signal processing

applications (e.g. BCI performance).

• Analysis of the effects for proper quantitative evaluation of both artifact

removal and the after effect of removal to neural information processing.

This is done in terms of EEG artifact detection performance and motor im-

agery EEG signal classification accuracy. Facilitated and encouraged by the new
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understanding of brain functions and by the low-cost computer equipment, these

programs have concentrated mainly in developing new communication and control

technologies for people with severe neuromuscular disorders. The immediate goal

of BCI is to provide communication capabilities without using the brain’s normal

output pathways of peripheral nerves and muscles. As a result any subject can

control the external world with BCI. The implementation of online (real time)

BCI has multiple uses e.g., biomedical engineering applications-assisting devices

for disabled people; human subject monitoring-sleep disorders, neurological dis-

eases, attention monitoring, and/or overall mental state”; neuroscience research-

real time methods for correlating observable behavior with recorded neural signals;

brain machine interaction (BMI) - interfacing devices between human brain with

other machines.
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Artifacts with EEG

The electroencephalogram (EEG) as a multi-channel signal of neuronal brain ac-

tivity can reflect brain states linked to the mental condition of a person. Due to its

temporal resolution, it is an excellent and widely used technique for investigating

human brain functioning. Unfortunately, EEG signals are often contaminated with

artifacts. Artifacts change the quality of EEG signals and subsequently degrade

the BCIs performance. So, the recorded EEG samples are not equally reliable due

to the artifacts at the time of recording. Different biological and non-biological

artifacts such as eye movements, blinks, muscle activity, heartbeat, high electrode

impedance, line noise, and interference from electric devices are responsible for

the contamination of the EEG signal. The discarding of entire EEG segments

due to noise is a widely applied method in research settings and results in the

loss of experimental data. If only a few epochs are available and artifacts such as

blinks or movements occur too frequently, then it becomes especially problematic.

Moreover, this approach is inappropriate when working with the continuous EEG

and non-event-locked activity, long-range temporal correlations, real-time brain-

computer interface (BCI) applications, and online mental state monitoring [158].

This chapter describes the study on types of artifacts and effects of artifacts on

electroencephalography.

2.1 Types of Artifacts

Different types of artifact in EEG typically have different characteristics. For

example, the amplitudes of ocular or body movement artifacts are usually much

higher than those of the EEG activities of interest. High-frequency and low-

amplitude activities accompany muscle artifacts. The removal of undesired arti-

39



Chapter 2 – Artifacts with EEG

-20

0

20

Am
pl

itu
de

 (µ
V)

-20

0

20

0 2 4 6 8 10 12 14 16 18 20

-20

0

20

Time (s)

Figure 2.1: EEG recording corrupted by eyeblink artifacts.

facts from the EEG is a major preprocessing step for most EEG analysis. Such

artifacts stem from eye and muscle movement, the heart beat or external techni-

cal sources. In this paper, we are concerned with the removal of muscle artifacts.

These are typically caused by muscle activity near the head, such as swallowing or

head movements, and are characterized by high-frequency activity (> 20Hz). Be-

cause muscle activity arises from different type of muscle groups, muscle artifacts

are harder to stereotype than eye artifacts [62].

2.1.1 Internal/Physiological Artifacts

Most of the algorithms developed for EEG artifact processing are intended for the

reduction of physiological artifacts. The physiological artifacts are:

• Ocular Artifacts: The electrooculogram (EOG) measures the electrical

activity produced by eye movement, which is normally strong enough to be

recorded along with the EEG. These movements are primarily picked up by

the frontal electrodes, although they also extend further. The strength of the

interference depends on the proximity of the electrodes to the eyes and the

direction in which the eye is moving. Blinking also causes the EEG record-

ing to become contaminated, usually with a more abrupt change than that
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Figure 2.2: EEG signal with horizontal and vertical eye movement artifacts.

produced by eye movement, which is associated to higher frequency interfer-

ence. Furthermore, the amplitude of the background EEG activity is smaller

than the blinking artifact. Ocular artifacts in the literature are referred to

as OAs or EOG artifacts even though we only use the latter in the text.

The eyeball acts as an electrical dipole and therefore any movement in eye-

ball generates large-amplitude artifacts in EEG recordings. Ocular artifacts

include eye blink (Figure 2.1), both horizontal and vertical eye movement

(Figure 2.2), eye flatter, eye movement during REM sleep, eye saccade, etc.

When the electrode in frontal position then eye blinks is typically generated

abrupt amplitude. As blink activities are notably different from neuronal

activities, it is possible to detect them using a suitable threshold for HWT.

And these blinks are typically faster than horizontal eye movements which

also generate large amplitude fluctuations in frontal channels. Vertical eye

movements are caused by the time course of artifacts and it is similar to the

one generated by horizontal eye movements [127]. It is very advantageous

for ocular artifact elimination from a practical point of view, having refer-

ence EOG waveforms, measured simultaneously to the EEG. It is advisable

for the measurements of vertical (VEOG), horizontal (HEOG) and radial

(REOG) EOG since these signals are propagated differently across the scalp

[206].
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Source of ocular artifacts: Generally, the cerebral cortex potentials is rel-

atively large compared to the most noticeable eye-induced artifacts produced

by the potential difference between the cornea and retina. This corneo-

retinal dipole does not affect EEG when the eyes and eyelids are completely

static. However, the eyes movements occur several times per second and

eye blinks occur several times per minute. Eyelid movements, elicit a large

potential seen mostly in the difference between the EOG channels above

and below the eyes and occurring generally during blinking or vertical eye

movements. A well-known description of this potential that short circuit the

positively charged cornea to the extra-ocular skin regards the eyelids con-

sidered as sliding electrodes. Increases the potential in one side electrodes

towards which the eyes are rotated, and decrease the potentials in the op-

posing electrodes during rotation of the eyeballs, and consequently of the

corneo-retinal dipole. Generally, saccades are caused from eye movements

and also generate transient electromyographic potentials, known as saccadic

spike potentials (SPs). It is requiring tailored artifact correction approaches

when the spectrum of these SPs overlaps the gamma-band and seriously

confounds analysis of induced gamma-band responses. There is reflexive

movement of the eyeball during blinking that gives a characteristic artifac-

tual appearance of the EEG and the purposeful or reflexive eye blinking also

generates electromyographic potentials.

Kappa rhythm (or Kappa wave) is characterized by the characteristic of

Eyelid fluttering artifacts. It is usually seen just over the eyes that means in

the prefrontal leads. Sometimes, they are seen with mental activity. They

are usually in the Theta (47 Hz) or Alpha (714 Hz) range. It is believed

that they were originating from the brain. Sometimes, it was so minute that

it was difficult to see but later study revealed they were generated by rapid

fluttering of the eyelids. It should not technically be called a rhythm or wave

because they are in fact noise in the EEG reading.

Some of these artifacts are useful in many applications. For example, the

EOG signals are used to identify and track eye-movements, and are also in

conventional EEG for evaluating possible changes in alertness, drowsiness or
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sleep [96] and very essential in polysomnography.
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Figure 2.3: Raw EEG signals with strong EOG and EMG artifacts.

• Muscle Artifacts: The electromyogram (EMG) measures the electrical

activity on the body surface caused by contracting muscles. The muscle

artifacts occur when the patient swallows, talks, walks, etc., being more

detrimental in uncontrolled environments. This artifact is typical of awake

patients. They are hard to stereotype and the shapes and amplitudes of

the interferences depend on the degree of muscle contraction and on the

type of muscle contracted. The artifacts are termed MAs or EMG artifacts.

EMG are responsible for its adverse effects on the EEG background activity

and make it more difficult to correct than other types of artifacts because

it has number of cranial properties. In exact it noticeably overlaps with

beta activity in the 15-30 Hz range but may be as low as 20 Hz, making the

widely used alpha band also susceptible to muscle artifacts. Although, EMG

presents a wide spectral distribution thus perturbing all classic EEG bands.

Due to volume conduction of myogenic activity independently generated by

muscles across the head, face and neck, EMG can often be detected across

the entire scalp. Figure 2.3 shows the different EEG channels which are
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contaminated by EOG and EMG artifacts.

A variety of experimental manipulations like cognitive load and vocalization

are responsible for EMG which is temporally mixed with those. Finally,

EMG is more difficult to characterize and also exhibits less repetition than

other biological artifacts. Since it arises from functionally independent mus-

cle groups, the activity is spatially distributed with distinct topographic and

spectral signatures.

One of the most prominent physiological artifacts comes from muscle activity

of the subject (EMG). Usually muscle artifacts are of high frequency range

(e.g. from 20 Hz to 40 Hz) and are generated from activities like chewing,

swallowing, clenching, sniffing, talking, scalp contraction, eyebrows raising,

etc. Figure 1.12 illustrated the clean EEG is contaminated by muscle activ-

ity.

• Cardiac Artifacts: Cardiac artifacts are due to the electromagnetic field

produced by heart and are of two types: ECG and pulse artifacts.

Electrocardiogram Artifacts: The electrocardiogram (ECG) artifacts are

rhythmic regular activities while the pulsation sometimes can cause slow

waves which might mimic the EEG activity. Figure 1.13 shows the ECG

waveform. ECG artifacts are common in EEG and it is deliberated act as

like as spike activity. Modern EEG acquisition commonly includes a one-

channel ECG from the extremities. This also sanctions the EEG to recognize

cardiac arrhythmias that is an important differential diagnosis to syncope

or other episodic/attack disorders.

The ECG measures the electrical activity of the heart. Depending on the

electrode positions and differs from certain body types, the amplitude of the

cardiac activity on the scalp is usually of low amplitude. The ECG has a

very characteristic repetitive and regular pattern, which unfortunately may

be sometimes mistaken for epileptic form activity when the ECG is barely

visible in the EEG. The ECG is routinely measured aside cerebral activity

which making this artifact easier to correct. In ECG signal, reference wave-

form is usually available.
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Pulse artifacts: It occurs when an EEG electrode is generating slow peri-

odic waves that may resemble EEG activity and it places over a pulsating

vessel such a scalp artery. The pulse activity only occurs on one electrode

and can be minimized by proper sensor positioning. Thus, it is much harder

to correct the ECG since it may be similar in time and frequency content

to the measured EEG itself. In fact pulse waves are easily recognizable due

to their regular occurrence and since they precede the ECG by a constant

interval [206] though there is a direct relationship that exists between ECG

and the pulse activity.

• Glossokinetic Artifacts: Glossokinetic artifacts are caused by the poten-

tial difference between the base and the tip of the tongue. Minor tongue

movements, mainly occurs in parkinsonian and tremor disorders and the

EEG signal can be contaminated by this artifacts.

• Respiration Artifacts: Respiration artifacts originate from the movement

of an electrode with inhalation or exhalation and can take the form of slow,

rhythmic EEG activity.

• Sweat Artifacts: Sweat artifacts or electrodermal takes the shape of a long,

slow baseline drift in the spectral band of 0.25 -0.5 Hz [85] and originated

from changes in electrolyte concentration of electrode due to sweat secretion

on the scalp.

• Less common physiological artifacts: In addition to the artifacts de-

scribed before, two interferences may arise from skin potential: perspiration

artifacts and to a smaller extent. The perspiration artifacts which are slow

waves produced by shifts of the electrical baseline of certain electrodes; and

to a smaller extent, the sympathetic skin response, which also holds of slow

waves and is an autonomic response produce by sweat gland and skin poten-

tials. Other possible artifacts include, dental restorations with different met-

als, movements of the tongue, electrodermal interferences due to sweating,

or breathing artifacts in the lower part of the spectrum, chest movements,

etc [206]. We do not meet with these artifacts further since they are hardly

treated in the literature that we have described.
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2.1.2 External Artifacts

• Movement Artifacts: Movement of patient especially in an ambulatory

EEG monitoring system [85], generates a lot of motion artifacts. This arti-

fact often has extremely high amplitude such that it can saturate the record-

ings. Head movement, body movement, limbs movement, tremor, walking,

running, browsing PC, and many other movements in daily activities are

responsible for this type of artifact.

• Environmental Artifacts:

– Interferences: This type of artifacts is due to the interferences coming

from the surrounding electrical/electronic devices/machines that pro-

duce EM waves. Also any sound or optical interference may also be

picked up by the EEG electrodes as artifacts.

– Mains voltage: One of most common source of artifacts in any biomed-

ical signal acquisition is the 50/60 Hz main voltage and its harmonics.

– Loose electrode: Loose electrode contact with scalp can lead to

impedance change on the tissue-electrode interface and results in pro-

longed EEG spike-like artifact.

– Electrode pop and movement: Another common source of artifact

is due to electrode pop which produces sudden change in impedance

in the electrode-tissue interface and results in high amplitude sharp

waveform-shaped artifacts. Electrode movement occurs when it moves

with respect to the scalp and produces high-amplitude detection in

EEG generally in the low frequency range of 1-10 Hz.

2.2 Artifact Avoidance

Artifact avoidance is a protective and defensive way to minimize or avoide artifacts

and it tries to avoid unnecessary eye blinks, eye/body movements by instructing

the subject to remain static. Also one can reduce the supply mains interference by

proper grounding of the EEG recorder. Artifact avoidance is minimizing artifacts,
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it can reduce both the data loss and the computational complexity but it is not

the best way to get rid of artifacts completely. Sometimes this is a very unrealistic

solution based on applications, e.g. in an EEG monitoring or BCI applications.

Moreover, some of the physiological artifacts (e.g. ECG) are involuntary and

therefore cannot be avoided. So, there are several limitations to employ such

approach in artifact removing. In addition, the subject cannot limit eye blinking or

movement for a long period of time, especially if the subject is neonatal or children.

Therefore, those should be handled in the digital signal processing domain because

there will always be some artifacts present in the EEG recording.

2.3 Artifact Detection

Identifying artifacts is the first and most important step for handling artifacts.

It becomes difficult to use simple filtering or straight forward signal processing

technique in both spectral and temporal domain when the artifacts overlap with

EEG signals. In order to identify the applications faster, it is required to identify

or separate artifacts in real-time. Therefore, it is really necessary to know both

the artifact and signal characteristics. Detection of artifacts may refer to detect an

independent component or detect a particular epoch to be artifactual. Whether it

should be detected in time domain or frequency domain or even in both by utilizing

time-frequency analysis, this decision depends on the type of artifacts and/or type

of applications. Depending on the various factors, the detection method also varies

whether a reference artifact source is available or not, whether we want to remove

the artifacts after detection, whether the no. of channels are enough, and so on.

To detect artifacts caused by eye-blinks, saccades, and head movements, the

eye-gaze information obtained from the eyetracker is employed. The images of the

right and left pupil were used to detect eye blinks. A blink was declared present

whenever both pupils were not detected by the eye-tracker. In addition, a saccade

was declared as present whenever a change in the point of gaze happened. To

detect head movements, the change in the distance (from the screen to the pupils)

between that of where the pupils were calibrated and their present position was

used.
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2.4 Artifact Rejection

Artifact rejection denotes to the practice of eliminating the trials or epoch from

EEG affected by artifacts. Perhaps it is the simplest way of cleaning the brain

signals which is polluted with artifacts. It has several essential benefits over the

artifact avoidance method. For instance, it would be relaxed for those subjects

with motor disabilities and the subjects to contribute in the experiments and

execute the necessary tasks. The cognitive task resulting from a subject annoying

to escape producing a specific artifact, will not be existent in the EEG signal

[48]. This artifacts removeing process not only removes artifact but also removes

important EEG information which results in the loss of data. This is the early

days way of handling artifacts, but nowadays with the introduction of recent

signal processing techniques, the preference is more on the techniques for artifact

removal or correcting them instead of rejecting the data epoch. However, in certain

applications, this technique can still work reasonably well, e.g. offline analysis or

during training of any classifier.

2.5 Existing Artifact Cleaning Methods for Dif-

ferent Artifacts

The process of recognizing and eliminating artifacts from brain signals is called

artifact removal. An artifact subtraction technique should be able to eliminate

the artifacts as well as to keep the related neurological phenomenon intact. There

are a wide-ranging techniques for detecting and/or removing artifacts (e.g., EOG,

EMG, ECG) in EEG. Some of the prominent artifacts correction is described

below:

2.5.1 Electrooculography

The EOG is one the best methods for removing blinks and saccades from EEG

measurements, as confirmed in [30, 156]. It is possible, if we go to publications

that use real EEGs, the aligned-artifact average solution which is described in [29].
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Depending on taking a reference channel for reducing the ocular activity from the

EEG (up to vertical, horizontal and radial EOG references for optimal performance

[29]), regression algorithm is used. The other way, artifacts in experimental states

[41, 74, 209, 89, 94], of which undoubtedly that of [94], using extended InfoMax,

is the most thoroughly acceptable. Recently, the similar research group showing

that ICA is able to produce a denoised EEG of quality equivalent to that from the

EOG correction methods and confirmed that RAAA has presented initial results

[206]. According to simulations and visual inspection of results on attained EEGs,

SOBI stands out as the best performing method for removing ocular artifacts

from background EEG activity and ERPs in multiple publications [166, 68, 165,

99, 92]. Moreover, it is easily used to facilitate source analysis from EEGs [198]

and magnetoencephalographic (MEG) data [197, 196, 196], since it has been shown

to be robust across subjects [198] and over large time intervals [195].

Many articles reported to remove EOG artifacts by the use of EOG refer-

ence channel [55, 101, 232]. In [232], it has been stated that it combines discrete

wavelet transformation (DWT) and an adaptive predictor filter (APF) which is

termed as a hybrid denoising method. To accomplish lower MSE and higher cor-

relation among cleaned and original EEG, APF is establish to better performance

than existing methods such as wavelet packet transform (WPT) and independent

component analysis (ICA), DWT and adaptive noise cancellation (ANC). The

APF is performing well for automatic identification and removal of ocular arti-

facts for portable EEG applications. Another article [101] stated an automated

ocular (eyeblink) artifact elimination method through adaptive filtering and ICA

with the help of horizontal (HEOG) and vertical (VEOG) EOG channel as refer-

ence. On the other hand, Flexer et al. [55] offered an ICA-based ocular artifact

elimination technique from blind subjects EEG using both vertical and horizontal

EOG references.

2.5.2 Electromyography

The existence of muscle artifacts in EEG signal stances a more challenging sit-

uation than that of ocular artifacts, subsequently a reference waveform is rarely

available [94] and because spatial topographies need not to be as well defined as
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with contamination coming from the eyes. There is no existing EMG correction

methods unlike ocular artifacts that can be removed by the aforementioned EOG

correction methods, as well as by other more general methods such as BSS, i.e.

authors have not developed algorithms in the literature intended specifically to

cancel out muscular interference. Newly, a literature review in [142] presented on

several techniques for high frequency interference from EEG and MEG activity

that help suppress muscle artifacts and others. According to his survey, disagree-

ment exists in the literature about the effectiveness of ICA in removing EMG

activity from data, a fact that is also reported elsewhere [131, 130, 176, 132, 150].

The writer concludes that even though there is a number of methods are available

for the reduction of EMG artifacts, at present none can guarantee processed data

free of high frequency artifacts. Considering the earlier statements, EMG has been

reduced quite successfully from contaminated EEGs. The muscular artifacts are

cancelled in [212, 208] by using CCA, in [39, 66] by using InfoMax, in [28, 32] by

employing SOBI and in [168] by using EMD for low SNR, CoM2 (and ICA algo-

rithm) and CCA for intermediate SNR and DWT for high SNR. Among them, the

cases in [168, 28, 208, 32] are mainly based on simulations. Then, in addition to

the previous papers, [212, 93, 39, 32, 66, 84] analyze the results visually and [131]

validates ICA on the basis of its sensitivity and specificity. Obviously, the results

verified by visual inspection and the performances obtained with simulated data

need to be properly validated, as in [131] but present readings do not yet offer

a unified method for doing this. The EMG artifact reduction is not as straight-

forward as EOG suppression because reference signals are rarely available. Even

though CCA is widely used in the literature, according to our practical experience

it does not outperform ICA.

2.5.3 Electrocardiography

Writers in [38] proposed elimination/reduction of ECG/cardiac artifacts from EEG

using a separate ECG reference channel. In [65], an automatic technique based on

a modified ICA system has been proposed that works for a single-channel EEG

and the ECG (as reference) which gives promising results when compared with two

popular methods that use a reference channel namely ensemble average subtrac-
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tion (EAS) and adaptive filtering. The other two articles proposed their methods

for application in neonatal EEG monitoring. Another paper [143] proposed a com-

bination of EMD and adaptive filtering based approach for ECG artifact removal

in preterm EEG and reported up to 17% improvement in correlation coefficient

between original and cleaned datasets compared with removal by only adaptive

filtering.

2.6 Target Artifact for EEG Cleaning

The canceling or correcting the artifacts without distorting the signal of interest

is the great challenge for artifact removal methods. This is primarily done in two

ways: either by filtering and regression or by separating/decomposing the EEG

data into other domains. In this dissertation, the low frequency and high energy

signal components representing electrooculogram artifacts are suppressed from the

recorded electroencephalography. It concentrated mainly on removing eye blink

ocular artifacts.
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Subband Decomposition Methods

The electroencephogram (EEG) signal is decomposed into multiple subbands (multi-

band) signals to extract the brain waves. Such multiband decomposition can be

achieved by applying the filter bank technique on the EEG signals. In process-

ing of a signal, a group of bandpass filters are called a filter bank that separates

the input signal into multiple components and component carrying a frequency

subband of the original signal. The analysis of signal in terms of each subband

is the process of decomposition of a signal performed by the filter bank. The

output of analysis signal is denoted as a subband signal. Synthesis is the recon-

struction process which is the reconstitution of a complete signal resulting from

the filtering process. To separate the brain waves [137], the both analysis and

synthesis of the EEG signal are required. The EEG contains information about

brain hence the subband decomposition of EEG is used for analyzing many brain

diseases. To extract various brain waves with different frequency bands such as

alpha, beta, delta, theta and gamma from EEG signal to get more information

from [177] it is called the subband decomposition. Using EMD, discrete wavelet

transform and the proposed hybrid wavelet transform (HWT) method, the EEG

signal is decomposed here. The EEG signal is decomposed into five sub-bands

alpha, beta, gamma, theta, delta using daubechies wavelet. Based on application,

these decomposed brain waves can be given to any network as input for further

analysis. The decomposed signal was further reconstructed to obtain the origi-

nal signal. Original signal was compared with the reconstructed signal and mean

square error (MSE) was calculated. The work carried out shows that the MSE

for HWT is less as compared to that of the other methods. So, HWT is the best

suited wavelet for subband decomposition.
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3.1 Fourier Transform (FT)

The Fourier transform widely used to implement filter bank is a mathematical

operation with various physics and engineering applications. It expresses as a

frequency spectrum which established a relation as a function of time and as a

function of frequency. The function of time and frequency is often called time

domain and frequency domain representation, respectively. The opposite Fourier

transform is called inverse Fourier transform states a frequency domain function

in the time domain. Each value of the function is usually expressed as a complex

number (called complex amplitude) that can be interpreted as a magnitude and

a phase component. The transform is called Fourier transform for the transform

operation and to the complex-valued function production. In the case of a sinu-

soidal or non-sinusoidal periodic function, the Fourier transform is used to simplify

the calculation of a discrete set of complex amplitudes. Still now it is possible to

recreate discrete-time Fourier transform which is a version of the original Fourier

transform according to the Poisson summation formula. It is essential when a

time-domain function is sampled to facilitate storage or computer processing.

The conversions of a time-domain signal of infinite duration into a continuous

spectrum composed of an infinite number of sinusoids are termed as the continuous

Fourier transform. It is observed, we deal with the signal that are discretely

sampled, and of finite duration or periodic, usually at constant intervals. For this

data, the discrete Fourier transform (DFT) is appropriate only a finite number

of sinusoids are needed. There is a related theorem or property for the DFT, for

almost every Fourier transform theorem or property. The DFT of N uniformly

sampled data points xn (where n = 0, ..., N − 1) and its inverse are given by:

Xk =
N−1∑
n=0

xne
−2πjnk/N and xn =

1

N

N−1∑
k=0

Xke
2πjnk/N (3.1)

where, the signal x[n] ≈ xn ≈ s(t). Sign and normalization agreements may vary,

but the definition is most common over and over. The DFT, the outcome of an N -

point input time series is an N -point frequency spectrum, with Fourier frequencies

k ranging from −(N/2− 1), through the 0-frequency or the so-called DC compo-

nent, and up to the highest Fourier frequency N/2. Each bin number denotes the
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integer number of sinusoidal periods existing in the time series. The amplitudes

and phases represent the amplitudes Ak and phases φk of those sinusoids. In sum-

mary, each bin can be described by Xk = Ake
jφk. A set of bandpass filters are

the digital filter bank is with either a common input or a summed output. An

M-band analysis filter bank is shown in Figure 3.1. In this Figure, the signal x[n]

is decomposed into multiple band.

Figure 3.1: M-band analysis filter bank.

The subfilters Hk(z) in the analysis filter bank are known as analysis filters.

The analysis filter bank is used to decompose the input signal x[n] into a set

of subband signals with each subband signal vk[n] occupying a portion of the

original frequency band. The mentioned M filters can be used as the analysis

filters in the analysis filter bank or as the synthesis filters in the synthesis filter

bank. Since the magnitude responses of all M filters are uniformly shifted version

of that of the prototype filter, the filter bank obtained is called a uniform filter

bank. The signal is synthesized by summing up all the subbands. The use of

Fourier transform-based filter bank introduces a noticeable reconstruction error

during synthesis.

It is well known from Fourier theory that a signal can be expressed as the sum

of a possibly infinite, series of sines and cosines. This sum is also referred to as a

Fourier expansion. The principal disadvantage of a Fourier transform is that it has

only frequency resolution and no time resolution. This means that although we

might be able to determine all the frequencies present in a signal, we do not know
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when they are present. To overcome this problem in the past decades, several

solutions have been developed which are more or less able to represent a signal in

the time and frequency domain at the same time.
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Figure 3.2: Contaminated EEG (top) in time domain and EEG signal (bottom) in frequency

domain using Fourier transform.

Figure 3.2 is illustrated the contaminated EEG (top) in time domain and

EEG signal (bottom) in frequency domain using Fourier transform. Also, Figure

3.3 shows Fourier log spectrum (bottom) using Fourier transform. From Figure

3.2, it is clear that the Fourier transform-based filter bank is not suitable for

non-stationary EEG signals [137].

3.2 Multiband Decomposition Methods

Successful algorithms are based on the point that some sources (either signal or

artifacts) can be exemplified by a single decomposition unit, such as an intrin-

sic mode function (IMF) for empirical mode decomposition, or resemble certain

wavelet basis for the wavelet transform.

Wavelets are perfect for biomedical application in that they permit to design

methods that are robust and work in most circumstances, for their finely tunable

time-frequency trade-off, and for their versatility such that they can accommodate
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Figure 3.3: Contaminated EEG (top) and Fourier log spectrum (bottom) using Fourier trans-

form.

biomedical signals that generally combine features with good time or frequency

localization [204]. The WT has been widely used possibly commencing in the

early 90s in the context of EEG denoising. The subject was evolving very rapidly

by the time the review [204] was published.

It is observed that the standard Fourier transform is only localized in frequency

whereas wavelets are localized in both time and frequency. Although the short-

time Fourier transform (STFT) is more similar to the wavelet transform, in a sense

that it is also time and frequency localized, but wavelets afford a better multi-

resolution analysis of signal representation, with stable resolution at any time

and frequency. The wavelet transform is a time-scale representation method that

decomposes signal f(t) into basis functions of time and scale which are dilated and

translated versions of a basis function ψ(t) which is called mother wavelet [123].

Translation is accomplished by considering all possible integer translations of ψ(t)

and dilation is obtained by multiplying t by a scaling factor which is usually factors

of 2.

The WT is defined as the inner product of the signal f(t) with the time scaled

and shifted version of the wavelet function ψ(t) [204]. The WT decomposes the

signal into a set of coefficients, for various scales, which represent the similarity

56



Chapter 3 – Subband Decomposition Methods

-50
0

50
EEG signal decomposition using DWT method

SB
-1

-10
0

10

SB
-2

-5
0
5

SB
-3

-10
0

10

SB
-4

-10
0

10

SB
-5

-20
0

20

SB
-6

-20
0

20

SB
-7

-20
0

20

0 5 10 15 20

SB
-8

-10
0

10

Time (s)

Figure 3.4: The subband decomposition of the contaminated EEG signal using DWT.

of the signal with the wavelet at that scale. There are many techniques based on

wavelet theory, such as wavelet packets, wavelet approximation and decomposi-

tion, discrete and continuous wavelet transform, and so forth. The most commonly

used technique is DWT. The DWT is developed from continuous wavelet transform

with discrete input, but it is simplified mathematical derivation.

The DWT is any wavelet transform for which the wavelets are discretely sam-

pled in time, that is t+mT . A common form of the DWT employs a dyadic grid

where the amplitude and time scales are a+ 2j and the time shift is b+ k2j, with

both j and k integers. Briefly, discrete wavelet transform is entering a signal into

a low pass filter to get the low frequency component and into a high pass filter

to get the high frequency component. The DWT is usually calculated by filtering

the input vector through a series of low-pass and high-pass filters that provide one

approximation and D detail coefficients respectively. Thresholding is applied on

the decomposed coefficients to denoise the signal from artifacts when the signal is

divided into detail and approximate coefficients. Then the new set of coefficients

(all detail with final level approximate coefficients) are added up to reconstruct

back the artifact-reduced signal.
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Figure 3.5: Fourier log spectrum of subbands of fGn using DWT.

3.2.1 Discrete Wavelet Transform (DWT)

In this section, we briefly review the DWT, which is the wavelet counterpart to

the discrete Fourier transform. One of the superior technique in analyzing non-

stationary signals like EEG is wavelet transform. To understand more the behavior

of a signal, its capability helps in transforming a time domain signal into time and

frequency localization. The details of the signal can be obtained at several scales by

correlating the original signal with wavelet functions of different sizes. The multi-

resolution decomposition using DWT is observed when these correlations with

the different wavelet functions can be arranged in a hierarchical scheme. In such

decomposition the signal is represented as finite set band-passed signals of different

frequency bands [138]. The DWT is also widely used to perform the multiband

representation of EEG data. Reconstruction of the original signal from the details

obtained by wavelet filterbank is more convenient than Fourier-based method. It is

also possible to design perfect reconstruction filterbank in Fourier domain, whereas

wavelet filter bank automatically satisfies such requirement. It is well known

in the subband filtering community that symmetry and exact reconstruction are

incompatible if the same FIR filters are used for reconstruction and decomposition.

Therefore, Duabachies wavelet is used here for decomposition and reconstruction
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Figure 3.6: Reconstruction of contaminated EEG (top) and reconstruction error (bottom) using

DWT.

signal. Figure 3.4 shows subband decomposition of the contaminated EEG signal

and Figure 3.5 is represented Fourier log spectrum of subbands of fGn using DWT.

In this section,the reconstruction of contaminated EEG (top) and reconstruction

error (bottom) are illustrated in Figure 3.6.

3.2.2 Wavelet Packet Transform (WPT)

The WPT is a generalization of the wavelet decomposition process that offers a

better performance compared to the ordinary wavelet methods. In the wavelet

analysis, a signal is split into an approximation and a detail coefficients. The

approximation is then itself split into a second-level approximation and detail and

the process is repeated. On the other hand, WPT is applied in both the detail

and the approximation coefficients are divided to get all nodes for the decomposed

levels and generates the full decomposition tree. In Figure 3.7, a low (l) and high

(h) pass filter is frequently applied to generate a complete subband tree to some

desired depth. The low-pass and high-pass filters are generated using orthogonal

basis functions [91]. The wavelet packet coefficients Ci
j,k succeeding to the signal

s(t) can be obtain as,

Ci
j,k =

∞∫
−∞

s(t)W i
j,k(t)dt (3.2)
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Figure 3.7: Wavelet packet tree

where, i is the modulation parameter, j is the dilation parameter, k is the trans-

lation parameter, i = 1, 2, ..., jL, and L is the level of decomposition in wavelet

packet tree.

The discrete filters (k) and h(k) are quadrature mirror filters coupled with the

scaling function and the mother wavelet function. The mother wavelet W i
j,k(t) is

used for reconstruction and the reconstructed signal is obtained as

Sij(t) =
∞∑

k=−∞

Ci
j,kW

i
j,k(t)dt (3.3)

Implementing wavelet packet decomposition up to jth level, the original signal

can be characterized as a summation of all wavelet packet components at jth level

as shown in following equation:

S̃(t) =
2i∑
i=1

Sij(t) (3.4)

At the end of the WPT, the reconstructed subband is represented as:

Ŝ(t) =
2L∑
b=1

Cb(t) (3.5)

where,S̃(t) ≈ Ŝ(t) and Cb(t) is the reconstructed subband of WPT.

By applying WPT on each channel, it produce 2L sub band wavelet packets,

where L is the number of levels. The structure of WPT decomposition, the lower
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Figure 3.8: The subband decomposition of the contaminated EEG signal using WPT.

and the higher frequency bands are decomposed giving a balanced binary tree

structure in Figure 3.8, the subband decomposition of the contaminated EEG

signal using WPT is illustrated. In this present work, three levels generated 8

subspaces (2L = 23) and wavelet frequency interval of each subspace is calculated

by {
(b− 1)fs

2L+1
,
bfs

2L+1

}
where, the frequency factor, b=1,2,3,4,5,...............2L, fs is the sampling fre-

quency of the EEG signal. In this study fs=250 Hz, s(t) is the original signal with

the frequency [0 ∼ fs
2

] [223].

The WPT decomposition up to level three preserves the frequency granularity

at the leaf nodes and also helps preserving most of the useful information of the

original EEG. After that the wavelet packet coefficients are reconstructed. The

reconstructed each wavelet packet decomposition subband with its spectrum is

shown in Figure 3.9. From Figure 3.9, it can be found that the natural orders

of wavelet packet tree node were discrepancies with the frequency order. From

the literature [179], it is seen that any wavelet packet frequency sequences would
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Figure 3.9: Spectrum of subbands using WPT in the form of frequency disorder.

produce dislocation, and the orders of frequency are different with the natural or-

der. Each layer of wavelet packet decomposition, the low-frequency decomposition

parts are sorted by frequency, high frequency part in descending order according

to the frequency. In WPT, high-pass filter would conduct a ”flip” operation due

to the properties. By the nature of wavelet packet, it can prove that any wavelet

packet decomposition is produced the natural order and the order of frequency

discrepancy and the discrepancy of the situation is the same. Hence, it must be

needed the subbands in frequency order to remove the artifact from EEG signal.

Frequency Sequences:

Whenever high-pass filtered signals (in WPT) are down sampled, the origin of

the frequency axis is translated to. So, the frequency order is corrected in sequence

using the following rule and then wrong frequency orders difficulty are solved.

fb = (Nb − 1)
fs

2nb
(3.6)

where, fb =dominant frequency of bth subbands, Nb =maximum energy bin of bth

subbands, nb=length of bth subbands.

Using Eq.(3.6), wavelet packet decomposition bth subbands, are arranged in

the frequency order according to the magnitude of the frequency. The orderly

sequenced subbands are shown in Figure 3.10. From Figure 3.10, it is clearly
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Figure 3.10: Fourier log spectrum of sequence subbands in WPT using Eq.(3.6).

visualized that the subbands of WPT act as band-pass filter. It is spectacled that

the eight spectra and also showed how they complement each other to cover the

signal bandwidth.

The reconstruction of contaminated EEG (top) and reconstruction error (bot-

tom) of wavelet packet transform is illustrated in Figure 3.11. From this Figure,

it is seen than the signal reconstruction error of WPT is very small as compared

to DWT.

3.2.3 Empirical Mode Decomposition (EMD)

The EMD is an empirical and data-driven method developed to perform on non-

stationary, non-linear, stochastic processes and therefore it is ideally suitable for

EEG signal analysis and processing. However, the computational complexity of

EMD is quite heavy, so it may not be suitable for online applications. Moreover,

the theory behind EMD is still not complete and so far used in empirical studies.

Therefore, it is difficult to predict its robustness in all EEG recordings.

EMD algorithm decomposes a signal, s(n) into a sum of the band limited com-

ponents/functions, dm(n) called intrinsic mode functions (IMF) with well defined

63



Chapter 3 – Subband Decomposition Methods

Time (s)
0 2 4 6 8 10 12 14 16 18 20

Am
pl

itu
de

 (µ
V)

-20

-10

0

10

20

30 Contaminated EEG
Reconstructed EEG

Time (s)
0 2 4 6 8 10 12 14 16 18 20

Am
pl

itu
de

 (µ
V)

×10-10

-1

-0.5

0

0.5

1
Reconstruction error:[3.582e-22]

Figure 3.11: Reconstruction of contaminated EEG (top) and reconstruction error (bottom) using

WPT.

instantaneous frequencies [138]. There are two basic conditions to be an IMF: (i)

the number of extrema must be equal (or at most may differ by one) to the number

of zero crossings (ii) any point, the mean value of the two envelopes defined by

the local maxima and the local minima has to be zero [163].

To describe how EMD works, it can be said that it extracts out the highest

frequency oscillation that remains in the signal. Locally, in this way, each IMF

contains lower frequency oscillation than the one extracted just before this one.

Being data adaptive, the basis usually offers a physically meaningful representa-

tion of the underlying processes. There is no need of considering the signal as a

stack of harmonics and therefore, EMD is ideal for analyzing nonstationary and

nonlinear data. Each IMF is considered as a monocomponent contribution such

that the derivation of instantaneous amplitude and frequency provides a physical

significance. The advantage of this time-space filtering is that the resulting band

passed signals preserve the full nonstationary property in physical space. This fil-

tering method is intuitive and direct and its basis is a posteriori and data adaptive.

The completeness of the EMD of a EEG data is given in Figure 3.12. It is also

observed that higher-order IMFs contain lower frequency oscillations than that of

lower-order IMFs. The EMD on fGn acts as dyadic filter-bank [53]. The dyadic
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Figure 3.12: The intrinsic mode functions (subband signals) obtained by empirical mode decom-

position.

property of any filter bank structure refers that the bandwidth of any subband

is the half of its just previous (high frequency) subband. When the EEG signal

is decomposed together with fGn using EMD, the overall decomposition acts like

a dyadic filter bank. The Fourier log spectrum of the IMFs of fGn is shown in

Figure 3.13. It is observed that the spectra of fGns IMF represent the dyadic

characteristics. The original signal can easily be reconstructed by simply adding

the bases (including the residue) with negligible error term. The original signal

and reconstructed signal and error are shown in Figure 3.14. From this Figure, it

is recommended that the reconstruction error of EMD is very small as compared

to DWT and WPT, but it needs more time to decompose a signal as compared to

other decomposed method.

3.3 Proposed Hybrid Wavelet Transform (HWT)

Recently, for artifact detection and removal, the researchers are keen to utilize the

benefits of different methods by combining them into a single, i.e. hybrid method
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Figure 3.13: Fourier log spectrum of first 8 IMFs of fGn using EMD. The frequency bands of

the IMFs is ovelapped each other.

which has two or more stages. Some of these methods are discussed in previous

chapter. In the implementation, the hybrid wavelet transform (HWT) method is

used which based on a novel combination of discrete wavelet decomposition and

wavelet packet tree. In this method, the EEG signal is decomposed using DWT

and WPT method and in this way the original signal can easily be reconstructed

by simply adding all subbands. The original signal and reconstructed signal are

depicted in the uppermost part and reconstruction error are shown in lowest of

Figure 3.15. From the top of this Figure, it is clearly presented that the contam-

inated EEG signal and the recreated signal using HWT method are overlapping

each other and the reconstruction error is very small and it is 4.63e−22. Thus, the

value of reconstruction error is used to evaluate the similarity between the original

signal and rebuilt signal.

In order to compare the spectral separation properties, it can be observed that

the modes spectra obtained by the WPT decomposition are less overlapped than

those obtained from DWT and EMD, showing a clearer separation of the frequency

content between the bands. In summary, it can be appreciated that in the case

of delta like signals for WPT, the proposed method provides here a clearer net

decomposition than the others.
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Figure 3.14: The results of EMD (different IMFs) application for contaminated EEG data.

Original contaminated EEG signal and reconstructed data by simply adding the IMFs (top) and

reconstruction error (bottom)

In this work, we have presented a new algorithm for analyzing and processing

non-linear and non-stationary signals. The new method was successfully tested

on artificial and real signals. The method here proposed has the advantages of

requiring less decompose iterations that DWT and EMD does, and that the orig-

inal signal can be exactly reconstructed by summing the bands. Decomposition

completeness was theoretically demonstrated and numerically verified in the case

of EEG signal. Because of that, a smaller level is needed resulting in a signifi-

cant computational cost saving. In that sense, the novel method recovers some

of the EEG properties lost by DWT and EMD, such as completeness and a fully

data-driven process.
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Figure 3.15: Hybrid wavelet transform technique. The original EEG and reconstructed EEG

signal by simply adding subbands (top) and reconstruction error (bottom).
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Artifact Suppression Methods

The widely accepted research community in the brain computer interface is BCI

research community. It is broadly recognized where neurological approaches are

the only source of controlling any BCI system. Artifacts are unwanted signals

that can impede with neurological phenomena. The artifacts could change the

features of neurological phenomena or even be wrongly used as the source of con-

trol in BCI systems. The most important sources of physiological artifacts are

electrooculography (EOG) and electromyography (EMG) artifacts that are care-

ful among in BCI systems. This paper evaluates EOG and EMG artifacts related

with BCI systems and the present methods for dealing with them. Based on the

type of neurological approach used and the methods engaged for handling EOG

and EMG artifacts, it is assumed that nearly 300 refereed journal and conference

papers are reviewed and categorized. Depending on the handling EMG and EOG

artifacts this study exposes the weaknesses in BCI studies associated with report-

ing the methods. It is not reported in the maximum BCI paper, whether or not

they have measured the existence of EMG and EOG artifacts in the brain sig-

nals. Only a small percentage of BCI papers reports some automated methods for

rejection or elimination of artifacts in their schemes. It is required to develop au-

tomatic methods to handle artifacts or to design BCI systems whose performance

is robust to the presence of artifacts. It must be remembered that removal of

artifacts involves rejecting or correcting the artifacts without distorting the signal

of interest. This is primarily done in two ways: either by filtering and regression

or by separating/decomposing the EEG data in to other domains. In this section,

we briefly describe the artifact handling methods. Our attention throughout this

chapter will be on EOG and EMG artifacts.
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4.1 Terminology in Artifact Suppression Meth-

ods

Fractional Gaussian Noise (fGn): Fractional Gaussian noise (fGn) [78] is a

generalization of ordinary white noise. It is a versatile model for homogeneously

spreading broadband noise without any dominant frequency band, is an intrinsi-

cally discrete-time process, and may be describe as the incriment process of frac-

tional Brownian motion (fBm) since fBm is only self-similar Gaussian process with

stationary increments. Consequently, the statical properties of fGn are entirely de-

termined by its second-order structure, which depends solely upon one single scalar

parameter, H, its Hurst exponent. More precisely, {xH |n|, n = ....,−1, 0, 1, ...} is

a fGn of index H (with 0 < H < 1) if and only if it is a zero-mean Gaussian

stationary process whose autocorrelation sequence rH [k] := E{xH [n]xH [n+ k]} is

rH [k] =
σ2

2

(
|k − 1|2H − 2|k|2H + |k + 1|2H

)
(4.1)

It is well known that the special case H = 1
2

reduces to (discrete-time, uncor-

related) white noise, whereas other values induce non-zero correlations, either

negative when 0 < H < 1
2

or positive when 1
2
< H < 1 (long-range dependence).

Taking the discrete Fourier transform of Eq.(4.1), we readily obtain the power

spectrum density of fGn, or

SH(f) = Cσ2|ei2πf − 1|2
∞∑

k=−∞

1

|f + k|2H+1
(4.2)

with |f | ≤ 1
2
. If H 6= 1

2
, we have SH(f) ∼ Cσ2|f |1−2H when f → 0. It is therefore

follows that fGn is a convenient model for power-law spectra at low frequencies.

From its spectral properties, the particular value H = 1
2
, delineates two domains

with contrasting behaviors. In the regime 0 < H < 1
2
, we have SH(0) = 0, and the

spectrum is high-pass (sometimes referred to as an ”ultraviolet” situation). On the

other hand, within the range 1
2
< H < 1, we have SH(0) =∞, with a “ 1

f
” “1/f”-

type spectral divergence (“infrared” catastrophe). In both situations, the power-

law form of the spectrum, although not exactly verified, is well approximated

over most of the Nyquist frequency band. In other words, we have a quasi-linear
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relation in log-log coordinates,

logSH(f) ≈ (1− 2H)log|f |+ C, (4.3)

for most frequencies −1
2
≤ f ≤ 1

2
.

From the paper [157], an fGn is a random field with E-dimensional random

vectors defined in a d-dimensional space. It corresponds to the spin dimension E

and space dimension d in the theory of critical phenomena in statistical physics.

It has been shown that the fGn is invariant under a semigroup (Kadanoff block)

transformation with critical exponent H, known as the Hurst coefficient in the

fields of engineering and stochastic fractal processes.

In theory of probability, fractional Brownian motion, nothing like standard

Brownian motion, the increments of fBm need not be independent. The fBm is

a continuous-time Gaussian process BH(t) on [0, T], which begins at zero, has

anticipation zero for all t in [0, T], and has the following covariance function:

E[BH(t)BH(s)] =
1

2
(|t|2H + |s|2H + |t− s|2H) (4.4)

where H means real number in (0, 1), named the Hurst parameter or Hurst index

related with the fractional Brownian motion. The unevenness of the resultant

motion, with a higher value leading to a smoother motion is indicated by Hurst

exponent.

The value of H determines what kind of process the fBm is:

• if H = 1/2 then the process is in fact a Brownian motion or Wiener process;

• if H > 1/2 then the increments of the process are positively correlated

• if H < 1/2 then the increments of the process are negatively correlated.

The increment process, X(t) = BH(t+1)−BH(t), is known as fractional Gaussian

noise.

In signal analysis, white noise is a randomly generated signal having differ-

ent intensity at different frequencies, giving it a fixed power spectral density [16].

Statistical model for signals and signal sources are referred by white noise, rather

than to any trarget signal. Although light that appears white generally does not

71



Chapter 4 – Artifact Suppression Methods

have a flat power spectral density over the visible band but white noise attrac-

tions its name from white light. The only theoretical construction noise signal is

an infinite-bandwidth white noise. In practice, the bandwidth of white noise is

restricted by the transmission medium, by the process of noise generation, and

by finite measurements capabilities. In this way, arbitrary generated signals are

measured as “white noise” if they are observed to have a flat spectrum over the

range of frequencies that are relevant to the perspective signal.

Hurst Exponent (H): Hurst exponent is a measure of self similarity, pre-

dictability and the degree of long-range dependence in a time-series. It is also a

measure of the smoothness of a fractal time-series based on asymptotic behavior

of the rescaled range of the process. According to the Hursts generalized equation

of time series, Hurst exponent H is defined as

H =
log(R/S)

log(T )
(4.5)

where T is the duration of the sample of data and R/S is the corresponding value of

rescaled range. R is the difference between the maximum and minimum deviation

from the mean while S represents the standard deviation. Hurst exponent is

estimated by plotting (R/S) versus T in loglog axes. The slope of the regression

line approximates the Hurst exponent [1].

Confidence Interval (CI): A confidence interval measure the probability

that a population parameter will be fall between two sets values. It can take any

number of probabilities; the most common numbers may be 95% or 99%. It is the

probability that a value will fall between an upper and lower bound of a probability

distributions. The range of values used to estimate a population parameter of a

confidence interval and is related with a specific confidence level. Constructing

confidence interval around a sample means using these equations [46] that is given

below:

CI = ȳ ± z s√
n

= ȳ ± zσȳ (4.6)

where ȳ is the sample mean, and z stands for the z-score, which is the number of

standard deviations based on the confidence level. The alphabet s is the standard

deviation, n is the number of samples or data length, and σȳ is the standard error

of the mean.
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How frequently the observed interval contains the parameter is determined by

the confidence level or confidence coefficient. Whereas two-sided confidence limits

form a confidence interval, their one-sided counterparts are referred to as lower or

upper confidence bounds (or limits). The upper confidence limit,

UCL = ȳ + z
s√
n

(4.7)

The lower confidence limit,

LCL = ȳ − z s√
n

(4.8)

The confidence coefficient indicated by 90%, 95%, 98% and 99%. In applied

practice, confidence intervals are typically stated at the 95% confidence level.

However, when presented graphically, confidence intervals can be shown at several

confidence levels, for example 90%, 95%, and 99%. To be more confident that our

interval includes ȳ, we need a wider interval: a 99% CI is wider than a 95% CI

based on the same data, and a 90% CI is narrower.

Confidence intervals are frequently calculated around the estimates from sta-

tistical hypothesis tests. They may be calculated for the t test, chi-square test,

analysis of variance, regression, and most other tests of inference. A 95% CI is

a range of values within which 95% of the results of repeated samples from the

overall population would lie; this is the most frequently reported CI level. The

confidence limits are related to the P value. If one calculates the 95% CI of the

difference in means between two samples, and zero is within the range of the 95%

CI, then the P value will not be significant at the level less than 0.05 [154].

The major advantages of CIs [31] are that they give point and interval estimates

in measurement units that should be readily comprehensible in the research situ-

ation; CIs help combine evidence over experiments. They support meta-analysis

and meta-analytic thinking focused on estimation, and CIs give information about

precision, and this may be more useful than a calculation of statistical power.

Sub-band Energy: The subband energy of a signal x(n) is

Ex =
∞∑

n=−∞

|x(n)|2 (4.9)

A discrete-time energy signal is defined as one for which 0 < E <∞. It can reduce

the dimension of feature space, but not provide the information in time-domain.
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For EEG signal processing, the sub-band log energy is used in this paper and the

sub-band log energy is calculated using following equation:

Log2Energy = log2Ex (4.10)

where, Ex= subband energy.

Thresholding: In signal processing, thresholding is another technique used

for signal denoising. The concept is called thresholding, when an empirical wavelet

coefficient is greater than the noise level a natural estimator for a wavelet coef-

ficient itself. Thresholding smooths time series data and filter the noise. To

eliminate or suppress small value wavelet coefficients which mainly represent the

noise content, the thresholding procedure is used. This process bears two basic

rules: namely the keep-or-kill hard thresholding and shrink-or-kill soft threshold-

ing familiarized by Donoho and Johnstone [45, 44]. Coefficients with absolute

values lower than the threshold is set to zero are used for hard thresholding, while

soft thresholding in addition shrinks the remaining nonzero coefficients toward

zero. The magnitude of the threshold is changed by hard and soft thresholding.

Recently, adaptive thresholding may be with mean weighted average and with

gaussian weighted average. And it is proved that adaptive thresholding is better

as compared to fixed thresholding.

Threshold Estimation: The next step is to calculate a threshold value to

detect the artifacts in the wavelet domain. The choice of threshold value will

decide both the amount of artifact suppression and the amount of distortion to

the neural signal at the same time. Although the presented thresholding scheme

is simple and effective, selection of a rational threshold value is a crucial task as it

directly affects the denoising results. For example, choosing a very large threshold

will shrink almost all the coefficients to zero and may result in over smoothing of

the measured signals. On the other hand, a small value of threshold will retain

the sharp edges and details but may fail to suppress the noise artifacts. Among

the existing hard thresholding methods, the most popular one is the universal

threshold (UT) [111, 7]. The universal threshold is defined as:

K = σ
√

2LogN (4.11)

where, N is the signal length and σ denotes the standard deviation of the noise.
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The later is estimated from the median of the detail coefficients at the first level

of signal decomposition:

σ =
|median(Ca)|

0.6745
(4.12)

where, Ca represent the wavelet coefficients ath level of decomposition, k denotes

the threshold, |.| denotes the absolute value of elements in Ca and 0.6745 is con-

stant value for Gaussian noise. The universal threshold may be unwarrantedly

large since its dependence on the number of samples. It will yield an overly

smoothed estimate and in some cases, the pseudo Gibbs phenomena may appear.

In paper [97], statistical threshold (ST) is implemented which based on the statis-

tics of the signal and mathematically, the ST is formulated as:

T = 1.5 ∗ std(Hk) (4.13)

where, T is the estimation of neuronal wide band signal magnitude using ST,

std(Hk) employs standard deviation of wavelet coefficients at kth level. However,

this particular threshold is fixed for each Ca and not optimal most of the time.

By extensive testings, it has been found that this threshold is not suitable for

our application as it may produce serious distortion to EEG signals. Particularly

for wavelet coefficients those contain components from spikes or when the neural

recording has severe large artifacts such that the data distribution violates from

the typical Gaussian fitting. Hence it is proposed to the next chapter a statistical

threshold method for artifact suppression in this paper.

4.2 Existing Artifact Suppression Methods

In this section, we give a comprehensive overview of techniques that can be used

for the removal of artifacts from an EEG. For each method, we cite publications

on its early use in EEG processing; we also explain the reasoning behind its use

for the removal of artifacts from an EEG and highlight some of its advantages and

deficiencies. Additionally, we mention extensions of the algorithms, if they exist.

Simple low pass, band pass or high pass filtering represents one of the first

classical attempts at removing artifacts from a measured EEG. However, this is

only effective when the frequency bands of the signal and interference do not
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overlap [193]. With spectral overlap, which is commonplace for typical artifacts

recorded along with the EEG, alternative techniques are needed such as adaptive

filtering, Wiener filtering and Bayes filtering [193], as well as regression [63], EOG

correction [29], blind source separation [90], and more modern attempts like the

wavelet transform (WT) method [133], empirical mode decomposition (EMD) [76]

and nonlinear mode decomposition (NMD) [81].

The BSS techniques are also known as component based methods since they

find principal or independent components equivalent to the input EEG channels

and perform processing in the transformed domain. The process is reversed by

applying the inverse transformation to the corrected components, with the con-

sequence that all EEG channels are processed and estimated simultaneously. In

contrast, filtering, regression, EOG correction, the WT method, EMD and NMD

estimate each artifact-corrected channel independently, in the time, frequency or

time-frequency domain.

4.2.1 Linear Regression

Regression algorithms are arguably the most frequently used EEG artifact correc-

tion techniques up to the mid 90s, especially for ocular interferences, thanks to

their simplicity and reduced computational demands. When one or more refer-

ence channels are available and with the premise that they properly represent all

interference waveforms, then artifacts may be corrected by subtracting a regressed

portion of each reference channel from the contaminated EEG. Regression may be

done either in the time or frequency domains by estimating the influence of the

reference waveforms on the signal of interest.

Linear regression assumes that each EEG channel is the sum of the non-noisy

source signal and a fraction of the source artifact that is available through a

reference channel. Then, the goal of regression is to estimate the optimal value for

the factor that represents such propagation fraction. In multiple linear regression

the measured signal at each electrode is influenced by more than one reference

waveforms, for example vertical, horizontal and radial ocular artifacts.

Regression methods have been replaced by more sophisticated algorithms pri-

marily because the former need one or more reference channels. The disadvantage
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of the method is that limits their applicability to removing mainly EOG [29] and

ECG [215] artifacts. Since other potentially more efficient algorithms emerged,

like PCA and ICA that have become commonplace in most recent publications

([166, 213]). Nevertheless, and despite its drawbacks, regression is still used as

the gold-standard technique to which the performance of other algorithms may be

compared, see for instance [206] for ocular contamination.

4.2.2 Independent Component Analysis (ICA)

The ICA was introduced to EEG study simultaneously by different groups in [93]

and has mostly replaced other approaches for the removal of artifacts from an

EEG. In contrast to the possibly incorrect assumptions of PCA [82], it is the

case that artifacts and brain activity are usually sufficiently independent, which

explains the success of ICA for artifact removal [82]. In practice, nowadays only

a few ICA algorithms such as SOBI [25], (extended) InfoMax [120] and fastICA

[80] are used to process biomedical signals. Recently, the adaptive mixture of

independent component analyzers (AMICA) [79] has emerged as an interesting

alternative to the former methods [151]. Many more methods exist, but we do not

deal with these algorithms in detail in this paper since the interested reader can

find in depth explanations elsewhere (see for instance [54] and references therein).

The effectiveness of ICA is based on statistical independence of the sources

and the full column rank of the mixing matrix. Even if the sources are not ex-

actly independent, ICA based algorithms have been reported to be successful at

removing artifacts from the EEG signal of interest. Due to ICA being based on

statistical features, results will not be reliable if the amount of data given to the

algorithm is insufficient [93]. It would be best to use all the available data, pro-

vided the artifacts and cerebral activity were spatially stationary through time;

however this may not be the case. The goal then becomes using the maximum

amount of data when the sources are reasonably stationary.

Constrained ICA (cICA)

• Temporally constrained ICA: The goal in this case is to obtain an output

that is statistically independent of other sources but closest to a reference

signal [90]. This is done by solving a constrained optimization problem
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through an augmented Lagrangian function. Moreover, prior knowledge can

be introduced into the model by means of reference channels that make

the original matrix become augmented by a number of rows equal to the

references [90, 166]. Other attempts at solving the temporally constrained

ICA problem are [118, 89] where prior information of some source waveforms

is used.

• Spatially constrained ICA: The idea here is to define a set of spatial con-

straints on the mixing matrix to represent prior knowledge or assumptions of

the spatial topography of some source sensor projections [90]. The method

described in [74] has been reported to have excellent performance for denois-

ing certain types of EEG signals [2]. Precisely, the algorithm incorporates

reference or constraint topographies, such that some source sensor projec-

tions are approximately known, hence limiting the degree to which certain

columns of the mixing matrix may deviate from the known projections. The

idea is not new, in fact in [82] the authors use spatially constrained ICA

(SCICA) [83], but this latter method involves a more computationally ex-

pensive optimization.

We end by noting that using any form of constraints to solve the BSS problem

involves the relaxation of strict assumptions regarding the statistical, temporal or

spectral properties of the associated waveforms, in order to satisfy the temporal

or spatial constraints [74].

Canonical Correlation Analysis

Canonical Correlation Analysis or CCA [37] measures the linear relation between

two multi-dimensional random variables and can be applied to solve the BSS prob-

lem by taking the source vector as the first multi-dimensional random variable and

a temporally delayed version of the source vector as the second multi-dimensional

random variable [168, 56].

4.2.3 Filtering Methods

Simple filtering is normally not an option to remove artifacts from EEG record-

ings, except for narrow band artifacts like environmental line noise (50/60Hz in-

78



Chapter 4 – Artifact Suppression Methods

terference can be removed with a notch filter). Thus, numerous artifact removal

techniques described in this section try to adapt the filter parameters to minimize

the mean square error between the estimated EEG and the desired original signal.

To overcome the limitation of the artifact-free signal being unknown, each method

implements strategies following certain optimization criteria. In what follows be

briefly describe some of the main filtering techniques employed in the removal of

artifacts from the EEG.

Adaptive Filtering An adaptive filter is a system with a linear filter that has a

transfer function controlled by variable parameters and a means to adjust those

parameters according to an optimization algorithm [216]. The filter weights can

adapt based on the feedback from output of the system and it requires a refer-

ence input to compare the desired output with the observed output. Adaptive

filters iteratively adjust a vector of weights according to an algorithm of opti-

mization. These weights model the contamination of the artifact on the EEG

activity [165, 207]. Adaptive filtering represents an improvement over linear re-

gression since propagation factors do not need to be constant or frequency in-

dependent [185, 165]. The most prevalent family of algorithms is based on least

mean-squares, which is linear in complexity and convergence. Another well known

family is based on recursive least-squares (RLS), which is quadratic in complexity

and convergence. According to [128] RLS are superior in accuracy at removing

ECG artifacts from EMG recordings. In [98], a method for removing the EOG

artifacts contained in EEG signal based on adaptive filtering is used. The method

uses separately recorded noisy EEG and clean EEG as two reference inputs. The

noisy EEG signals with three types of EOG artifacts-horizontal eye movement,

vertical eye movement and eye blinks have been recorded for five subjects. The

adaptive filter, based on a least mean square (LMS) algorithm, adapts its coeffi-

cients to produce an output which matches the reference input.

Wiener Filtering Wiener filtering is another type of parametric technique, based

on a statistical approach, which produces a linear time-invariant filter that min-

imizes the mean square error between the desired signal and its estimate [193].

The minimization is done using an estimation of the power spectral densities of

the signal and artifact, hence it does not need a reference waveform. The disad-

79



Chapter 4 – Artifact Suppression Methods

vantages are that calibration is needed prior to usage and that it cannot run in

real time. On the other hand, when properly calibrated, it can achieve a better

SNR for corrected data compared to the adaptive filter [193].

Bayes Filtering

• Kalman Filtering: Kalman filter is another kind of Bayes filter which also

doesn’t require an external reference signal and is capable of operating in

real-time. This method requires the filter models to be created prior to

implementation of the algorithm and the model has to be linear. Besides,

it also assumes that a-priori estimation is Gaussian and can work only with

unimodal distribution. Now, the artifacts are of different waveform shapes

and it is likely to be of multi-modal distribution. The a-priori estimation may

also not be valid due to non-stationary, nonlinear properties of EEG signals.

So, Kalman filter is not supposed to work robustly for such applications.

• Particle Filtering: Particle filter is a kind of filter based on Bayesian ap-

proach which overcomes the limitation of Kalman filter as it does not re-

quire the model to be linear or the distribution to be unimodal. But it still

needs a-priori user input which may not be available always in EEG-based

applications. And there has very little work been done so far to use particle

filter to remove artifacts in EEG signals. Hence it is not guaranteed to be a

successful choice, but one can definitely try to observe the outcome of such

filter implementation in removing artifacts.

Filtering in Practice Using different forms of filtering for artifact removal from

the EEG dates at least as far back as 1976, when Wright [220] obtained the best

linear filter to remove EMG from EEG recordings: a least-squares Kalman filter

that exploits a priori knowledge. Even if other types of filters exist and have been

used in the EEG artifact removal literature, adaptive filtering is most common. It

is still in use, for instance in [27] where three least-mean squares adaptive filters

are employed in cascade to eliminate line interference, ECG artifacts and EOG

spikes respectively. More generally, they are often used for comparison with other

artifact removal methods, for instance in [100, 165]. Filtering approaches such

80



Chapter 4 – Artifact Suppression Methods

as adaptive, Wiener or Bayes filtering have the advantage that they can be au-

tomatized [191], however they need a measured or reliably estimated reference to

operate. Some of these methods can operate on single channels, characteristic

that makes them attractive for the personal health care environment [191].

Spatial Filtering The principal component analysis (PCA) is a type of spatial

filter that transforms the time domain datasets into a different space by rotat-

ing axes in an N-dimensional space (where N is the number of variables or EEG

channels) such that each dimension in the new space has minimum variance and

the axes are orthogonal to each other [23]. The PCA uses an orthogonal transfor-

mation to convert the observations of possibly correlated variables into values of

linearly uncorrelated variables called principal components, less than or equal in

number to the original variables. The transformation is defined for the principal

components to have the largest possible variances while being orthogonal to each

other. The PCA is also known as the discrete Karhunen-Love transform.

The PCA was introduced into EEG analysis in [8], where the authors use it to

empirically determine the spatial distribution of eye activity, and has since been

used extensively for artifact removal [51, 107, 82]. Berg and Scherg [8] report

PCA as being more effective at removing ocular artifacts than other non-BSS

methodologies including regression, and for source localization [51, 8]. The great-

est problem with PCA is that the assumption of orthogonality between neural

activity and typical physiological artifacts does not generally hold. In fact, it has

been demonstrated that PCA is unable to separate some artifactual components

from brain signals, especially when they have similar amplitudes [51, 107].

4.2.4 Wavelet Transform

Using wavelet transform the EEG signal denoising is done according to following

three steps: decompose the signal into a number of levels, second threshold the

detail coefficients and third reconstruct the signal from the filtered representation.

Artifact removal based on the WT relies on the sources of interest being decom-

posable on a wavelet basis, whereas artifacts cannot (depending on the type of

signal, it may be the artifacts that have a better defined wavelet decomposition,

for instance consider background EEG and blinks). This implies that only a few
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wavelet coefficients with high absolute value should represent the signal and that

wavelets coefficients with low absolute value correspond to the artifacts. Evidently,

good separation of signal and noise depends on the wavelet basis and its similarity

to the source signals to be preserved. Thus, the mother wavelet, the shrinkage

rule and the noise level rescaling are important to the design of the noise removal

method [168].

The DWT is often accompanied by threshold selecting criteria, such as Stein’s

unbiased risk estimate (SURE) [44] implemented in [168] or other forms of thresh-

olding [30], such that only large enough coefficients are kept. Even though the

DWT remains an interesting tool for EEG processing on its own [47, 57, 87, 104],

nowadays it is more often found combined with other denoising techniques such

as ICA [2], one reason for this being that the DWT is in fact unable to remove

completely artifacts that overlap in the spectral domain like ECG on an EMG

signal [193].

Wavelet transform has been chosen to assist labeling artifacts. The reason is

that it is suitable for non-stationary signal analysis (e.g. neural signals) and is a

powerful tool to detect abrupt changes or localized events mostly due to artifacts

[123]. Among different wavelet transforms, the DWT is the simplest one in terms

of computational complexity. However, the problem of DWT is that it is not

translation invariant. Therefore small shifts in a signal can cause large changes

in the wavelet coefficients and large variations in the distribution of energy in the

different wavelet scales [138, 24].

Hence, denoising with DWT often introduces artifacts in the signal near dis-

continuities during signal reconstruction. One solution is to use stationary wavelet

transform (SWT) which is translation invariant, as there is no down sampling of

data involved in the algorithm [138, 24]. The SWT overcomes this translation-

invariance drawback of DWT, but has redundant information and is relatively

slow [37]. The design difference between DWT and SWT is the filter at each stage

[38]. The approximate and detail sequences at each level of decomposition are of

the same length as the original sequence. After obtaining the coefficients at jth

level, the algorithm up samples the filter coefficients by a factor of 2j − 1.
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4.2.5 Stationary Wavelet Transform (SWT)

The SWT decomposition process [122] is described by Eqs. (4.14) and (4.15). A

signal, f , is projected onto a dyadically-spaced set of scales (spaced using a base of

2, i.e., scale = 2j), or levels (level j = log2(scale2j)), using a set of level dependent

quadrature mirror decomposition filters, hj and gj, that have respective band-pass

and low-pass properties specific to each wavelet basis [124]. The broad scale, or

approximation, coefficients, Aj, are convolved separately with gj and hj. This

process splits the Aj frequency information roughly in half, partitioning it into a

set of fine scale, or detail coefficients, Dj+1, and a coarser set of approximation

coefficients, Aj+1. During the next level of processing, a zero is placed in between

each consecutive value found in the gj and hj filters (i.e., up-sampling by two) to

achieve the gj+1 and hj+1 filters. This procedure can be iteratively continued until

the desired level of decomposition, j = J , is obtained. Note that the algorithm is

initiated by setting a0 = f .

Aj+1(k) =
∑
n

hj(n− k)Aj(k) (4.14)

Dj+1(k) =
∑
n

gj(n− k)Aj(k) (4.15)

Aj(k)
∑
n

hj(k − n)Aj+1(n) +
∑
n

gj(k − n)Dj+1(n) (4.16)

The Aj coefficients can be reconstructed from Aj+1 and Aj+1 by convolving each

with the respective reconstruction filter, hj(n) or gj(n), and summing (Eq.(4.16)).

Note that each reconstruction filter is also level dependent and includes 2j − 1

zeros between each filter coefficients. This process can be iteratively continued

until the original signal, f , is recovered.

Thus, two types of coefficients are generated: approximate and detail coeffi-

cients that contain low and high frequency information respectively. The generated

wavelet coefficients at different levels denote the correlation coefficients between

artifactual signal and the wavelet function. The artifactual events will have larger

coefficient values if they have higher correlation with the wavelet function while

smaller coefficients will be generated corresponding to the actual neural activities.
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4.2.6 Machine Learning

Few existing methods adopted the idea of machine learning (mostly supervised

learning) for artifact separation from useful EEG signal by training a classifier

with (supervised) or without (unsupervised) labeled training datasets. Using a

machine learning algorithm when artifactual epochs are identified then the identi-

fied epochs are either emphasized as artifact annotator to the clinicians for helping

making a decision or can be rejected before examination from clinician or before

sending to automated signal processing system. Machine learning techniques are

Figure 4.1: Machine learning classification for identifying artifactual epoch from clean EEG

epoch [85].

mainly two types: supervised and unsupervised learning. Among supervised learn-

ing algorithms, two most popular methods used for classification between artifact

and brain signals are ANN and SVM. Among unsupervised learning, k-means clus-

tering and outliers detection are most common in this particular area of research.

A basic approach to classify artifact from EEG by using the machine learning

classifier is shown in Figure 4.1.

4.2.7 Nonlinear Mode Decomposition

A novel adaptive decomposition tool for time-domain signal analysis based on the

synchrosqueezed wavelet transform (SqWT) [36] is nonlinear mode decomposition

[81]. The fully oscillatory components and their harmonics are found using the
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method that decomposes a signal into its so-called nonlinear modes. In [81], the

writers state that its (NMD) qualitative and quantitative supremacy over the

EMD and EEMD methods and prove that it has strong mathematical background

(EMD and EEMD are empirical) and since it is more robust to noise. Also the

authors further demonstrate the application of their recommended algorithm to

artifact removal from a human EEG recording.

In the paper [81], the NMD procedure contains of four parts: adaptive curve

extraction (first harmonic) from the SqWT, identification of possible harmonics,

reliable identification of the true harmonics and reconstruction of the nonlinear

modes from the SqWT. It is observe that the time-frequency representation with

much better frequency resolution and the same time resolution occurred in this

method than that of the WT [81, 36] due to the construction of the SqWT. Adap-

tive curve extraction is equivalent to finding the region of the SqWT that contains

the required component (of the form A(t)cosφ(t)). By inspecting regions of peaks

at harmonic frequencies and extracted candidate harmonics to find the correspond-

ing supports. In summary, the SqWT is reconstructed by summing all nonlinear

modes of the main curve and of its entire true harmonics (values not belonging to

the supports of the extracted curves are set to zero).

For EEG artifact suppression, it is the only reference paper on the applica-

bility of NMD and, in general, to any form of denoising, is in the original work

[81]. It appears [47, 57, 104], that a potentially motivating new tool for improv-

ing the results of artifact suppression is achieved by using the simpler WT. A

post processing technique applied to the continuous wavelet transform in order to

generate localized time-frequency representation of non-stationary signals is the

synchrosqueezing transform (SST). The continuous wavelet transform is a projec-

tion based algorithmth at identifies oscillatory components of interest through a

series of time-frequency filters knownas wavelets. The SST was originally intro-

duced in the context of audio signal analysis and is shown to be an alternative

to EMD. The SST aims to decompose a signal into constituent components with

time-varying harmonic behavior. These signals are assumed to be the addition of
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individual time-varying harmonic components yielding

s(t) =
K∑
k=1

Ak(t)cos(θk(t)) + η(t) (4.17)

where, Ak(t) is the instantaneous amplitude, η(t) represents additive noise, k

stands for the maximum number of components in one signal, and θk(t) is the

instantaneous phase of the kth component. The instantaneous frequency of the

kth component is estimated from the instantaneous phase as

fk(t) =
1

2π

d

dt
θk(t) (4.18)

In seismic signals, the number k of harmonics or components in the signal is

infinite. They can appear at different time slots, with different amplitudes, in-

stantaneous frequencies, and they may be separated by their spectral bandwidths

∆fk(t).

The spectral bandwidth defines the spreading around the central frequency,

which in our case is the instantaneous frequency, for a completed disentangling

of concepts. This magnitude is a constraint for traditional time frequency rep-

resentation methods. The STFT and the CWT tend to smear the energy of the

superimposed instantaneous frequencies around their center frequencies [35]. The

smearing equals the standard deviation around the central frequency, which is

the spectral bandwidth. The SST is able to decompose signals into constituent

components with time-varying oscillatory characteristics. Thus, by using SST we

can recover the amplitude Ak(t) and the instantaneous frequency fk(t) for each

component.

From CWT to SST: The CWT of a signal is

ws(a, b) =
1√
a

∫
s(t)ψ∗(

t− b
a

)dt (4.19)

where, ψ∗ is the complex conjugate of the mother wavelet and b is the time shift

applied to the mother wavelet, which is also scaled by a. The CWT is the cross

correlation of the signal s(t) with several wavelets that are scaled and translated

versions of the original mother wavelet. The symbols ws(a, b) are the coefficients

representing a concentrated time-frequency picture, which is used to extract the

instantaneous frequencies. It is observe that there is a limit to reduce the smearing
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effect in the time-frequency representation using the CWT. This smearing mainly

occurs in the scale dimension a, for constant time offset b show that if smearing

along the time axis can be neglected, then the instantaneous frequency ws(a, b)

can be computed as the derivative of the WT at any point (a, b) with respect to

b, for all ws(a, b) 6= 0 :

ws(a, b) =
−j

2πWs(a, b)

∂Ws(a, b)

∂b
(4.20)

The final step in the new time-frequency representation is to map the informa-

tion from the time-scale plane to the time-frequency plane. Every point (b, a)

is converted to (b, ws(a, b)), and this operation is called synchrosqueezing. Be-

cause a and b are discrete values, we can have a scaling step ∆ak = ak−1 − ak for

any ak where ws(a, b) is computed. Likewise, when mapping from the time-scale

plane to the time-frequency plan (b, a) → (b, winst(a, b)) the SST Ts(w, b)) is de-

termined only at the centers wl of the frequency range [wl − ∆w/2, wl + ∆w/2]

with ∆w = wl − wl−1 :

Ts(wl, b)) =
1

∆w

∑
ak:|w(ak,b)−wl|≤∆w/2

Ws(ak, b)a
−3/2∆ak (4.21)

The above equation shows that the time-frequency representation of the sig-

nal s(t) is synchrosqueezed [73] along the frequency (or scale) axis only. The

synchrosqueezing transform reallocates the coefficients of the continuous wavelet

transform to get a concentrated image over the time frequency plane, from which

the instantaneous frequencies are then extracted; this is an ultimate goal in EEG

signal analysis. The identified frequencies are used to describe their source EEG

and eventually gain a better understanding of the artifact detection.

4.2.8 Stationary Subspace Analysis (SSA)

Recently, used one of the popular blind source separation algorithm is stationary

subspace analysis (SSA) that factorizes a multivariate time series into two com-

ponents termed as stationary signal and non-stationary signal. In EEG analysis,

the electrodes on the scalp record the activity of a large number of sources located

inside the brain. These sources can be stationary or non-stationary, but they are

not discernible in the electrode signals, which are a mixture of these sources. The
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SSA allows the separation of the stationary from the non-stationary sources in an

observed time series.

According to the SSA model [229], the observed multivariate time series s(t)

is assumed to be generated as a linear superposition of stationary sources ss(t)

non-stationary sources sn(t) as follows:

s(t) = Mn(t) =
[
Ms Mn

][ ss(t)
sn(t)

]
where, M is an unknown but time-constant mixing matrix; n(t) is the mixture

of stationary sources ss(t) and non-stationary sources sn(t); Ms and Mn are the

basis of the stationary and non-stationary subspace respectively. Given samples

from the time series s(t) the aim of SSA is to estimate the inverse mixing matrix

M−1 separating the stationary from non-stationary sources in the mixture.

Using the estimated mixing matrix, M̂ =
[
M̂sM̂n

]
given by SSA, these arti-

factual components Xart(t) are projected back to EEG channel, and artifacts in

EEG data sart(t) are calculated as:

sart(t) = M̂nXart(t) (4.22)

Finally, this ocular activity is removed from the EEG recording to yield the clean

EEG data by the following formula:

ŝ(t) = s(t)− sart(t) (4.23)

where, ŝ(t) ≈ SEEG(t). Thus the pure EEG of any channel is reconstructed using

Eq.(4.23). The EOG suppression results for a single channel (multichannel is used

for SSA experiment) of recorded electroencephalography are illustrated in Figure

4.2, in which the separated electro-oculogram and purified EEG signals are shown

in the second and third rows respectively.

4.2.9 Discrete Wavelet Transform (DWT)

In discrete wavelet transform (DWT), only the lower frequency band is decom-

posed, giving a right recursive binary tree structure whose right lobe represents

the lower frequency band and its left lobe represents the higher frequency band.

The frequency band [fm
2

: fm] of each detail scale of the DWT is directly related

to the sampling rate of the original signal, which is given by [fm = fs
2J

], where
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Figure 4.2: Example of the separation of clean EEG from the contaminated data using SSA.

The artificially generated EEG signal (top), the segregated EOG signal (middle), and pure EEG

signal (bottom).

fs is the sampling frequency, and J is the level of decomposition. The high-

est frequency that the signal could contain, from Nyquist theorem, would be fs
2

.

Frequency bands corresponding to seven decomposition levels with Daubechies 4

(db4) mother wavelet which is choosed for this filter. The wavelet coefficients Fj,k

succeeding to the signal s(t) can be obtain as

Fj,k =

∞∫
−∞

s(t)Wj,k(t)dt (4.24)

where, j and k are the scaling and shifting factors, respectively. The mother

wavelet Wj,k is used for reconstruction as

S(t) =
∞∑

k=−∞

Fj,kWj,k(t)dt (4.25)

The wavelet transform (WT) is the decomposition consists of observing the signal

at different resolution levels and different translations in time by bandpass filter-

ing [224]. The strength of WT based signal decomposition lies in using short high

frequency basis functions and long low frequency ones to isolate different charac-

teristics of the signal. In such decomposition the signal is represented as finite

89



Chapter 4 – Artifact Suppression Methods

Subband index
1 2 3 4 5 6 7 8

lo
g 2(e

ne
rg

y)

1

2

3

4

5

6

7

8
Energy of contaminated EEG
Energy of fGn
Lower CI limit
Upper CI limit

Figure 4.3: The selection of threshold from subband energy using DWT. The selection of thresh-

old subband index of contaminated EEG channel based on the subband energy of fGn. The 5th

subband exceeds the upper boundary of CI and hence the 5th one of EEG is selected as the

highest order subband index to represent the pure EEG signal.

set band-passed signals of different frequency bands. Subband signals are recon-

structed from the detail and approximate coefficients denoted as C1, C2, ..., Cj and

Rj respectively.

The analyzed signal of the channel is represented as [139]:

s̃(t) =
J∑
j=1

qj(t) + qJ+1(t) (4.26)

where, qj is the jth subband corresponding to the detail coefficient Cj at the jth

level and is the (J + 1)th subband reconstructed from the approximate coefficient

Rj of the channel.

A noise assisted DWT based approach is implemented here to reduce the low

frequency noise from single channel EEG. At the end of the decomposition, the

signal s(t) is represented as

s̃(t) =
J+1∑
j=1

qj(t) (4.27)

where, s̃(t) ≈ s(t). The pure EEG signal of the single channel can be estimated

by summing up the lower order subbands as:

ŝ(t) =
D∑
j=1

qj(t) (4.28)
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Figure 4.4: The separation of clean EEG from the contaminated data using DWT. Separation

of EOG artifact from real (recorded) EEG signal using wavelet denoising method. The recorded

(contaminated with EOG) EEG signal (top), the separated EOG artifact (middle) and the pure

EEG signal (bottom).

where, qj(t) is the jth subband of the channel. Here, the subject is to find

the critical (threshold) subband with index D such that the subbands of indices

1, 2, 3, ...., D are responsible for relatively lower frequency pure EEG component.

The low frequency noise suppression from EEG is achieved by using subband

energy based data adaptive thresholding [139]. The fGn is also used as the ref-

erence signal for adaptive threshold detection. The subband energy of fGn is

decreased with increasing its center frequency when the subband decomposition is

performed with dyadic filter bank. The wavelet transform is itself a dyadic decom-

position and hence it produced the similar nature of subband energy distribution

of fGn as obtained by using EMD. The determination of threshold subband based

on the subband energy is illustrated in Figure 4.3. The pure EEG results for a

single channel of contaminated EEG are shown in Figure 4.4.
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Figure 4.5: Selection of IMF of the artificially contaminated EEG signal using EMD. The se-

lection of starting IMF (lowest order) to extract the low frequency component of mixed signal.

Here, the 8th IMF is selected. Its energy exceeds the upper limit of 95% confidence interval of

the IMFs energies of fGn.

4.2.10 Empirical Mode Decomposition (EMD)

Based on the principle of the empirical mode decomposition (EMD) technique

[163], the signal s(t) is represented as

s(t) =
G∑
g=1

cg(t) + rG(t) (4.29)

where, c1(t), c2(t), ..., cG(t) are all of the intrinsic mode functions included in the

signals and rG(t) is a negligible residue. Here, G is the total number of intrinsic

mode functions. The completeness of the decomposition is given by the Eq.(4.29).

The analyzing EEG signal s(t) consists of a slowly varying trend (EOG) super-

imposed to a high frequency fluctuating process h(t), and the trend is expected to

be captured by intrinsic mode functions of large indices. A process of detrending

s(t) which corresponds to estimating relates to the computation of the partial,

fine-to-coarse, reconstruction.

ŝ(t) =
D∑
d=1

cd(t) (4.30)

where, D is the larger IMF index prior contamination by the trend. Each of

the IMF cd(t); d = 1, 2, ..., D represent relatively higher frequency oscillations i.e.

ŝ(t) ≈ h(t). The optimized d = D is chosen when the energy at index d departs
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Figure 4.6: The empirical mode decomposition based data adaptive filtering technique is used to

separate EOG from the contaminated EEG. The top panel shows the artificially contaminated

EEG signal and the other panels illustrate EOG (middle) and purified EEG signal (bottom).

significantly from the energy of the reference signals. According to Eq.(4.30), the

pure EEG is calculated.

The energy of the IMFs with different local scales is distributed in different

frequency bands. The fractional Gaussian noise is used here as the reference

signal. The energies of the intrinsic mode functions of fractional Gaussian noise

are computed and then its upper and lower limits of 95% confidence interval (CI)

are derived. The upper limit of CI of subband energy of fractional Gaussian noise

(fGn) is considered as the threshold. The logarithmic energy (with base 2) of

individual intrinsic mode function of EEG is compared with the threshold level.

The energy of the nth IMF of EEG signal exceeds the threshold and hence it is

selected to remove the artifacts [163].

It is observed in Figure 4.5 that the 7th IMF is touched the upper limit of

confidence interval. The 7th one is the starting point of lower frequency compo-

nents. The electro-oculogram is separated by summing the IMFs 7 to 10 as well

as the residue. By subtracting EOG from raw EEG, we get the purified EEG that

reflects the clean EEG in Figure 4.6.

The EMD has been criticized due to its little robustness to noise [81] (its
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performance is greatly influenced by white noise), but has gained a lot of attention

in the last few years in many fields [77] and in particular for processing biomedical

signals. The robustness of the original algorithm has been improved with the

ensemble empirical mode decomposition (EEMD) [222].

Enhanced/Ensemble Empirical Mode Decomposition: Knowing the

fact that EMD approach is very sensitive to noise which often leads to mode mixing

difficulty, enhanced empirical mode decomposition (EEMD) is introduced. There-

fore, EEMD is proposed which uses an average of number of ensembles (IMFs)

from EMD as the optimal IMFs thus it provides a noise-assisted data analysis

method [192]. The EEMD has likewise been used in the context of EEG (in this

case in conjunction with CCA. To select the components of EEG signal, EMD

also requires thresholding, such as the methodology proposed in [168, 103]. At the

end, it is concluded that EMD has been modified to the multivariate location for

example with the multivariate EMD (MEMD) [126, 205] and the turning tangent

EMD (2T-EMD) [54], however these methods are rarely used for EEG due to their

computational complexity.

4.3 Proposed Artifact Suppression Method

The role of signal processing is crucial in the development of a real-time brain

computer interface. The principal attention of EEG pre-processing is to remove

the dominant artifacts successfully before its further processing. The performance

of the application EEG potentially depends on its proper cleaning. The state of

the art online BCI application paradigms suffers from lower accuracies due to ex-

cessive artifacts caused by muscular (eye-movements, muscle tremors, etc.) and

other electromagnetic interferences. The contemporary EEG cleaning methods

exhibit several problems in the real time implementation of BCI. Although EMD

based approach is more effective in artifact suppression, it takes longer process-

ing time. Another potential method is the ICA based BSS which damages the

intelligibility of the original EEG and degrades the accuracy of BCI classification.

The existing artifact suppression techniques are not fully usable as they are not

suitable to be implemented in real time in pre-processing of the practical BCI.
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The target of this research paper is the development of the novel online methods

to preprocess and clean EEG multichannel signals. The model based approach

multiband decomposition (hybrid wavelet transform) can be employed to achieve

the goal of this research.

Figure 4.7: This flowchart shows the different components of the proposed system for artifact

removal in hybrid wavelet transform (HWT) method. In this block diagram, discrete wavelet

transform, wavelet packet transform and threshold methods are applied serially for EOG sepa-

ration.

4.3.1 Hybrid Wavelet Transform (HWT)

The HWT method is based on a novel combination of discrete wavelet decompo-

sition, and wavelet packet tree. In DWT, at every recursive decomposition level,
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Figure 4.8: The results of hybrid wavelet transform technique for raw EEG data. This illus-

trated the original EEG and reconstructed EEG signal by simply adding subbands (top) and

reconstruction error (bottom).

signal is down-sampled by a factor of 2 which results in number of output coeffi-

cients at every level as half of the input signal to that level. Therefore, number

of samples to be convolved at every stage reduces to half compared to the input

signal length. Due to the discrepancy of down-sampling at every decomposition

level in DWT, WPT is also preferred. In the proposed method, as shown in Fig-

ure.4.7, firstly the DWT is applied on the contaminated EEG data. After three

levels decomposition of EEG signal using DWT (using Eq.(4.27).), then WPT is

applied on the approximate coefficient signal to detect ocular artifact zone to de-

compose it up to three levels using Daubechies 4 (db4) mother wavelet as a basis

function. The WPT evenly divides a frequency band into 2L parts where L is the

number of decomposition level. With the example L = 3, the approximate signal

is decomposed by three layers wavelet packet, the original signal is equivalent to

Eq.(3.5).

4.3.2 Proposed Algorithm for Artifact Suppression

The block diagram of the proposed method is illustrated in Figure 4.7. Here

the energy based subband thresholding with HWT decomposition technique is

96



Chapter 4 – Artifact Suppression Methods

Subband index
1 2 3 4 5 6 7 8

lo
g 2(e

ne
rg

y)

10

11

12

13

14

15

16

17

Energy of contaminated EEG
Energy of fGn

Figure 4.9: The selection of threshold from subband energy of contaminated EEG channels (by

applying proposed HWT) based on the subband energy of fGn. In this observation, selection of

the index of subbands of EEG signal from which the low frequency components can be extracted.

The subbands energy of fGn is considered as the threshold. The logarithmic energy (with base

2) of individual subband of EEG is compared with the threshold level. The energy of the

2nd subband index of EEG signal exceeds the threshold and hence it is selected to remove the

artifacts.

proposed. In this implementation, fractional Gaussian noise (fGn) is used to

determine the threshold level derived from the analysis data. The reference signal

(fGn) magnitude has used here the following statistical threshold formula before

hybrid wavelet decomposes.

fGn(t) = λ ∗m(t) ∗ std(s(t)) (4.31)

where, λ is a multiplication factor and it ranges 3 < λ < 4, m(t) is the reference

signal for adaptive thresholding using in HWT, std stands for standard deviation

and S(t) is the EEG signal with the frequency 0 ∼ fs/2.

According to the proposed (HWT) method, the algorithm for separating electro-

oculogram artifacts from EEG signal is given bellow:

(i) Perform DWT on the contaminated EEG signal together with the fGn up

to 3 levels yielding a finite set of subbands.

(ii) Decompose the resultant approximate coefficient of DWT using WPT to

up to L (=3) levels to select the artifactual coefficient. The corresponding

subbands are reconstructed. The subbands of each channel are arranged

using Eq.(3.6).
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Figure 4.10: Mixture of EOG like contaminated EEG signal and pure EEG. (Top): contaminated

EEG signal. (Middle): EOG signal. (Bottom): the pure EEG signal using HWT. According

to the experimental figure on the contaminated EEG, the proposed HWT is removed the most

EOG artifacts from the mixed data and at the same time preserved the most EEG signal as

shown in Figure. As a result, the purified EEG signal is found as completely artifact free in

HWT method.

(iii) Compute the log2 energies of all the subbands of raw EEG as well as fGn

obtained by WPT.

(iv) Compute the log2 energies of all the subbands of raw EEG as well as fGn

obtained by WPT.

(v) Find the lowest order subband with energy exceeding the energy of fGn.

(vi) Thus selected bth (in Figure 4.9, b=2) subband is the starting index of con-

structing electro-oculogram (EOG) signal.

(vii) The rest of the subbands are used to reconstruct the pure EEG signals.

The EOG suppression results for a single channel of recorded EEG is illustrated

in Figure 4.10 in which the separated EOG and purified EEG signals are shown

in the second and third rows respectively.

After this phenomenon; the EEG signal artifact is removed according to the

proposed method and that is illustrated in Figure 4.7. In this Figure, subband
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thresholding based HWT decomposition technique is proposed. Besides this the

artifact free EEG subband and the detail coefficients of DWT are reconstructed

by upsampled by a fctor 2 and convolution. The original signal, reconstructed

signal using proposed HWT method and the reconstruction error are illustrated in

Figure 4.8. It is noted that the signal reconstruction error of EMD is smaller than

DWT and WPT. But EMD is not suitable for real time implementation because

of computational complexity and proposed HWT is more suitable to clean EEG

for implementation of online BCI.

Finally, the HWT is applied to a contaminated EEG. In such hybrid wavelet

decomposition the signal is represented as finite set band-passed signals of dif-

ferent frequency bands in WPT part. The log2 energies of the orderly sequence

subband coefficients are computed. Using Eq.(4.31), the magnitude of reference

signal (fGn) is calculated before it is decomposed. The WPT technique is applied

on statistically thresholded fGn for calculating its log2 energy. After calculating

energy of the every subband of measured EEG and fGn, the energy based subband

is selected as artifact which exceeding the energy of fGn is illustrated in Figure

4.9. In Figure 4.9, the subband index are plotted in order to analogy with other

methods. The artifact free EEG signals are reformed by summing up the recon-

structed subband. The separation results of purified EEG are shown in Figure

4.10 and the purified EEG signal is found as completely artifact free.
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Chapter 5

EEG Classification for BCI

Implementation

The neural signal such as Electroencephalogram (EEG) signal classification for

motor imagery movements has been a great challenge in the design and improve-

ment of Brain Computer Interfaces (BCIs). There are mainly two challenges. The

first one is the variability in the recorded EEG data, which manifests across trials

as well as across individuals. Consequently, features that are more discriminative

need to be identified before any pattern recognition technique can be applied. The

second challenge is in the pattern recognition domain. The number of data sam-

ples in a class of interest, e.g. a specific action, is a small fraction of the total data,

which is composed of samples corresponding to all actions of all users. Building a

robust classifier when learning from a highly unbalanced dataset is very difficult;

minimizing the classification error typically causes the larger class to overwhelm

the smaller one [183].

5.1 Existing Classifiers Used in BCI

This section reviews the classification algorithms used to design BCI systems.

They are several types of classifiers, mainly divided into five different categories:

linear classifiers, neural networks, nonlinear bayesian classifiers, nearest neighbor

classifiers and combinations of classifiers. The most important characteristics

of different classifiers is the essential properties for BCI applications which are

highlighted in the following:
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5.1.1 Linear Classifiers

Linear classifiers are discriminant algorithms that use linear functions to distin-

guish classes. They are probably the most popular algorithms for BCI applications.

Two main kinds of linear classifiers have been used for BCI design, namely, Linear

Discriminant Analysis (LDA) and Support Vector Machine (SVM).

1. Linear Discriminant Analysis: The aim of LDA (also known as Fisher’s LDA)

is to use hyperplanes to separate the data representing the different classes.

For a two-class problem, the class of a feature vector depends on which side

of the hyperplane the vector is (see Figure 5.1).

LDA assumes normal distribution of the data, with equal covariance ma-

trix for both classes. The separating hyperplane is obtained by seeking the

projection that maximize the distance between the two classes means and

minimize the inter class variance. To solve an N-class problem (N > 2) sev-

eral hyperplanes are used. The strategy generally used for multiclass BCI

is the ”One Versus the Rest” (OVR) strategy which consists in separating

each class from all the others. This technique has a very low computational

Figure 5.1: A hyperplane which separates two classes: the ”circles” and the ”crosses” [116].

requirement which makes it suitable for online BCI system. Moreover this

classifier is simple to use and generally provides good results. Consequently,

LDA has been used with success in a great number of BCI systems such

as motor imagery based BCI, P300 speller, multiclass or asynchronous BCI.

The main drawback of LDA is its linearity that can provide poor results on

complex nonlinear EEG data [58].
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A Regularized Fisher’s LDA (RFLDA) has also been used in the field of

BCI. This classifier introduces a regularization parameter that can allow

or penalize classification errors on the training set. The resulting classifier

can accomodate outliers and obtain better generalization capabilities. As

outliers are common in EEG data, this regularized version of LDA may give

better results for BCI than the non-regularized version [11]. Surprisingly,

RFLDA is much less used than LDA for BCI applications [116].

2. Support Vector Machine: The SVM is a widely used classifier utilizing the

method of supervised machine learning. The goal of SVM is to construct an

optimal hyperplane using training data that separate two or more datasets

for classification in the test data. The optimal hyperplane is constructed in

order to obtain the maximal margin from the nearest samples of different

datasets, known as the support vectors (see Figure 5.2). In cases where the

datasets are not linearly separable in the original finite dimensional space,

the data can be re-mapped into a sufficiently higher dimensional space. This

mapping is conducted by using a defined kernel function, which presumably

ensures an easier separation of the datasets. The hyperplane defined in the

higher dimensional space can be viewed as a non-linear separating hyper-

plane in the original finite dimensional space. Thus, this approach is also

known as a non-linear SVM [169].

Support vector machine has been used widely for classification of electroen-

cephalogram (EEG) signals for the diagnosis of neurological disorders such

as epilepsy and sleep disorders. SVM shows good generalization performance

for high dimensional data due to its convex optimization problem. The in-

corporation of prior knowledge about the data leads to a better optimized

classifier. The basic support vector classifier is very similar to the percep-

tron. Both are linear classifiers, assuming separable data. In perceptron

learning, the iterative procedure is stopped when all samples in the training

set are classified correctly. For linearly separable data, this means that the

found perceptron is one solution arbitrarily selected from an (in principle)

infinite set of solutions. In contrast, the support vector classifier chooses one

particular solution: the classifier which separates the classes with maximal
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Figure 5.2: SVM find the optimal hyperplane for generalization [116].

margin. The margin is defined as the width of the largest tube not con-

taining samples that can be drawn around the decision boundary. It can be

proven that this particular solution has the highest generalization ability.

The support vector classifier has many advantages. A unique global opti-

mum for its parameters can be found using standard optimization software.

Nonlinear boundaries can be used without much extra computational effort.

Moreover, its performance is very competitive with other methods. A draw-

back is that the problem complexity is not of the order of the dimension of

the samples, but of the order of the number of samples. For large sample

sizes NS > 1000 general quadratic programming software will often fail and

special-purpose optimizers using problem-specific speedups have to be used

to solve the optimization [187] .

5.1.2 Neural Networks

Artificial neural networks are computational systems originally inspired by the

human brain. They consist of many computational units, called neurons, which

perform a basic operation and pass the information of that operation to further

neurons. The operation is generally a summation of the information received by

the neuron followed by the application of a simple, non-linear function. In most
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neural networks, these neurons are then organized into units called layers. The

processing of neurons in one layer usually feeds into the calculations of the next,

though certain types of networks will allow for information to pass within layers

or even to previous layers. The final layer of a neural network outputs a result,

which is interpreted for classification or regression. Neural Networks (NN)[116]

are, together with linear classifiers, the category of classifiers mostly used in BCI

research. Let us recall that a NN is an assembly of several artificial neurons which

enables to produce nonlinear decision boundaries. This section first describes the

most widely used NN for BCI, which is the MultiLayer Perceptron (MLP). Then,

it brifly presents other architectures of neural network used for BCI applications.

1. MultiLayer Perceptron: An MLP is composed of several layers of neurons:

an input layer, possibly one or several hidden layers, and an output layer.

Each neuron’s input is connected with the output of the previous layer’s neu-

rons whereas the neurons of the output layer determine the class of the input

feature vector. Neural networks and thus MLP, are universal approximators,

i.e., when composed of enough neurons and layers, they can approximate any

continuous function. Added to the fact that they can classify any number

of classes, this makes NN very flexible classifiers that can adapt to a great

variety of problems. Consequently, MLP, which are the most popular NN

used in classification, have been applied to almost all BCI problems such as

binary or multiclass, synchronous or asynchronous BCI. However, the fact

that MLP are universal approximators makes these classifiers sensitive to

overtraining, especially with such noisy and non-stationary data as EEG,

e.g., [5]. Therefore, careful architecture selection and regularization is re-

quired [88]. A MultiLayer Perceptron without hidden layers is known as a

perceptron. Interestingly enough, a perceptron is equivalent to LDA and, as

such, has been sometimes used for BCI applications [26].

2. Other Neural Network Architectures: Other types of NN architecture are

used in the field of BCI. Among them, one deserves a specific attention as it

has been specifically created for BCI: the Gaussian classifier [135]. Each unit

of this NN is a Gaussian discriminant function representing a class prototype.

According to its authors, this NN outperforms MLP on BCI data and can
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perform efficient rejection of uncertain samples. As a consequence, this

classifier has been applied with success to motor imagery [182] and mental

task classification, particularly during asynchronous experiments. Besides

the Gaussian classifier, several other NN have been applied to BCI purposes,

in a more marginal way. They are given below: [169]

• Learning Vector Quantization (LVQ) Neural Network [155]

• Fuzzy ARTMAP Neural Network;

• Dynamic Neural Networks such as the Finite Impulse Response Neural

Network (FIRNN), Time-Delay Neural Network (TDNN) or Gamma

dynamic Neural Network (GDNN);

• RBF Neural Network;

• Bayesian Logistic Regression Neural Network (BLRNN);

• Adaptive Logic Network (ALN);

• Probability estimating Guarded Neural Classifier (PeGNC) [50].

5.1.3 Nonlinear Bayesian Classifiers

This section introduces [169] two Bayesian classifiers used for BCI: Bayes quadratic

and Hidden Markov Model (HMM). Although Bayesian Graphical Network (BGN)

has been employed for BCI, it is not described here as it is not common and,

currently, not fast enough for real-time BCI [164]. All these classifiers produce

nonlinear decision boundaries. Furthermore, they are generative, which enables

them to perform more efficient rejection of uncertain samples than discriminative

classifiers. However, these classifiers are not as widespread as linear classifiers or

neural networks in BCI applications.

1. Bayes quadratic: Bayesian classification aims at assigning to a feature vector

the class it belongs to with the highest probability. The Bayes rule is used

to compute the so-called a posteriori probability that a feature vector has

of belonging to a given class. Using the MAP (Maximum A Posteriori) rule

and these probabilities, the class of this feature vector can be estimated.

Bayes quadratic consists in assuming a different normal distribution of data.
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This leads to quadratic decision boundaries, which explains the name of the

classifier. Even though this classifier is not widely used for BCI, it has been

applied with success to motor imagery and mental task classification.

2. Hidden Markov Model (HMM): The HMMs are popular dynamic classifiers

in the field of speech recognition. An HMM is a kind of probabilistic au-

tomaton that can provide the probability of observing a given sequence of

feature vectors. Each state of the automaton can modelize the probability

of observing a given feature vector. For BCI, these probabilities usually are

Gaussian Mixture Models (GMM). HMM are perfectly suitable algorithms

for the classification of time series. As EEG components used to drive BCI

have specific time courses, HMM have been applied to the classification of

temporal sequences of BCI features and even to the classification of raw

EEG. HMM are not much widespread within the BCI community but these

studies revealed that they were promising classifiers for BCI systems. An-

other kind of HMM which has been used to design BCI is the Input-Output

HMM (IOHMM). The IOHMM is not a generative classifier but a discrim-

inative one. The main advantage of this classifier is that one IOHMM can

discriminate several classes, whereas one HMM per class is needed to achieve

the same operation.

5.1.4 Nearest Neighbor Classifiers

The classifiers presented in this section [169] are relatively simple. They consist

in assigning a feature vector to a class according to its nearest neighbor(s). This

neighbor can be a feature vector from the training set as in the case of k Nearest

Neighbors (kNN), or a class prototype as in Mahalanobis distance. They are

discriminative nonlinear classifiers.

1. k Nearest Neighbors: The aim of this technique is to assign to an unseen

point the dominant class among its k nearest neighbors within the training

set. For BCI, these nearest neighbors are usually obtained using a metric

distance. With a sufficiently high value of k and enough training samples,

kNN can approximate any function which enables it to produce nonlinear
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decision boundaries. KNN algorithms are not very popular in the BCI comp-

munity, probably because they are known to be very sensitive to the curse-of-

dimensionality, which made them fail in several BCI experiments. However,

when used in BCI systems with low-dimensional feature vectors, kNN may

prove to be efficient.

2. Mahalanobis distance: Mahalanobis distance based classifiers assume a Gaus-

sian distribution for each prototype of the class. Then, a feature vector is

assigned to the class that corresponds to the nearest prototype, according

to the so-called Mahalanobis distance. This leads to a simple yet robust

classifier, which even proved to be suitable for multiclass or asynchronous

BCI systems. Despite its good performances, it is still scarcely used in the

BCI literature.

5.1.5 Combinations of Classifiers

In most papers related to BCI, the classification is achieved using a single classifier.

A recent trend, however, is to use several classifiers, combined in different ways.

The classifier combination strategies used in BCI applications are the following

[169]:

1. Voting: The voting approach was used to determine the class designation.

While using voting, several classifiers are being used, each of them assigning

the input feature vector to a class. The final class will be that of the majority.

Voting is the most popular way of combining classifiers in BCI research,

probably because it is simple and efficient. For instance, voting with LVQ

NN, MLP or SVM have been attempted.

2. Boosting: Boosting consists in using several classifiers in cascade, each clas-

sifier focusing on the errors committed by the previous ones. It can build up

a powerful classifier out of several weak ones, and it is unlikely to overtrain.

Unfortunalty, it is sensible to mislabels which may explain why it was not

succesfull in one BCI study. To date, in the field of BCI, boosting has been

experimented with MLP and Ordinary Least Square (OLS).
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3. Stacking: Stacking consists in using several classifiers, each of them classi-

fying the input feature vector. These classifier are called level-0 classifiers.

The output of each of these classifiers is then given as input to a so-called

meta-classifier (or level-1 classifier) which makes the final decision. Stacking

has been used in BCI research using HMM as level-0 classifiers, and an SVM

as meta-classifier.

4. Random subspaces: The random subspace technique consists in generating

new training sets from the original one and in training a different classifier

for each one of these new training sets [188]. The final decision is made

thanks to majority voting. When using random subspaces, the new training

sets are generated by using only a subset of the features from the original

training set, these features being randomly selected. The main advantage

of such a method is that it enables to reduce the dimensionality while still

using all the available features, through several classifiers. This method has

been used for BCI with decision trees and kNN [188].

The main advantage of such techniques is that a combination of similar

classifiers is very likely to outperform one of the classifiers on its own. Ac-

tually, combining classifiers is known to reduce the variance and thus the

classification error.

5.2 Terminology for BCI Classification

Brain computer interfaces combine knowledge and techniques from neuroscience,

signal processing and machine learning. Besides having the hardware to record

brain signals, it is also important to know which parts of the brain are responsible

for certain mental processes and how the signals in the brain behave under these

mental processes. Using mental processes to activate brain regions to control a

device or a computer program is called paradigms. The most used paradigm is the

motor imagery (MI) paradigm. Here, the subject imagines a movement with one

of its limbs to activate areas in the Sensory Motor Cortex (SMC). The activation

in this area produces changes in certain frequency ranges which can be captured

with signal processing techniques like the discrete Fourier transform. However,
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people suffering from ALS are not suitable for the MI paradigm since their motor

neurons are damaged. Here, other mental paradigms need to be used, e.g., audio,

mental subtraction, mental navigation, word association and mental rotation.

After using signal processing techniques to focus on certain regions and fre-

quency ranges, features need to be extracted from the signals to classify them and

translate them into different commands for the devices or computer programs. For

this purpose, classifiers like LDA, SVM or logistic regression are commonly used.

These classifiers are able to recognize patterns in the signals and discriminate be-

tween them. Discriminating the signals makes it possible to translate these signals

into different commands.

The present section [115] is dedicated to classification methods for BCI. How-

ever, most pattern recognition/machine learning pipelines, and BCIs are no ex-

ception, not only use a classifier, but also apply feature extraction/selection tech-

niques to represent EEG signals in a compact and relevant manner. In particular

for BCI, EEG signals are typically filtered both in the time domain (band-pass

filter), and spatial domain (spatial filter) before features are extracted from the

resulting signals. The best subsets of features are then identified using feature

selection algorithms, and these features are used to train a classifier.

Feature Extraction: As there are many ways in which EEG signals can be

represented (e.g. [6, 113, 121]), the two most common types of features used to

represent EEG signals are frequency band power features and time point features.

Band power features represent the power (energy) of EEG signals for a given fre-

quency band in a given channel, averaged over a given time window (typically 1

second for many BCI paradigms). Band power features can be computed in vari-

ous ways [13, 72], and are extensively used for BCIs exploiting oscillatory activity,

i.e. changes in EEG rhythm amplitudes. As such, band power features are the

gold standard features for BCI based on motor and mental imagery for many pas-

sive BCI aiming at decoding mental states such as mental workload or emotions,

or for SSVEP-based BCIs.

Time point features are a concatenation of EEG samples from all channels.

Typically, such features are extracted after some pre-processing, notably band-

pass or low-pass filtering and down-sampling. They are the typical features used
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to classify ERP, which are temporal variations in EEG signals amplitudes time-

locked to a given event/stimulus. These are the features used in most P300-based

BCI.

Both types of features are benefitted from being extracted after spatial fil-

tering. Spatial filtering consists of combining the original sensor signals, usually

linearly, which can result in a signal with a higher signal-to-noise ratio than that of

individual sensors. Spatial filtering can be data independent, e.g. based on phys-

ical consideration regarding how EEG signals travel through the skin and skull,

leading to spatial filters such as the well-known Laplacian filter or inverse solution

based spatial filtering. Spatial filters can also be obtained in a data-driven and

unsupervised manner with methods such as PCA or ICA. Finally, spatial filters

can be obtained in a data driven manner, with supervised learning, which is cur-

rently one of the most popular approaches. Supervised spatial filters include the

well-known Common Spatial Patterns (CSPs), dedicated to band-power features

and oscillatory activity BCI.

While spatial filtering followed by either band power or time points feature

extraction are by far the most common features used in current EEG-based BCIs,

it should be mentioned that other feature types have been explored and used.

Firstly, an increasingly used type is connectivity features. Such features measure

the correlation or synchronization between signals from different sensors and/or

frequency bands. This can be measured using features such as spectral coher-

ence, phase locking values or directed transfer functions, among many others.

Researchers have also explored various EEG signal complexity measures or higher

order statistics as features of EEG signals. Finally, rather than using vectors of

features, recent research has also explored how to represent EEG signals by covari-

ance matrices or by tensors (i.e. arrays and multi-way arrays, with two or more

dimensions), and how to classify these matrices or tensors directly.

Feature Selection: A feature selection step can be applied after the feature

extraction step to select a subset of features with various potential benefits. Firstly,

among the various features that one may extract from EEG signals, some may

be redundant or may not be related to the mental states targeted by the BCI.

Secondly, the number of parameters that the classifier has to optimize is positively
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correlated with the number of features. Reducing the number of features thus leads

to fewer parameters to be optimized by the classifier. It also reduces possible

overtraining effects and can thus improve performance, especially if the number

of training samples is small. Thirdly, from a knowledge extraction point of view,

if only a few features are selected and/or ranked, it is easier to observe which

features are actually related to the targeted mental states. Fourthly, a model with

fewer features and consequently fewer parameters can produce faster predictions

for a new sample, as it should be computationally more efficient. Fifthly, collection

and storage of data will be reduced. Three feature selection approaches have been

identified [106]: the filter, wrapper and embedded approaches. Many alternative

methods have been proposed for each approach.

Filter methods rely on measures of relationship between each feature and the

target class, independently of the classifier to be used. The coefficient of determi-

nation, which is the square of the estimation of the Pearson correlation coefficient,

can be used as a feature ranking criterion. The coefficient of determination can also

be used for a two-class problem, labelling classes as 1 or +1. The correlation co-

efficient can only detect linear dependencies between features and classes though.

To exploit non-linear relationships, a simple solution is to apply non-linear pre-

processing, such as taking the square or the log of the features. Ranking criteria

based on information theory can also be used e.g. the mutual information between

each feature and the target variable. Many filter feature selection approaches re-

quire estimations of the probability densities and the joint density of the feature

and class label from the data. One solution is to discretize the features and class

labels. Another solution is to approximate their densities with a non-parametric

method such as Parzen windows. If the densities are estimated by a normal dis-

tribution, the result obtained by the mutual information will be similar to the one

obtained by the correlation coefficient. Filter approaches have a linear complexity

with respect to the number of features. However, this may lead to a selection of

redundant features.

Feature selection has provided important improvements in BCI, e.g. the step-

wise linear discriminant analysis (embedded method) for P300-BCI and frequency

bands selection for motor imagery using maximal mutual information (filtering

111



Chapter 5 – EEG Classification for BCI Implementation

methods). Other popular methods used in EEG-based BCIs notably include filter

methods such as maximum relevance minimum redundancy (mRMR) feature se-

lection [166, 180] or R2 feature selection. It should be mentioned that five feature

selection methods, namely information gain ranking, correlation-based feature se-

lection, Relief (an instance-based feature ranking method for multiclass problems),

consistency based feature selection and 1R Ranking (one-rule classification) have

been evaluated on the BCI competition III data sets. Amongst ten classifiers,

the top three feature selection methods were correlation-based feature selection,

information gain and 1R ranking, respectively.

5.3 Classification Approach with Artifact Sup-

pression
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Figure 5.3: Time domain representation of raw EEG and filtered EEG signal using Butterworth

band pass technique.

5.3.1 Preprocessing

Generally, the procedure of transforming raw data into an arrangement that is

more suitable for further study and interpretable for the user is called preprocess-
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ing. For instance of EEG data, preprocessing usually refers to eliminate noise

from the data to get closer to the real neural signals. There are several causes for

preprocessing of EEG data. Firstly, the signals that are selected from the scalp

are not necessarily an accurate representation of the signals originating from the

brain, as the spatial information gets lost. Secondly, EEG data tends to contain a

lot of noise and artifacts which can produce weaker EEG signals. The well-known

artifacts such as eye blinking or muscle movement can contaminate the data and

distort the representation. Finally, to separate the essential neural signals from

random neural activity that happens during EEG recordings.

In this experiment, a class is assigned to each trial, i.e., the discrete classifi-

cation of each class is considered. For each dataset and trial, the data from time

segment located from 0.5s to 2.5s after the visual cue instructing the subject to

perform MI is considered. A fourth-order Butterworth band pass filter is used to

filter useful components (0.5-30Hz) from each trial which is illustrated in Figure

5.3. It represented the time domain view of the raw EEG and Butterworth band

pass filtered EEG.

5.3.2 Spatial Filtering and Features Extraction

The CSP is a feature extraction technique used in signal processing for separating

a multivariate signal into additive sub-components. The technique used to design

spatial filters such that the variance of the filtered data from one class is maximized

while the variance of the filtered data from the other class is minimized. Thus, the

resulting feature vectors increase the discriminability between the two classes by

means of minimize the intra class variance and maximize the inter class variance

[162]. This property builds CSP as one of the most effective spatial filters for

EEG signal processing. The method of CSP was first introduced to EEG analysis

for detection of abnormal EEG [102], and effectively applied on movement-related

EEG for the classification purpose [138, 2]. The target of the CSP is to project the

multichannel EEG data into low dimensional spatial subspace with a projection

matrix using linear transformation.

For details explanation of the CSP algorithm, assume the original EEG data

matrix Ei
k from trial i for class k. The dimension of each Ei

k is D × T , where D
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is the number of channels and T is the number of samples per channel. For the

explanation, the EEG data of a single trial (i = 1) is represented Ek∈(L,R) as where

L denotes left hand and R denotes right hand t movement. The normalized spatial

covariance of the EEG for left hand movement, CL and right hand movement, CR

can be calculated as:

CL =
ELE

′
L

tr(ELE ′L)
, CR =

ERE
′
R

tr(ERE ′R)
(5.1)

where EL and ER represent the original EEG matrices for left hand and right

hand movement respectively, ()̇
′

is the transpose operator and tr(.) represents

the sum of the diagonal elements of any given matrix. The composite spatial

covariance, C is the sum of the averaged normalized spatial covariance C̄L and

C̄R. The C̄L and C̄R are estimated by averaging over all the trials of each class.

The composite spatial covariance, C is calculated as

C = C̄R + C̄L =
∑

λ
′∑
C = C̄R + C̄L =

∑
λ
′∑

(5.2)

where
∑

is the matrix of Eigen vectors and λ is the diagonal matrix of Eigen

values. The averaged normalized spatial covariance C̄L and C̄R are transformed

as

JL = XC̄LX
′ and JR = XC̄RX

′ (5.3)

where X =
∑′
√
λ

is the whitening transformation matrix. J̄L and J̄R share com-

mon eigenvectors and the sum of corresponding eigenvalues for the two matrices

will always be one. If J̄L = Y ΛLY
′ and J̄R = Y ΛRY

′ then , ΛL+ΛR = I where I is

the identity matrix. Since the sum of two corresponding eigenvalues is always one,

a high eigenvalue forJ̄L means that a high variance for EEG in left hand movement

and a low variance for the EEG in right hand movement (low eigenvalue forJ̄R)

and vice versa. The classification operation is done based on this property. The

projection of whitened EEG onto the eigenvectors Y corresponding to the largest

ΛL and ΛR will give feature vectors that significantly enhance the discrimination

ability.

The goal of the CSP is to find B spatial filters to create a projection matrix

W of dimension N × B (each column is a spatial filter). The projection matrix

W is represented as

W = Y ′X (5.4)
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The projection matrix W linearly transforms the original EEG into uncorre-

lated components according to:

Z = WE (5.5)

The original EEG, E can be reconstructed by E = W−1Z where W−1 is the

inverse matrix of W . The columns of W−1 are spatial patterns that describe the

variance of the EEG. The first and last columns contain the most discriminatory

spatial patterns that explain the high variance of one class and the low variance

of the other.

For successful calculation of spatial filters, the CSP algorithm is greatly used

algorithm. In this step, the CSP algorithm is used to perform the spatial filtering

action on training setoff EEG signal. Using Eq.(5.5) the filtering is accomplished

by linearly transforming the EEG measurements. Both training and testing set of

EEG, CSP features are then extracted from each of the trial of the samples. The

process is completed by projecting the EEG data onto the CSP filters. When the

filters w are obtained, CSP feature extraction consists in filtering the EEG signals

using the w and then computing the resulting signals variance. The CSP features

are generated as the log variance of the projected signals.

f = log(wCctw
T ) (5.6)

where, Cct is the current trial covariance matrix, w is projection matrix and T

is transpose of a matrix. It is common to select 3 pairs of CSP spatial filters,

corresponding to the 3 largest and smallest eigen-values, hence resulting in a trial

being described by 6 CSP features [114]. To extract features from the data, the

CSP algorithm with CSP filter pairs m (m = 1, 2, and 3) is used in this experiment.

5.3.3 Classification Method Used in the Experiment

A classifier is a technique that utilizes various independent variable values (fea-

tures) as input and predicts the corresponding class to which the independent

variable belongs [76]. In the EEG signal analysis, the features can be any kind

of extracted information from the signal, such as energy, entropy, power etc. and

the class can be the type of task or the stimulus used during the recording. A

classifier has a number of parameters that need to be learned from training data.
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The learned classifier is a model of the association between the features and the

classes. For example, for a given feature x of a class y, the classifier is a function

f that predicts the class y = f(x). After the learning, the classifier is able to

predict new instances that have not been used in the training data. Thus, the

performance of the classifier is tested on a different set of instances.

The LDA, also known as Fishers linear discriminant analysis is a technique

used to find a linear combination of features that separates two or more classes of

data. It is typically used as a dimensionality reduction step before classification

[95]. It reduces dimensionality but at the same time preserves as much of the

class discriminatory information as possible. The goal of the LDA is to use a

separating hyperplane that maximally separate the data representing the different

classes. The hyperplane is found by selecting the projection, where the same

classes are projected very close to each other and the distance between two classes

means is as maximum as possible [114].

Let as assume that we have K classes, each containing N observations xi. The

within-class scatter, S̃w for all K classes can be calculated as:

S̃w =
K∑
k=1

fkS
k
w (5.7)

where the within-class covariance matrix Skw and the fraction of data fk are

calculated according to the following formulas:

Skw =

NK∑
i=1

(xki − µk)(xki − µk)T (5.8)

fk =
Nk

K∑
j=1

Nj

(5.9)

where Nk is the number of observations of kth class and µk indicates mean of

the all observations xi for kth class. The between class scatter S̃b for all K classes

is calculated as:

S̃b =
K∑
k=1

fkS
k
b (5.10)

where the between class covariance matrix, Skb can be estimated as

Skb =
K∑
k=1

(µk − µ)(µk − µ)T (5.11)
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where µ indicates the mean of the all observations xi for all classes. The main

objective of LDA is to find a projection matrix that maximizes the ratio of the

determinant of S̃b to the determinant of S̃w. The projections that providing the

best class separation are eigenvectors with the highest eigenvalues of matrix M :

M =
S̃b

S̃w
(5.12)

Since the matrix M is asymmetric, the calculation of eigen-vectors can be

difficult. This difficulty can be minimized by using generalized eigenvalue problem

[102]. Now, the aim of the LDA is to seek (K − 1) projections [y1, y2, y3, ....., yk−1]

by means of (K − 1) projection vectors. The transformed data set y is obtained

as a linear combination of all input features x with weights W .

y = xTW (5.13)

where W = [w1, w2, w3, ....., wH ] is a matrix form with the H eigen-vectors of

matrix M associated with the highest eigenvalues. The LDA reduces the original

feature space dimension to H. The LDA performs well when the discriminatory

information of data depends on the mean of the data. But it does not work for

the variance depended discriminatory informative data. Also, the performance of

the LDA is not good for nonlinear classification.

The CSP based classification is implemented with LDA to classify the EEG

trials using the ranked CSP features. The LDA classifier uses a linear hyper plane

to separate feature vectors from two classes. The intercept b and normal vector a

of this hyperplane are computed as follow:

slope of the discriminant hyperplane:

aT = C−1(µ1 − µ2)T (5.14)

bias of the discriminant hyperplane:

b = −1

2
(µ1 + µ2)T (5.15)

with µ1 and µ2 being the mean feature vectors for each class and C the covariance

matrix of both classes. With LDA, for an input feature vector x, the classification

output is

LDAout = axT + b (5.16)
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where, x=feature vector. If this output is positive, the feature vector is assigned to

the first class, otherwise it is assigned to the second [114]. During LDA training

the discriminant hyperplane coefficients ki are computed for every training set

ranked feature i (i = 1, ..., 2m where m is the CSP filter pair). The LDA accuracy

score of each test set ranked CSP feature θj (j = 1, ..., 2m) is now measured by

the computed coefficients. For every value of ki and their corresponding test set

features θj , LDA accuracy scores are measured as Sm,j = kjΘθj where the symbol

Θ represents LDA test operator. So, it classifies a set of data using a trained

LDA classifier and provides the resulting score (LDA output) and classification

accuracy (%).

5.3.4 Proposed Method for Classification

Figure 5.4: Overview of Motor Imagery (MI) EEG signal classification using proposed arti-

fact removing method. We applied this approach to a group of 9 healthy subjects and found

a significant classification performance enhancement as compared to other artifact separation

approaches.

In this section, a number of channels that cover the motor cortex of the brain

are selected in the preprocessing stage. The training and test sets of the raw EEG

are separated and individually filtered by a band pass filter. The preprocessing

stage is applied before proposed HWT artifact removing method. Figure 5.4,
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shows the block diagram of the proposed method for classification accuracy which

ensure the proposed HWT artifact removing method is perfectly removed the

artifact from raw EEG signal. The method is subdivided into two stages for EEG

signal processing and machine learning. A detail of each stage is described below

for MI classification. Our BCI system is composed of four main modules (see

Figure 5.4):

• An Artifact Detection Module;

• An Artifact Removal Module;

• A Feature Extraction Module; and

• A Feature Classification Module.

An Artifact Detection Module: Therefore, eight EEG segments are obtained

each second. The artifact detection algorithm is first applied to each EEG seg-

ment, before that segment is processed by the artifact removal, feature extraction

and feature classification modules.

An Artifact Removal Module: We propose to remove the artifacts using the

HWT with an adaptive thresholding mechanism. As shown in Figure 4.7, the

wavelet coefficients generated by the artifact detection module are used in our

artifact removal algorithm to denoise the EEG signals. The denoised signals are

obtained by performing an inverse HWT on the thresholded wavelet coefficients

energy. The performance of the proposed algorithm is compared with those of

other artifact removal algorithms such as SSA, DWT, EMD algorithms. The per-

formance evaluation criteria used are provided in the next chapter.

A Feature Extraction Module: After processing the EEG signals by the ar-

tifact detection and removal modules, the feature extraction and classification

modules are applied next. Common Spatial Pattern method was employed for

feature extraction in this study. Details of the algorithm are described in previ-

ous section with the example of discriminating left hand vs. right hand motor

imagery. The filtered signal corresponding to the desynchronization of the left

hand motor cortex is characterized by a strong motor rhythm during imagination

of right hand movements, and by an attenuated motor rhythm during left hand
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imagination. This criterion is exactly what the CSP algorithm optimizes: maxi-

mizing variance for the class of right hand trials and at the same time minimizing

variance for left hand trials.

A Feature Classification Module: In this section, the feature vector framed

out of all the features of different type of signals is given as input to the classifiers.

Based on various performance indices, the performance of classifiers are evaluated

for this method. The stepwise LDA selects the features that best discriminate

between the left and right classes. The whole process of classification method is

summarized as follows:

(i) Apply Motor Imagery (MI) raw EEG to proposed HWT artifact removing

technique for clean EEG.

(ii) Learn spatial filters by the artifact free EEG using CSP algorithm.

(iii) Extract CSP features by the spatial filters.

(iv) Extracted features are fed to a LDA classifier.

(v) According to the artifact suppression and classification method, finally, dis-

play the estimated classified result in percentage.

This straightforward method can be used to design a well-organized BCI sys-

tem with better accuracy. Wavelet packet transform is employed to decompose

raw EEG signals. Thereafter, EEG signals with effective frequency sub-bands

are grouped and reconstructed. EEG feature vectors are extracted from the re-

constructed EEG signals with common spatial patterns (CSP). A public dataset

(BCI Competition IV-II-a) is employed to validate the proposed method. These

results show that the proposed method is effective for two-class motor imagery

classification.
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Experimental Results and

Discussion

One of the most faced challenges for EEG signal processing applications and is

an open research problem is artifact recognition and reduction/elimination. In

EEG-based health-care applications, the electrodes are placed on the scalp and

therefore, the recordings are most lying to artifacts and interferences. To make it

is difficult for simple signal preprocessing technique to identify them from EEG,

because of the variety of artifacts and their overlapping with signal of interest in

both spectral and temporal domain, even sometimes in spatial domain. Sometimes

results in poor performance both in terms of signal distortion and artifact removal

when the use of simple filtering or amplitude threshold to remove artifacts. It is a

great challenge to develop appropriate methods for artifact detection and reduction

with the help of recent development in signal processing techniques/algorithms in

the past decade and a half. Still now it is an active area of research because

there is no universal complete solution yet. However, we realize that there is a

gap between designed algorithm and its target application after careful reviewing

most of the relevant artifact detection and removal algorithms/methods in the

literature. Maximum existing methods are not application-specific and therefore

these methods suffer from high computational burden. Considering this scenario,

we present a comparative analysis of the existing methods/algorithms with their

advantages, limitations and application-specific challenges. First of all, we present

different artifact handling methods and then proposed a hybrid wavelet transform

denoising method.
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6.1 Data Description

The real EEG data collected from well-known publicly available brain computer in-

terface (BCI) competition IV-2b dataset is used to evaluate the proposed method.

The data set consists of EEG data from 9 subjects where all subjects are right-

handed, having normal or corrected-to-normal vision. Each subject consists of five

sessions that are recorded on different days. Each session comprising ten trials,

two classes of the motor imagery (MI) of left hand movement (class-1) and right

hand movement (class-2), six runs, 20 trials per run and 120 trials per session.

The variable of the signal holds 6 channels (the first 3 are EEG signals and the

last 3 are EOG signals). The sampling rate is 250 Hz and the subjects are recom-

mended to imagine the corresponding hand movement over a period of 4 seconds

results in 1000 samples per channel for every trial. The cue-based screening ses-

sions are consisted of 20 trials per run and 120 trials per session for two classes of

imagery. The trials containing artifacts as noted by authorities are marked with

0 corresponding to a clean trial and 1 corresponding to a trial holding an artifact.

According to the instruction, 100 trials are obtained as clean trials and 20 trials

tenured as artifacts. Among the clean trials, 51 trials for left hand and 49 trials

for right hand movement MI. Along with contaminated 20 trials, the 9 trials are

for left hand and 11 trials are for right hand movement.

6.2 Experimental Results of EEG Cleaning

The performance of the proposed hybrid wavelets transform (HWT) based method

is first tested with simulated data and then the experiments are conducted with

real EEG data. The amplitude of all the channels are normalized before processing.

The scaling factors of normalization are stored to get back the original amplitude

of EEG channel after separating artifact and EEG. If l is the scaling factors of

normalization for any EEG channel, the separated EEG with original scale is

obtained as:

SEEG(t) = l ∗ ŜEEG(t) (6.1)
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Figure 6.1: The cleaning approach of EEG from the raw data using SSA method. The raw EEG

signal (top panel), the separated EOG signal (middle panel), and pure EEG signal (bottom

panel). From the illustration, it is obvious that the extracted EOG carry the original information

of EEG signal and pure EEG signal cut its valuable information.

where, SEEG(t) is the separated EEG and ŜEEG(t) is the normalized EEG. The

EEG signal is first artificially corrupted with EOG and the performance of HWT is

compared with SSA, EMD and DWT. In the previous chapter-artifact suppression,

the existing artifact removing methods and proposed HWT are tested with the

artificially corrupted EEG signal with detail description. In this section, firstly,

the HWT based method is tested with the artificially corrupted EEG signal (in

summary) and after that the signal is comprised with wavelet based method, DWT

and empirical mode decomposition (EMD) technique. For comparison purposes,

the time series contaminated EEG data is decomposed into multiple subbands

using DWT, EMD, and proposed HWT.

The potential multiresolution decomposition approach, DWT which is ana-

lyzing a non-stationary signal like EEG. In this study, db4 is used with 7 level

decomposition. It is another approach for EOG artifact reduction. The separation

of clean EEG from the contaminated data using DWT is shown in Figure 4.4. The

pure EEG do not show any large EOG artifacts but EOG signal contains some

original signal information. But it is faster than EMD.
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Figure 6.2: The selection of threshold subband index of raw EEG based on the subband energy

of fGn. The 6th subband exceeds the upper boundary of CI and hence the 6th one of EEG is

selected as the highest order subband index to represent the pure EEG signal.

The EMD is a popular decomposition algorithm which is used here to compare

the result of HWT. The EMD method decomposes a signal based on its intrinsic

time scales. The experimental result for artifact suppression is illustrated in Figure

4.5 and Figure 4.6. In this Figure 4.6, the method not only reduced EOG artifacts

but also eliminated the original information.

Finally, the HWT is applied to a contaminated EEG. In such hybrid wavelet

transform, the energy based subband is selected as artifact which exceeding the

energy of fGn is illustrated in Figure 4.9. The separation results of purified EEG

are shown in Figure 4.10 and the purified EEG signal is found as completely

artifact free. Also, it is faster than EMD and DWT.

After analyzing the artificially contaminated EEG signal in different filtering

approach with fGn as the reference signal, now is the time to apply all methods to

real EEG signals. The separation of EEG contaminated by a known EOG signal is

already illustrated at the beginning of this section. All the implemented method

is repeated for the raw EEG data. The separation of EOG artifact using different

existing method and proposed HWT methods are illustrated below.

Figure 6.1 illustrates the SSA method for EOG artifact reduction using raw

EEG. The separated purified EEG and EOG signals are visually represented in

time domain here. The first raw, second raw and the third raw are represented
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Figure 6.3: Separation of EOG artifact from real (recorded) EEG signal using wavelet denoising

method. The recorded (contaminated with EOG) EEG signal (top), the separated EOG artifact

(middle) and the pure EEG signal (bottom).

raw EEG, EOG and clean EEG signal respectively. The SSA is removed the less

EOG artifacts from the raw data and at the same time the most eye blink artifacts

are retained in pure EEG signal.

The wavelet decomposition is also a so called data adaptive technique. A

thresholding based denoising method using wavelet transform is implemented to

separate the EOG signal from real EEG is illustrated in Figure 6.2 and Figure

6.3. The determination of threshold subband based on the subband energy is

illustrated in Figure 6.2. It is observed that the 5th subband exceeds the upper

limit of confidence interval. The 5th one is the starting point of lower frequency

components. The electrooculogram (EOG) is separated by summing the subbands

5 to 8. The separation results of purified EEG are shown in Figure 6.3.

The EMD based data adaptive filtering approach with fGn as the reference

signal is applied to separate the artifacts from real EEG signals presented in Figure

6.4 and Figure 6.5. The selection of the starting IMF is illustrated in Figure 6.4

in which the 6th IMF is selected as the starting point of low frequency component.

The separated purified EOG and EEG signals are visually represented in time

domain shown in Figure 6.5.
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Figure 6.4: Selection of IMF of the real EEG signal using EMD. The selection of starting IMF

(lowest order) to extract the low frequency component of mixed signal. Here the 7th IMF is

selected. Its energy exceeds the upper limit of 95% confidence interval of the IMFs energies of

fGn.

Lastly, the proposed method is evaluated using EOG contaminated EEG sig-

nals (real EEG). The HWT is introduced to separate low frequency artifacts from

raw EEG using suband energy based criterion and it is illustrated in Figure 6.6. A

data adaptive subband filtering is employed here to separate the lower frequency

noise. The threshold of filtering is determined by comparing the energy of indi-

vidual subband of raw EEG with that of the reference signals fGn. The first three

subbands mostly contain the noise. According to the experimental results on the

raw EEG, HWT is removed the most EOG artifacts from the raw data and at the

same time preserved the most EEG signal as shown in Figure 6.7. As a result, the

purified EEG signal is found as completely artifact free in HWT method.

The spectrum of EEG signals separated by using SSA, EMD, DWT, and pro-

posed HWT approach are illustrated in Figure 6.8 and Figure 6.9 for measured

EEG and raw EEG respectively. Also, the time domain representation of the EEG

signal of all methods is shown in Figure 6.10 and Figure 6.11 for contaminated

EEG and raw EEG respectively.

In Figure 6.8, the green, black, blue, cyan, magenta and red solid line spec-

tra represent EEG, contaminated EEG, clean EEG spectrum using HWT, EEG

spectrum using DWT, EEG spectrum using EMD and EEG spectrum using SSA

respectively. The artifact reduction EMD and DWT methods are omitted the
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Figure 6.5: The empirical mode decomposition based data adaptive filtering technique is used to

separate electro-oculogram (EOG) from the raw electroencephalography (EEG). The top panel

shows the real EEG signal and the other panels illustrate EOG (middle) and purified EEG signal

(bottom).

delta (<4Hz) band and part of theta (4∼8Hz) band but retained the other EEG

frequency bands. The proposed HWT technique is well preserved the EEG fre-

quency bands except part of the delta rhythm. Delta wave is found in deep sleep,

so it may be avoided.

In Figure 6.10, the black, green,red, magenta, cyan, and blue solid line signal

represent contaminated EEG, EEG, clean EEG using SSA, clean EEG using EMD,

EEG using DWT and pure EEG using HWT respectively. The EMD method

reduced the EOG but it contained some artifacts with EEG signal. The wavelet

based transform DWT produced artifact free signal but computational complexity

of DWT is higher than HWT (Figure 6.16). On the other hand, proposed hybrid

wavelet based transform HWT is found as completely artifacts free pure EEG

without losing information and it takes low computational time.

Beside the visual results, the spectrum of the separated EOG signals are also

used as the factor of performance measurement of the separation algorithms. It

is well known that the low frequency EOG signal is mixed up with the pure EEG

during recording. The frequency range of EOG is usually from 0 to 2.8 Hz and
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Figure 6.6: The selection of threshold subband energy of raw EEG channels (by applying pro-

posed HWT) based on the subband energy of fGn. In this observation, selection of the index

of subbands of the EEG signal from which the low frequency components can be extracted.

The subbands energy of fractional Gaussian noise (fGn) is considered as the threshold. The

logarithmic energy (with base 2) of individual subband of EEG is compared with the threshold

level. The energy of the 2nd subband index of EEG signal exceeds the threshold and hence it is

selected to remove the artifacts.

the high frequency part in the spectra comes from the EEG signal. The spectrum

of the measured EOG is also included along with the spectrum of extracted EOG

for better comparison in Figure 6.13. The spectrum of EOG signals separated

by using SSA, EMD, DWT and HWT based filtering approach are illustrated in

Figure 6.13 for contaminated EEG and Figure 6.15 for real EEG. It is illustrated

that most of the noise energy is concentrated in the lower frequency part of the

spectra. The main strength of the EOG from 0 to 2.8 Hz range are understand-

able overlapping of all spectra and it is very common for three methods and after

that range, whereas in HWT approach, no neural activities in the brain correlated

with EOG artifacts. However, it must be noted that the relatively lower-energy

high-frequency part of the signals plays an important part in conveying informa-

tion existing three methods-SSA, EMD, DWT [229, 163, 139] are spread beyond

the frequency range of actual EOG signals. Also the high frequency components
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Figure 6.7: Separation of EOG artifact using proposed HWT method. The normal recording

of EEG contaminated by EOG which appears as higher energy and lower frequency trend (top

panel); the separation of EOG artifact is performed by proposed HWT algorithm (middle panel);

purified EEG is extracted from the recorded raw EEG by subtracting the separated EOG (bottom

panel) [s: second].

are also with reasonable energies. It is illustrated that the spectrum of wavelet

approach (DWT) and other methods (EMD, SSA) capture some energies come

from the high frequency EEG signal i.e., the target EOG is not separated prop-

erly but includes some signal components of EEG signals. It is noticed from the

spectrum of the EOG that the measured EOG signal includes a much amount of

EEG signals.

The time domain representation of the EOG signal of all methods is shown in

Figure 6.12 and Figure 6.14 for contaminated EEG and raw EEG respectively. In

Figure 6.12, the top panel is indicated for EOG signal and the remaining panel

are extracted EOG from SSA, EMD and DWT method respectively. The bottom

panel shows the extracted EOG by the proposed HWT technique. All the three

methods extracted EOG accurately except SSA method. Besides the time domain

representation of the EEG signal of all methods is shown in Figure 6.10 and Figure

6.11 for contaminated EEG and raw EEG respectively.

The HWT based filtering is obtained by combining the subbands as frequency
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Figure 6.8: The graphical representation of the EEG spectra which contaminated by the EOG

and compared it with other EEG separated by different four methods. The green, black, blue,

cyan, magenta and red solid line spectra represent original EEG, contaminated EEG, clean

EEG spectrum using HWT, DWT, EMD and SSA respectively. The artifact reduction EMD

and DWT methods omitted the delta (<4Hz) and part of theta (4∼8Hz) bands but retained the

other EEG frequency bands. The SSA method cut the original EEG frequency; it only shows

the delta rhythm. The proposed HWT technique is well preserved the EEG frequency bands

except part of the delta rhythm. Delta wave is found in deep sleep, so it may be avoided.

varying filtering. It is suitable to process the non-stationary signals. In the pro-

posed method, the EOG is considered as the trend on the recorded EEG signals. If

the EOG artifact is viewed as the trend (relatively low frequency with higher am-

plitude compared to EEG signal), the presented approach will be able to remove

it.

To evaluate the performance of the proposed approaches in a real environment,

the raw EEG and clean EEG for the mentioned four methods are analyzed in

Figure 6.9 (in frequency domain) and Figure 6.11 (in time domain). In Figure 6.11,

the first raw, second raw, third raw, fourth raw and the fifth raw are represented

raw EEG, clean EEG using SSA, clean EEG using EMD, clean EEG using DWT

and clean EEG using proposed method, HWT respectively. It is observed that

the purified EEG signal contains more original information although the artifact

has cancelled out. It is obvious that using SSA, EMD and DWT filter for artifact
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Figure 6.9: The graphical representation of raw EEG and separated EEG spectra of raw EEG

contained different four methods. The black, blue, magenta, red and green solid line spectra

represent raw EEG, clean EEG spectrum using HWT, DWT, EMD and SSA respectively. The

artifact reduction EMD and DWT methods omitted the delta (<4Hz) and part of theta (4∼8Hz)

bands but retained the other EEG frequency bands. The SSA method cut the original EEG

frequency and shows the delta rhythm. The proposed HWT technique is well preserved the

EEG frequency bands except part of the delta rhythm.

reduction, underlying EEG or low frequency cerebral data may be lost. In order

to lessen the data loss HWT method is used. From above figure, it is experimental

that the HWT based method is best for reduce the EOG from raw EEG without

cutting the information and it help to get clean EEG. It is important to stress

that the proposed method separates broad frequency content of neurophysiological

signals from very strong EOG interference. In this aspect, the research results

are presented here on the behavior of the HWT. It is observed graphically that

HWT provides better result in comparison with SSA, DWT and EMD. So, it

is an efficient technique for improving the quality of EEG signal in biomedical

application.

The performance of the proposed artifact removing method is evaluated by

classifying the imagined movement EEG data. The proposed approach for classi-

fication is applied to the publicly available datasets of BCI competition IV which
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Figure 6.10: Visual comparison of the simulation results corresponding to the contaminated

EEG signals (i.e. mixed-up of EEG and EOG signal), the EEG source signal, and the corrected

EEG signals after applying proposed HWT and different ocular artifact removal methods.

is illustrated in Figure 5.4. These datasets contain MI EEG signals. The motor

imagery classification experiment has described in previous chapter. The classifi-

cation result express in percentage accuracy. The performances of artifact suppres-

sion are measured by performance metrics, computational cost and classification

accuracy which will be describe in section 6.3.1. On the basis of the classification

table and computational cost, it is proved that the proposed hybrid method is

perfect for real time implementation.

6.2.1 Performance Analysis of Artifact Suppression

It is always challenging to evaluate the performance of artifact elimination meth-

ods found in the literature. The artifact removing can be done either by visually

by specialized which is subjective but the process is not standard or by artificial

or semisynthetic data is reconstructed whether perfectly accurate or not. Since

there is neither any ground truth data available nor any universal or standard

quantitative metric(s) used in the literature that can capture both amount of ar-

tifact removal and distortion. So, it is quite difficult to compare some artifact

removal methods based on their ability to remove artifacts. Performance assess-
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Figure 6.11: Time domain representation of raw and pure EEG signal separated by SSA, EMD,

DWT and proposed HWT technique.

ment is a related part of EEG signal processing that is required before a method

can be used reliably in a clinical condition. The major challenge for evaluating

the performance of the artifact removing algorithm is that the noiseless signal is

not known as a priori. Regardless of the fact that simulated data can be used to

improve and assess artifact removal algorithms to obtain earliest indications after

that the methods need to be evaluated with real data. Therefore, it is necessary to

develop tools that allow researches in the field to accurately measure and compare

the performance of new and present algorithms to select the optimal one for a

certain scenario [206].

For evaluating the performance of a classifier and validate the performance of

the proposed method an appropriate criterion is an important concern to make

correct predictions. In this paper, the performance of the proposed method is as-

sessed by signal to artifact ratio, mutual information and calculating classification

accuracy and evaluating performance of the classifier in terms of training, testing

and validating performances.
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Figure 6.12: Illustration of the original EOG which contaminated the EEG and compared it

with other EOG separated by proposed HWT and different three methods.

Performance Metrics for Artifact Removing

The parameters, factors or measures of quantitative assessment used for mea-

surement, contrast or to track presentation or invention are termed as metrics.

Experts use metrics to compare the performance of different methods. It is very

difficult to estimate the performance of artifact deduction algorithms because a

worthy estimate of the clean EEG activity is usually unavailable. As a result, sev-

eral studies do not quantify the performance of their proposed approach. As an

alternative, they use qualitative graphical comparison, i.e., unclean EEG signals

and the corrected or denoised EEG signals are plotted and qualitatively compared

[201]. Unluckily, such qualitative measures are subjective. A number of scholars

therefore have attempted to quantify the performance by using criteria such as

the ratio between the functions of spectral density and the corrected and the raw

EEG signals [172] and expert scoring [173].

Artifact subspace reconstruction (ASR) is a metric that measure the perfor-

mance of algorithm has been compared with the most popular artifact removal

method. ASR is the most common and widespread online method of eliminating

transient, high-amplitude-related artifacts from different sources like eye blinks,
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Figure 6.13: Illustration of the EOG spectra which contaminated the EEG and compared it

with other EOG separated by existing three artifact suppression methods and proposed hybrid

method.

bursts of muscle, and movement while retrieving essential EEG background activ-

ities that lie in the subspace spanned. The method is presented with EEGLAB,

and comparison has been performed with a threshold of three standard deviations

without rejecting any channel [110].

To evaluate the performance of an artifact removal algorithm another approach

uses simulated EEG data. In this case, contaminated EEG signal is produced us-

ing the artifacts which are manually added to clean EEG signals and the artifact

removal algorithm is then applied to the simulated signals. The clean EEG sig-

nals should be known with this process. Therefore, assessment criteria such as a

correlation coefficient [28], and errors in time or frequency domains can be used

to evaluate the performance. Different statistical performance metrics have been

used to objectively compare various combinations of ocular artifact (OA) removal

in time and frequency domain. For time domain comparison, correlation coef-

ficient, mutual information, signal to artifact ratio and normalized mean square

error have been evaluated. For frequency domain comparison, time frequency

analysis has been utilized. Based on this rationale, we generated contaminated

EEG signals and investigated the performance of the different artifact removing
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Figure 6.14: Time domain representation of EOG separated by three different methods like SSA,

EMD, DWT and proposed HWT technique.
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Figure 6.15: Comparison of separated EOG spectra of raw EEG for the proposed HWT and

other three existing methods.

algorithms.
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Mean Square Error (MSE): It is used to describe similarity between the

original signal and de-noised signal [18].

MSE =
1

N

N∑
i=1

[si(t)− ŝi(t)]2 (6.2)

Here, si(t) stands for contaminated EEG signal, ŝi(t) is artifact free EEG signal

and N for the signal length or the number of samples. And the lower is the MSE

value,the better is the method for the artifact removing.

Normalized Mean Square Error(NMSE): Normalized mean squared error

(NMSE) is an information processing system of the overall deviations between

expected and measured values. It is defined as [97]:

NMSE =
1

N

N∑
i=1

[si(t)− ŝi(t)]2

si(t) ŝi(t)
(6.3)

Root-Mean-Square Error (RMSE): For evaluation of de-noising algorithm

we used Root-Mean-Square Error (RMSE), which is good statistical index for case,

when the original clear signal is known. RMSE is defined as [106]:

RMSE =

√√√√ 1

N

N−1∑
i=0

[si(t)− ŝi(t)]2 (6.4)

where si(t) stands for contaminated EEG signal, ŝi(t) is artifact free EEG

signal and N for the signal length or the number of samples in both signals. The

values of RMSE close to 0 mean that filtering technique reduces noise efficiently

with minimal changes in useful signal. RMSE represents the difference between

two signals. The smaller the difference is between two signals, the smaller the

RMSE value becomes.

The Relative Root Mean-Squared Error (RRMSE): The RRMSE was

used as the first evaluation measure to assess the effect of muscle artifact removal,

which is defined as follows [21]:

RRMSE =
RMS[s(t)− ŝ(t)]

RMS[s(t)]
(6.5)

with ŝ(t) representing the reconstructed EEG signal after muscle artifact re-

moval.

Correlation Coefficient (CC): In order to provide a quantitative measure of

performance for the proposed artifact removal method, the correlation coefficient
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(CC) between the extracted eye blink (EB) artifact source and the original EEGs

and the artifact removed EEGs are computed [144]. A quantitative measure of

some types of correlation and dependence, meaning statistical relationships be-

tween two or more observed data values are illustrated by correlation coefficient.

It is a measure of the linear correlation between two signals x(t) and ŝ(t), giving

a value between +1 and −1 inclusive, where 1 is total positive correlation, 0 is

no correlation, and −1 is total negative correlation. Values of +1 and −1 indi-

cate perfect increasing and decreasing linear fits, respectively. It is widely used

in the sciences as a measure of the degree of linear dependence between two sig-

nals. The correlation coefficient (CC) between the original EEG in each channel

and its reconstructed counterpart after removing muscle artifact was calculated in

[21, 60, 144]. The correlation criterion which uses second-order statistics, compares

the linear relationship between the recorded EEG signals and the reconstructed

signal after removing ocular artifact. The correlation coefficient computed as fol-

lows:

CC =
cov[x(t), ŝ(t)]

σx(t)σŝ(t)
=

σx(t)ŝ(t)
√
σx(t)x(t)σŝ(t)ŝ(t)

(6.6)

where, σx(t)ŝ(t) =cov[x(t), ŝ(t)] is a covariance matrix of the two signals and

σx(t)x(t) = σ2
x(t) is the standard deviation.

Time-Frequency Analysis (TFA): Time and frequency components can be

analyzed simultaneously using the wavelet decomposition tool of EEGLAB toolbox

(Matlab, CA, US). This allows qualitative comparison of the signals before and

after artifact denoising [106].

Power Spectral Density (PSD): PSD is used to evaluate the frequency

content of a signal. In this paper [14], PSD of the EEG signals are computed

using a nonpara-metric method known as the Welch method. The method is

based on averaging a periodogram spectrum data over overlapping data segments.

Mean Absolute Error (MAE): Mean absolute error is defined to measure

the distortion across different frequency bands, delta (0.5-4Hz), theta (4-8Hz),

alpha (8-12Hz), beta (12-30Hz), and gamma (30-40Hz).

MAE = |PinEEG − PoutEEG| (6.7)

where EEGout is the reconstructed EEG from the proposed method and EEGin

is the artifact-free EEG. An effective method is supposed to remove all artifacts
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so that the output EEG is as close as possible to the pure EEG; and P denotes

the power spectrum density (PSD). PSD is estimated using Welch method with

different parameters [127] 200 sample points as the length of window and 5 sample

points overlap. The average PSD for each frequency band was calculated for all

subjects.

Most of the published articles evaluated their method in terms of some qualita-

tive plots. In addition, very few of them quantified the distortion to desired EEG

signals due to the removal effect. Therefore, it’s not fair to tell which performs

best based on the study [86]. The performance of the proposed artifact removal

algorithm has been evaluated both in terms of the quantity of artifact removal

and the amount of distortion it brings into the signal of interest. Several efficiency

metrics have been calculated in both time and spectral domain to quantify such

evaluation. In order to have fair evaluation and clear idea we also have considered

the amount and duration of artifacts present in the signals. In order to determine

whether the method is successful at removing ocular artifact (OA) from EEG, the

performance is assessed using three performance criteria i.e. signal to artifact ratio

(SAR), mutual information (MuI) and classification accuracy. The performance

metrics are described in details below:

Signal to Artifact Ratio (SAR): The metrics commonly employed to rep-

resent the energy of the signal compared to the energy of the artifact is the signal

to artifact ratio (SAR) [166, 184].

SARdB(contaminated EEG)
= 20 log10 rms[x(t)]

rms[s(t)−ŝ(t)]

SARdB(realEEG) =
1

N

N∑
i=1

20log10 rms[s(t)]
rms[s(t)−ŝ(t)]

(6.8)

Here, x(t) is the clean EEG signal. s(t) stands for contaminated EEG signal,

ŝ(t) is artifact free EEG signal and N for the signal length or the number of

samples.

Raw EEG signals suffer from low signal to artifact ratio. To get better artifact

free EEG signal, the SAR value must be higher. The SAR is used to compare

the ratio after denoising to the original ratio of the artifactual EEG signal. The

proposed HWT algorithm is compared with other eye blink artifact removal algo-

rithms.
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The better the de-noising, the greater the signal to artifact ratio and mutual

information. Artifact getting rid of effect of different methods are shown in Table

6.1 and Table 6.2. As known from Table 6.1, the signal to artifact ratio after hybrid

wavelet decomposition is maximum for artificially corrupted EEG and become bet-

ter artifact removing method. A comparison of SSA, EMD, DWT and HWT analy-

sis for artificially corrupted EEG is summarized (usingSARdB(contaminatedEEG)formula)

in Table 6.1

Table 6.2 also shows the comparison results of the average SAR values (using

SARdB(realEEG) formula)from SSA, DWT, EMD and HWT methods, respectively

for raw EEG. It is seen that the HWT based technique yields the higher SAR

(for a single channel) result than SSA, DWT and EMD. The results demonstrate

that the performance of wavelet based hybrid denoising method is very effective

in removing ocular artifact.

Mutual Information (MuI): It is used statistically to measure how much

information one random variable contains about the other random variable. Here,

mutual information [229], is calculated (a nonparametric measure of relevance be-

tween the two random variables) to find how much information are artifact free

EEG signal. In this paper, MuI index is adopted for the quantification of the mu-

tual dependence of the pure EEG signals and the artifact-rejected EEG datasets

using the next formula:

MuI(inEEG,outEEG) =
∑

aεinEEG

∑
bεoutEEG

j(a, b)∗log
j(a, b)

j1(a)j2(b)
(6.9)

where, j(a, b) is the joint probability distribution function (pdf), and j1 (a) and

j2 (b) are the marginal probability distribution functions of inEEG and outEEG

respectively. In this paper, s(t) stands for contaminated EEG signal≈ inEEG and

ŝ(t) is artifact free EEG signal ≈ out EEG.

If the mutual information between artifact-free EEG and output EEG from

proposed method is large, it means they are closely related and the method is

better for artifact removing. Moreover, the mean and standard deviation of MuI

(contaminated EEG) for four methods are reported in Table 6.1. To evaluate the

similarity between the raw EEG signal and corrected signal quantitatively within

all the artifact free intervals of the recording, the SAR and MuI are calculated
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between them. Here, the criterion to select an artifact free segment is that no

samples of the EOG exceeded 12µV. The mean and standard deviation of SAR

and MuI (raw EEG) for four methods are listed in Table 6.2.

Using the above equation, the experimental results point out that the SAR of

both measured and real EEG signals could be obviously improved in different con-

ditions and the mutual information (MuI) on averaged of synthetic and real world.

By comparing with the other existing artifact removal method it is demonstrated

that the proposed HWT method improved the SAR and MuI both significantly

better than the SSA, DWT and EMD-based method.

Table 6.1: Comparison of various artifact removing methods and proposed HWT method for

artificially contaminated EEG data.

No. Methods SAR in dB MuI

1. SSA [229] −6.0228 0.1513± 0.0846

2. DWT [138] −5.3210 0.5367± 0.2435

3. EMD [138] −5.1680 0.6722± 0.3536

4. HWT −4.6864 0.6996± 0.3542

Table 6.2: A comparative summary of stationary subspace analysis, discrete wavelet, empirical

mode and proposed hybrid wavelet transform for real EEG data.

No. Methods SAR in dB MuI

1. SSA [229] 0.4101± 0.8738 0.2438± 0.2576

2. DWT [138] 1.6983± 0.6190 0.7303± 0.2784

3. EMD [138] 2.2601± 1.1498 0.7967± 0.2010

4. HWT 3.0889± 1.7041 0.8562± 0.2273

For real EEG, the average respective values of SAR and MuI for all the methods

are enumerated in Table 6.2, and demonstrate the improved performance of the

proposed method over conventional methods (SSA, DWT, EMD). The table shows

that the HWT based technique yields the best SAR result and MuI value compared

to other methods. Based on the performance metrics values, it is observed that

the hybrid wavelet transform filter with db4 mother wavelet is able to filter out

more artifact compare to SSA, DWT and EMD.
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6.3 Experimental Results for Motor Imagery (MI)

Classification

Motor imagery is the interpretation of the person motor intention into control

signals through motor imagery conditions. For example, EEG signals accompany

with in the µ and β rhythms, (µ : 8−12 Hz) and (β : 18−26 Hz) decrease in specific

motor cortex area when the left hand movement may generate this signal. Different

applications such as controlling a mouse or playing a computer game could be used

according to the motor imagery rhythms. The subject might not need any training

with new artificial intelligence techniques. However, in this technique it is always

better to have some training before using the motor imagery systems [160]. For the

performance measurement of the proposed artifact removing method, the Motor

Imagery (MI) classification method is used.

6.3.1 Performance Metrics for EEG Signal Classification

To evaluate BCI performance, one must bear in mind that different components

of the BCI loop are at stake [200]. Regarding the classifier alone, the most basic

performance measure is the classification accuracy. This is valid only if the classes

are balanced [49], i.e. with the same number of samples per class and if the clas-

sifier is unbiased, i.e. it has the same performance for each class [174]. If these

conditions are not met, the Kappa metric or the confusion matrix are more infor-

mative performance measures [49]. The sensitivity-specificity pair, or precision,

can be computed from the confusion matrix. When the classification depends on

a continuous parameter (e.g. a threshold), the receiver operating characteristic

(ROC) curve, and the area under the curve (AUC) are often used.

Classifier performance is generally computed offline on pre-recorded data, using

a hold-out strategy: some datasets are set aside to be used for the evaluation,

and are not part of the training dataset. However, some authors also report

cross validation measures estimated on training data, which may over-rate the

performance.

The contribution of classifier performance to overall BCI performance strongly
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depends on the orchestration of the BCI subcomponents. This orchestration is

highly variable given the variety of BCI systems (co-adaptive, hybrid, passive, self-

or system- paced). For evaluating the online performance of the BCI system, there

are several existing performance metrics for EEG signal classification. Classifier

performance was measured for accuracy, sensitivity, specificity, precision, and the

Kappa statistic [4], each defined as follows:

Kappa(k) =
(Po − P c

e )

(1− P c
e )

(6.10)

where Po characterizes the possibility of overall agreement between label assign-

ments, classifier and true process; and P c
e indicates the chance agreement for total

labels; i.e., the sum of the proportion of cases allotted to class multiplies in pro-

portion to true labels of that specific class in the data set. The kappa measure

ranges between 1 and −1, where 1 indicates the best correct classification and −1

indicates the worst.

In the paper [43], considering receiver operating characteristic (ROC) param-

eters such as true positive (TP), true negative (TN), false positive (FP), and false

negative (FN), the performance is compared. True positive (TP) means that EEG

segment from autistic subject is correctly analyzed as autistic class. ROC graph

indicates the trustworthiness of the classifier. The classification performance is

evaluated in terms of sensitivity, specificity, and overall accuracy as in the next

equations:

Accuracy =
TN + TP

TN + FP + TP + FN
× 100% (6.11)

Sensitivity and specificity [187] were used as a performance measure for two

classes. In order to analyze the output data obtained from the application, sen-

sitivity (true positive ratio) and specificity (true negative ratio) are calculated

by using confusion matrix. The sensitivity value (true positive, same positive re-

sult as the diagnosis of expert neurologists) was calculated by dividing the total

of diagnosis numbers to total diagnosis numbers that are stated by the expert

neurologists. Sensitivity, also called the true positive ratio, is calculated by the

formula:

Sensitivity, TPR =
TP

TP + FN
× 100% (6.12)

On the other hand, specificity value (true negative, same diagnosis as the

143



Chapter 6 – Experimental Results and Discussion

expert neurologists) is calculated by dividing the total of diagnosis numbers to

total diagnosis numbers that are stated by the expert neurologists. Specificity,

also called the true negative ratio, is calculated by the formula:

Specificity, TNR =
TN

TN + FP
× 100% (6.13)

Precision =
TruePositive

TruePositive+ FalsePositive
× 100% (6.14)

A common metric that can be used to compare different tests is the area under

the ROC curve (AUC). It is used to measure the test accuracy. ROC curve explains

two dimensional visualization of ROC curve set for classifiers performance. The

easiest probability is to compute the area under the ROC curve which is part of

the area of the unit square. Subsequently the value of AUC will always satisfy the

following differences:

0 ≤ AUC ≤ 1 (6.15)

It is clear that if the AUC is close to 1 (area of unit square) AUC indicates very

good test.

The Information transfer rate (ITR) is an important factor to measure the

performance of a BCI. The classification accuracy, BCI performance was also

evaluated by ITR [219]. The ITR is a standard measure of communication systems,

which indicates the amount of information communicated per unit of time. The

ITR can be expressed in the form below:

ITR = T

{
log2k + Alog2A+ (1− A)log2

(
1− A
K − 1

)}
(6.16)

where, K is the total number of commands, A is the classification accuracy, and

T (seconds/selection) is the average time for a selection. Depending on individual

target, classification performances were calculated with different T [19]. Some of

the studies showed a high ITR by increasing the number of targets and improving

the accuracy of target selection [36].

Time Complexity: An important attribute of an algorithm is its compu-

tational complexity, defined as the number of floating point operations required

to execute the algorithm (flops). In practice, knowing whether an algorithm is

computationally efficient is as important as knowing its performance for certain
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(online) applications. Typically, there exists a trade-off in between speed and ac-

curacy, thus if two approaches offer similar results in terms of the quality of the

denoised signal then the faster method should be preferred.

The execution speed of an algorithm is directly related to its implementation,
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Figure 6.16: Comparison of computational time for the five methods. Time required by proposed

HWT, WPT, DWT, EMD and SSA to remove the artifact. The required time is increased with

increasing the number of samples for EMD. But the required time of proposed HWT technique is

comparatively low and remaining unchanged with increasing the number of samples than other

four methods like SSA, DWT, WPT and EMD.

not only it depends on the theoretical computational cost. The problem is that

most authors do not report the computational cost of their algorithms, neither

theoretically nor in practice. What is more, speed is of prior concern for on-

line applications (for instance patient monitoring in real time), whilst we want to

determine what algorithm provides denoised EEG of best quality. So, the compu-

tational time is a very important issue in an online BCI system. It is also a metric

to measure the computational effectiveness of the method [139]. To quantify the

computational complexity of the methods discussed in this study, the processing

time under different methods is given in Figure 6.16. The relative artifact re-

moving time required by proposed HWT and other methods as a function of the

number of samples is illustrated. The required time is remaining unchanged with
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increasing the number of samples for four methods like SSA, DWT, WPT and

proposed HWT. Also, it clearly shows that the computational complexity of EMD

is very much higher than that of other methods. Because it depends on number of

samples. Hence, EMD is not comparable with HWT for online implementation of

EOG artifact cleaning. The HWT is required less computational time than DWT

and WPT. Although DWT and WPT can be used for online implementation to

clean EEG. But it is expected that the proposed approach is quite faster compared

with the other wavelet approaches and reduced computational cost discussed in

this study. All algorithms are implemented in MATLAB (release R2013a) and

executed on the same computer with Windows 7 Ultimate (Intel(R) Core(TM)

i5− 4590 CPU, 3.30 GHz processor, 8 GB RAM).

Classification Accuracy: A problem of todays brain computer interface

(BCI) systems is that the performance in controlling a BCI can decreased rapidly

over time. This is due to the non-stationarity of recorded EEG signals. Further-

more, the motivation of the subject can drop if the subject does not experience

any success in controlling a BCI. For improving the classification performance of

motor imagery (MI) signals, technologically advanced numerous techniques are

used in Brain Computer Interfacing (BCI). Still there is scope for improvement

of performance using various techniques. The classifiers performances were com-

puted using the most commonly used parameters, is the accuracy. The accuracy

of a classifier is the percentage of the test set which is classified by the classifier.

This parameter is defined as follows [4].

Accuracy =
Total no. of correctly classified instances

Total no.of instances
× 100

The classification accuracy is higher for better motor imagery(MI) classifica-

tion. Comparison of classification accuracy in different two (motor imagery left

hand and right hand movement) tasks for nine subjects is presented in Table 6.3.

In this Table, the performance of proposed method and other artifact suppression

methods are comparing for real EEG data using LDA classifier.

Comparison with Existing Methods: Comparison has been made first

using simulated signals and then with real experimentally acquired EEG data cor-

rupted by artifacts. For the real EEG data the classification accuracy is compared

before cleaning the artifacts and after cleaning the artifacts using different artifact
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Table 6.3: Comparison of classification accuracies (in %) of the proposed method with other

methods using real EEG data.

After cleaning withSubjects Raw EEG After bandpass fil-

tering (0.5 ∼ 30Hz) EMD DWT HWT

1. 77.08 65.97 55.55 83.33 89.58

2. 52.08 53.47 54.16 51.38 55.55

3. 89.58 89.58 75.69 95.13 96.52

4. 56.25 52.77 49.30 61.11 62.5

5. 50 51.38 41.66 49.30 64.58

6. 56.94 56.25 45.13 65.97 65.97

7. 59.72 69.44 48.61 72.91 79.16

8. 95.13 95.83 90.27 93.75 96.53

9. 93.05 92.36 88.19 93.05 93.05

Average 69.9 69.67 60.95 73.99 78.16

suppression methods like EMD, DWT and Butterworth bandpass filter. Table 6.3,

gives a remarkable description of average classification accuracy in different tasks

for each method. In this table, the first column shows the number of subjects

participating in this experiment. The second column shows nine subjects aver-

age classification accuracy without artifact removing method, only used raw EEG

using CSP and LDA methods. The third column of the table shows the MI classifi-

cation accuracy using Butterworth band pass filter as an artifact removing method.

The fourth column of the table shows the MI classification accuracy using other

existing artifact suppression method and the proposed HWT method. From this

table it is obvious that the classification accuracy of the proposed hybrid wavelet

transform method is higher than other artifact removing methods. So, from above

performance parameters it is easily understood that proposed technique is better

than other artifact removing methods.

The results of improved classification responses with and without artifact re-

moving experiment are summarized using CSP feature extraction method and

LDA classifier. The LDA based classification is more noticeable in HWT artifact

removing technique due to the proposed EEG enhancement. It must be noted
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that subjects 1, 5 and 7 showed the remarkable improvement by more than 12%.

The results of this study shall lead directly to a new improved MI classification

in BCI paradigms after artifact removing. The EMD based MI cleaning approach

and the DWT are also implemented to compare its classification performance with

HWT based method. It is noted that the classification accuracy of EMD is lower

than that of HWT based algorithm as illustrated in Table 6.3. We have demon-

strated that the use of HWT based artifact cleaning approach enhances the LDA

based classification accuracy results. Classification accuracy varies with respect to

subject. The highest classification performance was found in the proposed HWT.

From these results, it seems that the accuracy of the HWT method is found to

be above 78%. Whereas, in the paper [117], the classification accuracy of three

dataset is 75.5%. It is obvious that the classification accuracy of the proposed

hybrid wavelet transform method is higher than other artifact removing methods.

The optimal performance of a BCI depends on the effective removal of ocular

artifacts from EEG recordings. In this paper, we proposed a novel method for

automatic identification and reduction of ocular artifacts from EEG signals by

combined DWT, WPT and thresholding. The performance and effectiveness of

the proposed frame work was illustrated using simulated and real EEG datasets.

Results show that the proposed method can effectively remove ocular artifacts

as well as it can preserve the neuronal activity related EEG signals. The results

demonstrate, additionally, that the proposed method outperforms the conventional

techniques.
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Conclusions and Future Works

This chapter summarizes the overall contributions of this thesis and highlights

their significances in neural information processing system. In addition, we also

present the future prospects of this work.

7.1 Contributions

A novel method based on wavelet transform and wavelet packet is introduced as a

data adaptive time domain filtering approach to separate the EOG artifact from

the recorded EEG signals. The performance of the algorithm is tested using both

contaminated and real signals. Pure EEG signal is recently using a much for de-

veloping brain computer interfacing (BCI), whereas the contaminated EOG signal

would create some problems in such applications. The proposed data adaptive

hybrid wavelet transform (HWT) method efficiently separates the EOG artifact

without changing the amplitude and other necessary properties of the EEG sig-

nals. The HWT is presented to reduce the subband space compared to WPT.

In blind source separation algorithm like SSA is shown to be effective to remove

ocular artifact, but it rely on multiple channel data and can also result in the

elimination of neural activities. A thresholding based denoising method using

wavelet transform is implemented to separate the EOG signal. The empirical

mode decomposition is also a so called data adaptive technique. But it takes high

computational time. The computational time of the DWT and HWT algorithm

is also very low in comparison to the EMD algorithm. Hence, EMD is not com-

parable with DWT and HWT for online implementation of EEG cleaning. Based

on SAR and MuI performance metrics, it is practical that the SSA, EMD and

DWT method cut the original information with EOG which is absent in HWT.
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The proposed HWT method separates electro-oculogram while keeping the scale

of electroencephalography amplitude undistorted. The method reduced EOG arti-

facts but did not eliminate the original information. So, hybrid wavelet transform

is better in removing the EOG artifact compare to other three methods. Thus this

work is expected to be useful for neural signal processing and analysis community

in the long run and will provide platform to further improve the understanding of

our brain for different applications, both in clinical and non-clinical applications.

In summary, we have demonstrated that the proposed artifact removal method

hybrid wavelet transform with an adaptive thresholding mechanism and MI EEG

classification technique improves the classification accuracy. The proposed method

outperforms other artifact handling methods and provides the following advan-

tages:

• It allows real-time processing;

• It does not require additional EOG/EMG channels to detect and remove

artifacts;

• It allows adaption to the characteristics of a given signal, resulting in minimal

distortion in EEG signals even in the case of false artifact detection;

• It is fully automated.

7.2 Future Works

In this work, a new data-driven HWT method for artifact removal in single-channel

EEG is presented. However, the proposed method shows improved performance

for removing ocular activities from EEG signals as compared to the conventional

techniques. For the purposes of demonstration, we have so far considered only low

frequency eye blink artifacts, as this is the most common and troublesome artifac-

tual component encountered in EEG signals. The most salient features of eye blink

artifacts include the variance, kurtosis, Shannons entropy and range of amplitude.

These features were identified and selected based on their magnitudes being sig-

nificantly higher in conjunction with an eye blink than in its absence. However,
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the list of artifactual components other than the eye blink artifacts and their cor-

responding descriptive features is not considered in this study. We anticipate that

future research should serve to identify the most descriptive features of other arti-

factual components, and simultaneously remove the artifacts without substantial

loss of cerebral signals of interest. Our future research directions include hardware

implementation and optimization of effective OA removal technique for a single

channel EEG system, real-time OA removal, feature extraction, and cognitive load

classification to monitor brain engagement in natural environment within a wear-

able embedded system. Therefore, our future research will focus on additional

methods that automatically select the optimal wavelet function for the proposed

algorithm. It is also of interest to extend the proposed algorithm to a multivariate

version and find out if and how it can improve the effectiveness of the algorithm

in denoising EEG signals. The HWT would be applied for possible removal of

multiple artifacts present in any number of multi channel EEG signals. Besides,

in the present study only spontaneous EEG is considered rather than event related

potentials (ERPs). To this extent, it is our future plan to implement the proposed

method for ERP based BCI. Besides, in the present study the proposed method

only deals with ocular activities and removal/reduction of other types of artifac-

tual activities is yet to be examined in forthcoming work. One possible extension

of the proposed method is to include features that can be used to identify muscle

artifacts (e.g., eye movement, chewing, swallowing, clenching, head movement,

body movement and so on.) rather than EOG and removing from EEG signal.

Another essential extension is to use features based on the correlation with ECG

artifact. Extended group of extracted features (such as: frequency band power

features and time domain features) can be used in LDA to identify and classify MI

activities. Other classifiers such as SVM, NN, MLP, K-NN, binary decision tree

and so on can be considered to compare the classification performance with LDA.

Future work may involve a comparison with other existing methods in terms of

classification accuracy as well as information transfer rates, sensitivity, selectivity,

AUC and kappa using large dataset.
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