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Abstract 

We investigate the motion of spinning particles, such as Dirac fermions, in 

curved spacetimes by pseudo-classical mechanics models in which the spin 

degrees of freedom are characterized in terms of anti-commuting Grassmann 

variables. The work of this thesis has been organized in 7 chapters along with 

an introduction at the very outset and a discussion at the end of the thesis. 

In the Introduction we present a short account of the work of 

investigating pseudo-classical spinning point particles in the four-dimensional 

curved spacetimes of general relativity. 

We review the relevant formulations and the equations of motion for 

the theory in chapters 1 and 2. We generalize the Killing equations in the 

spinning space, i.e., the configuration space of the spinning particles, spanned 

by the usual position coordinates and spin variables. We describe the 

symmetries and the corresponding constants of motion in terms of the 

solutions of the generalized Killing equations. Spinning space can have 

fermionic symmetries along with the standard kind of symmetries. The 

standard or generic symmetries exist for any spacetime metric gµv(x) (chapter 

1 ), while the new nongeneric symmetries depend on the specific form of 

spacetime and are generated by the square root of bosonic constants of motion 

other than the Hamiltonian (chapter 2). These formalisms have been exploited 

in chapters 4-7 to study the pseudo-classical spinning point particles m 

particular types of black hole spacetimes. 

In chapter 3 we investigate geodesic motion of pseudo-classical spin 

one half point particles in the purely de Sitter spacetime and asymptotically de 
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Sitter Schwarzschild spacetime. We apply the formalism of chapter 1 to solve 

the equations of motion of the pseudo-classical spinning particles in a plane. 

In chapter 4 we investigate geodesic motions of pseudo-classical 

spinning point particles in the Euclidean Taub-NUT space. Applying the 

formalism of chapters 1 and 2, we describe the symmetries and derive the 

corresponding constants of motion. The spinning space is found to admit 

hidden supersymmetries, generated by the mysterious Killing-Yano tensors. 

We use these formalisms to analyze the motion of the pseudo-classical 

spinning particles on a cone and plane. 

In chapter 5 we analyze the geodesic motion of pseudo-classical 

spinning particles in the NUT-Taub spacetime. We find that spinning 

spacetime admits new fermionic supersymmetries along with generic 

symmetries. The corresponding constants of motion have been obtained and 

the motion has been described on a cone and on a plane. 

In chapter 6 we study geodesic motion of pseudo-classical spinning 

particles in the Taub-NUT-de Sitter spacetime, which is the Taub-NUT 

spacetime generalized with cosmological constant. We obtain the conserved 

quantities for spinning space and describe the motion of the pseudo-classical 

Dirac fermion on a cone and plane. 

Geodesic motions of pseudo-classical spinning point particles are 

analyzed for the generalized NUT spacetime in chapter 7. Both types of 

symmetries, generic and nongeneric, are found to exist in the spinning space. 

We obtain the corresponding conserved quantities and investigate the motion 

of the pseudo-classical spinning particles on a cone and plane. 

Finally, we present the concluding remarks of this work m the 

discussion, at the end of the thesis. 
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Introduction 

Spinning point particles, such as Dirac fermions, in curved spacetimes are 

described by pseudo-classical mechanics models in which the spin degrees 

of freedom are characterized in terms of Grassmann anti-commuting vari­

ables [1, 2, 3, 4, 5]. 

The relativistic spinning particle models have been proposed for a long 

time. The pioneer work concerning the Lagrangian description of the rel­

ativistic spinning particles was done by Frenkel [6] in 1926 and literatures 

on it grew vast [7] afterward. Characterizing spinning. degrees of freedom 

by Grassmann ( odd) variables [8, 9], the action of spin-½ relativistic parti­

cles was first proposed by Berezin and Marinov [1, 10] and soon after that 

was discussed and investigated by many authors [11, 12, 13, 14, 15, 16]. 

Although the anticommuting Grassmann variables do not admit a direct 

classical interpretation, the Lagrangians for these models have a natural 

interpretation in the context of the path-integral description of the quan­

tum dynamics. The pseudo-classical equations get physical meaning when 

averaged over the inside of the functional integral [1, 10, 17]. In this semi­

classical regime, neglecting higher order quantum correlations, appropriate 

combinations of Grassmann spin-variables should be admissible to replace 

by real numbers. These ideas have been exploited in analyzing the motion 
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of spinning particles in external fields [l 10 18 19 20 21 22 23 24 25 
' ' ' ' ' ' ' ' ' ' 

26, 27, 28, 29, 30]. 

In addition to such direct physical applications, it has been proved that 

generalizations of Riemannian geometry based on anticommuting variables 

have wide mathematical interests. The supersymmetric point particle me­

chanics has found applications in the area of index theorem [31, 32, 33, 34], 

while the BRST (Bechhi-Rouet-Stora-Tyutin) (35, 36] methods are widely 

used in the study of topological invariants [37, 38]. Thus the study of the 

geometry of graded pseudo-manifold with both real number and anticom­

muting variables is well motivated. 

In refs. [39, 40, 41] the relations between symmetries of graded pseudo­

manifolds and constants of motion for spinning point particles have been 

described in detail. These relations are more complicated than in the 

case of scalar particles moving in a Riemannian manifold. This is because 

of two reasons; firstly, the presence of anti-commuting variables modifies 

the Killing equations themselves. Secondly, Killing vectors alone no longer 

construct the constants of motion, there correspond in principle associated 

Killing scalars which must be added to the expressions involving the Killing 

vectors to obtain the conserved quantities of motion. These formulations 

may be applied to any spacetime, and some works in this regard can be 

found in refs. [42, 43, 44, 45, 46, 47, 48, 49, 50, 51]. 

The symmetries of spacetime are very important to investigate the 

motions of spin-½ particles in the curved spacetime. The configuration 

space ( spinning space) for the pseudo-classical spinning point particles is 

spanned by local graded coordinates { xµ, 'If;µ} with the first set of vari-
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ables being Grassmann-even ( commuting) and the second set Grassmann­

odd (anti-commuting). This graded space can have two types of sym­

metries: (i) "generic" symmetries which exist in any spacetime, and (ii) 

"nongeneric" supersymmetries (SUSYs) [52, 53, 54, 55, 56, 57, 58], ap­

pearance of which depends on the specific form of the metric gµv(x). This 

fermionic symmetries are generated by the square root of bosonic con­

stants of motion other than the Hamiltonian. In ref. (53] Gibbons et.al. 

presented a general analysis of the conditions under which such new type 

of SUSY s appear, and discussed the Poisson-Dirac algebra of the resulting 

set of charges, including the conditions of closure of the new algebra. 

In this thesis we investigate the motion of pseudo-classical relativistic 

spinning point particles in some particular curved spacetimes and arrange 

the work in seven chapters. 

Following Rietdijk and van Holten [40, 41, 42] we present a review 

work in chapter 1 on the "generic" symmetries and the corresponding 

conserved quantities of spinning space. We summarize the relevant equa­

tions for the motion of spinning point particles in curved spacetime with 

briefly discussing their physical interpretation. We describe the general­

ized Killing equations for spinning space and give the derivation of con­

stants of motion in terms of the solutions of these equations. 

The generic symmetries discussed in chapter 1 may be applied to any 

spacetime, but since our study also includes the motion of spinning parti­

cles in axially symmetric spacetime such as the Taub-NUT solution of the 

Einstein vacuum equations in four-dimensions, which admits nongeneric 

symmetries as well as generic ones, we describe nongeneric symmetries 
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and their corresponding conserved quantities in chapter 2. 

The axially symmetric spacetimes are invariant under two continuous 

symmetries: time translations and rotations about an axis of symmetry, 

which are generated by Killing fields Kµ and Mµ, respectively. These 

symmetries generate two constants of motion: energy E and angular mo­

mentum J, for particles orbiting in these backgrounds. Both constants of 

motion are linear in the particles 4-momentum pµ: 

(1) 

and 

(2) 

The complete integrability of particle motions in the four-dimensional 

Kerr-Newman and Taub-NUT spacetimes demands the existence of a non­

trivial Stackel-Killing tensor Kµv [59, 60, 61], associated with which is the 

constant of motion: 

lKµv Z = 2 PµPv, (3) 

quadratic in the 4-momentum Pµ [62]. This constant of motion commutes 

with the covariant Hamiltonian 

1 µv 
H = -g PµPv 

2 
(4) 

in the sense of Poisson brackets, because Kµv is a symmetric second-rank 
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contravariant tensor field satisfying a generalized Killing equation ( chapter 

1). The four constants of motion (E, J, Z, H) form a mutually Poisson­

commuting set of functions on the cotangent bundle. 

More surprisingly, the separability of various field equations in Kerr 

background spacetimes, e.g., the Dirac equation [63, 64), has the direct 

consequence of the existence of a Killing-Yano tensor Jµv [65), which sat­

isfies the Penrose-Floyd equation [66, 67]: 

(5) 

and is the square-root of the Stackel-Killing tensor: 

(6) 

with the properties Jµv = - fvµ- These useful and mysterious discoveries 

made possible a whole range of calculations, both classical and quantum 

mechanical, and can be applied to various physical processes near black 

holes. This novel aspect has renewed peoples interest in the Killing-Yano 

tensor which has long been known to relativists as a mysterious thing. 

Although there are not so many physically interpretable spacetimes in 

which Killing-Yano tensors exist [68, 69, 70], Kerr-Newman [53, 71, 72] 

or Taub-NUT [73] background spacetimes admit Killing-Yano tensors and 

hence pseudo-classical spinning point particles' motion in these spacetimes 

can have nongeneric SUSY s. 

Using supersymmetric particle mechanics involving classically anticom-
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muting Grassmann variables, Gibbons et. al. [53] demonstrated the 

Killing-Yano tensor fµv as an object belonging to a larger class of pos­

sible structures which generate generalized SUSY algebras and addressed 

the classical counter part of Carter and McLenaghan's work on the Dirac 

equation. These useful and mysterious discoveries made possible a whole 

range of calculations, both classical and quantum mechanical, and can be 

applied to various physical processes near black holes. 

In chapter 2 we review the work of Gibbons et. al. [53] for investigat­

ing nongeneric SUSY s. We summarize the formalism of pseudo-classical 

spinning point particles in an arbitrary background spacetime and de­

scribe the nongeneric SUSYs along with the other (universal) symmetries 

and their corresponding conserved quantities. 

In chapter 3 we apply the formalisms of chapters 1 and 2 to investigate 

the motion of pseudo-classical spinning particles in the purely de Sitter 

( dS) spacetime as well as asymptotically dS black hole spacetime such as 

Schwarzschild-de Sitter (SdS) spacetime. The purely dS or SdS spacetime 

is vacuum solution of Einstein's eld equations with a positive cosmological 

constant A > 0. The dS spacetime metric was found by de Sitter in 

1917 [74, 75, 76], the year of A and of Einstein's static universe. It too 

was put forward as a static universe (up to the horizon), although one 

of vanishing density. However, it was soon realized that free particles 

would stream away from the center, driven by the force, and eventually 

dS spacetime became a model for an expanding universe. It still plays 

a role in modern cosmology as the limit of a whole family of non-empty 

models. Indeed, recent astronomical observations suggest the existence of 
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a positive cosmological constant in our universe and that the universe will 

asymptotically approach a dS spacetime (77]. This has sparked a sense of 

urgency in resolving the quantum-gravitational mysteries of dS spacetime 

(78, 79]. Physicists have thus growing interest in the dS and asymptotically 

dS spacetimes. The work of this chapter may be interesting in view of the 

inflationary scenario of the universe. 

In chapter 4 we present our work (80] of investigating the geodesic 

motion of the pseudo-classical spin-½ point particle in the geometry of 

Euclidean Taub-NUT, which is a D = 4 self-dual space. The Euclidean 

Taub-NUT space has attracted much attention in physics. It gives rise to 

the gravitational analog of the Yang-Mills instanton (81]. The metric of 

this space is the space part of the line element of the celebrated Kaluza­

Klein monopole of Gross and Perry [82] and Sorkin [83]. Moreover, the 

motion of well-separated monopole-monopole interactions is described ap­

proximately by the geodesics of this space [84, 85, 86, 87]. The Euclidean 

Taub-NUT background contains also interesting specific features of the 

qua~tum theory in the case of the scalar fields [88] as well as for Dirac 

fields of spin-½ fermions [89, 90, 91]. There exist large algebras of con­

served observables in both cases (92]. The Taub-NUT family of metrics 

has also attracted physicists in studying many other modern studies like 

strings, membranes, etc. This chapter, therefore, contains our work in the 

interesting Euclidean Taub-NUT spacetime. 

We describe our work [93] in chapter 5 of investigating the motion 

of a pseudo-classical spin-½ particle in the NUT-Taub space which is a 

stationary and axisymmetric solution of Einstein's empty space equation. 
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The similarity between the group structure for the NUT symmetry and 

the group structure for spherical symmetry leads to the interpretation that 

the NUT-Taub metric corresponds to a vacuum cosmological-like solution 

with periodic time. According to this identification, the NUT-Taub space 

admits peculiar properties [94, 95]: it does not admit an interpretation 

without a periodic time coordinate, has no reasonable space-like surface, 

and is an asymptotically zero curvature space which apparently does not 

admit asymptotically rectangular coordinates. 

The NUT-Taub spacetime is the Schwarzschild spacetime generalized 

with the NUT parameter n which has the identification of the gravita­

tional magnetic mass or magnetic monopole [96, 97, 98, 99, 100]. The 

monopole hypothesis was propounded by Dirac relatively long ago. The 

ingenious suggestion by Dirac that magnetic monopole does exist in na­

ture was neglected because of the failure to identify such thing. In recent 

years, however, the development of gauge theories [101, 102] has shed new 

light on it. The string theory [103] predicts the existence of this type 

of objects. In a recent work [104], it was shown that the NUT charge 

generates a "rotational effect", so that the spacetime must be assigned a 

"specific angular momentum" due to the NUT charge. Thus the study of 

this chapter gives result for the interesting NUT-Taub spacetime. 

In chapter 6 we investigate the motion of a pseudo-classical spin-½ particle 

in the Taub-NUT-de Sitter (TN-dS) spacetime, which is a stationary and 

axisymmetric solution of the vacuum Einstein equations with a cosmolog­

ical constant. The TN-dS metric is a generalization of the Schwarzschild 
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metric with the NUT parameter n and cosmological constant A. Instead of 

being asymptotically flat, it is an asymptotically de Sitter TN spacetime. 

The spacetime is interesting in that it contains the TN spacetime, which 

has played an important role in the conceptional development of general 

relativity and in the construction of brane solutions in string theory and 

M-theory (105, 106, 107]. The NUT charge induces a topology in the Eu­

clidean section at infinity that is a Hopf fibration of a circle over a 2-sphere 

and plays the role of a magnetic mass. The curious properties of the Taub­

NUT spaces induced Misner (95] to consider it as "a counter example to 

almost anything". This spacetime plays a significant role in exhibiting 

the type of effects that can arise in strong gravitational fields. The TN 

spacetime has been of particular interest in recent years because of the role 

it plays in furthering our understanding of the AdS/CFT correspondence 

[108, 109, 110]. On the other hand, there has been a renewed interest in 

cosmological constant as it is found to be present in the inflationary sce­

nario of the early universe. In this scenario the universe undergoes a phase 

where it is geometrically similar to the de Sitter space (111]. Among other 

things inflation has led to the cold dark matter in the form of slowly mov­

ing particles (axions or neutralinos). If the cold dark matter theory proves 

correct, it would shed light on the unification of forces [112, 113]. Com­

prehensive reviews of the cosmological constant or dark energy, including 

the observational evidence for it and the problems associated with it, have 

been done by many authors [114, 115, 116, 117, 118, 119, 120, 121, 122]. 

The TN-dS spacetime is therefore interesting in the inflationary scenario 

of the early universe and the study of this chapter provides result for this 
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interesting spacetime. 

In chapter 7 we investigate the motion of a pseudo-classical spin-½ 

particle in the black hole spacetime described by the generalized NUT 

metric with six parameters: the mass, the electric and magnetic charges, 

the NUT charge, the cosmological constant, and a continuous parame­

ter. The spacetime represents a stationary axisymmetric solution of the 

Einstein-Maxwell field equations with cosmological constant. The work 

of this chapter is interesting in that it gives in special cases the results 

obtained in chapters 1-6 along with the results for some other interesting 

spacetimes, e.g., the Reissner-Nordstrom [43] and the Reissner-Nordstrom­

de Sitter [44] spacetimes. 

Finally, we present our remarks in the discussion at the end of this 

thesis. 

10 



Chapter 1 

Spinning Space, Its Generic Symmetries 
and Conserved Charges 

1.1 Introduction 

In this chapter we briefly discuss the relevant equations for the motion of 

pseudo-classical spinning point particles in curved spacetimes. We describe 

the symmetries of spinning spaces, the generalized Killing equations, and 

derive the constants of motion. The analysis of this chapter is a generic 

one and can be applied to any spacetime with the metric gµv· 

We arrange this chapter as follows. In section 1.2 we describe the start­

ing point of the work by summarizing the relevant equations for the motion 

of spinning point particles in curved spacetime and briefly discuss their 

physical interpretation. In section 1.3 we recall the generalized Killing 
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1.2. SPINNING SPACE CHAPTER 1. 

equations for a scalar particle in curved spacetime and extend the theory 

to the case of spinning particles in section 1.4. In section 1.5 we describe 

the derivation of the constants of motion, which exist in any spacetime, in 

terms of the solutions of the generalized Killing equations. 

1.2 Spinning Space 

According to Einstein's theory of gravity, the world-line of a classical point 

particles in curved spacetime is a time-like geodesic. Since geodesics are 

curves of extremal length, the equation for the world-line of a point parti­

cle can be obtained from an action principle. With this action any smooth 

monotonic function of the spacetime interval ds along the curve is given by 

(1.1) 

where dT is the corresponding interval of proper time. The last equality 

holds only in the absence of external forces such as electromagnetic dipole 

forces [28, 29]. 

Spinning spaces are the configuration spaces of spinning particles and 

are extensions of ordinary Riemannian manifolds described by local coor­

dinates { xµ} to graded manifolds described by local graded coordinates 

{xµ, 'lj;µ} with the first set of variables being Grassmann-even (commuting) 

and the second set Grassmann-odd ( anticommuting) . Geodesic flow along 

time-like curves of such a graded manifold with Minkowskian signature 

( +, - ) describes the classical limit of the motion of a relativistic 

12 



1.2. SPINNING SPACE CHAPTER 1. 

point-like Dirac fermion with spin-! in quantum mechanics [1 3 4 5 16) 
2 ' ' ' ' . 

The number of bosonic and fermionic dimension dimensions is the same 

and the Grassmann variables 'lj;µ transform as 1-forms dxµ. So, one can 

realize a supersymmetry in the geometry of the graded manifolds, which 

acts on the coordinates as 

(1.2) 

where the overdot denotes a derivative with respect to proper time, fr . 
The supersymmetric action that defines the extremal trajectories in the 

graded manifold is given by 

- 12 (1 ( ) . µ • V ~ ( ),.,,µD'lj;V) S - m 
1 

dT 2 gµv X X X + 2 gµv X '// DT , (1.3) 

where the constant m of proportionality has the dimension of mass. In 

the following we consider particles of unit mass: m = 1, but occasionally 

we reinstate the explicit mass dependence when it is physically relevant. 

The covariant derivative of 'lj;µ is defined by 

(1.4) 

Under arbitrary variations of the coordinates (oxµ, o'lj;µ) the action S changes 

by 

13 



1.2. SPINNING SPACE CHAPTER 1. 

where Pµ is the canonical momentum: 

(1.6) 

R"'>.µv is the Riemann curvature tensor and L:l'lj;µ is the covariantized vari­

ation of 'lj;µ: 

(1.7) 

The action S is stationary under variations 8xµ and 8'1/;µ vanishing at the 

end points, if the following equations of motion are satisfied: 

D2xv _ !._ Rµ . V '1/;"''I/;>. (1.8) 
DT2 2 

v"'>.X , 

D'I/;µ 
0, (1.9) -

DT 

h 
D2 xµ ··µ rµ ·>. ·v d Rµ ·- a rµ -8 rµ +rµ rP -rµ rp 

W ere D-r2 := X + >.vx X an VK-A .- "- v>. ).. v~ ~p v>. >.p v~ 

is the Riemann curvature tensor. Obviously, the solutions for xµ(T) m 
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1.2. SPINNING SPACE CHAPTER 1. 

the case of replacing '1/Jµ by zero everywhere are ordinary geodesics in the 

bosonic submanifold. 

The interesting solutions are those for which one or more components 

of 'ljJµ do not vanish. In order to interpret physically such solutions, the 

following antisymmetric tensor has been defined: 

(1.10) 

which describes the relativistic spin of the particle [1, 2, 3, 5, 16, 18, 19, 28, 

29]. Accordingly, equations (1.8) and (1.9) describe the classical motion 

of a Dirac fermion. 

Equation (1.8) with the spin tensor (1.10) implies the existence of spin-

dependent gravitational forces [18, 19, 20, 24, 28, 29, 30} 

(1.11) 

This is analogous to the electromagnetic Lorentz force 

.. µ - !!_pµ . V 
X - vX, (1.12) 

m 

with spin tensor replacing the scalar electric charge [28, 29, 30] (here for 

unit mass). The second equation, (1.9), states that the spin is covariantly 

constant: 

DSµv 
--=0, 
Dr 
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1.3. SCALAR PARTICLES IN CURVED SPACETIME CHAPTER 1. 

DSµv . 
where Dr := 5µII + r~,\xKS,\11 + r~,\i;KSµ,\_ The spin interpretation of 5µII 

is supported by the study of electromagnetic interactions of the particle 

[1, 5, 10, 20, 28, 29]. It follows that spacelike components Sii represent 

the particle's magnetic dipole moment and the time-like components SiO 

correspond to the electric dipole moment. It is, of course, required for free 

Dirac fermions (like free electrons and quarks) to vanish the electric dipole 

moment in the rest frame. This can be expressed as a covariant constraint 

[30] 

(1.14) 

which is equivalent to 

(1.15) 

using the Grassmann coordinates. It has an elegant interpretation in terms 

of supersymmetry. 

1.3 Scalar Particles in Curved Spacetime 

We start our discussion with the well-known relation that exists in classical 

mechanics between symmetries of the conguration space and conservation 

laws, as expressed by Noether's theorem. For a scalar point particle mov­

ing in an arbitra{Y curved spacetime, this relation can be described as 

follows. Let us consider the action 

16 



1.3. SCALAR PARTICLES IN CURVED SPACETIME CHAPTER 1. 

(1.16) 

the stationary points of which are precisely given by 1;;;; = 0, the equa­

tion (1.8) with vanishing 'lj;µ. The general variation of S is 

(1.17) 

where Pµ = gµvxv is the canonical momentum. Then 8S = 0 for any 

arbitrary variation of xµ with fixed end points if and only if 1;;;; = 0 is 

satisfied. 

Now the question arises, whether there exist variations xµ for which 

8S = 0 modulo boundary terms even when the equations of motion are 
. fi d . D2xµ -I.. 0 not sat1s e , 1.e. DT2 , . 

We consider variations 8xµ of the type 

(1.18) 

then the variation of the action (1.16) is 

(1.19) 

We restrict variations (1.18) to depend only on the first derivative xµ, be­

cause the second and higher derivatives can always be expressed in terms 

of these modulo of the equations of motion: 1;;;; = 0. Comparing (1.19) 

17 
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with (1.18) one immediately obtains 

(1.20) 

where last equality holds only when the equations of motion: I;;;; = 0 is 

satisfied. Thus the quantities :J(x, x) are conserved for physical motions. 

This is Noether's theorem. 

Assuming that :J(x, x) can be expanded in the four-velocity as 

:J(x, x) 

(1.21) 

one can find from (1.20) with the ansatz (1.18) the following identification 

of the coefficients: 

(1.22) 

These relations indicate that all covariant tensors on the right hand side of 
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(1.18) should be taken to be completely symmetric. Moreover, it follows 

that the following differential equations have to be satisfied 

(1.23) 

in which the parentheses denote full symmetrization over all indices en­

closed, with total weight one. Equations (1.23) constitute a straightfor­

ward generalization of the Killing equation and give in explicit forms 

0, (1.24) 

0, (1.25) 

0, etc. (1.26) 

These equations hold independently of the equations of motion: ~;; = 0. 

The first equation (1.24) gives J(O) as an irrelevant constant. The second 

equation (1.25) represents the standard equation for Killing vectors, while 

(1.26) and its higher-rank counterparts constitute tensorial generalizations 

of this equation. 
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1.4 Spinning Particles in Curved Spacetime 

We now generalize the above theory to the graded configuration space 

(spinning space). The supersymmetric action in this space is given by 

(1.3). We look for specific variations 8xµ and 6-'lj;µ which leave the action 

off-shell invariant modulo boundary terms. Let the variations be of the 

form 

(1.27) 

If the Lagrangian transforms under the variations (1.27) into a total deriva­

tive 

(1.28) 

it then follows that 

(1.29) 
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When the equations of motions (1.8) and (1.9) are satisfied, it then follows 

from (1.29) that !: = 0, i.e. :1 is conserved. This is Noether;s theorem, 

agam. 

If we expand :l(x, x, 'lj;) in terms of the four-velocity, 

(1.30) 

and compare the left- and right-hand sides of (1.29) with the ansatz (1.27) 

for 5xµ and ~'lj;µ, then we get the following identities: 

Jl7! .. µn ( X' 7P) Rt~ .. µn ( x' 'lj;), n > l, (1.31) 

aJ(n) 

s;::~ .. µnv(x, 'lj;) • µl "'µn ( 7P) n > 0. (1.32) 
1 8'lj;V X, ' 

These equations satisfy a generalization of the Killing equations of the 

form [39, 40, 53] 

(I) (2) K RC3) - K t d If we write, as before, Rµ = Rµ, Rµv = µv, µv>. - µv>., e c., an 

J(O) = B, this reduces for the lowest components to 
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(1.34) 

(1.35) 

(1.36) 

These equations hold independently of the equations of motion (1.8) and 

(1.9). For purely bosonic case the { 'l/;µ}-parts vanish and then these equa­

tions reduce to those obtained for the scalar particle, equations (1.24)­

(1.26). We note that, in contrast to the bosonic case, the Killing scalar 

B(x,'l/;) = J(O)(x,'l/;) is not always an irrelevant constant, since it can 

depend non-trivially on xµ and 'lj;µ, as follows from the equation (1.34). 

1.5 Generic Solutions for Spinning Space 

For spinning particle models as defined by the action (1.3), there exist 

four types of generic (i.e. existing in any spacetime) constants of motion 

[40, 41]. They are the following: 

1. Like in the bosonic case gµv itself is a Killing tensor: 

(1.37) 

with vanishing all other Killing vectors and tensors (bosonic as well 

as fermionic). The associated constant of motion is the world-line 
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Hamiltonian, 

(1.38) 

where Pµ is the covariant momentum defined by 

(1.39) 

2. The Grassmann-odd Killing vectors 

(1.40) 

provide another obvious solution. Again, all other Killing vectors and 

tensors equal to zero. The supercharge corresponding to this solution 

is 

(1.41) 

3. In addition to ordinary supersymmetry, the spinning particle ac­

tion admits a second non-linear supersymmetry that is generated by 

Killing vectors 
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(1.42) 

The Grassmann parities of (Rµ, Tµv) evidently depend on d, the num­

ber of spacetime dimensions. The associated constant of motion is 

the dual supercharge 

(1.43) 

4. Finally, there is found to exist a non-trivial Killing scalar 

(1.44) 

which acts as the Hodge star duality operator on '1/Jµ. In quantum 

mechanics it becomes the ,d+l element of the Dirac algebra and for 

this reason r * is referred to as the chiral charge. 

The fundamental Dirac brackets in the spinning space are as follows: 
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(1.45) 

Using these results the non-trivial Dirac-brackets between the generic con­

stants of motion are obtained as follows: 

{Q, Q} = -2iH, (1.46) 

Clearly, d = 2 is an exceptional case, because Q* then is linear and acts 

as an ordinary supersymmetry: 

{Q*, Q*} = -2iH, (1.47) 

Hence, the theory actually possesses an N = 2 supersymmetry in the 

two dimensions. If d i= 2, the right-hand side of the equations in (1.47) 

vanishes. 

The supercharge Q is actually crucial for the consistency of the physical 

interpretation of the theory. Indeed, the absence of an intrinsic electric 

dipole moment of physical fermions like leptons and quarks gives the con-

straint (1. 15) which implies that 
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Q=O. (1.48) 

Since Q is a conserved quantity, the physical condition (1.48) can be sat­

isfied at all times, irrespective of the presence of external fields, and at 

the same time this provides a clear physical interpretation of world-line 

supersymmetry. 
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Chapter 2 

New Supersymmetry in Curved 
Spacetime 

2.1 Introduction 

In this chapter we present a brief analysis on a new type of supersymme­

tries for the pseudo-classical spinning point particles in curved spacetime. 

As described in the Introduction of this thesis, these fermionic symmetries, 

. called nongeneric SUSY s, are generated by the square root of bosonic con­

stants of motion other than the Hamiltonian. In particular, a spacetime 

can have nongeneric SUSYs, if it admits the existence of Killing-Yano ten­

sor Jµv, which is square root of the Stackel-Killing tensor: Kµv = Jµ>J>. v 

with the properties fµv = - fvµ · Using supersymmetric particle mechanics 

involving classically anticommuting Grassmann variables, Gibbons et.al. 
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(53) demonstrated the Killing-Yano tensor Jµv as an object belonging to a 

larger class of possible structures which generate generalized SUSY alge­

bras and play an important role in solving the Dirac equation in curved 

spacetimes. 

This chapter is organized as follows. In section 2.2 we give the canon­

ical description of the configuration space of spinning particles and then 

describe it in terms of the covariant phase-space variables in 2.3. In section 

2.4 we review the general relation between symmetries, supersymmetries 

and constants of motion for these equations. In section 2.5 we address 

the question of the existence of extra supersymmetries and their algebras. 

Supersymmetries are dependent on the existence of a second rank tensor 

field Jµv which we call !-symbols. We describe the general properties of 

f-symbols and their relation to Killing-Yano tensors in section 2.6. 

2.2 Canonical Structures in Spinning Space · 

The pseudo-classical limit of the Dirac theory of fermions in a curved 

spacetime is described by supersymmetric extension of the ordinary rela­

tivistic point particle (2, 3, 4, 5, 10, 16, 18, 24]. 

The vielbein (tetrad) eµa(x) (123], which is the "square root" of the 

metric tensor gµv in some sense, is used to describe the local version of 

supersymmetry (supergravity) . The Greek indexµ labels components of 

vectors in spacetime ( world vectors), transforms like a vector under coor­

dinate transformations and is raised (or lowered) with gµv (or gµv). The 

Latin index a is a tangent space (flat-space) index, transforms under (lo-
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cal) Lorentz transformations as a Lorentz vector and is raised ( or lowered) 

with the Minkowski space metric rJab (or rJab)- The eµa is the "square 

root" of the metric tensor gµv in the sense that 

(2.1) 

The configuration or spinning space of the theory is spanned by the real 

position coordinates xµ(T) and the Grassmann-valued spin coordinates 

'lj;a(T) where µ , a = 1, · • • d with d the dimension of the spacetime. The 

world and tangent vectors indices (i.e. µ and a) can be converted into 

each other by the viel bein eµ a ( x) and its inverse eµ a ( x). It is sometimes 

convenient to introduce the object 

(2.2) 

which transforms a local Lorentz vector into a world vector. The world­

line parameter T is the invariant proper time, 

(2.3) 

We choose units such that c = 1. 

The Lagrangian of the theory is given by 

. DqJ,b 
1 ·µ •v + _: q/,a_'P_ 

L = 2gµvX X 2 T/ab'f/ DT , (2.4) 
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where the overdot denotes an ordinary proper-time derivative fr and 

(2.5) 

is the covariant derivative of the spin variable, transforming as a local 

Lorentz vector with w: b the spin connection. The restriction for the spin 

to be space-like is 

Q - ·µ,,1,a - 0 = eµaX 'f/ - , (2.6) 

which expresses that 'I/; has no time-component in the rest frame. These 

supplementary conditions are only to be imposed after solving the equa­

tions of motion derived from the Lagrangian L. Indeed, the solutions of 

the Euler-Lagrange equations may be considered as generalizations of the 

concept of geodesics to spinning space. The supplementary conditions then 

select those geodesics which correspond to the world lines of the physical 

spinning particles. 

Under arbitrary variations (8xµ, 8'1/;a) the Lagrangian changes by 

a D'l/;b 1 d . . + D.. 'I/; T/ab Dr + tota envative, (2.7) 
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where 

(2.8) 

is the covariantized variation of 'l/Ja [40]. The equations of motion can be 

cast in the form 

D2xµ 1 'l/Ja'l/Jb Rµ · v 
DT2 

- 2 vabX , 

D'lf;a 

DT 
0. (2.9) 

The canonical momenta conjugates to xµ and 'l/Ja are, respectively, 

(2.10) 

and 

8L i 
1fa = -. = --'l/Ja· 

8'1/Ja 2 
(2.11) 

When this second-class constraint is eliminated by Dirac's procedure, one 

obtains the canonical Poisson-Dirac brackets 

(2.12) 
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Consequently, the Poisson-Dirac brackets for general functions F and G 

of the canonical phase-space variables (x, p, 'I/;) is given by 

(2.13) 

where ap is the Grassmann parity of F: ap = (0, 1) for F =(even, odd). 

The canonical Hamiltonian of the theory is expressed by 

(2.14) 

where 

(2.15) 

Indeed, the time-evolution of any function F(x,p, 'I/;) is generated by 

dF = {F G} 
dT ' . 

(2.16) 

Equations (2.12)-(2.15) summarize the canonical structure of the theory 

of pseudo-classical Dirac's fermions in spinning space. The inconvenience 

of the canonical formulation is that one looses manifest covariance. 
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2.3 Covariant Formulation in Spinning Space 

It is often convenience to describe the theory of pseudo-classical spin one 

half point particles in terms of a set of covariant phase-space variables, 

defined by xµ, 'lj;a and the covariant momentum 

(2.17) 

For functions of the covariant phase-space variables F ( x, II, 'lj;) the Poisson­

Dirac brackets become 

{ } _ BG _ BF G- BF BG "(- )aF BF BG (2 18) 
F, G - V µF BITµ BITµ V µ Rµv BITµ BIIv + 1 1 B'lj;a B'lf;a' . 

where the phase-space covariant derivative is defined by 

(2.19) 

and the spin-valued curvature tensor is given by 

(2.20) 

It results that 

(2.21) 
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which is the classical analogue of the Ricci-identity in the absence of tor­

sion. The Hamiltonian in the covariant phase-space becomes 

(2.22) 

The dynamical equation (2.16) remains unaltered, but the constraints (2.3) 

and (2.9) become 

(2.23) 

In general, these are not compatible with the Poisson-Dirac brackets. 

Hence, they are to be imposed only after solving the theory. However, 

it clearly follows that 

{Q,H} = 0, (2.24) 

which shows the conservation of Q. Since the Hamiltonian itself is trivially 

conserved, the values of H and Q as chosen in (2.23) are preserved in 

time. Therefore, the imposed physical conditions are consistent with the 

equations of motion of the theory. 
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2.4 Symmetries and Constants of Motion 

The theory of a spinning-particle model described by the Lagrangian (2.4), 

or equivalently the Hamiltonian (2.23), possesses a number of symmetries 

which are very useful in obtaining explicit solutions of the equations of 

motion. These symmetries are of two kinds: generic symmetries, which 

exist in any spacetime, and nongeneric symmetries, which depend on the 

e:x--plicit form of the metric gµv· As described in chapter 1, the Lagrangian 

(2.4) possesses four generic symmetries: proper-time translations, gener­

ated by the Hamiltonian H; supersymmetry generated by the supercharge 

Q, equation (2.23); chiral symmetry, generated by the chiral charge 

(2.25) 

and dual supersymmetry, generated by dual supercharge 

(2.26) 

It can be checked that {H, r *} = 0, and then with (2.24) it follows from Ja­

cobi identity that all these quantities have vanishing Poisson-Dirac brack­

ets with the Hamiltonian, and therefore are constants of motion. 

To find all symmetries, including the nongeneric ones, we search for all 

functions :T(x, II, 'If;) which commute with the Hamiltonian: 

{H, J'} = 0, (2.27) 
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With the Poisson-Dirac brackets (2.18) it gives 

(2.28) 

Obviously, the second term vanishes identically when :J depends on the 

covariant momentum only via the Hamiltonian: :J(x, IT, 'lj;) = :J(x, H, 'l/J). 

Then (2.28) simplifies to 

(2.29) 

The power series of :J(x, IT, 'l/J) in the covariant momentum: 

(2.30) 

satisfies (2.28) for arbitrary IIµ if and only if the components of :J satisfy 

the generalized Killing equations [40, 41]: 

(2.31) 

where the parentheses denote full symmetrization with norm one over the 

indices enclosed. 

Furthermore, any constant of motion :J satisfies 
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(2.32) 

in which the curvature term contains three contractions with the anticom­

muting spin variables. Then, in combination with the Bianchi identity: 

R[µvA]K = 0, (2.32) reduces to 

(2.33) 

In particular, with :T = Q it results the conventional SUSY algebra 

{Q, Q} = -2iH. (2.34) 

It follows, from this result, with the Jacobi identity for 2 Q's and any 

constant of motion .J, that 

(2.35) 

is a superinvariant and hence a constant of motion as well: 

{Q, 8} = 0, {H,8}=0. (2.36) 

This shows that constants of motion generally come in supermultiplets 

(3", 8), the prime example of which is the multiplet (Q, H) itself. How­

ever, there is an exception to this result, namely, the constants of motion 
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whose bracket with the supercharge vanishes (8 = O), but which are not 

themselves obtained from the bracket of Q with another constant of mo­

tion. 

Equation (2.33) states that a superinvariant is a solution of the equation 

{ Q, J} = - ( ,j, · DJ+ i II · ~~) = 0. (2.37) 

Let us expand the coefficient J(n)µi • .. µn(x, 'If;) of the series (2.30) in powers 

of 'lj;a: 

(2.38) 

where j(m,n) is completely anti-symmetric in the m lower indices { ai}, 

while it is completely symmetric in the n upper indices {µk}. Then the 

power series (2.30) for .:J becomes 

(2.39) 

and the component equation takes the form 

(2.40) 

where Da = eµ aDµ are ordinary covariant derivatives. Square brackets de­

note full antisymmetrization, parentheses denote full symmetrization over 

the indices enclosed, all with unit weight. In particular, with m = 0 (2.40) 
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gives 

(2.41) 

These equations represent a square root of the generalized Killing equa­

tions, in a certain sense, and only provide sufficient, not necessary con­

ditions for obtaining solutions. Nevertheless, at least one component of 

each supermultiplet ( singlet or non-singlet) is a solution of equation (2.37). 

First finding 8 one can then try to reconstruct the corresponding J by 

solving (2.35). 

Equations (2.40) partly solve only that part of j(m+l,n-l) (in terms of 

j(m-l,n)) which is symmetrized in one flat index and all (n -1) curved in­

dices. On the contrary, (2.40) do not automatically imply that j(m+l,n-l) 

is completely antisymmetric in the first (m + 1) indices. If that condition 

is imposed on (2.40), one finds the part of j(m+l,n-l) which is antisym­

metrized in one curved index and all ( m + 1) flat indices. This set of 

equations are precisely the generalized Killing equations for that part of 

j(m+l,n-l) which was not given in terms of j(m-l,n)), and which should still 

be solved for. 

Thus equations (2.40) evidently have advantages over the generalized 

Killing equations (2.31). The constant of motion corresponding to a Killing 

tensor of rank n: 

(2.42) 
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can be obtained by solving the complicated hierarchy of partial differential 

equations (2.31) for (J(n-l), • • •, J(o)) and adding the terms, as in expres-
. (2 30) If ;(m n)µi ... µ s10n • • J a1 ·-'·am n be a solution of 

(2.43) 

one can then generate at least part of the components Jlr;!::;/::~;;_-a.)µi .. ,µn-a 
for o: = 1, · · · , n by mere differentiation. The corresponding constant of 

motion is obtained from (2.39). 

It follows from (2.35) and (2.36) that the Poisson-Dirac bracket with 

Q defines a nilpotent operation in the space of constants of motion. So, 

the supersinglets span the cohomology of the supercharge and the super­

multiplets (J, 8) form pairs of Q-exact and Q-coexact forms; Then the 

solutions of (2.37) correspond to the Q-closed forms. 

2.5 Nongeneric Supersymmetries 

The constants of motion J generate infinitesimal transformations of the 

coordinates: 

(2.44) 

which leave the equations of motion invariant. Here 80: is the infinitesi­

. mal parameter of the transformation. For example, the action as defined 

by L in (2.4) remains invariant under the generic symmetries, such as 

40 



2.5. NONGENERIC SUPERSYMMETRIES CHAPTER 2. 

supersymmetry: 

(2.45) 

the infinitesimal parameter E being Grassmann-odd of the transformation. 

We now look for other (non-generic) SUSY s that the theory might ad­

mit. Such SUSY s are of the type 

(2.46) 

generated by a phase-space function Qr: 

(2.47) 

where J(O,l)(x, 'lj;) are independent of IT. If this ansatz is inserted into the 

generalized Killing equations (2.31), it then follows that 

(2.48) 

where the tensors f µ a and Cabe satisfy the conditions 

(2.49) 
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If there exist N such symmetries specified by N sets of tensors (ff a' Ciabc), 

i = 1, · · · , N, the corresponding generators will be 

(2.51) 

Evidently, if Jµ a = eµ a and Cabe= 0, the supercharge (2.23) is precisely of 

this form. It is, therefore, convenient to refer to the quantities defining the 

standard SUSY by assigning them the index i = 0: Q = Qo, eµ a = JI{' a, 

etc. 

The covariant form (2.18) of the Poisson-Dirac brackets gives the fol­

lowing algebra for the conserved charges Qi: 

(2.52) 

where 

l µv IµII G Zii = 2Ki1 IIµIlv + ij µ + ij, (2.53) 

and 
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(2.54) 

lfµc 1 µc ) +2 i Cjabc + 2Jj Gabe , (2.55) 

(2.56) 

Here Kij µv is a symmetric Killing tensor of second rank: 

(2.57) 

while It is the corresponding Killing vector: 

(2.58) 

and Gij the corresponding Killing scalar: 

1 a b,,J,C,,J,dD G - 1. ,,J,a,,J,bR J,\ 
VµGij = - 4'¢ 'lp 'I-' 'I-' µ ijabcd - 21 '1-' 'I-' ab>.µ ij· (2.59) 
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Since the functions Zij satisfy the generalized Killing equations, their 

brackets with the Hamiltonian vanish and they are constants of motion: 

dZ· · d;1 = 0. (2.60) 

In particular, when i = j = 0, (2.52) reduces to the usual SUSY algebra 

{Q, Q} = -2iH, (2.61) 

with H the Hamiltonian. If i or j is not equal to zero, Zij correspond to 

new bosonic symmetries, unless Ktv = A(ij)gµv, with A(ij) a constant (may 

be zero). In such case the corresponding Killing vector It and Killing 

scalar Gij vanish identically. Moreover, the supercharges for A(ij) =/= 0 

close on the Hamiltonian. This proves the existence of a second SUSY of 

the standard type. Then the theory admits an N-extended SUSY with 

N > 2. Further, if there exists a second independent Killing tensor Kµv 

not proportional to gµv, there exists a new type of SUSY. 

The quantity Qi is a superinvariant, { Qi, Q} = 0, for the bracket (2.18), 

if and only if, 

K µv _ fµ eva + fv eµa 
Oi - a a · (2.62) 

Then the full constants of motion Zij can be constructed directly by re­

peated differentiation of fµa· By construction the Zij are symmetric in 
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(ij) and hence, we can diagonalize them and obtain the algebra 

(2.63) 

where Zi are N + l conserved bosonic charges of which the first one is the 

Hamiltonian: Z0 = H. 

2.6 !-symbols and their Properties 

In this section we describe the properties of the quantities fµa· . For conve­

nience we introduce the second rank tensor 

(2.64) 

and refer it as the !-symbol. In refs.(62, 64] the antisymmetric !-symbols 

and their corresponding Killing-tensors: Kµv have extensively been stud­

ied in the related context of finding solutions of the Dirac-equation in 

nontrivial curved space-time. 

Equation (2.49) with (2.64) gives 

(2.65) 

The f-symbol is divergence-less on its first index: 

(2.66) 
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Equation (2.65) gives on contraction 

(2.67) 

Then the divergence on the second index vanishes if and only if the trace 

of the !-symbol is constant: 

(2.68) 

The metric tensor gµv is a trivial solution of (2.65); so, if the trace is con­

stant, it maybe subtracted from the !-symbol without destroying condi­

tion (2.65). Then the constant may always be taken equal to zero without 

loss of generality and hence f is traceless. 

From (2.54), with ft a= eva, the symmetric part of the i-th !-symbol 

is the tensor 

(2.69) 

satisfying the generalized Killing equation 

(2.70) 

The anti-symmetric part can also be constructed as 
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(2.71) 

which satisfies the condition 

(2.72) 

If the symmetric part does not vanish and is not covariantly constant, it 

then follows that the anti-symmetric part Bµv by itself is not a solution of 

(2.65). However, the same token does not lead to vanish the antisymmetric 

part of f. Therefore, f is completely symmetric only if it is covariantly 

constant. 

The considerably interesting case is that in which the !-symbol is com­

pletely antisymmetric: Jµv = Bµv• The condition (2.62) is precisely this 

case for the supercharge Qr to anti-commute with ordinary supersymme­

try in the sense of Poisson-Dirac brackets. Equation (2.68) is also satisfied 

automatically in this case. 

If the symmetric part of a certain Jiµv vanishes: 

(2.73) 

then the corresponding Killing vector Ifo and the Killing scalar GiO vanish 

as well. As a result, the complete ZiO = 0 for this particular i and Qi is 

superinvariant, since then 
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(2.74) 

These assertions can be proved as follows. Equation (2.65) for antisym­

metric f µv gives 

(2.75) 

Since Bµv is antisymmetric, it follows that the gradient is completely an­

tisymmetric: 

(2.76) 

Commuting the second covariant derivative of Jµv and applying (2.65), 

one can derive the identity 

(2.77) 

For antisymmetric f µv this gives 

(2. 78) 

Comparing with (2.50) one can find 
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(2.79) 

modulo a covariantly constant term. This result with n = 1, m = 2 is an 

example of (2.40). Since one only needs a particular solution of (2.50) to 

construct a constant of motion, the covariantly constant term can always 

be chosen to vanish. 

If a covariantly constant three-index tensor Cabe exists, then it always 

gives another symmetry corresponding to the Killing vector 

I 
1 ,,/,a,,1,b e 

µ = 21// If/ eµ Cabe· (2.80) 

More precisely, DµCabe = 0 implies that 

(2.81) 

and the generalized Killing equation is automatically satisfied for Iµ- Hence 

we are free to add the term with Cabe to the supercharge. However, it is 

not required, since both terms are conserved separately. 

According to (2.73), Kt{'(= 0, and since Coabe = 0 identically, the right­

hand side of (2.55) becomes 

(2.82) 

where the last equality follows from (2.79). Using the cyclic Bianchi iden-
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tity for the Riemann tensor Rµv>."' and the vanishing of at least one of 

the three-index tensors: Coabc = 0, it results that the Killing scalar GiO 

vanishes. Thus assertion (2.74) is proved. 

The analysis presented in this chapter shows, that Killing-Yano tensors 

belong to a larger class of possible structures which generate generalized 

supersymmetry algebras. 
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Chapter 3 

Motion of Spinning Particles 
in de Sitter Spacetime 

3.1 Introduction 

In this chapter we investigate the motion of pseudo-classical spinning par­

ticles in the purely de Sitter ( dS) spacetime and asymptotically dS black 

hole spacetime such as the Schwarzschild-de Sitter (SdS) spacetime. These 

are the maximally symmetric solutions of the Einstein's field equations 

with positive cosmological constant, having line elements 

with V(r) N ¼s(r) = 1 - fi~ for dS spacetime and V(r) N Vscts(r) = 
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1- ~ - ;: for SdS spacetime, where /3 = J3Ti,.. is the curvature radius of 

dS spacetime (for an observer located at T = O) and a = 2M, M being 

the total mass of SdS spacetime. The coordinate variables have the usual 

ranges: -oo < t < +oo, r > 0, 0 < 0 < 1r, and O < cp < 21r. At large T, the 

SdS spacetime tends to the dS space limit. The explicit dS case is obtained 

from SdS spacetime by setting M = 0 while the explicit Schwarzschild case 

is obtained by setting A = 0. Just like the Schwarzschild metric inside its 

horizon, the dS metric outside its horizon is non-static. 

For O < M < Mn = /3 / ../27, there exist two positive zeros of Vsds ( T) 

at Th= (-2/3/\1'3) cos[(A + 1r)/3] and Tc= (2/3/\/'3) cos(A/3) > Th, where 

7r /2 < A < 1r, A = arccos[-(27 M 2 
/ /32)½]. They are associated with the 

black hole event and cosmological horizons, respectively. For M = Mn 

both horizons coalesce and it then results the Nariai solution [124], which 

represents the largest black hole one can have in dS spacetime. For M < 0 

the black hole disappears, and the spacetime describe a naked singularity 

in T = 0 surrounded by a cosmological horizon. Finally, there is no static 

region for M > Mn and the solution in this case is asymptotically dS only 

in the far past. Hence, one has to discard the solutions with M > Mn, if 

one wants to consider only spacetimes that approach dS in both past and 

future. 

Our work of analyzing the motion of pseudo-classical spinning point 

particles in this chapter may be interesting in view of the inflationary 

scenario of the universe. 

The plane of this chapter is as follows. In section 3.2 we find the 

vectors and Killing scalars for the dS /SdS spacetime. The constants of 
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motion are derived. In section 3.3 we consider the motion in a plane and 

analyze specific solutions. The perihelion precession is also discussed. In 

section 3.4 we present our concluding remarks. 

3.2 Spinning Particles in dS /SdS Spacetime 

In this section we apply the formalisms described in chapters 1 and 2 to 

investigate the geodesic motion of spinning particles in the spacetimes de­

scribed by the metric (3.1). This metric possesses four Killing vector fields 

of the form 

where 

"'=0 ... 3 
\...(. ' ' ' 

8 8 
D(l) = - sin c.p 

80 
- cot 0 COS c.p 

8
c.p, 

8 . 8 n(2) = cos c.p- - cot 0 sm c.p-, 
80 8c.p 

D (3) = ~ 
8c.p. 

(3.2) 

(3.3) 

These Killing vector fields describe the time-translation invariance and 

the spatial rotation symmetry of the field and generate the Lie algebra 

0(1, 1) x S0(3): 

[D(i), D(j)] = -f;ijk n(k), [D(o), n(i)] = o, (i, i, k = 1, 2, 3). (3.4) 
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The first generalized Killing equation of (1.33) shows that for each Killing 

vector R~o:) there is an associated Killing scalar B(0 ), which is necessary 

to obtain the constants of motion: 

(3.5) 

This asserts that the contribution of spin is contained in the Killing scalars 

B(a) and the Killing vector itself does not give a conserved quantity of 

motion without the Killing scalars. For the spacetime of (3.1) we obtain 

the the Killing scalars 

B(l) = -r sin cpSr0 - r sin 0 cos 0 cos cpSrcp + r 2 sin2 0 cos cpS6cp, 

B(2) = r cos cpSr0 - r sin 0 cos 0 sin cpSrcp + r 2 sin2 0 sin cpS6cp, 

B(3) = r sin 2 0 srcp + r 2 sin 0 cos 0 S0cp. 

The four conserved quantities J(a) are found as follows: 

j(O) = E = mv!! + B(0
), 
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J (l) B(l) 2 ( . d0 dcp) = - mr sm cp- + sin 0 cos 0 cos cr,-
dr ..,., dr ' 

J (2) B(2) 2 ( d0 . . dcp) = + mr cos cp- - sm 0 cos 0 sm cp- , 
dr dr 

(3.7) 

In addition to these conserved quantities, there are four generic constants 

of motion as described in chapter 1, given by equations (1.38), (1.41), 

(1.43) and (1.44). We consider motion for H = -m2 /2, which yields 

geodesic motion: gµvdxµdxv = -dr2• The condition for the absence of an 

intrinsic electric dipole moment of physical fermions (leptons and quarks) 

as formulated in (1.15) gives the supersymmetric constraint Q = 0, which 

gives 'lj;t in terms of the spatial components 'lj;i: 

and as a result, the dual supercharge Q* and the chiral charge r* vanish 

as well: Q* = r * = 0. The independent linear combination of J(l) and 

J(2) given by 

r2 sin 0S8'P = J(l) sin 0 cos cp + 1(2
) sin 0 sin cp + J(

3
) cos 0, (3.9) 

implies that there is only the spin angular momentum in the radial direc-
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tion. 

One can now obtain a complete set of first integrals of motion for phys­

ical fermions, expressing the velocities as functions of the co-ordinates, the 

spatial spin components and the constants of motion: 

de = _l_ (-1(1) sin '-P + 1(2) cos cp - rSr0) , 
dr mr2 

dcp 1 j(3) - __!__ 3rcp - ~ cot 0 S 8'P, 

dr mr2 sin2 0 mr m 
(3.10) 

where 

(3.11) 

Finally, (1.13) gives equations for the rate of change of the spins. The 

equations which are left for solution are 

dsr0 1 dr dcp r . 2 0 d0 30cp 
_ ___ 3r8 + sin0cos0-S cp - rsm - , 

dr - rdr dr dr 
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dSrcp dcp ( 1 dr d0) d0 -d-=cote-sro_ --+cot0- 3rcp+r-S6cp, (3.12) 
T dT rdT dT dT 

where S8cp is given by (3.9). Equations (3.10)-(3.12) have to be integrated 

for the full solution of the equations of motion for all coordinates and 

spins. 

3.3 Special Solutions 

We solve the equations obtained in section 3.2 for the special case of motion 

in a plane with 0 = 1r /2. In contrast to scalar point particles, this is not 

the generic case. Because orbital angular momentum is not separately 

conserved in general. Planar motion for spinning particles occurs only in 

two kinds of situations. One possibility is radial motion, for which cp = 0. 

This case indicates that there is no orbital angular momentum and spin is 

conserved independently. The other possibility concerns motion for which 

cp =/= 0. This case happens if spin and orbital angular momentum are 

parallel. 

Equations (3.10)-(3.12), with 0 = 1r /2 and iJ = 0, are written as 

dt 
dT 

dr 
dr 
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d<p 
~j(3) - _I_3rip 

dr 
-

mr2 mr ' 

~ (rSrB) - -r' ( V - '.':: dV) se,pd'P 
dr 2 dr dr' 

~ (rsr<p) 
dr 

0. (3.13) 

The third and the last parts of (3.13) describe that the orbital angular 

momentum and the component of the spin perpendicular to the plane in 

which the particle moves, are separately conserved: 

(3.14) 

where "£, and L are two constants. The first of (3.13) gives a formula for 

the gravitational redshift in the form 

dt = dr ( E + I dV L"Ei) ' 
V m 2mEr dr 

(3.15) 

which shows that the time-dilation receives a contribution from spin-orbit 

coupling for nonzero orbital angular momentum L. Hence, time-dilation is 

not a purely geometric effect, but also has a dynamical component. 

Equations (3.9), third of (3.10), and fourth of (3.13) with 0 = 1r/2 yield 

indeed only two possibilities for the planar motion: 

(i)<p=O, ( ii) S9
'P = 0. (3.16) 
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The first possibility cp = 0 implies that L = O, that is, the particle moves 

along a fixed radius. The motion of the particle for a distant observer is 

described by 

dr V 
- = -J(E2 - m 2V) 
dt E (3.17) 

as in the case of a spinless particle. Along the path of the particle with 

c.p = 0, the spin tensor components are all conserved: 

(3.18) 

The second possibility cp # 0 gives 

(3.19) 

which states that the spin is parallel to the orbital angular momentum. 

Equation (3.13) for r and cp give the following equation for the orbit of 

the particle: 

1 ( dr) 
2 

r 2 dc.p 
E2 - m2 r2 -1- mr2dV (mr + J(3)) 

£2 L dr L mr 

( 
dV) ( m

2
r

2
) + 1 - V - r dr l + ~ · (3.20) 
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3.3.1 Spinning Particles in dS Spacetime 

We now consider the particle in the dS spacetime. Taking V(r) t--+ Vds(r) = 
1 - ;: , the equation (3.20) for the orbit of the particle becomes 

1 (dr)
2 

E
2 

- m
2 

2 2mr
3 

r2 di.{) = L2 r - l - 132 L 

X -+- +- 1+-- . (
mr J(3

)) 3r2 ( m
2
r
2
) . 

L mr {32 L2 

In terms of the dimensionless quantities 

E 
E= -, 

m 

(3.21) can be written as 

L 
l=­

m/3' 

l
2 

( dx) 2 
2 . 2 2 U ( z2) - -- = /3 X = E - R X, , 

x4 dcp 

where 

defines an effective potential. 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

All of the manipulations presented here are rather formal, as D.. is not 

a pure number but a bilinear combination of anti-commuting variables 
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'lj;µ. In order to analyze possible motions of the spinning particle based on 

(3.23) one needs to replace ~ in certain limiting cases by a real number. 

As mentioned in the Introduction of this thesis, such a limit might arise 

in the semi-classical regime of the quantum theory, as implied by the 

correspondence principle. Henceforth we assume that such a numerical 

value of b.. has been derived and leads to valid results, at least in expansions 

to first order in b.. with the fact that b.. 2 = O plays no role. 

Equation (3.23) is the same as one would find for a one-dimensional 

problem with a potential UR(x, l2) which produces a radial force 

(3.25) 

This is the effective force that the three-dimensional particle feels in the 

radial direction, including a contribution from the centripetal acceleration. 

The radial kinetic energy is non-negative, hence the right-hand side of 

(3.23) must be non-negative as well. 

Since au R/ ax < 0 the approaching particle is subject to an repulsive 

effective force. Particles with energy exceeding [U R]x=I = 2l2 b.. pass the 

horizon, but they stream away from the center instead of reaching it. We 

note that this is different from the spinless particle case. The orbit of the 

particle is given by 

(3.26) 
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where 
1 - 2 

, = 1- 2~ - E z2 , 
1 

U=­
x' 

and obviously, it contains terms contr1'buted b t· 1 ' · y par 1c e s spin. 

The scattering angle of the particle can be calculated from (3.23) [42] . 

Considering l2 is small and E2 - 1 is large, such that 

and defining 

we obtain 

where 

(du) 2 
8

2 
2 _ dcp =l+,+u2 -u =-W(u,8, 1 ), 

l 
8 = 2 1' 

E -

(3.27) 

(3.28) 

(3.29) 

(3.30) 

are constants of motion. In the limit of vanishing,, the solution of (3.29) 

gives the classical orbit. By expanding to first order in,, small relativistic 

correction can be calculated. The scattering angle 8 is given by 
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(3.31) 

In the perihelion dx / dcp = 0, and hence xph is one of the roots of 

(3.32) 

which has four roots, x1, x 2, x 3 , Xph, two of them are imaginary, one is 

negative and the remaining one is positive. The negative or imaginary 

roots are not realistic. These roots correspond to the four zeros u1, u2, u3, 

Uph of W( u, 5, ,), defined by (3.29). 

The integral in (3.31) can be written in the form 

(3.33) 

with u 1, u2 , u3 and Uph given by 

1 

Uph = G(l +1) + ~✓(1 + 7)2 + 402)' 

. 1 

u, = - G(l+ ,i + ~✓(1+ ,i2 + 4o2)', 

1 

u2 = i G✓(l + 7)2 + 402 - ~(1+ 1))'' 
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(3.34) 

Expanding the factors to first d · d · · . · or er m , an performmg mtegrat10n, we 
obtain 

e 1r - 2 arcsin --- 1 [ 
2 + 515

2 
( 3 _ 415

2 
) l 

2 + 482 + 2 + 1082 ' 

(3.35) 

The limit , ➔ 0 gives the result for the classical particle. The spin 

of particle contributes to this value a small relativistic corrections only 

if the coefficients of terms of 0( 1 8
) for s > 1 do not blow-up due to 

their dependence on 15. One can check that terms of the expansion (3.35) 

converges under the condition (3.27) . 

3.3.2 Spinning Particles in SdS Spacetime 

The pseudo-classical spinning particles' motion in the SdS spacetime was 

investigated in (125], which contains a mistake in the expression for the 

effective potential UR· In this section we review this work with the correct 

form of UR. 
For V(r) ~ Vsds(r) = 1- ~ - ;:, the equation (3.20) for the orbit of 

the spinning particle in SdS spacetime takes the form 
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(3.36) 

With the dimensionless quantities 

E T l = _!:_ E=- x=-
' ' ' m Th mTh 

~=~ ).. = p_ a (3.37) 
L' ' 'T/ = -, 

Th Th 

(3.36) can be written as 

(3.38) 

where 

(3.39) 

defines an effective potential. In [125] the dimensional variables were de­

fined by using a instead of Th and there were two extra terms (x-term and 
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x3-term) inserted in the expression of UR. As 7/ -+ O, ,\ -+ 1 and rh is 

replaced by re = (3, (3.38) and (3.39) reduce to the dS case (3.23) and 

(3.24). 

When E > 1 there exist open orbits for which there is at most one point 

of closest approach, the perihelion. The particle can cross into the central 

region of the potential (x < 1), if the energy exceeds some critical value 

Ecrit = t:(xm) for fixed l, Xm being a minimum point of UR· 

For E < 1 there are bound states that correspond to quasi-elliptic and 

circular orbits. With 

(3.40) 

there exists a circular orbit at the point of infection of UR(x, l2
, >-2 , 71) with 

minimum radius Xcrit given by 

(3.41) 

The energy for this critical orbit is given by 

1 1 l --2- + 'TJ(l + ~)-3- , (3.42) 
xcrit xcrit 

while the time-dilation factor is expressed by 
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( dt) = 1 [ z2 l:::i ( 'T/ 2 ) ] dT . 1 - X . _ 2 2 Ecrit + -- - 3- - 2 · 
cnt ( 'TJ/ cnt Xcrit/ >. ) 2Ecrit Xcrit >. 

(3.43) 

If one imposes the limit .X ➔ oo, the results exactly reduce to the 

Schwarzschild spacetime case [42] in which the radius of the minimal cir­

cular orbit is 

Xcrit = [2 = 3(1 + /::i), (3.44) 

and the energy and the time-dilation for this orbit are respectively given by 

1 
Ecrit = 9(8 + l:::i), (3.45) 

to first order in /::i. 

We now discuss the quasi-elliptic orbits. In the case of non-circular 

motion the perihelion of the orbit precesses as for a spinless particle, but 

at a different rate. 

The orbits approaching the precessing ellipses are described by 

X = 1 + e COS [ cp - W ( cp) )' (3.46) 

where K, = k/rh, k being the semilatus rectum and e the eccentricity with 

O < e < 1. The perihelion and aphelion are defined by 
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(n) ( (n)) 
'Pph - W 'Pph = 2n1r, (3.47) 

The particle reaches its n-th perihelion at the angle cp~~ and the amount 

of precession of the perihelion after n revolutions is given by w(cp~0
)). For 

example, the precession of the perihelion after one revolution is found to be 

~W = w(1n(l)) - w(1n(O)) = 1n(l) - 1n(O) - 27r = ~1n - 27r 
- rph rph rah rah - r · (3.48) 

The energy Eis a constant of motion and its value at the perihelion/ aphelion 

is given by 

e2 = 1 - ; 2 [ ( 1 : J + 12 
(1 - 2~)] - ry (1 ! e) 

+12 (1 ! e y _ ry/2(1+ ~) (1 ! er 

From comparison of both expressions for E2
, it follows that 

Defining 
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(3.51) 

substituting (3.46) for x, using (3.49) and (3.50), (3.38) can be put in the 

form 

where 

d<p = (:) sin y~l + e cos y)dy, 

I: c;.(ecosyy 
r=O 
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1 ( "' ) 
2 

( 1 + e) 
>.2 1 + e + 77 -"'- · 

In the limit >. ---+ oo this equation gives 

(3.53) 

the Schwarzschild result (42], which gives for b..r.p as defined in (3.48) on 

integration from one perihelion to the next one with O < y < 21r the result 

(3.54) 
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For equation (3.52) we find 

x (F - 6F2)]e2 + :~:} + · · ·] , (3.55) 

where es are such that Co = 6(1 + 6F), C1 = 6(1 + '4F) and C2 

,s(l + ~6F) . As ,\ ➔ oo, (3.55) reduces to 

~cp = 21r 1 + - -- + -(32 + Se2) -- + ... [ 3 (1+~) 27 (1+~) 2 
] 

2 K 256 K ' 
(3.56) 

which is similar with the result in (3.54) and gives exactly the same result 

if we discard terms second and higher orders in (1~b..). The second term in 

the expansion with~= 0 is the well-known contribution to the relativistic 

precession of the perihelion. We observe that in principle the spin of a 

particle contributes to this lowest-order precession, if terms of first order 

in ~ are retained. 
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3.4 Concluding Remarks 

This study mainly concerns the investigation of spinning point particle's 

motion in the purely de Sitter and asymptotically de Sitter Schwarzschild 

spacetimes by using pseudo-classical mechanics models. In these models 

spinning spaces are graded extensions of ordinary Riemannian manifolds, 

with additional fermionic dimensions characterized by vectorial Grass­

mann coordinates 'lj;µ . The spin of the particle is described by the an­

tisymmetric spin-tensor 3µv = -i'lj;µ'lj;v. 

The model we have used is very simple and describes a classical limit 

of the Dirac equation. Even though there is no satisfactory quantum 

theory for gravitational interaction, this study is justified and not at all 

trivial. The results of this chapter can be used to investigate the aspects 

of the motion of fermions such as electrons or, possibly, massive neutrinos 

( or photinos, gravitinos, etc.) in an empty de Sitter and asymptotically 

de Sitter Schwarzschild spacetimes. These aspects include the spin-orbit 

coupling and the corresponding fine splitting, resulting from dependence 

of the energy on the values and relative orientation of the orbital and spin 

angular momentum. Our study shows that the time dilation, perihelion 

precession for bound-state orbits, and the scattering of particles in the de 

Sitter/ asymptotically de Sitter spacetime receive contributions from spin. 

This leads to the existence of a gravitational analogue of the Stern-Gerlach­

type forces well known to appear in electromagnetic phenomena. This 

spin-dependent contribution can be larger or smaller than for a spinless 

particle according as the sign of b... ( defined in (3.22)), i.e. the relative 

orientation of L and ~- This is interpreted as a classical analogue of fine 
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splitting. Although an a priori numerical value for the ratio ~ cannot be 

assigned, its appearance still allows the pseudo-classical theory to make 

quantitative predictions by comparing different physical processes in the 

regime where the semi-classical limit applies. 

The equations of motion (1.8) and (1.9) remain valid if averaged in­

side a functional integral with the exponential of the action (1.3) in the 

integrand, that is, when 5µv = -i'lj;µ'lj;v is replaced by its quantum me­

chanical expectation value (Sµv). This permits to consider our results as 

a semiclassical approximation to the quantum Dirac theory, and provides 

a procedure to evaluate numerically the components of the spin tensor 

(at least in principle). However, since (Sµv) 2 f ((Sµv)2) in general, this 

approximation can only hold to first order in the spin. 

The results obtained for the Schwarzschild-de Sitter spacetime reduce to 

that of the Schwarzschild spacetime [42] for the vanishing of the cosmologi­

cal constant, A = 0. As the gravitating mass M ➔ 0 the Schwarzschild-de 

Sitter spacetime becomes the pure de Sitter spacetime and the results then 

correspond to that of the resulting de Sitter spacetime. 

In recent years some important progresses have been achieved in the 

astronomical observations [126, 127], which have led to the surprising con­

clusion that the recent universe is dominated by a "dark" exotic form of 

energy density that acts repulsively at large scales. The simplest and best 

known candidate for the "dark energy" is the cosmological constant. In 

this scenario the de Sitter geometry [74, 75, 76] appears to take the double 

role of reference geometry of the universe, namely the geometry of space­

time deprived of its matter and radiation content and of geometry that the 
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universe approaches asymptotically. This spacetime is of great theoretical 

as well as cosmological interest. In this view the study of the de Sitter 

geometry of the graded pseudo-manifolds with both real number { xµ} and 

anticommuting variables { 'If;µ} is well motivated. 
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Chapter 4 

Geodesic Motions in Euclidean 
Taub-NUT Spinning Spaces 

4.1 Introduction 

In this chapter we investigate the geodesic motion of the pseudo-classical 

spin-½ point particle in the geometry of Euclidean Taub-NUT (ETN) (80) . 

The ETN manifold M4 is a 4-dimensional Kaluza-Klein space which has 

static charts with the Cartesian coordinates xµ (µ = l , 2, 3, 4). Here, xi 

(i = 1, 2, 3) are the physical Cartesian space coordinates and x 4 is the 

Cartesian extra-coordinate. Using the usual three-dimensional vector no­

tations, x = (x1, x2, x3), r = lxl and dl2 = dx · dx, the line element can 

be put in the form 
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ds
2 

= f(r)dl2 + f~r) [dx4 + A;(x)dx'] 2
, 

where 

f(r)=l+µ, 
r 

µ x2 
A1 =---­

r r + x3 ' 

µ Xl 
A2=--­

r r + x3 ' 

CHAPTER 4. 

(4.1) 

(4.2) 

µ being a real parameter. If A is interpreted as the gauge field of a 

monopole, it results the magnetic field with central symmetry · 

(4.3) 

In the chart of spherical coordinates (r, 0, cp, 'l/J) where r, 0, cp are com­

monly related to the physical Cartesian ones xi, the apparent singularity 

at the origin is unphysical if x4 is periodic with period 41rµ [128, 129, 130, 

131, 132]. As a result, the fourth coordinate 'lj; is defined such that 

x4 = -µ('lj; + cp). (4.4) 

This chart covers the domain where r > 0 forµ> 0 or r > lµI forµ< 0, 

the angular coordinates 0, cp cover the sphere S2 and O < '!/J < 41r. Since 

Ar = Ao = O, Aip = µ(1 - cos 0), with µ = 2m the line element can be put 

in the form 
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where 

2m 
f(r) = l +-, 

r 
4m2 

g(r) = l + f (r) . 

CHAPTER 4. 

(4.6) 

The organization of the chapter is as follows. In section 4.2 we inves­

tigate the motion of pseudo-classical spinning particles in the Euclidean 

Taub-NUT space. We examine the generalized Killing equations for this 

spinning space and derive the constants of motion in terms of the Killing­

Yano tensors. In section 4.3 we solve the equations derived in section 4.2 

for special case of motion on a cone and on a plane. Finally, in section 4.4 

we present our concluding remarks. 

4.2 Motion in Euclidean Taub-NUT Spinning Space 

We use the formalisms described in chapters 1 and 2 for the pseudo­

classical spinning point particles in curved spacetime and investigate the 

motion in the ETN space with the metric ( 4.5). The invariance of the met­

ric under spatial rotations and translations is generated by four Killing 

vectors [128, 130] 

a= 0,···,3 µ = (r, 0, cp, 'I/;), (4.7) 
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where 

R(O) = (0 0 0 1) 
' ' ' ' R(l) = (0, -sincp, -cot0coscp, csc0coscp), 

(4.8) 

R(
2
) = (0, cos cp, - cot 0 sin cp, csc 0 sin cp ), R<3) = (0, 0, 1, 0). 

D(O) , which generates the U(l) of 'l/; translations, commutes with the other 

Killing vectors. The remaining three vectors, corresponding to the invari­

ance of the metric (4.5) under spatial rotations (a = 1, 2, 3), obey an 

SU(2) algebra with 

(4.9) 

This is contrasted with the Schwarzschild space, where the isometry group 

at spacelike infinity is S0(3) x U(l). This demonstrates the essential 

topological character of the magnetic monopole mass [133]. 

These invariances, in the bosonic case, would correspond to the conser­

vation of the so-called "relative electric charge" and the angular momen­

tum [128, 129, 130, 131] : 

q = g(r)(-J; + cos 0cp), ( 4.10) 
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. r 
J = r X p + q-, 

r 
(4.11) 

where p = f (r)r is the mechanical momentum canonically conjugate tor. 

From the first generalized Killing equation of (1.33), it follows that to 

each Killing vector there is associated a Killing scalar. If we limit our­

selves to variations (1.27) that terminate after the terms linear in xµ, the 

corresponding constants of motion would be of the form 

(4.12) 

which asserts that the Killing scalars B(a) contribute to the "relative elec­

tric charge" and the total angular momentum. 

For the Euclidean Taub-NUT metric (4.5), we obtain 

I I g 
g_ 3r1/J + g_ cos 0 srcp - - sin 0 s 0cp' 
2 2 2 

gl g 01/J g . 0 . 3cp1/J 
__ sin 0 cos cpSr'I/J - - cos 0 cos cpS + -2 sm sm cp , 

2 2 

+~(2r f + r 2 J') sin cpSr0 + (2r f + r 2 J' - g') sin 0 cos 0 cos cpSrcp 
2 

+(g + 2fr2 cos2 0) cos r.pS
9

cp, 

79 



4.2. MOTION IN EUCLIDEAN TAUB-NUT SPINNING SPACE CHAPTER 4. 

(4.13) 

where J' = df / dr and g' = dg / dr. Then the conserved total angular mo­

mentum in the spinning space is given by 

:J = B-j, 
(4.14) 

with :J = (J'"(1), J'"(2), J'"(3)) and B = (B(1), B(2), B(3
)). The components of 

:J are as follows: 

J'"(1) = B(1) - r 2 f sin cp0 - r 2 f cos 0 sin 0 cos <pep - q sin 0 cos <p, 

J(2) _ B(2) + r 2 f cos cp0 - r2 f cos 0 sin 0 sin <pep - q sin 0 sin cp, 

J(3) _ B(3) + r 2 f sin2 0cp - q cos 0. 
(4.15) 

We obtain, from ( 4.15), two interesting relations: 

- !(2r f + r2 J')Sr0 2 . 
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g' 
--cos2 0sr'I/J 

2 

CHAPTER 4. 

In addition to the above constants of motion, there are the four universal 

conserved charges described by equations (1.38), (1.41), (1.43) and (1.44) 

in chapter 1. In terms of the notation of this section they are given by 

(i) The energy 

E = ~ fr2 + ~ Jr2(iJ2 + sin2 0cj}) + 
2
1 

q2; (4.18) 
2 2 g 

(ii) The supercharge 

(iii) The chiral charge 

( 4.20) 
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(iv) The dual supercharge 

The equation of motion formulated in (1.9) shows that 'lj;µ is covariantly 

constant, from which we obtain 

( 
g' . g cot 0 ()) ,.J,1/J (2f + r f' 0 . _ .i__ ) ,.1,r 
2g r + 2r2 f o/ + 2r f cos <p 2g2 q o/ 

0 (
g' 2f +rf') .,.,,r.p -cos - - --- ro/ 
2g 2rf 

(
g cot 0 1 ) · "' - cos0 -- - cot0 - -

2 
tan0 0'lj; , 

2r2f 

+ r
2 
f' 

2
~ 2r f (th/l + sin2 0 <jnf,~) , 
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·0 
'I/; 2f + rf' (. 

2r f 0'1/;r + r'ljl) + sin 0 cos 0 cp'lj/P 

sin0 
- 2r 2 f [ ( q + g cos 0 cp) '!/J"' + gcp-ip1/J] , 

'Ip <p g . 2f + rf' 
-- CSC 0 0-ip1P - · '!pr 
2r2 f 2r f <p 

+ Cr; f csc 0 - cot 0 cp) ,t,9 

[2J+rf' . ( g ) ·] - 2r f r + l - 2r2 f cot 0 0 -ip<p. ( 4.22) 

The Taub-NUT geometry admits a conserved vector, analogous to the 

Runge-Lenz vector of the Kepler-type problem [130, 131, 132]: 

where Eis the conserved energy given by (4.18) and K = (K(1), K(2), K(3)). 

The three Stackel-Killing tensors Kt~) (a= 1, 2, 3) are such that D(>,Ki~~ = 

0. 

Four Killing-Yano tensors are found to exist in the Taub-NUT space, 

three of which, denoted by Ii (i = 1, 2, 3), are special because they are 

covariantly constant [73]. In the 2-form notation the explicit expressions 
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for the Ji are given by 

fi - 4m (d'ljJ + cos 0dcp) I\ dxi 

(4.24) 

which obey the quaternion algebra 

(4.25) 

and the corresponding supercharges are 

(4.26) 

The fourth Killing-Yano tensor, which is not trivial and leads to new 

constants of motion, is given in the 2-form notation by 

f y 4m ( d'ljJ + cos 0dcp) /\ dr 

+4r(r + m) ( 1 + 
2
~) sin 0d0 I\ drp. ( 4.27) 
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The field strength contains one independent non-vanishing component, 
given by 

Hr0<p = 2 ( 1 + 
2
~) r sin 0, ( 4.28) 

and the corresponding supercharges have the simple form 

( 4.29) 

It follows that 

( 
3 2 _ ,:r(o)2) 

{ Qy, Qy} = -2i H + m2 . ( 4.30) 

In terms of (4.7), (4.24) and (4.27), the components of the Runge-Lenz 

vector ( 4.23) can be written as follows: 

(4.31) 

Ad ·1 · c0 r the components of the Runge-Lenz vector 'JC in the eta1 express10n 1, 

spinning case is given by (135] 
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( 4.32) 

which satisfies the following Dirac brackets: 

( 4.33) 

The geometrical origin of the nongeneric symmetries generated by the 

Killing-Yano tensors and the Runge-Lenz vector in the Taub-NUT space 

is traced and their algebraic structure is described in (73, 134, 135]. 

4.3 Special Solutions 

In this section we solve the equations derived in the preceding section to 

obtain the full solution of the equations of motion for the usual coordinates 
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xµ, and Grassmann coordinates 'lj;f1-. These equations are quite intricate and 

the general solution is by no means illuminating. Instead of the general 

solution, we investigate special solutions for the motion on a cone and a 

plane. 

4.3.1 Motion on a Cone 

We choose the z-axis along j so that the motion of the particle may con­

veniently be described in terms of polar coordinates 

r = re(0, cp), e = (sin 0 cos cp, sin 0 sin cp, cos 0) . (4.34) 

For this choice of axis, we have 

1 g sin 0 .,. 
iJ = -(2r f + r2 J')Sr0 + 2 Sip.,,' 

2r2J 2r f · 
( 4.35) 

cp 
q g' 5rif; - g 501/J 

r2 J cos 0 2r2 f cos 0 2r2 f sin 0 

+-1-(2r f + r2 J' - g')Srip 
r2J 

(4.36) 

'der iJ - o which solves 5r9 in terms of Stpij;. 
In what follows we consi - ' 

h t r - Q* = O. Then, using (4.22), (4.35) and 
As a result, it follows t a * -
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(4.36), the equations of motion for the spin components other than sre or 

S"''I/J are given by 

S
. 0ip 2 f + r f' . 301/J 

+ rf r 
0, 

(
1_ _ 2f + r !') ,;-s01/J 
2g 2rf 

-~ f 3 (2r f + r2 J') + r2 f g'1 cos 0cpSre 
29 l g 

_ (1- _ 2f + r !') cos 0rS9
'P 

2g 2rf 

_ !(3 cot 0 + tan 0) cos 0cpSre 
2 . 

_ (1- _ 21 + r !') cos 0,;-srip 
2g 2rf 

r2g' 9.,. __ cos2 0cpS 'I', 

2g 

2r f + r2 f' . 2 0 . stp'I/J +__..;;.---Sln cp · 
2f 

(4.37) 
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A particular solution may be cound ·r h .1• B 1
' l l one C ooses 3rcp = 3r.,, = sr = 0, 

in the form 

C (}cp 
30cp = -

r2j 
sew = -I§ cBw + 0 cBcp 

2j cos -2-, 
r r f 

where cBcp and CB'lfJ are Grassmann constants. 

( 4.38) 

The constraint Q = 0 with (4.19) yields that r* = Q* = 0. For the 

spin components, one then can obtain 

( 4.39) 

where p = fr. The condition Q = 0 modifies drastically the form of the 

solutions. In spite of the complexity of the equations, we have a simple 

exact solution for the components of the spin-tensor: 

C(}cp 

3Bcp = -
r2f 

SB7/J = y'g C0'1/J 
r2J . 

For the equations of motion, we obtain 
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[ :2 (!: r + sin
2 e] <p2Jg = (2gE _ q2) u2, 

gu2 
q = .7(0) + - sin 0 C9'P 

2f ' 

<p = '!!__ __ q _ _ 9./§_U2 
C07fJ + 2f cos2 0 + gu2 C0cp 

2 [ . 

f cos 0 2f sm 0 f sin 0 cos 0 ] ' 
(4.41) 

where u = I/r. 

4.3.2 Motion on a Plane 

As we know, the orbital angular momentum for scalar particles is always 

conserved, but this is not true for spinning particles. For the latter case 

only the total angular momentum is a constant of motion. Hence, planar 

motion for spinning particles happens only in two kinds of situations: (i) 

the orbital angular momentum vanishes, or (ii) spin and orbital angular 

momentum are parallel. We consider the plane 0 = 1r /2 and discuss the 

cases separately. From ( 4.35) and ( 4.36) we obtain 

S ro _ _ g 3cp7/J 
- 2rf + r2f' ' 

(4.42) 
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Then the equations of moti £ th · on or e spm components take the following 
form: 

srep + f + r f' ·srep 
rf r 0, 

seep+ 2f + r f' •seep 
rf r 0, 

8e7/J _ (i_ _ 2f + r f') rSe7/J 
2g 2rf O, 

2r f + r 2 f' . Sep7/J 
2f cp . ( 4.43) 

Case {i). The solution describes a particle moving along a fixed radius, 

for which cp = 0. We obtain the solution 

crep 
srep _ -

- rf' 

S e7/J = ..jg CeV' 
r2J ' 

Ceep 
seep= -

r2 f' 

The SUSY constraint Q = O gives a nenule spin component 

ceep 
Seep_ -

- 2 ' rf 
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and consequently, the orbit of the particle is described by 

gC0"' 
q = '7(0) + --

v 2 r2 f. (4.46) 

Case {ii}. The concerned motion is for <j> -j. 0, and if one chooses 

3cp1/J = 0, the solution to the equations of motion for the spin components, 

(4.43), is just as given in (4.44). Interestingly, Q = 0 implies even in this 

case a spin component nenule: S8'P = <:;:;. Subsequently, for the orbit of 

the particle, we obtain 

1 ( du) 2 
. 2 ( 2) 2 - - cp Jg= 2gE-q u, 

u2 d<p 

. - u2 .7(3) (1 - gu2 C0cp)-l 
<p - f 2qf ' 

gu2 
_ '7(o) + -C0"' 

q - v 2j ' 
( 4.47) 

where u = 1/r. 
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4.4 Concluding Remarks 

Our main concern of this study has been the geodesic motion of pseudo­

classical Dirac fermions in the four-dimensional Euclidean Taub-NUT space. 

The supersymmetric extension of the Taub-NUT geometry admits fermionic 

symmetries along with four standard SUSY s. The appearance of these 

nongeneric SUSYs are closely related to the existence of four Killing-Yano 

tensors, three of which are complex structures recognizing the quaternion 

algebra and the Taub-NUT manifold is hyper-Kahler [130]. Beside these 

three vector-like Killing-Yano tensors, there is a scalar one which has a 

nonvanishing field strength and which exists by virtue of the metric be­

ing type D. With a plentiful symmetries the family of Taub-NUT metrics 

provides an excellent background to analyze the classical and quantum 

conserved quantities on curved spaces. 

We have described the conserved quantities of the Euclidean Taub-NUT 

spinning-space spanned by {xµ, 7/Jµ} and obtained the geodesic equations 

for the motion of pseudo-classical spin one half particles with the spin char­

acterized by the anticommuting spin-polarization tensor 5µv = -i'ljJµ'ljJ11
, 

7/Jµ being anticommuting Grassmann coordinates. The conserved quanti­

ties admit contributions from the spin variables. In spite of the complexity 

of the equations, we are able to present special solutions for the motion on 

a cone and on a plane. The supersymmetric constraint Q = 0 with (4.19) 

plays an important role for the forms of solutions. 

The results show spin dependence of the orbits of the particles in a 

gravitational field. This leads to the existence of a gravitational analogue 

of the Stern-Gerlach-type forces well known to appear in electromagnetic 
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phenomena. 

It is thus well motivated to study the geometry of graded pseudo-

manifold with the coordinates {xµ, ~µ}. 
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Chapter 5 

Symmetries and Motions 
in NUT-Taub Spinning Space 

5.1 Introduction 

In this chapter we investigate pseudo-classical spinning point particles in 

the NUT-Taub (NT) space (93]. The linearized Einstein equations for the 

NT metric are analogous to the case in electromagnetism of a semiinfinite 

magnetic solenoid or a magnetic monopole. This means, the NT metric 

is a particle-like solution whose spherically symmetric source has both 

ordinary mass and "magnetic-like" mass. The NT space has the metric 

[96, 142] 

ds2 1 
-U(dt- 2ncos0dcp)2 + Udr2 
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where 
2 

U(r) = 1 - --(Mr+ n2). 
r2 + n2 

CHAPTER 5. 

(5.2) 

Mis the ordinary mass of the source and n is the NUT parameter, which 

has the identification of the gravitational "magnetic" mass or magnetic 

monopole [96, 97, 98, 99, 100] . In the limit that n = 0 the NT metric 

reduces to the Schwarzschild metric. 

For a nonzero n the vanishing of dt.gµ
11 

in (5.1) identifies the singu­

larities at 0 = 0 and 0 = 1r. Because of this axial singularity the metric 

admits different physical interpretations. Misner [94, 95] introduced a 

periodic time coordinate to remove the singularity; but this makes the 

metric an uninteresting particle-like solution. To avoid a periodic time 

coordinate, Bonnor [136] removed the singularity at 0 = 0 and related 

the singularity at 0 = 1r to a semiinfinite massless source of angular mo­

mentum along the axis of symmetry. This is analogous to representing 

the magnetic monopole in electromagnetic theory by seiniinfinite solenoid 

[137]. The singularity along z-axis is analogous to the Dirac string. 

The NT metric possesses properties similar to both the Schwarzschild 

and the Kerr metrics. Like the Kerr and Schwarzschild, the NT space is 

Petrov-type D and has a Killing horizon at r O = M + J ( M 2 + n 2). Like the 

Schwarzschild metric, the single nonvanishing Riemann curvature scalar is 

spherically symmetric. Also the NT space, like the Schwarzschild space, 

admits a four parameter group of motion with three space-like generators 

having the same commutator algebra as do the generators for angular 

momentum. 
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The NT metric (5.1) is Kerr-like in regard to that it has a crossed space­

time metric component gtip which generates gravimagnetic effects. In the 

Kerr metric the cross term breaks spherical symmetry and produces an 

ergosphere and frame dragging. On the contrary, the cross term in the 

metric (5.1) does not generate ergosphere, but it does produce an effect 

similar to the dragging of inertial frames. Moreover, although the cross 

term in (5.1) singles out the z-axis and appears to break spherical sym­

metry, the space components of the geodesics as a function of proper time 

are spherically symmetric. However, the geodesic coordinate time compo­

nent is not spherically symmetric. Since the time component is dependent 

on the orientation of the "Dirac string", we say that the geodesics are 

only "almost" spherically symmetric. This suggests that the energy of the 

"Dirac string" makes contribution to the solution. 

The NT space, as was suggested by McGuire and Ruffini [138], admits 

no direct physical interpretation. It is sometimes considered as unphysical. 

Our study of pseudo-classical spin-½ particles in such a peculiar space is 

interesting. 

The organization of this chapter is as follows. In section 5.2 we inves­

tigate the motion of pseudo-classical spinning particles in the NUT-Taub 

space. We examine the generalized Killing equations for this spinning 

space and derive the constants of motion in terms of the Killing-Yano ten­

sors. In section 5.3 we solve the equations derived in the previous section 

for special case of motion on a cone and on a plane. Finally, we present 

our concluding remarks in section 5.4. 
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5.2 Motion in NUT-Taub Spinning Space 

In this section we analysis the motion of pseudo-classical spinning point 

particles in the NUT-Taub space by exploiting the formalisms described 

in chapters 1 and 2. The NT space, described by the metric (5.1) has an 

isometry group SU(2) x U(l). The four Killing vectors associated with 

this metric are given by 

a= 0 · ·· 3 ' , ' . (5.3) 

or explicitly 

a a a 
D(l) = - sin cp 

80 
- cot 0 COS cp acp + 2n cot 0 COS cp at, 

a a a 
n(2) = cos cp- - cot 0 sin cp-a + 2n cot 0 cos cp-a' 80 cp · t 

a a 
n(3) = - + 2n-. acp at 

(5.4) 

D(o) , which generates the U(l) oft translation, commutes with the other 

Killing vectors. The remaining three vectors, corresponding to the in­

variance of the metric (5.1) under spatial rotations (a= 1, 2, 3), obey an 

SU(2) algebra with 
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(i,j, k = 1,2, 3). (5.5) 

This is contrasted with the Schwarzschild space, where the isometry 

group at spacelike infinity is S0(3) x U(l). This illustrates the essential 

topological character of the magnetic mass [83, 133]. 

These invariances, in purely bosonic case, would correspond to conser­

vation of the so-called "relative electric charge" and the angular momen­

tum [128, 129, 130, 131, 132, 139]: 

q = -U(i- 2ncos0cp), 

. r 
J = r x p + 2nq-. 

r 

(5.6) 

(5.7) 

The first generalized Killing equation of (1.33) shows that for each 

Killing vector there is an associated Killing scalar, and if we limit our­

selves to variations ( 1. 27) that terminate after the terms linear in iP, the 

corresponding constants of motion would be of the form 

(5.8) 

which asserts that the Killing scalars B(o:) contribute to the "relative elec­

tric charge" and the total angular momentum. 
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For the NUT-Taub space, we obtain 

B(O) vstr + 2nV cos 0srcp - nU sin 0s0cp 
' 

B(l) -2n V cos cp cot 0(1 + cos 0)str 

- cos cp cot 0 [ (9n2V + r) sin2 0 + 4n2V cos 0(1 + cos 0)] srcp 

- 2n V ( 1 - 2 cos 0) str - ~nU sin 0 s t0 

+ [r sin2 0 - 7n2V cos2 0 - ~n2V(l + 4 cos 0)] sr~ 

(5.9) 

where 2V = dU/dr. The conserved total angular momentum in the spin­

ning case is given by 
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J = B + j, (5.10) 

with J = (J(l), J(
2
), J(

3
)) and B = (B(1),B(2),B(3)). For the components 

of J, we obtain 

-( r
2 + n2

) cos 0 sin 0 cos cp cp + 2nq sin 0 cos cp, 

-( r 2 + n 2
) cos 0 sin 0 sin cp cp + 2nq sin 0 sin cp, 

(5.11) 

We obtain two interesting relations: 

0 2 2) 0· 1 u · 0stcp j(l) sin cp - j(2) COS cp = -rSr - (r + n - 2n Sill ' (5.12) 
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J(l) sin 0 cos cp + 1(2
) sin 0 sin cp + J(3) cos 0 

= -2nJ(O) + 2nV(2 cos 0 + sin2 0)str 

1 2 - 2n V cos0 [4cos0(cos0 + 5) + 13] srcp_ (5.13) 

The four universal conserved charges, described in equations (1.38), 

(1.41), (1.43) and (1.44), are given by 

(i) The energy 

(ii) The supercharge 

Q 
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(iii) The chiral charge 

(iv) The dual supercharge 

CHAPTER 5. 

(5.16) 

Keeping in mind that 'lj;µ is covariantly constant as formulated in (1.9), 

we obtain 

. t 
'1j; ( 

2n
2
U . V ) ( 2nr . V ) r 

2 2 
cot 0 0 - Ur 'lj;t - 2 2 cos 0 cp + U2 q '1j; 

r +n r +n . 

- n cos 0 ( tan 0 + 2 cot 0) cp + 2 2 cot 0 'lj;8 
[ 

2n2q · ] 

r +n 

( 
4n2U ) . +n cos 0 tan 0 + 2 cot 0 + 2 2 cot 0 0'1j;'1\ 

r +n 

103 



5.2. MOTION IN NUT-TAUB SPINNING SPACE CHAPTER 5. 

~r = [rU - (r
2 + n2)V] (ih/l + sin2 0 cp'lj;'P), 

·0 'Ip 
r0 rr 

- r2 + n2 'lj;r - r2 + n 2 'lf;
0 + sin 0 cos 0 cp'lj;'P · 

nsin0 
+ r 2 + n 2 [ ( q + 2nU cos 0 cp) 'lj;'P - U cp'lf;t] , 

~cp 
nU • rep 

CSC 0 0'1j;t - 'lj;r 
r2 + n2 r2 + n2 

- ( cot 0 <p + 2 nq 
2 

csc 0) ,t,8 

r +n 

[ rf ( 2n
2
U ) •] - r2 + n2 + 1 + r2 + n2 cot 00 'lj;'P. (5.18) 

We now turn to nongeneric SUSY s generated by the functions Qi of 

(2.51). The Killing-Yano tensor Jµv for the metric (5.1) is given by 

ndr I\ ( dt - 2n cos 0dcp) 

+r sin 0d0 I\ (r2 + n2)dcp. (5.19) 

For the vierbein eµa(x) we have the following expressions: 

-vU(dt- 2ncos0dcp), 
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J (r2 + n2) sin 0dcp. (5.20) 

The components of Jµa(x) are given by 

-nVU(dt - 2ncos0dcp) 

-rJ(r2 + n2) sin 0dcp, . 

(5.21) 

From (2. 79) the components of Cabe are obtained follows: 

Co12 = 0, Co13 = 0, Co23 = 0, (5.22) 

The new SUSY generator Qf given by (2.51) takes the following form for 
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the NT space: 

[
2n

2
cos0. 3 ·] + VU r - r(r2 + n2

) 2 sin 0 0 'lj;<p 

(5.23) 

The Killing tensor, vector, and scalar are constructed from (2.54)-(2.56) 

and are given by 

G 2n2 3tr 3B<p. 
r2 + n2 

The new conserved charge is then given by 

(5.26) 

(5.27) 

The equations of this section are to be integrated for the trajectories 
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of the particle in terms of the usual coordinates { xµ} and Grassmann 

coordinates { 'IPµ}. These equations are quite intricate and the general 

solution is by no means illuminating. We therefore discuss special solutions 

in the next section for the motion on a cone and on a plane. . 

5.3 Special solutions 

We solve the equations derived in the previous section for special kind of 

motions of the spin-½ particle in NUT-Taub spinning space. 

5.3.1 Motion on a Cone 

We choose the z-axis along J. Then the motion of the particle may con­

veniently be described in terms of polar coordinates 

r = re(0, cp), e = (sin 0 cos cp, sin 0 sin cp, cos 0) , (5.28) 

and for this choice of axis, we have 

2 . re 1 U . 0stcp (r2 + n )0 = -rS - 2n sm , (5.29) 
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2nq 2nV(l + cos0) t nU 
0 

cp - (r2 + n2) cos 0 - (r2 + n2) sin2 es r + 2(r2 + n2) sin est 

+ tan 0 + -:--::----:----- seep ( 
3n

2
U ) 

(r2 + n2) sin 0 cos 0 

2n2U(3 cos 0 + l) 
(r2 + n 2) sin0 · 

(5.30) 

The equations of motion for the spin components when 0 = 0 are given 

by 

rr [ ( 2n
2
U ) . nq ] - 2 2 sre + sin 0 cos 0 l + 2 2 cp + 2 + 2 srcp 

r +n r +n r n 

rr ( . nq e) sre ----srcp - cot 0 cp + 2 2 csc , 
r2 + n2 r + n 

2rr 0 rep sre nU sin 0 . step 
- r2 + n2 S cp + r2 + n2 - r2 + n2 cp ' 
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. 0t s = 

5cpt 

- (r2: n2 + ~) rS0
t - 2ncos0 ( r _ V) rSBcp 

r 2 + n 2 U 

+ sin 0 [cos 0 (1 + 2
n

2

U ) cp + nq ] sept 
r2 + n2 r2 + n2 

( 2nr qV) + 2 2 COS 0 cp + - sr0 
T + n u2 ' 

-n cos 0 [(tan 0 + 2 cot 0) rp + 2
nq csc 0] srB 

r2 +n2 

-2n cos 0 ( r - V) ,;-srcp 
r 2 + n2 U ' 

rep srt ( 0 . nq ) Bt - 2 2 - cot cp + 2 2 csc 0 S 
r +n r +n 

( r V) ·sept (2ncos0 . qV) srcp - ---+- r + ---rcp+-
r2 + n 2 U r 2 + n 2 U2 

+n cos 0 [( tan 0 + 2 cot 0) cp + 2

2
nq 2 csc 0] S 8

'P. 
r +n 

(5.31) 

Since we are looking for solutions with 0 = 0, we have from (5.29), 
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sr0 nU sin 0 st<p _ 
+ 2r - O. (5.32) 

This relation implies r * = 0. Using (5.32) we can express sr0 through st<p • 

The system of equations (5.31) reduces to a more tractable form 

. 0 2rr 
80

,n 3n2qU tan e
8

t<p 
S <p + --- r = ----- ' 

r2 + n2 (r2 + n2)2 

. 0t ( r V) . sot 
S + r2 +n2 + U r 

( 
r V) .

8
0<p 

= - 2n cos 0 r2 + n 2 - U r 

(
nV 3n 6n

3
U ) st<p 

- sin 0 rU + r 2 + n2 + (r2 + n2)2 q ' 

. rt V. rt __ 2nq sin 0 tan 0 [ru _ (r2 + n2)V _ n
2U] st<p 

S + Ur S - r2 + n2 2r 

3n3q cos 0 u st<p 

+ r(r2 + n 2) 

( 
r V) •sr <p 

-2n cos 0 r 2 + n 2 - U r · 
(5.33) 
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A particular solution may be found 1·f one ch O · th c , ooses q = , m e 1orm 

C0<p 
s0<p = --­

(r2 + n2)' 

0t c0t c0<p 
S = "-,:~~=;= + n cos 0---

JU(r2 + n2) (r2 + n2)' 

C t<p 
st<p = ----;:==== 

JU(r2 + n2) 
(5.34) 

where cµv are Grassmann constants. The case of choice st<p = O is included 

into the case q = 0. 

The constraint Q = 0 (see (1.48)) enables one to solve for 'lj;t in terms 

of the spatial components 'lj;i. As a result, it gives r * = Q* = 0. For the 

spin components we have 

rSr<p = -qU st<p, 

(5.35) 

The condition Q = O modifies drastically the form of the solutions. 

111 



5.3. SPECIAL SOLUTIONS CHAPTER 5. 

In spite of the complexity of th · · e equations, we have a simple exact so-

lution for the components of the spin-tensor: 

s0cp = c0cp 

r2 + n2' 

For the equations of motion, we obtain 

. . q 
t = 2n cos 0 1/'J - -

r U' 

c0cp 
q = -J(O) + nU sin 0--­

r2 + n2' 

(5.36) 

<p = --- -- + --'-------_:_C cp + --C cp 
. 1 [ 2nq 2n2U(2 - cos 0 - 4 cos2 0) 0 sin 0 e l 

r 2 +n2 cos0 (r2+n2)sin0cos0 cos0 ' 

(5.37) 

5.3.2 Motion on a Plane 

Planar motion for spinning particles happen only in two kinds of situations: 

(i) the orbital angular momentum vanishes, or (ii) spin and orbital angular 

momentum are parallel. 

For the plane we consider 0 = 1r /2. Then the equations of motion for 

the spin components become 
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rr sr0 + nq srcp 
r2 + n2 r2 + n2 

nU 
--epsrt - [rU - (r2 + n2)V] epS9cp 
r2 + n2 ' 

- rr srcp - nq sr0 
r2 + n2 r2 + n2 ' 

30ep 2rr socp rep sro nU . step 
- r2 + n2 + r2 + n2 - r2 + n2 'P ' 

. 0t s - ( r + V) rS0t + nq 5ept.+ qV sr0, 
r 2 + n 2 U r 2 + n 2 U2 

_ ( r + V) r sept + q ~ srcp 
r 2 + n2 U U 

rep srt - nq 50t. 
r2 + n2 r2 + n2 

(5.38) 

From (5.12) and (5.13) we obtain 

(5.39) 
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Case {i). The solution describes a particle moving along a fixed radius, 

for which cp = 0. We obtain 

Crt 
srt=-

'1[]' 

The SUSY constraint Q = 0 gives a nenule spin component 

C 0<p 
s0<p = ---. 

r2 +n2 

In this case the orbit of the particle is described by 

1 

r= (2UE+q2) 2
, 

c0<p 

q = __ 1 (r2 + n2 + n2U) _2_+_2' 
2n r n 

1 ( c
0

<p ) i = - 1(0) + nU 2 2 . 
U r +n 
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Case (ii). The concerned motion is for <pf 0. From Q = 0 we obtain 

r 
-sro = - J(3) 30cp u ' (5.43) 

Interestingly, even in this case a spin component is nenule: 3ocp _ C 9"' 
- r2+n2. 

For the orbit of the particle we obtain 

1 cocp 
q = -- (r2 +n2 +n2U)--

2n r2 + n2' 

<p = __ 1_ (J(3) + 2n2U_c_o_cp_) 
r2 + n2 r2 + n2 ' 

i = - J(O) +nU-- . 1 ( cocp ) 
U r 2 + n2 (5.44) 

5.4 Concluding Remarks 

The spinning particle model is a worldline supersymmetric extension of 

the theory of a scalar particle. It describes a relativistic particle with 
. 1 spm-2. 

The main concern of our study has been the motion of pseudo-classical 

spinning particles in the NUT-Taub space. The supersymmetric exten-
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sion of this space admits fermionic symmetries along with four standard 

SUSY s. The appearance of these nongeneric SUSY s are closely related to 

the existence of Killing-Yano tensors [53]. 

In spite of the complexity of the equations, we are able to present 

special solutions for the motion on a cone and on a plane. The supersym­

metric constraint Q = 0 (1.48) plays a very important role for the forms 

of solutions. 

The results we obtain show spin dependence of the time dilation and 

of the orbits of the particles in a gravitational field. This leads to the 

existence of a gravitational analogue of the Stern-Gerlach-type forces well 

known to appear in electromagnetic phenomena. 

Although the Killing tensor Kµ 11 given in (5.24) defines a constant of 

motion (directly) for spinless particles in the NUT-Taub space, it requires 

for spinning particles the nontrivial contributions from spin which involve 

Killing vector and Killing scalar computed in (5.25) and (5.26) . 

The NUT-Taub space is the Schwarzschild space generalized with NUT 

or magnetic monopole parameter n. The monopole hypothesis was pro­

pounded by Dirac relatively long ago. The ingenious suggestion by Dirac 

that magnetic monopole does exist in nature was neglected because of the 

failure to identify such thing. In recent years, however, the development 

of gauge theories has shed new light on it. The result of this chapter is 

interesting in view of the presence of n parameter. With n = 0 our result 

reduces to that of the Schwarzschild space [42]. 

Supersymmetry /supergravity is relevant in the fundamental theory of 

particle interactions. It is thus not inconceivable that nature might make 
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some use of it. In regard to this, the study of the geometry of graded 

pseudo-manifolds with both real number and anticommuting variables is 

well justified. 

117 



Chapter 6 

Motions in Taub-NUT-de Sitter 
Spinning Spacetime 

6.1 Introduction 

In this chapter we investigate motion of pseudo-classical spinning point 

particles in the Taub-NUT-de Sitter spacetime. The metric of the space­

time can be written in the form [140] 

ds2 
1 

-F(r)(dt + 2ncos0d<p)2 + F(r) dr2 

118 

(6.1) 



6.1. INTRODUCTION 
CHAPTER 6. 

where 

and f
2 = 3/ A, with A the positive cosmological constant. Here M is a 

(generalized) mass parameter and n is the NUT parameter, which has the 

identification of the gravitational "magnetic" mass or magnetic monopole 

[96, 97, 98, 99, 100] and generates a "rotational effect" [104). Because of the 

presence of the cosmological constant the TN-dS spacetime is interesting 

in the inflationary scenario of the early universe. 

The metric (6.1) reduces to (i) the Taub-NUT spacetime for A= 0, (ii) 

the Schwarzschild-de Sitter spacetime for n = 0, (iii) the Schwarzschild 

spacetime for A = 0, n = 0, and (iv) the pure de Sitter spacetime for 

M = 0, n= 0. 

This chapter is organized as follows. In section 6.2 we investigate the 

motion of pseudo-classical spinning particles in the TN-dS spacetime. We 

examine the generalized Killing equations for this spinning spacetime and 

derive the constants of motion in terms of the Killing-Yano tensors. In 

section 6.3 we solve the equations derived in section 6.2 for special case 

of motion on a cone and on a plane. Finally, we present our concluding 

remarks in section 6.4. 
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6.2 Spinning Point Particles in TN-dS Spacetime 

In this section we use the results of chapter 1 and 2 to investigate the 

motion of a pseudo-classical spinning particle in the Taub-NUT-de Sitter 

spacetime described by the metric (6.1). The TN-dS spacetime has an 

isometry group SU(2) x U(l). The invariance of the metric under time 

translations and spatial rotations is generated by four 'lj;-independent solu­

tions R(a)µ of (1.35), (a= 0, · · • ,3). The corresponding vector.fields have 

the form 

(6.3) 

or equivalently 

a a a 
D(l) = - sin <p 

80 
- cot 0 COS <p B<p - 2n cot 0 COS <p Bt, 

a a a 
n(2) = cos <p 80 - cot 0 sin cp 8<p - 2n cot 0 cos <pat' 

a a n(3) = - - 2n-. 
a<p at 

(6.4) 

D(O) generates the U(l) oft translation and commutes with the remaining 

three vectors D(i), which obey an SU(2) algebra: 
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(6.5) 

This is contrasted with the Schwarzschild spacetime, where the isometry 

group at spacelike infinity is S0(3) x U(l). This illustrates the essential 

topological character of the magnetic mass [83, 133]. 

In purely bosonic case, these invariances would correspond to conserva­

tion of the so-called "relative electric charge" and the angular momentum 

[128, 129, 130, 131]: 

q = -F(i + 2ncos0cp), 

. r 
J = r x p + 2nq-. 

r 
(6.6) 

However, for a spinning particle, only the sum of the orbital and the 

spin angular momentum is conserved. Indeed, the first generalized Killing 

equation of (1.33) shows that to each Killing vector there is associated 

a Killing scalar. If we limit ourselves to variations (1.27) that terminate 

after the terms linear in xµ, the corresponding constants of motion, with 

J(O) = B(a), J2) = R£a), would be of the form 

(6.7) 

which asserts that the Killing scalars B(a) contribute to the "relative elec-
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tric charge" q and the total angular momentum j. 

For the TN-dS spacetime, we obtain 

3(0) = N 5tr - 2nN cos 0 srep + nF sin 0 seep, 

3(1) - 2nN cos cp cot 0(1 + cos 0)str 

-~nF cos <.p cos 0S'8 + tnF sin <.p sin 0S"" - r sin <.pS'
8 

- cos cp cot 0 [(9n2 N + r) sin2 0 + 4n2 N cos 0(1 + cos 0)] srep 

+ cos cp [ (r2 + n2) sin2 0 + 3n2 F(l - 2 cos2 0) - 2n
2 
F cos 0] seep, 

2nN(l - 2 cos 0)Str + ~nF sin 0Ste 

+ [rsin2 0 - 7n2 N cos2 0 - ;n2N(l + 4cos0)1 s~ 

(6.8) 

where 

N = 1 lM(r2 - n2) + 2n2r - \r { (r2 + n2)2 + 8n4}1, (6.9) 
(r2 + n2)2 £ · 
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and F is given by (6.2). The conserved total angular momentum in the 

spinning case is given by 

(6.10) 

with J = (J(1),J(2),J(3)) and B = (B(1),B(2),B(3)). For the components 

of J, we obtain 

-( r 2 + n2
) cos 0 sin 0 cos <.p cp + 2nq sin 0 cos <.p, 

-(r2 + n2) cos0sin0sincpcp + 2nqsin0sincp, 

B(3) + (r2 + n2) sin2 0 cp + 2nq cos 0. (6.11) 

We obtain two interesting relations: 

2 · 1 · 0strp (1) . j(2) _ -rSre - (r2 + n )0 + -nF sm , J Sill <.p - COS l.(J - 2 (6.12) 
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( ) J. r 
2nJ 0 +-­

T 

1 2 - 2n N COS 0 (4 cos 0( cos 0 + 5) + 29] 3rcp 

+2nN(2 cos 0 + sin2 0)Str. (6.13) 

In addition to the above constants of motion, there are the four uni­

versal conserved charges described by equations (1.38), (1.41), (1.43) and 

(1.44) in chapter 1. In terms of the notation of this section they are as 

follows: 

(i) The energy 

(ii) The supercharge 

( 
2 2) . 2 0 . ] ,,J,'P + [2nq cos 0 + r + n sm cp ip ; (6.15) 
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(iii) The chiral charge 

(6.16) 

(iv) The dual supercharge 

The covariantly constant 'If;µ, as formulated in ( l. 9), gives 

"t 'If; . n t00 'lj;t + --cos0cp- - If/ (N 2 2p ·) ( 2nr . qN) ,,1,r 
Fr - r2 + n2 co r2 + n2 p2 

[ 
2n

2
q l 8 - n cos 0 (tan 0 + 2 cot 0) <p - r 2 + n2 cot 0 '1/J 

( 
r N) ·'lj;cp 

+2ncos0 r 2 + n 2 - F r 

( 
4n

2
F ) · 

-n cos 0 tan 0 + 2 cot 0 + r 2 + n2 cot 0 e'lj;'P, 
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nF . r1ii 
--- CSC 0 0'lj;t - __ ..,..,_,,J,r 
r2 + n 2 r2 + n 2 'f/ 

- (cot 0 <p + 
2 
nq csc 0) '1jJ0 

r +n2 

[ rr ·( 2n
2
F ) ·] 

- r2 + n2 + 1- r2 + n2 cot00 'lj;cp. 

CHAPTER 6. 

(6.18) 

We now turn to nongeneri,c SUSY s generated by the functions Qi de­

fined in (2.51) . The Killing-Yano tensor Jµv for the metric (6.1) is given 

by 

ndr I\ ( dt + 2n cos 0dcp) 

+r sin 0d0 I\ (r2 + n2)dcp. (6.19) 

For the vierbein eµa(x) we obtain 

-ll(dt + 2ncos0dcp), 
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while for Jµ a(x) we have 

1 
Hdr, 

J(r2 + n2) sin 0dcp, 

-nll(dt + 2ncos0dcp) 

-rJ (r2 + n2) sin 0dcp, 

rJ(r2 + n2) d0. 

From (2.79) the components of Cabe are obtained as follows: 

CHAPTER 6. 

(6.20) 

(6.21) 

Co12 = 0, Col3 = 0, Co23 = 0, C123 = -2fl. (6.22) 

Then the new SUSY generator Qf given by (2.51) has the following form 
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for the Taub-NUT-de Sitter spacetime: 
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(6.23) 

From (2.54)-(2.56) the Killing tensor, vector, and scalar are constructed 

as follows: 

G 
2n2 str 30cp 

r2 + n2 ' 
(6.26) 

where 3ab is the spin tensor defined in (1.10).The new conserved charge is 

then given by 

(6.27) 
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For the trajectories of the pseudo-classical particle, one needs to solve 

the equations of this section. These are quite intricate and the general so­

lution is by no means illuminating. We therefore analyze special solutions 

in the next section for the motion on a cone and on a plane. 

6.3 Special solutions 

In order to solve the equations derived in the preceding section we choose 

the z-axis along J so that the motion of the particle may conveniently be 

described in terms of polar coordinates 

r = re(0, cp), e = (sin 0 cos cp, sin 0 sin cp, cos 0) , (6.28) 

For this choice of axis, we have 

(6.29) 

cp 
2nq 2nN(l + cos 0) str _ nF . stB 

(r2 + n2) cos 0 + (r2 + n2) sin2 0 2(r2 + n2) sin 0 

n2 N [cos 0(5 cos 0 - 4) - r sin2 0 - 9] sr<p 

+ (r2 + n2) sin2 0 

[ 

n2 F{l - 2 cos 0(1 + 3 cos 0) }] sB<p. 

+ tan 0 + (r2 + n2) sin0 cos 0 
(6.30) 
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3 1 Motion on a Cone 6. . 

We consider the case 0 = 0. This solves sr0 in terms of step and as a result, 

it implies that r * = Q* = 0. We then the equations of motion for the spin 

components as follows: 

. rr srcp + --- sr<p = 
r2 +n2 

5Bcp + 2rr 3Bcp = 
r2 +n2 

. e rr e sr +---sr 
r2 + n2 

3nq rB 
2 2 

csc0S , 
r +n 

rep 3r8 

r2 + n2 ' 

0 nF sin 0 •srt 
= _ [r F - (r2 + n2)N] sin2 0 <jJS cp - r2 + n2 r.p 

+ sin 0 [cos 0 ( n + n ( q - 2nF cos 0 <jJ )] srcp' 
r r2 + n2 

[ 
2nq e]sri 

-ncos0 (tan0 + 2cot 0) 'P - r2 + n2 csc 

( 
r N). •srcp 

+ 2n cos 0 r 2 + n2 - F r · 
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h . sr0 0 · The c mce = yields the following particular solution: 

rt crt crcp 
S = - - n cos 0--;==:=== 

../F J(r2+n2)· 
(6.32) 

where Cµv are Grassmann constants. 

The constraint Q = 0 (see (1.48)) yields r* = Q* = O and modifies 

drastically the form of the solutions. It gives, for the spin components, 

the followings: 

(6.33) 

We have a simple exact solution for the components of the spin-tensor: 

corp 
seep_ --­

- r2 +n2' 
(6.34) 

despite the complexity of the equations. For the equations of motion, we 

131 



6.3. SPECIAL SOLUTIONS 
CHAPTER 6. 

obtain 

r 

<.p 

t 

q 

2nq 
(r2 + n 2) cos 0 

+ C
0

'P [4n
2 
F{l - cos 0(1 + 3 cos 0)} l 

r2 + n2 (r2+ n2) sin20 + tan0 ' 

1 
- F(2nFcos0cp + q), 

c0<p 
-J(o) + nF sin 0--­

r2 + n2' (6.35) 

The third of (6.35) defines the gravitational redshift, and shows that 

the time-dilation receives a contribution from spin-orbit coupling. This 

demonstrates that time-dilation is not a purely geometric effect, but also 

has a dynamical component. 

6.3.2 Motion on a Plane 

Although the orbital angular momentum for scalar particles is always con­

served, this is not true for spinning particles in general. Hence, planar 

motion for spinning particles occurs only in two kinds of situations: (i) 

the orbital angular momentum vanishes, or (ii) spin and orbital angular 
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momentum are parallel. 

For the plane we choose 0 = 1r /2. Then from (6.29) and (6.30) we 

obtain 

1 
q = - - (T2 + n2 + n2 F) s0<p 2n ' 

(6.36) 

and the equations of motion for the spin components become 

· TT 
sr<p + ---sr<p = 0, 

T2 +n2 

. r0 TT 3r0 
S + 2 + 2 T n 

2 2 ] . se<p nF . srt = _ [T F - (T + n )N 'P - T2 + n2 'P 

(6.37) 
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Case {i). For 'P = 0, the solution describes a particle moving along a 

fixed radius. We are then led to the exact solution: 

Crt 
srt=-n· (6.38) 

The SUSY constraint Q = 0 provides the existence of a nenule spin com­

ponent 

C0<p 
30cp - --­

- r2 +n2, 

and consequently, the orbit of the particle is described by 

1 

r = ( 2F E + q2
) 

2 
, 

i = _ !l_ = - 1<0) - nF 2 2 . 
1 ( c0

<p ) 

F F r +n 

(6.39) 

(6.40) 

Case {ii}. The concerned motion is for cp # 0, and if one chooses 

s r0 = 0, the solution to (6.37) is given by 

(6.41) 
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Interestingly, even in this case Q = o y· ld 8 0ip 18 s as the only nenule spin 
component. 

Introducing two constants of motion: 

one could obtain for the orbit of the particle the followings: 

l dr 

r 2 + n2 dcp 

(6.42) 

(6.43) 

The gravitational redshift formula in (6.40) or (6.43) shows that the 

time-dilation receives contribution from the spin. The spin degrees of 

freedom modify the particle's orbit. 

6.4 Concluding Remarks 

The aim of this chapter has been to investigate by pseudo-classical me­

chanics models the quantum objects, namely spin one half particles, in the 
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NUT-Taub-de Sitter spacetime. Having in mind the lack of a satisfactory 

quantum theory for gravitational interaction, this study is justified and 

not at all trivial. 

The supersymmetric extension of the NUT-Taub-de Sitter spacetime 

admits fermionic symmetries (generated by Qf in (6.23)) along with four 

standard SUSYs (given in (6.14)-(6.17). The appearance of these non­

generic SUSYs are closely related to the existence of Killing-Yano tensors, 

obtained in (6.21). The new conserved charges then receive contributions 

from the spin-polarization tensor 8µ 11 (defined in (1.10)) and are given by 

(6.27) with (6.24)-(6.26). 

Although the equations of motion of the pseudo-classical Dirac fermions 

are complex enough and exact solutions are not illuminating, we are able 

to present special solutions for the motion on a cone and on a plane. The 

supersymmetric constraint for physical fermions Q = 0 (1.48) plays an 

important role for the forms of solutions. 

The results show spin dependence of the time-dilation and of the orbits 

of the particles in a gravitational field. This leads to the existence of 

a gravitational analogue of the Stern-Gerlach-type forces well known to 

appear in electromagnetic phenomena. 

The results of this study may be interesting in the study _ of fermion 

modes in gravitational instantons as well as in the long-range monopole 

dynamics. Our results reduce to the case of (i) the Taub-NUT spacetime 

for A= O (chapter 5), (ii) the Schwarzschild-de Sitter spacetime for n = 0 

(chapter 3), (iii) the Schwarzschild spacetime for A = 0, n = 0, [42] and 

(iv) the pure de Sitter spacetime for M = 0, n = 0 ( chapter 3). 
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In recent years there is a renewed interest in cosmological constant, 

since it is found to be present in the inflationary scenario of the early 

universe. In this scenario the universe undergoes a phase where it is geo­

metrically analogous to the de Sitter space [111]. Moreover, the Taub-NUT 

space has a peculiar character - a counter example to almost everything 

[95] - and it is sometimes considered as unphysical [138]. The study of 

this chapter in such an interesting spacetime is well motivated. 
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Chapter 7 

Geo':1-esic _Motions of Spinning 
Particles 1n Generalized NUT 
Spacetime 

7 .1 Introduction 

In this chapter we investigate the motion of a pseudo-classical spin-½ par­

ticle in the black hole spacetime described by the generalized NUT metric 

[141] 

)
2 1 2 

ds2 -V(r)(dt - 2pn cos 0dcp + V(r) dr 

(7.1) 
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where 

V(r) 

n (7.2) 

where Pn is a continuous parameter, M the gravitating mass, qe the electric 

charge, qm the magnetic monopole charge, n the NUT charge (magnetic 

mass [96, 97, 98, 99, 100]), and A the cosmological constant. 

The metric (7.1) represents a stationary axisymmetric solution of the 

Einstein-Maxwell field equations with cosmological constant. It solves the 

field equations with an electromagnetic vector potential 

and an associated field strength tensor which can be expressed in terms of 

the 2-form 

F 
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where we have defined the vierbein field 

e
0 = vll(dt - 2pn cos 0dcp), I 1 e =-dr v'V ' 

(7.5) 

In the case of Pn --+ 0, the metric (7.1) represents the generic Reissner­

Nordstrom solution with the cosmological constant for qm = O and the 

cosmological Schwarzschild solution for qe = qm = 0, if additionally A = 

0, we obtain the basic Schwarzschild solution. For qm =f. O, we get a 

slight generalization of the cosmological Reissner-Nordstrom solution due 

to the presence of the electromagnetic field of a magnetic monopole. The 

monopole hypothesis was propounded by Dirac relatively long ago. It 

was ingeniously suggested by Dirac that magnetic monopoles do exist in 

nature, but this prediction was neglected due to the failure to identify 

such things. In recent years, however, the development of gauge theories 

[101, 102] has shed new light on it. The string theory [103] predicts the 

existence of this type of objects. 

With Pn =/- 0 and switching off the electromagnetic field: qe = qm = 0, 

the metric (7.1) gives the NUT solution generalized by the presence of 

the cosmological constant. If A = 0, the parameter n coincides with Pn 

and the resulting NUT solution [94, 142] plays an important role in the 

conceptional development of general relativity and in the construction of 

brane solutions in string theory and M-theory [105, 106, 107]. In recent 
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Years a particular interest has been paid to th NUT 1 • b f 
e so ut10n ecause o 

the role it plays in furthering our understanding of the AdS/CFT corre-

spondence [l08, l09, 110]. The NUT solution also has become renowned 

for being "a counter example to almost anything" [95]. It represents a 

nontrivial generalization of the Schwarzschild solution [143]. It has the 

usual interpretation of describing a gravitational dyon with both ordinary 

and magnetic masses. Similar as that electric and magnetic charges are 

dual within Maxwell theory, the NUT charge n plays a role dual to that 

of the ordinary mass M [97, 137]. In a recent work [104], it was shown 

that the NUT charge generates a "rotational effect", so that the space­

time must be assigned a "specific angular momentum" due to the NUT 

charge. We note that n vanishes with Pn = 0 or with A = ¾p;2 • Thus 

if M = n = 0 in addition to Pn =/= 0 and qe = qm = 0, the metric (7.1) 

just describes the de Sitter space, which has properties similar to a black 

hole [126, 127, 144, 145, 146, 147]. There has been a renewed interest 

in cosmological constant as it is found to be present in the inflationary 

scenario of the early universe. In this scenario the universe undergoes a 

phase where it is geometrically similar to the de Sitter space [111]. 

Supersymmetric extension of the generalized NUT spacetime admits 

Killing-Yano tensors. We investigate the symmetries of the generalized 

NUT spacetime and find the existence of four standard supersymmetries 

(SUSYs) (which exist in any spacetime) plus several nonstandard ones 

generated by the Killing-Yano tensors. We calculate these SUSYs and 

analyze the geodesic motions of spin-½ point particles. 

The chapter is organized as follows. In section 7.2 we investigate the 
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motion of pseudo-classical spinning particles in the generalized NUT space­

time. We examine the generalized Killing equations for this spinning 

spacetime and derive the constants of motion in terms of the Killing-Yano 

tensors. In section 7.3 we analyze the equations describing the pseudo­

classical spinning point particles, derived in section 7.2, for special cases 

of motion on a cone and on a plane. Finally, we present our concluding 

remarks in section 7.4. 

7.2 Motion in Generalized NUT Spinning Spacetime 

In this section, the formalisms of chapters 1 and 2 have been exploited to 

investigate the motion of a pseudo-classical spinning point particle in the 

generalized NUT spacetime described by the metric (7.1), which has an 

isometry group SU(2) x U(l) and possesses four Killing vector fields of 

the form 

(a= 0, · · ·, 3), (7.6) 

or equivalently 

a 
D (O) - -

- at' 
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D(l) = - sin ~ 0 a a 
<p ae - cot cos cp- - 2p cot 0 cos 1/l-

a<p n rat' 

n(2>-cos1na te • a a 
- r 80 - co smcp- - 2p cot0cos<p-

acp n at' 

(7.7) 

D(O), which generates the U(l) oft translation, commutes with the Killing 

vectors. The remaining three vectors obey an SU(2) algebra with 

(i,j, k = 1, 2, 3). (7.8) 

This is contrasted with the Schwarzschild geometry, where the isometry 

group at spacelike infinity is S0(3) x U(l), and illustrates the essential 

topological character of the parameter Pn or magnetic mass [83, 133). 

These invariances would correspond to conservation of the so-called 

"relative electric charge" and the angular momentum [128, 130, 131, 132, 

139) in purely bosonic case: 
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(7.9) 

It follows, from the first generalized Killing equation of (1.33) with 

j(O) = B(a), J~
1
) = R~

0
\ that the constants of motion would be of the 

form 

(7.10) 

which asserts that the Killing scalars B(a) contribute to the "relative elec­

tric charge" Qp and the total angular momentum j. 

For the metric (7.1), we obtain 

B(l) 2pnN cos cp cot 0(1 + cos 0)str 

1 to 1 V . . 0stcp . 3r0 --p V cos1ncos0S + -Pn smcpsm - rsmcp 2 n r 2 

- cos cp cot 0 [ (9p;N + r) sin2 0 + 4p;N cos 0(1 + cos 0)] 3rcp 

+ cos cp [(r2 + p;) sin2 0 + 3p;V(l - 2 cos
2 0) - 2p;V cos 0] S

8
'P, 
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+ sin 0 [ (r2 + p~) cos 0 - 2p~V(l - 3 cos 0)] S8'P, (7.11) 

where 

N _ l [M( 2 2) 2 A 2 2 2] - (r2 + p~)2 r - Pn + 2npnr - rq - 3r(r + Pn) . . (7.12) 

The conserved total angular momentum in the spinning case is expressed 

by 

(7.13) 

where J = (J(1),J(2),J(3)) and B = (B(1),B(2),B(3)). The components of 

J are as follows: 

-(r2 + p~) cos 0 sin 0 cos cp cp + 2pnqp sin 0 cos cp, 
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-(r2 + p~) cos 0 sin 0 sin cp cp + 2pnqp sin 0 sin cp, 

(7.14) 

From (7.14) we obtain two interesting relations: 

_!p~N cos 0 [4 cos 0( cos 0 + 5) + 29] srcp 
2 . 

+ sin 0 [ (r2 + p~) + p~V(3 - 4 cos 0)] S8
'P 

(7.16) 

In addition the four universal conserved charges, described in (1.38), 
' 

(1.41), (1.43) and (1.44), become 

(i) The energy 

1 2 1 2 2)(0·2 . 2 0 · 2) 1 2. E = -r + -(r + Pn + sm 'P - 2Vqp, 
2V 2 

(7.17) 
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(ii) The supercharge 

(iii) The chiral charge 

(7.19) 

(iv) The dual supercharge 

From the covariantly constant 'lj)µ, formulated in (1.9), we obtain the 

following equations for the spin coordinates: 
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. (N. 2p;V ·) t ( 2pnr . qpN) ,,1,r 'lj;t = V r - 2 2 cot 0 0 'lj; + 
2 2 

cos 0 cp - V
2 

'f/ 

r + Pn r + Pn 

- [Pn cos 0 ( tan 0 + 2 cot 0) cp - ~p; Qp 
2 

cot 0] 'lf;0 

r +Pn 

( 
4p~ V 0) 0· ,,1,cp -Pn cos 0 tan 0 + 2 cot 0 + 
2 2 

cot cp , 
r +Pn 

Pn V 0 0· ,,J,t rep ,,1,r ----=- csc tp - 2 2 'f/ 
r2 + p~ r + Pn 

( 
. PnQp 0) ,,,,0 - cot 0 in+ 2 csc cp 

..,., r 2 + Pn 
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The metric (7.1) admits Killing-Y t . 
ano ensor Jµv given by 

1 
-
2 

fµvdxµ /\ dxv _ d ( 
Pn r /\ dt + 2pn cos 0d<p) 

+r sin 0d0 /\ (r2 + p~)d<p. (7.22) 

For Jµa(x) we have 

rJ(r2 + p;) d0. (7.23) 

The components of Cabe are derived from (2. 79) as follows: 

Co12 = 0, Co13 = 0, Co23 = 0, C123 = -,--2fl. (7.24) 

When the quantities from (7.23) and (7.24) are inserted into (2.51), the 

result gives the new SUSY generator Qf for the metric (7.1) in the following 
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form: 

(7.25) 

Using (2.54)-(2.56) the Killing tensor, vector, and scalar, which define the 

conserved charge Z in (2.52), are constructed as follows: 

2 

-~dr2 + p~V(dt - 2pn cos 0 dcp)2 

(7.26) 

where 3µv is the spin-tensor defined in (1.10). 

The equations and conserved quantities derived in this section are ap­

plied to obtained the trajectories of the pseudo-classical spinning particles 

150 



7.3. SPECIAL SOLUTIONS CHAPTER 7. 

in terms of the usual coordinates {xµ} and Grassmann coordinates {'1/Jµ}. 

Since these equations are quite intricate and the general solution is by no 

means illuminating, we discuss special solutions in the subsequent section 

for the motion on a cone and on a plane. 

7.3 Special solutions 

We solve the equations derived in the preceding section for special kind of 

motions of pseudo-classical spin-½ point particles in the generalized NUT 

spacetime. 

7.3.1 Motion on a Cone 

Let us choose the z-axis along J so that the motion of the particle may 

conveniently be described in terms of polar coordinates 

r = re(0, cp), e = (sin 0 cos r,p, sin 0 sin r,p, cos 0) . (7.29) 

We consider the case 0 = O. Equation (7.15) then solves sr0 
in terms of 

step. For this choice of axis, we have 

(7.30) 

d lt ·t · 1·es that r - Q* = 0 The equations of motion for an as a resu , 1 imp 1 * - · 
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the spin components are obtained as follows: 

S
. rep rr 3p q + ---srcp = - n p esr0 

r2 + P2n 2 2 csc r +Pn 

= - [rV - (r2 + p~)N] sin2 0 cpS0cp - Pn V sin 0 . 3rt 
r2 + p~ cp 

srt + N ,;-srt 
V 

2r 
= - Pn V [rV - (r2 + p~)N] sin 0 cpSr

0 

( 
r N) ·srcp + 2pn cos 0 2 2 - V r · 

r +Pn 
(7.31) 

The constraint Q = O (see (1.48)) yields for the spin components the 

following relations: 
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(7.32) 

Setting srcp = 0 and using (7.30)- (7.32), we get a single equation 

and then (7.16) gives 

(
1 - Pn V sin 0 S 0'P) cp 

2qp 

Equation (7.33) is solved by 

where c0cp is a Grassmann constant. 
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The orbit of the particle is spin dependent and is described by the 
following equations: 

= 2pnqp + [tan 0 + 2pn V 
(r2 + p~) cos 0 (r2 + p~) sin 20 

- (0) . cocp 
qp - -J + Pn V sm 0 2 2 . r +Pn 

(7.36) 

The first of (7.36) defines the gravitational redshift, and demonstrates 

that the time-dilation receives a contribution from spin-orbit coupling. 

This displays that time-dilation is not a purely geometric effect, but also 

has a dynamical component. 
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7 .3.2 Motion on a Plane 

We now turn to the special case of motion in a plane with 0 = 1r /2. Since 

orbital angular momentum is not separately conserved in general, planar 

motion for spinning particles occurs only in two kinds of situations: (i) 

the orbital angular momentum vanishes, or (ii) spin and orbital angular 

momentum are parallel. 

With 0 = 1r /2, (7.30) and (7.16) give 

1 ( 2 2 2 v) 8 ecp 
Qp = --

2 
r + Pn + Pn , 

Pn 
(7.37) 

and the equations of motion for the spin components take the following 

forms: 

3rcp + rr srcp = 0, 
r2 + p; 

. Bcp 2rf SBcp _ _ T<p 5rB, 
S + 2 + 2 - r2 + p2 r Pn n 

. B TT 3rB 
sr + 2+ 2 

r Pn 
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. N srt + -rsrt 
V 

The SUSY constraint Q = 0 with (7 .37) gives 

srr.p = srt = 0 
' 

CHAPTER 7. 

(7.39) 

Case {i}. The particle is moving along a fixed radius for which cp = 0. 

The only nenule spin component S0'-P is given by 

(7.40) 

C0'P being Grassmann constant and consequently, the gravitational red­

shift is modied by the presence of spin-dependent part: 

d-r ( (o) c0r.p ) 
dt = - J - Pn V 2 2 · 

V r +Pn 
(7.41) 

The orbit of the particle also receives contribution from the spin and is 
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described by 

{ 

1 
l dr ecp -2 2 

-- = 1 + 2VE (1<0
) - PnV e ) } 

V dt r2 + p~ 
(7.42) 

Case {ii). This possibility concerns motion for cp-=/- 0. The nonzero spin 

components 3re, seep are linearly related as in (7.39) , and they are given by 

ere 
3re=-

Jv' 

. ere 
3ecp = - r 

V(r2 + p~)cp Jv' 

er0 being Grassmann constant. 

Introducing two constants of motion: 

L = (r2 + p~)cp, 

we obtain the time-dilation factor, 

and for the orbit of the particle, the following equation: 

( 
1 dr)

2 

r 2 + p~ dcp -
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Thus the gravitational redshift formulae as well as the orbits of the pseudo­

classical point particles receive contributions from the spin characterized 

by the Grassmann variables 'lj)µ. 

7.4 Concluding Remarks 

The main concern of this study has been to investigate the motion of spin­

ning point particles in the generalized NUT spacetime by pseudo-classical 

mechanics models in which spin degrees of freedom are characterized in 

terms of the Grassmann anticommuting spin variables 'lj)µ. Particles' spin 

generalizes the usual Killing equations and Noether's theorem, which leads 

to obtain information about the solutions of the equations of motion of 

these particles in curved spacetime. 

We investigate symmetries of the background spacetime and derive 

equations governing the motion of the spinning particle. We find a new 

supersymmetry to exist along with the four standard symmetries. The 

nongeneric fermionic symmetry is generated by Qf in (7.25) and the ap­

pearance of it is closely related to the existence of Killing-Yano tensors, 

obtained in (7.23). The new conserved charge Z defined in (2.53) receives 

contribution from the spin-polarization tensor 3µv (defined in (1.10)) and 

are given by (7.27) and (7.28). We note that although the Killing tensor 

in (7.26) is a constant of motion for a scalar (spinless) point particle, it 

receives contribution from spin in the case of spinning particles. The re­

sults of this study also demonstrates that the time dilation is not a purely 
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geometric effect, it has a dynamical (i.e. spin) component too. This is 

illustrated in the first part of (7.36), (7.41) and (7.45). 

The equations of motion for the pseudo-classical spinning point par­

ticles are complex enough and exact solutions are not illuminating: We 

have described the orbits for special cases of motion on a cone and on a 

plane. Equations (7.36), (7.42) and (7.46) display that the orbits of the 

spinning particles receive contribution from the spin of the particles. Hav­

ing in mind the lack of a satisfactory quantum theory for gravitational 

interaction, our study is justified and not at all trivial. 

Although the equations of motion of the pseudo-classical Dirac fermions 

are complex enough and exact solutions are not illuminating, we are able 

to present special solutions for the motion on a cone and on a plane. The 

supersymmetric constraint for physical fermions Q = 0 (1.48) plays an 

important role for the form of solutions. 

The results of this chapter may be interesting in the study of fermion 

modes in gravitational instantons as well as in the long-range monopole 

dynamics. Our results reduce to the case of (i) the NUT-de Sitter space­

time for Pn = n (chapter 6), (ii) the peculiar [95] Taub-NUT [96, 142] 

spacetime for Pn = n, A= 0 (chapter 5), (iii) the Reissner-Nordstrom-de 

Sitter spacetime for Pn = 0 [44], (iv) the Schwarzschild-de Sitter spacetime 

for Pn = n, q = 0 (chapter 3), (v) the Reissner-Nordstrom spacetime for 

A= 0, Pn = 0 [43], and (vi) the Schwarzschild spacetime for A = 0, Pn = 0, 

q = O [42]. Because of the presence of the cosmological constant, the result 

of this chapter may be interesting in view of the inflationary scenario of 

the early universe. 
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Discussion 

The main concern of this thesis has been the investigation of the quantum 

objects, namely spin one half particles, in curved spaces by pseudo-classical 

mechanics model which is a world line supersymmetric extension of the 

ordinary relativistic point particle. The model involves, together with the 

usual spacetime coordinates, anticommuting Grassmann coordinates that 

take into account the spin degrees of freedom. Having in mind the lack of 

a satisfactory quantum theory for gravitational interaction, this study is 

interesting and not at all trivial. 

For particles with internal degrees of freedom like spin, the usual Killing 

equations and Noether's theorem receive generalizations. These general­

ized equations then provide information about the solutions of the equa­

tions of motion for these particles in curved spacetime. The spacetime can 

have two types of symmetries: generic ( chapter 1) and nongeneric ( chapter 

2) supersymmetries. Both kinds of symmetries are found for the Taub­

NUT background spacetimes ( chapters 4-7), but for the Schwarzschild 

type spacetimes there are only generic symmetries (chapter 3). 

The results we obtain apply most directly to the formal aspects of the 

motion of fermions like electrons or, possibly, massive neutrinos (or photi­

nos, gravitinos, etc.) in the external gravitational field. The formal aspects 
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of motion include the proof of spin-orbit coupling and the corresponding 

fine-splitting, which result from dependence of the energy on the values 

and relative orientation of the orbital and spin angular momentum. This 

predicts that the time-dilation in a gravitational field, perihelion preces­

sion for bound state orbits, and the scattering of particles by gravitational 

fields are spin dependent. Thus there exists a gravitational analogue of 

the Stern-Gerlach type interaction well-known to appear in electromag­

netic phenomena. 

As stated in the introduction of this thesis, the equations of motion 

(1.11) and (1.13) remain valid when averaged inside a functional integral 

with the exponential of the action (1.3) in the integrand. That is, 3µv = 
-i'lj;µ'lj;v can be replaced by its quantum mechanical expectation value 

(Sµv). This permits to regard our results as a semi-classical approximation 

to the quantum Dirac theory. However, this approximation can only hold 

to first order in the spin, since (Sµv)2 =I= ((Sµv)2) in general. 

It is obvious in the physical world that the effects of microscopic intrin­

sic spin of particles such as electrons in a gravitational field like that of a 

star can be completely neglected. In fact, the ratio D., defined in (3.37), 

for an electron orbiting the sun is of the order 10- 17. So, effects of parti­

cle spins most probably act a significant role only in strong gravitational 

interactions at short-distances, near the Planck-scale. 

The spinning particle model used in this thesis work is a world line su­

persymmetric extension of the ordinary relativistic point particle and it is 

a theory that describes in a pseudo-classical way a Dirac fermion moving 

in an arbitrary spacetime. Since the Taub-NUT background spacetimes 
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admit Killing-Yano type tensors, there exist new additional supersymme­

tries (chapters 4-7) which make possible a whole range of calculations, 

both classical and quantum mechanical, and can be applied to various 

physical processes in the background spacetime. The construction of the 

new supersymmetries in the pseudo-classical mechanics model can be car­

ried over straightforwardly to the case of quantum mechanics. This is 

performed by the usual replacement of phase-space coordinates by opera­

tors and Poisson-Dirac brackets by anticommutators (1]. The supercharges 

in terms of these operators are replaced by Dirac-type operators (39]. In 

both cases, the correspondence principle expresses clearly the relations 

between these approaches and gives equivalent algebraic structures (73]. 

For the Dirac equation in curved spaces, it has been proved that the 

Killing-Yano tensors perform an essential role in the construction of new 

Dirac-type operators. The Dirac-type operators constructed from covari­

antly constant Killing-Yano tensors are equivalent with the standard Dirac 

operator [58, 148]. However, the non-covariantly constant Killing-Yano 

tensors generates non-standard Dirac operators which are not equivalent 

to the standard Dirac operator and are associated with the hidden sym­

metries of the space. 

In view of the above considerations the study of this thesis is well 

motivated. 
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