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A Study of Some Non-linear Stochastic Models on Renewable 
Resources Management : Application to Forestn 

Abstract : Rapid industrialization and rising energy and resource consumptions 

have led scientists to believe that the optimal exploitation and efficient 

management of the resource -renewable as wel 1 as non-renewable, are the 

impelling needs of the day, and demand urgent attention of all concerned. 

Every item of the human utility involves energy consumption. According to the 

recent estimates, at the current rate of consumption and trend of demands, 

our reserves of oil and natural gas will last for some eighty odd years, and 

the coal, some two hundred years. Keeping in view the growth of human 

population at an alarming rate, the efficient management and conservation of 

our resources is no longer a soft option, rather it is a pressing hard core 

necessity. Further, the planning, conservation and management of renewable 

resources becomes all the more important as the non-renewable resources are 

limited. 

Resources generated through bio-reproduction processes and through photo­

bio-chemical processes constitutes a rare and unique gift of the nature to the . 

human race. These resources are renewable by the very nature of biological 

processes. Fishery and forestry are prime examples of renewable resources 

that the human race has been exploiting for its survival and shelter since the 

time immemorial. Fresh water resources are repeatedly renewed our 
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agricultural produce and hydro-electric power generation. The area of 

renewable resources is vast and unfathomable, and thus will remain a subject 

of research for ages. Keeping our limited objective, for the present, in mind, 

the proposed thesis is confines to the study of some nonlinear stochastic 

models pertaining to the management of forestry. 

This thesis consists of five chapters. To cater to the needs of non-specialist, 

and to make this piece of work self-sufficient, the first chapter is intended to 

be a self-contained module of concepts, population growth model, equilibrium, 

notions about management of forestry. Further, uncertainties arise in several 

ways in biological growth of these resources, and also in the management 

· due to involvement of unpredictable human behaviour, and thus render these 

problems as stochastic in nature. Therefore, we have given a brief description 

of stochastic processes and stochastic differential equation in terms of which 

the models have been developed. A modified version of van Kampen's 

method of system-size expansion, which is the basic mathematical tool for our 

investigation is also introduced. In our first problem, which comprises the 

second chapter of this thesis, we have studied the deterministic version of 

the Ludwig, Jones and Holloing's non-linear pest model. Forestry have 

potential impact on environment so it is evident to research forestry 

management. The spruce budworm is a pest and it is very harmful for the 
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Coniferous forest of Canada. In this direction we have discussed the life 

history of the spruce budworm, details of its nature and development, food 

habits and specially the higher reproductive activity. Initially the budworms are 

so few that the birds cannot easily locate them and at a later stage, the pest 

population attains a good size, as the size of the population tends towards 

the carrying capacity of the system (the available leaf-area) their rate of 

reproduction decline due to defoliation. In view of this facts the marvelous 

and wonderful mathematical tricky tools applied to locate and describe the 

equilibrium. The relationship between straight line and curve represents the 

qualitative nature of the pest. To understand and explain the critical patch 

width and critical patch size we have utilized the linear and logistic models 

and have highlighted in the third chapter. The linearity and stability of the 

process have also been verified. 

In the fourth chapter, we have developed a stochastic quantative version of the 

Wright's model and have carried out a detailed deterministic analysis of the 

model. The purpose of this work is to explore possible mathematical 

structures in the model by incorporating 'fluctuation' components. The 

mean evolution of the process and the stead-state solution along with the 

minimum and maximum values of the dominant control parameters have 

been analyzed in this direction. The qualitative management strategy for 
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controlling the pest by choosing a combination of alternatives: (i) tree-felling, 

and (ii) spraying with pesticide are also addressed herewith. 

In the last chapter, continuing with the models developed on stochastic 

version formulated on the basis of birth-and-death process and have carried 

out a detailed stochastic study of the model in three regions of interest and 

of importance. It has been shown that the system exhibits a first-order phase 

transition, and at the critical point and its close neighborhood, the system undergoes 

large fluctuations as compared to those predicted by the Central Limit 

Theorem. Tremendously enhanced fluctuation play a very important role m 

bring out the unfolding of the cusp catastrophe which we have discussed. 
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CHAPTER-ONE 

INTRODUCTION 



CHATERONE 

INTRODUCTION 

Management is a vibrant and multiphase dynamic process, just like social, 

scientific and engineering processes, that involves a wide spectrum of activities 

such as planning, coordination, communication, policy framing, decision making 

and their implementation. During the last three decades, the management of 

natural resources in general and that of renewable resources, in paiiicular, has 

invited the attention of a large segment of researchers in various field [1-5]. 

In order to maintain the ecological balance, as well as, meet the economic 

needs, the forest can play a vital role. Our government also taking special 

initiative to carry forward a forestation program throughout the country. Also to 

pollution free environment a forestation has no alternative. In this direction 



Chapter One Introduction 

government organizations came forward to utilize the renewable resources for 

economic prosperity of the nation. 

Coyle studied the dynamics of management system [6] and of capital expenditure 

[7]. However, it 1s difficult to define precisely the dynamic nature of 

management problems as it involves in important factor of uncertainty ansmg 

from various sources, intrinsic as well as extrinsic to a management system 

under consideration. Further, most of the management problems involve very 

sensitive control parameters, sensitive in the sense that very small changes in 

the parameters lead to unexpected large effects reflected in the response. When 

sensitive parameters are present, the system under study may exhibit a 

catastrophic behaviour over certain regions in the parameter space. Recently, 

Wright [8], has carried a detailed qualitative analysis of management problems 

related to forestry by employing concepts of Thom's Catastrophe Theory [9, 10]. 

Resources generated through bio-reproduction processes and through photo­

biochemical processes are a rare gift of nature to the human race. These 

resources are renewable by the very nature of biological processes. Forestry is 

prime example of renewable resources that the human race has been exploiting 

for its survival and shelter since the time immemorial. In the management of 

renewable resources, both biology and economics play important roles. The 

basic problem is the resource conservation, and hence a problem of the optimal 

2 



Chapter One Introduction 

use of resource stocks overtime. Thus, the resource conservation theory is to be 

founded on the explicit dynamic mathematical modes of biological processes 

coupled with objective functions framed with economic concepts, and therefore, 

must concern itself with the problem of dynamic optimization. Further, 

uncertainties crop out in several ways in the biological growth of these 

resources, and also anse m the management due to involvement of 

unpredictable human behaviour, and consequently these problems become 

stochastic in nature. In the proposed thesis, we shall confine to the study of 

some non-linear stochastic models pertaining to the management of forestry. 

1.1.1 EQUILIBRIUM: 

Equilibrium is a state of a system which does not change with respect to time. 

Therefore, the dynamics of a system is described by a differential ( or a system 

of differential equations), then equilibrium can be estimated by setting a 

derivative (all derivatives) to zero. 

Example: Logistic model 

dn n - = r. n(I - - ) . 
dt O k 

In order to find equilibrium, we have to solve the equation : dn = O gives 
dt 

3 



Chapter One Introduction 

This equation has two roots ; n = 0 and n = k. An equilibrium may be stable or 

Mstable, For example, the equilibrium of a pencil standing on its tip is 

unstable, however equilibrium of a picture on the wall is (usually) stable. 

Q/71717///ll /7/llil 

An equilibrium is considered stable (for simplicity we will consider asymptotic 

stability only) if the system always returns to it after small disturbances. If the 

system moves away from the equilibrium after small disturbances, then the 

equilibrium is unstable. 

1.1.2 BIFURCATION: 

When a non-linear dynamic system develops twice the possible solutions that it 

had before it passed its critical level. A bifurcation cascade is often called the 

period doubling route to chaos because the transition from an orderly system to 

a chaotic system often occurs when the number of possible solutions begins 

increasing, doubling each time. 
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Chapter One Introduction 

1.2 POPULATION GROWTH MODELS: 

Lel n(t) denoted the size of a population at time t. Considering the largeness 

of biological populations, we shall treat n(t ) continuous. A class of density 

dependent growth model is dynamically represented by the differential equation 

dn - = f(n) .. ............ ......... .. ......... ..... .................. .... .... ........ .............................. (1 .1) 
dt 

subject to the condition of initial population, 

n(O) = n0 • •••••••••••••••••• ••••••••• ••• ••••••••••••••••••••• • • ••• •• • • • •• • ••••• • •• • •••••••••• •• •••••••••••••••••• ••• (1.2) 

where f(n) is an appropriate function of n(t) of degree~ 2. The growth 

function per unit of the population is given by 

1 dn J(n) 
r(n) =-- = - ........................................................................................... (1.3) 

n dt n 

and sometimes referred to as the proportion growth rate. Natural populations 

have been investigate through a large numbers of models[ll-16]. 

A growth model for which r(n) is a non-increasing function of n is referred 

to as a 'pure compensation model' . If r(n) is a non-decreasing function of n 

for certain values of n , then the model is said to be a ' dispensation model'. 

We would like to mention that r(n) may be such that it increases for 

0 < n < N• , and the decreases for n > N., even in this situation, the model will 

be referred to as a dispensation model. 

5 



Chapter One Introduction 

A dispensation model with an addition property f(n) < 0 for certain values of 

n, near n = O is termed as a 'critical dispensation model' . For such models an 

unstable equilibrium N0 exists, such that whenever the initial population 

n
0 

< N
0

, then n(t) ➔ 0 as t ➔ oo. For obvious reasons, n = N0 is called the 

'minimum viable' population. 

1.3 STOCHASTIC PROCESSES : 

For a deterministic dynamic system given the initial conditions and the laws of 

the dynamics of system, its future course can be easily predicted at any 

subsequent instant of time. However, there is an inherent weakness of deterministic 

system. The theory of determinism is based on three classical assumptions of 

exact, instantaneous and free recording of observations pertaining to the 

evolution of the system. For real life problems these three axioms are too 

harsh and are hardly met by a dynamic system. Uncertainties creep into the 

course of the system and influence it remarkably. Thus, in realistic situations 

what we can do at best is that, given the initial probability distribution of the 

system in different possible states and the laws of dynamics driving the 

system, we may predict only the probabilities of the system being in a 

particular state at a given subsequent time. The process associated with the 

evolution of such a system is called a stochastic process. Summarily, we may 

state that a process that evolves in time or space according to certain laws of 

6 



Chapter One Introduction 

probability is referred to as a stochastic process. Speaking mathematically, it is 

a family of random variable {X(t), t e T} indexed by a real parameter t, and 

defined on a common probability space (n, S, P). When T is a discrete set 

of finite or countable indexing numbers, the stochastic process is said to be a 

discrete parameter process, when T is an interval of the real number system, 

then it 1s called a continuous parameter process. Fmiher, the process 1s 

referred to discrete or continuous state process according to as it assumes 

values over a discrete set or a continuous set (interval) of the real number 

system. For an axiomatic rigorous definition, reader may consult Sharma [17]. 

A discrete parameter stochastic process {x (t)} t = 0, 1, 2, .... or a continuous 

parameter stochastic process {X(t)} , t ~ 0, 1s called a 'Markovian process' if, 

for any set of n + I point t1 < t2 < !3 <, ... , < t n < t,,+1 in the index set T of the 

process, the conditional distribution of X(t), for given values of 

X(t1), X(t2 ), ••• ,X(t,,) depends only on the value of X(tn), the most recent 

known value, and is independent of the remote past. Put mathematically, 

P[x(t) ~ xiX(t1) = x1, ••• ,X(t,,) = xn] = P[X(t) ~ xiX(t,,) = x,,] 

A stochastic process {X (t), t e T}, continuous in parameter as well as the state 

space is called a normal or Gaussian process if, for any n ~ 1, and any finite 

7 



Chapter One Introduction 

sequence t1 <t2 <, ... ,<t,, from T, the random variable X(t1), X(t2 ), ... ,X(t,,) are 

jointly normally distributed with its joint probability density function 

II I 

/(x) = (2n-)-2jdetij2 exp[-(.x - 11I-1(x- Jt)] ........... ........ . .............. ..... (1.4) 

where .X(t)=[X1(t),X2(t), ... ,X
11
(t), and I andµ are the covariance matrix and 

the expectation of X(t) respectively. 

Further a stochastic process whose probability laws are invariant under 

transition/shift in time is called a stationary process and it is called an 

independent increment process if X(O), and for all choices /0 <t1 <12 <, ... ,<t
11

, 

the random variables X(t;+i)-X(t,), i = 0,1, .... , n-1 are stochastically independent. 

An independent increment stationary process {X(t)} t ~ 0 is called a 'Wiener 

process' if, for every t>O, X(t) is normally distributed with expectation 

E[x(t)]= O and variance a- 2t. The parameter a- 2 is an empirical characteristic of 

the process and must be determined from observations in respect of the 

process. 

From the definition of a Wiener process, it follows immediately that for t > s, 

the probability density function of X(t)-X(s) will be 

fx(l)-X(s) = a-.J
2
;(t-s) exp[-x

2 /2a-2
(t-s)] ....................................... (1.5) 
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Chapter One Introduction 

In 1828, Robert Brown, an English Botanist, observed that small pollen particles 

of size a few micron immersed in a liquid executed an irregular motion. This 

phenomenon, which is referred to as Brownian motion, arises from incessant 

collisions of the molecules of liquid on the pollen particles suspended in it. 

After about a three quarter of a century, using the the concept of a simple 

random walk, in 1905 Einstein [18] gave scientific interpretation of the 

Brownian motion, Wiener [19] and Levy [20] independently gave first rigorous 

treatment of the Brownian motion. For this reason, the Brownian motion is 

sometimes called the Wiener process or the Wiener-Levy process. 

1.4 DIFFUSION PROCESS AND FOKKER-PLANK EQUATION: 

A Markov process {X(t)} , t '2:. 0, with state space R is called a ' diffusion 

process' if there exist real valued function M(x, t) and S(x, t) such that, for 

any arbitrary fixed e > 0, the following condition are satisfied: 

(i) lim ~t t -xln: G(x,t;y,t + tit)dy = 0 .. ... ............ .. ..... ......... .. ...... . . (1.6a) 

tit ➔ 0 

(ii) lim L t -xls/y - x)G(x,t;y,t+M)dy=M(x,t) . .. ................. .. ...... .. (1.6b) 

b.t ➔ 0 

(iii) lim ~t t -xls/y-x)2G(x,t;y,t+M)dy=S(x,t) ......... . . .. ........... ....... (1.6c) 

M ➔ O 
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and forn ~ 3, 

(iv) 
lim 1 ! - (y-xtG(x,t;y,t+tt)dy=Mn(x,t) 

tt y-xj:!:c ........................... (l.6d) 

tt ➔ 0 

where G(x,t;y,s) is given by 

G(x,t;y,s) = P[X(s) = YIX(t) = x] 

The functions M(x,t) and S(x,t) are called the 'drift' and 'diffusion' coefficients 

of the process, and M,,(x,t) the jump moments of order n. 

We shall now state a theorem which embodies the Fokker-Plank equation. Let 

{X(t)} , t ~ 0, be a diffusion process with drift coefficient M(x,t) and 

diffusion coefficient S(x,t) and transition distribution G(x,t;y,s) such that the 

following partial derivatives exist and are continuous: 

a 
g(y,s;x,t) = ox G(y,s;x,t), 

a 
-G(y,s;x,t), 
at 

a ay G(y,s;x,t), 

a a2 

-[M(x,t) g(y,s;x,t)], -
2 

[S(x,t) g(y,s;x,t)] ........ ........................ (1.7) ox ax 

Then g(x,t;y,s) satisfies the 'Kolmogorov forward' equation 

ag(y.s;x,t) = -~[M(x,t) g(y,s;x,t)]+..!_ a
2

2 
[S(x,t) g(y,s;x,t)] ..................... (1.8) 

at ax 2 ax 

which in the literature is referred to as the Fokker-Plank equation, especially 

by Physicists and Chemists. 
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1.5 STOCHASTIC DIFFERERNTIAL EQUATIONS AND WHITE NOISE: 

Following Einstein's interpretation of the Brownian motion in 1905 [21], 

Langevin and others [22-27] formulated the dynamics of such motions in terms 

of the so-called stochastic differential equations. Speaking intuitively, any 

differential equation in which stochasticity involves any form is called a 

stochastic differential equation. Obviously the stochasticity may appear through 

any one of the following mechanisms or through any combination them. 

1. Initial conditions are stochastic 

2. Boundary conditions are stochastic 

3. Coefficients appearing therein are stochastic variables 

4. The .driving force is stochastic in nature 

5. Fluctuations prevailing in the reservoir in which the system under 

consideration is embedded contributed stochastic perturbations. 

In case of the Brownian motion, the stochasticity anses from incessant random 

impact of water molecules on the Brownian particles (pollen particles). Thus 

the source of stochasticity 1s of the last type. If X(t) denotes the random 

position of the Brownian particle at time t, when the motion being considered 

along a straight line, the resulting equations were written in the form: 

dX(t) = f (t; x(t)) dt + g(t; x(t)) h(t) dt ........... ...... ......... .................................. . ( 1.9) 

With a deterministic or average drift term 

Rajsbabi Un_iversity Librar, 
Documentauon Section 
~ocumcnt No ... J> .. -::-,.~-~l.tj 

11 
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dX - = f(t; x) ............................................................................................... (1.10) 
dt 

perturbed by a noise diffusion term g(t; x(t)) h(t), where h(t) were standard 

Gaussian random variables for each t, and g(t; x(t)), a space- time dependent 

intensity factor. The symbolic differential equation, Eq.-(1.9) was rewritten and 

interpreted as an integral equation 

I I 

X(t,OJ) = X(t0 , OJ)+ f J(i-, x(q,OJ)di- + Jg(i-, x(q,OJ)) h(r,OJ)di- ...................... (1. 11) 
lo lo 

For each realization (sample path) OJ. Since Brownian motion is not 

differentiable in the classical sense, some extrapolations to a limit were carried 

out (see Kloeden and platen [28] Schuss [29]. Arnold [30]. Ito [31,32]. Soong 

[33]. The observations of Brownian motion seemed to suggest that the 

covariance 

r(t) = E[h(s) h(s+t)] ..................................................................................... (1.12) 

of the process h(t) had a constant spectral density, which is, with all time 

frequencies, equally weighted in any Fourier transform of r(t). Such a process 

has been referred to as Gaussian White noise, paiticularly in the engineering 

literature. The obvious reason for this nomenclature being the fact that when a 

large number of stochastically independent factors cause fluctuations (noise) in 

the system then the fluctuation are uncorrelated in time and bear an analogy 

12 
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with white light which anses from the superposition of waves of different 

wavelengths (colours) 

In integral equation, Eq.- (1. 11 ), if we set 

f(t ;(x)) = 0, and g(t ;x(t)) = I ...... ................................................................ (1.13) 

We obtain 

I 

X(t,OJ) = X(t 0 , OJ)+ J h(-r,OJ)dr ....................................................................... (1.14) 
lo 

which suggests that h(t) may be regarded as formal derivative of pure 

Brownian motion, that is, the derivative of a Wiener process, thereby 

suggesting that we could write Eq.-(1.11) in the following form 

I I 

X(t,OJ) = X(t0 , OJ)+ J /(,, x(i-,OJ)di- + Jg(,, x(i-,OJ)) h(i-,OJ)dw(i-,OJ) ............ (1. 15) 
~ ~ 

Here. we would like to caution that, since a Wiener process W(t) is nowhere 

differentiable, therefore strictly speaking the White noise process h(t) dose not 

exist as a conventional function of t. Thus, the last integral of Eq.-(1.15) 

cannot be interpreted as an ordinary Riemann or Lebesque integral. Still worse, 

the continuous sample path of a Wiener process are not of bounded variation 

on any bounded time interval, and therefore, the second integral in Eq.-(1.15) 

cannot even be interpreted as a Riemann Stieltjes integral for each sample path. 

13 
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In view of the foregoing discussion, we characterize h(t) by two empirical 

parameters m and cr 2 defined by 

<h(t)>=m ................................................ .. ..... .................... ..................... (1.16) 

and 

r(t) = < (h(t)- m)(h(t')- m) > = cr 28(t -t'), .................................................. (1. 17) 

with all the correlations of order~ 3 being zero. Here 8(t) is Dirac's delta 

function, and symbols <. > denote the ensemble average, that is the average 

taken over a number of repetitive observations on the system. 

h(t) defined by Eq.-(1.16) and Eq.-(1.17) 1s said to be generated by a 

Gaussian process, and cr 2 termed as an incremental variance or the intensity of 

the input process. We define a new function V(t) by setting, 

V(t) = [h(t) - m ]! er ..................................................................................... (1.18) 

So that 

< V(t) > = 0 ................................................................................................. (1.19) 

and 

' ' ) < V(t) V(t ) > = 8(t - t) ................................................................................. (1.20 
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and with vanishing correlation function of V(t) of order ~ 3. V(t), so defined 

is called the 'White noise' with zero mean and intensity one. Obviously, h(t) is 

a white noise with mean m and intensity 5 2
• 

Using Eq.-(1.18), we rewrite Eq.-(1.19) as follows 

dX(t) = a(x)dt + /J(x)dW(t) ....................................................................... (1.21) 

where 

a(x) = f (x) + m g(x) and /J(x) = a g(x) 

Following Cox and Miller [34], one can shown that for the solution process of 

(1.21) 

N(x,I) = N 1 (x) = a(x) +!.~[,a2 (x)] .. ............................... .. .......................... (1.22) 
4 ax 

S(x) = M 2 (x) = /J2 (x) · .................................................................................... (1.23) 

and 

M
11
(x)=O for all n~3 ............................................................................... (l.24) 

and the co1Tesponding probability density function P(x, t) satisfies the Fokker­

Plank equation, Eq.- (1.18) 
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1.6 van KAMPEN'S SYSTEM-SIZE EXPANSION METHOD: 

MODIFID VERSION: 

A large cross section of the real world problems related to several disciplines 

of learning such as Physics, Chemistry, Biology, Engineering. Economics, 

Sociology, Management etc, have been modeled through Markovian stochastic 

processes. The temporal evolution of the conditional probabilities for such a 

stochastic process is described by the master equation (ME), which is an 

equivalent form of the Chapman-Kolmogorov of the process. Let X(t) be a 

discrete one dimensional Markov process whose states are labeled by n. 

Further, let W . be the transition probability per unit time from state n' to 
11n 

state n, that is 

W ,• = P[X = njX = n'] .......................................................................................... (1.25) 
nn 

and let P,, (t) be the probability that the system is in the state n at time, then 

its ME is given by 

dP,, (t) = '°' rw ,p. (t)-W. P,, (t)] ........................................................................... (1.26) df 4~ 1111 n 11n 
II 

In this form the master equation becomes specially meaningful as it is now a 

gain-loss equation for the probability of each state n. In the language of fluid 

mechanics it is the equation of continuity for the flow of probabilities. 
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In the process X(t) involves only one step transition from the neighboring 

states n - 1 and n + 1, then writing 

wn+l,n = A,/1 and w,,_,,n = µn ..................................................................... (1.27) 

the ME reduces to the form 

dP;;t) = 2,,_, P,,_i(t) + µ,,+1 (t)P,,+I (t)-(211 + µ/1) P,,(t) ........ ........................ (1.28) 

In terms of the transition or Shift operator E defined by 

E±1J(n) = f(n±l), ........... ............... ..................... ........ .. ............................. . (1.29) 

The ME assumes the form 

P,, (t) = [(E -1)µ,, + (E-1 
- l)l

11 
}P,, (t) ................................................................ (1.30) 

where 

p (t) = dP,, (t) 
II dt 

However, only in the rare cases, the ME is solvable in an explicit form. For all 

those master equations that cannot be solved exactly, it become necessary to 

develop a systematic approximation method rather than Fokker-Plank equation 

[FPE] based on the Langevin's intuitive approach [35]. van Kampen [36] 

remedied the situation by providing with a systematic approximation method in 

the form of an expansion in powers of a small parameter e, related to the 

overall size of the system that again converted the ME into FPE. Pawula [37], 

with all mathematical rigors, established the important fact that it is impossible 
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to find a partial differential equation other than the FPE that approximates the 

ME and leads to a non-negative solution as well. The method is provided on 

splitting the random variable n(t) in the form 

I 

n(t)=Q<I>(t)+Q 2x ........................................................................................ (1.31) 

where Q is a measure of the overall-size of the system in which the 

Markov process evolves; <D(t) is a smoothly varymg function of time that 

governs the phenomenological development of the process and x is a purely 

random function such that O(x) = 1 represents the fluctuations around the mean 

trajectory. Further, for large system, n(t) has been treated as a continuous 

random variable. 

The splitting given m Eq.-(1.31) is based on the implications of the Central 

limit theorem. One expects that in view of the Central limit theorem, 

P(n,t)(= Pn(t)), will have a sharp maximum around the expected value 

I I - -
E[n(t)] = Q<D(t), with a width of order n 2 = Q 2 • 

Subsequently, it was felt that for the Markov processes which can be 

described by a birth-and-death type of model, this approach is not adequate 

enough to provide with a proper description of fluctuations when a system is 

in an unstable equilibrium or away from equilibrium [38-40]. However, Fox 
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[41] and Dekker [42] independently suggested a modification to the van 

Kampen's method. The modified version of this method has been successfully 

applied by Sharma et al. [43] and Sharma and Pathria [44] for analyzing the 

stochastic behaviour of non-linear birth-and- death type models both for 

equilibrium as well as non-equilibrium system in their critical regions. The 

modified version runs as follows: 

Considering the observation of the several researchers that fluctuations are 

immensely large at the critical point and in its immediate neighborhood, of a 

system the stochastic variable n(t) is split as 

n(t) = .Q<l>(t) + ,nv X, 0 < V < 1 ...... ... .. ........................................... (1 .32) 

instead of Eq.-(1.31 ). The probability distribution p(n,t) now transform into 

q(x,t), where 

q(x,t) = ,nv P[ncD(t) + ,nv (x,t)] ................................................... ................... (1.33) 

,:vhile the translation operator E becomes a differential operator such that 

E = exp(D), D = ,n-v ..!!_ ............................................................................ (1.34) 
ax 

Therefore 

[ 
n-v a n-2v 82 n -3v 83 ] 

E±1 -1 = ±1! ax +21 axi ±3! ax3 + ................................................ (1.35) 

The jump moments or derivative moments [ 45], defined by 
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Ak(n) = Z:(n' -nYwnn' .. ................. ................. ............................................... (1.36) 
n 

then assume the form 

A1c(n) = ;{,n + (-1)* µn ••••••••••••.•••••••••••••••••••••••••••••••••...•••••••••••••••••••••••.••••••••••••••• (1.37) 

and, in view of Eq.-(1.32) and Eq.-(1.35), can be written as 

Ale =f(Q)a,(<l>+nv-lx) . ...... . ........................................... ................. ........ (1.38) 

Substituting Eq.-(1.32) and Eq.-(1.35) into Eq.-(1.30) and using Eq.-.(1.38), 

we obtain 

aq -nl-v d<l>. aq 
at dt ax 
=J(n)[-n-v ~[a1(<l>,x)q]+n-2v a

2

2 [a2(<l>,x)q]-n-Jv 
8

\ [a3(<l>,x)q]+ ... ] 
ox ax ax 

.......................... (1.39) 

Redefining the time scale by setting 

f(O)t = n, ................................................................................................ (1.40) 

aq r. i-v d<l> aq 
at-:.t. d, . ax .... (1.41) 

nt-v a nt-2v a2 nt-3v 83 
= ---[a, (<l>,x)q] +----2 [a2(<l>,x)q]-----3 [a3(<1>.x)q] + ..... 

1! ax 2! ax 3! ax 

Since the leading term in Eq.-(1.41) are of order n 1-v, equating the terms of 

this order on both sides, we get 

d<l> - = a 10 (<l>) ............................... .... ............................................. ................ (1.42) 
d, 
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where aJO(cD) is the value of a 1(c:D,x) when Q ➔ oo. Eq.-(1.42) governs the 

deterministic evolution of the process. Expanding 

neighborhood of <I>:, the steady-state value of cD at the critical point of the 

system, we find 

Eq.-(1.43) forms the foundation of the extension of van Kampen's method as 

suggested by Fox [41] and Dekker [42]. If the first non-vanishing derivatives 

of the first second jump moments ak (k = 1, 2), at cD = <I>: are of order m
1 

and m2 respectively, the fluctuations in the critical region will be determined 

by the equation : 

................ (1.44) 

smce O(x) = 1, the drift and diffusion processes will be of comparable 

significance only if 

m1 -mz 
v = l+m1 -mz ················································· ······· ······································ (1.45) 
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Simultaneously, the critical slowing index µ, which implies that the approach of 

the system towards its equilibrium state is slowed down by a factor of order 

Q", is given 

m -1 
µ= I .... . .... . ............................. . . .. ... .. ........... . ......... . ............. . .......... (1 .46) 

l+m1 -m2 

In terms of the slowing index µ, Eq.-(1.44) assumes the form: 

aq 
a-r 

-n-"[ 1 (1111)(mc) a [ "'1 ] 1 (mz)(mc) a2 
[ lllz ] ] (I 47) - -, a, 'JJco - X q + I a2 'JJco -2 X q + .... ..................... . 

m,. ax 2(m, ). ax 

This expansion technique leads to a non-linear FPE which describes the critical 

region of the system quite adequately. 

It will be worth mentioning that the van Kampen's original method of the 

system-size expansion corresponds to m, = 1 and m
2 

= 0, 1 hence to v = - and 
2 

µ = 0. This implies that the original version is not adequate for studying a 

non-linear system m its critical region. 
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1.7 CATASTROPE THEORY: 

The structural stability of a dynamic system depends on the parameters or 

structural constants appearing in the system of differential equations describing 

the system. A system that regains its topological structure after any small 

perturbation is referred to as a stable or a coarse system. Poincare [ 46], about 

a century ago, initiated the study of qualitative properties of the solution of 

ordinary differential equations involving three fundamental concepts : Structural 

stability, dynamic stability and critical sets, in terms of the parameters 

( constant) appearing in the differential equations. Morse [ 4 7] investigated the 

structure for canonical forms of a function near an isolated critical point and 

Whitney [ 48] examined canonical forms for mapping at singular points. During 

1950's Thoin [49] introduced the concept of transversality as a mechanism for 

discussing structural stability and then employed this tool to describe canonical 

forms for certain singularities of mapping f : 91'' ➔ 91 1 
, which he called 

catastrophe. Put succinctly, Thom's elementary catastrophe theory is the out 

come of the study of the equilibrium of dynamical systems that are derivable 

from a potential function and attempts to show how the qualitative nature of 

solutions of equations is dictated by the parameters of the equations. 
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It is a branch of mathematical topology developed by Rena Thom [50] which 

is concerned with the way in which nonlinear interactions within systems can 

produce sudden and dramatic effects. 

Therefore catastrophe theory [ 51] is the mathematical modeling of sudden 

changes, so called "catastrophe", in the behaviuor of nature systems, which may 

appear in the split of continuous changes of the system parameters. 

Four basic problems related to catastrophe theory are : (i) determinacy (ii) 

unfolding (iii) classification and (iv) globalization. 

Here our limited aun 1s to convey the spirit of the mathematical aspect, 

without much rigor. An elaborate exposition may be consulted for finer details 

from Hirsch [52]. Hirsch and Smale [53], Arnold [54] and Gilmore[55]. Those 

desiring a more 'classical' language should consult Poston and Stewart [56] and 

Saunders[57]. 

1.8. RUDIMENTS OF CATASTROPHE THEORY: 

A system of equation of the type 

i, j = 1, 2, ... ,n. 
= 1 2 k ........................................ (1.48) a ' , ... , . 
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is called a dynamical system. Here x; 's describe the state of the system and 

are called state variables c 's are control variables and t stands for v the time , a 

variable. 

The dynamical system Eq.-( 1.48) is said to be autonomous if t does not 

appear explicitly, that is 

F; = dxl -J;(xj;ca)=O .... ....................... ............ ........ .. ............................... (1.49) 
dt 

Fmiher, if all the functions J; can be obtained as a negative gradient of a 

potential function V(x,,ca), so that 

······························· ······················· (1.50) 

then Eq.-(1.57) 

dx av 
-

1 +- (x ·c )=0 j' a dt ax;; 
i = l, 2, ... ,n. . ............................................. (1.51) 

The resulting system represented by Eq.-(1.51) is called a gradient system. The 

equilibrium states or simply equilibriums are the solutions x, of the equations 

or equivalently of 

av 
ax,; (xj;ca)=O ............................................................................................ (1.52) 

25 



Chapter One Introduction 

We would like to remark here that Eq.-(1.52 ) may or may not have a 

solution. The elementary catastrophe theory is the study of how equilibrium 

x/ca) of V(xi; ca) change with variations in the control parameters ca, 

a= 1, 2, .... ,k 

The local behaviour of a potential function 1s investigated, in most of the 

cases, by employing the theorems : Implicit function theorem, Morse lemma, 

and Thom's splitting lemma and theorem. 

When V V * 0, at a point in the state space, then by implicit function theorem, 

it is possible to choose a new coordinate system in the neighborhood of the 

point so that the force (-VV) has only one non-vanishing component, and 

hence we can transform the potential V in the form: 

V = i;1 + Constant. ..................................................................................... (1.53) 

Where the symbol _ means 'is equal to' after a smooth change of variables 

(t;i, i;2 , .... ,i;n). Let us recall that the constant term is 

of no importance when dealing with the local properties of a potential function. 
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If VV = O at a point (so-called critical point), the implicit function theorem 1s 

of no consequence. Nevertheless, if det V; 1 * 0, where 

is the stability matrix (or say Hessian matrix), then the Morse theorem 

guarantees the existence of a smooth change of variables 

(xi, x2 , •••• ,x,J ➔ (q" q2 , ... ,q,,) such that the potential V in the neighborhood of 

the critical point can be written locally as a quadratic form 

II 

V= LA, i;,
2 

.................................................................................................. (1.54) 
i=I 

Where A; are the eigen values of the Hessian matrix (V; 
1

) evaluated at the 

critical point. Further, by observing a 'length scale' into the new coordinate 

system 

the quadratic form of Eq.-(1.54) can be written in the Morse canonical form 

k 2 n 2 

V=-L171 + L171 ::M/(17) 
l=I l=k+I ....................................................... . . . ................. (] .55) 

The potential function 

V=M/(17) 
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is called Morse k-saddle point. In passmg we would like remark that only 

Morse 0-saddles have local minimum at the equilibrium ( critical point), and 

hence only the 0-saddle are locally stable. 

Further, if the potential function V depends on one more control variables 

c,. c2 , ... ,ck, then the Hessian matrix (V; i) and its eigen values Ai, Ai, ... , A,, also 

depend on these control variables. Quite possibly, one more of the eigen 

values A;(ca) may vanish for certain values of the control variables. When 

this happens, then det V11 = 0, hence in this situation not only the implicit 

function theorem but the Morse lemma ( 49) also fails. However, it is still 

possible, in view of the Thom's splitting lemma, to obtain a canonical form at 

a non-Morse critical point. If v eigen values Ai (f), Ai (f), .... , Av (f), vanish at 

f = f
0

, then Thom's splitting lemma may be used to spilt the potential into a 

non-Morse part and Morse part: 

n 

V(x, c) = /NM [~'i(x,c),~2 (x,c), .... ,~v(x,c)]+ ,LA;(c) ~/(x) ......................... (1.56) 
i=v+I 

where .-t,(x,c) ,A.i(i,c), .... ,Av(x,c), are v bad coordinates associated with V 

vanishing eigen values .-t, (c) , Ai (c), .... , Av (c), in the sense that control variables 

with n - v non-vanishing eigen values Av+i (c) , Av+2 (c), .... , A,, (c), in the sense that 
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they are sooth functions only in the original state variables x 1, x 2 , ••• , xn. At 

0;
0 

,c0
), the Hessian matrix [ ar:a;J, (I,; i,j,; v) vanishes, as all of its entries 

are zero at(l ,£), while the Hessian matrix of the Morse part is non-singular. 

Under appropriate conditions, Thom's theorem ensures the existence of a 

smooth change of variables so that the potential can be written in the 

following canonical form 

n 

V::CG(v)+ LA-i~;
2 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• (1.57) 
i=v+I 

The function CG(v) is called a catastrophe germ. 

A few remark would be perfectly in order about the critical point. In 

parlance of mathematics a point at which V V = 0, however det v; j * 0, is 

referred to as a critical point or Morse critical point or just normal critical 

point : A point at which VV = 0, also det Vii = 0 is referred to as a Non-Morse 

critical point. In our Thesis we shall be referring a normal critical point as an 

equilibrium point and degenerate critical point as a critical point. 

Further, in our work we shall be dealing with only one state variable and the 

number of control variables shall be at most, that is, n = 1 and k ~ 2, therefore, 
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in this case the germ of the potential functions ± x 4
, while the perturbation 

function being ax or ax+ bx2 
( a and b will be here control variables). 

1.9 CONVENTION AND FLAGE OF CATASTROOHE : 

In order to discuss the dynamics of real world system, we impose some 

assumptions of physical of intuitive nature such as quasi-state evolution or 

adiabatic evolution in the . sense that all time derivatives are very small with 

this assumption two conventions are widely adopted in catastrophe theory. 

They are : Delay convention and Maxwell's convention. 

According to the delay convention, the system stays in a stable or unstable 

equilibrium state until that state disappears. However, according to the Maxwell's 

convention the system stays in the state that globally minimizes the potential. 

In quantitative terms, suppose that H represents the characteristic height of 

the potential, which separates a meta-stable state from a nearly state, and N 

represents the level of intrinsic or extrinsic sources of stochasticity, then the 

N 
delay convention is applied when H << I, that 1s, n01se is far less than the 

characteristic height of separation; however, the Maxwell's convention 1s to 
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observed when N = l, that 1s the noise level is of comparable significance with 
H 

separation height. 

In passmg, we would like to remark that these conventions are not intrinsic to 

catastrophe theory; they rather provide with means by which the canonical 

mathematics of elementary catastrophe theory is made available to applications 

in various disciplines. In the word of Gilmore [55]. "The convention are adhoc, 

the pnce is incompleteness in the description and the rewards may be 

enormous". 

There are some remarkable features of a physical which immediately suggest 

the presence of a catastrophe. These features have been referred to as flags of 

a catastrophe, and are as follows: 

(Fl) Modality, 

(F2) In accessibility, 

(F3) Sudden Jumps, 

(F4) Divergence, 

(F5) Hysteresis, 

(F6) Divergence of Linear Response, 

(F7) Critical Slowing down or Model Softening and 

(F8) Anomalous Variances. 
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The first · five generally occur in conjunction with each other. These are 

manifested when two distinct regions are available in the parameter space 

wherein the potential function becomes locally minimum. Hysteresis may not be 

observed if the Maxwell's convention is observed, however, even in this, it is 

sometimes possible by careful experimental techniques to observe it. 

For example in physical, science super cooling orb super heating may yield the 

result. The remaining three flags may be observed even when the potential has 

only one local minimum. These three flags are of paramount importance in 

decision making. In numerous cases related to different disciplines safety margins 

on the control parameters may be achieved and there by sudden jumps 

(catastrophe) may be avert. We have invariably used these flags to suggest to 

recipe for managing forestry. 

32 



CHAPTER-TV\10 
QUALITATIVE ANALYSIS OF SPRUCE 

BUDWORM PEST AND FOREST 



CHAPTER TWO 

QUALITATIVE ANALYSIS OF SPRUCE BUDWORM PEST AND 

FOREST 

2.1 INTRODUCTION: 

Forests constitutes an important category of renewable resources. They are important 

not only for agricultural and industry but also for several other activities and 

ecological balance. They cover a large proportion of the land surface of the earth. On 

one hand, though photo-bio-chemical processes, they entrap enormous amount of 

solar energy and store in the form of valuable resources for the humanity, on the 

other hand, they consume carbon-dioxide (a challenging pollutant growing with 

industrialization) and liberate oxygen for the sustenance of the aerobic world. They 

enrich the fertility of the soil through a constant supply of decaying matter, make 
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the soil structure porous and conducive to retention and seepage of the 

precipitation received and thereby augment the underground water supply. Put 

succinctly, forests have a great bearing on the ground water supplies, soil erosion, 

climate regulation and flood control. Some potential impact on some environmental 

factors are discussed in the next section. 

2.2 POTENTIAL IMPACTS OF FORESTRY ACTIVITIES WITH 

EMPHASIS ON THE TROPICS: BY ENVIRONMENTAL ASPECT 

OR SOCIO-ECONOMICONCERN 

Soil: Soil may have lost through rill, gully or shoot eros10n, may become prong 

to rapid leaching of nutrients; may have rapid initial lose of the organic matter, 

followed by stabilization as soil organisms responsible for decay decrease in 

numbers; may become indurated as a result of laterization; micro-flora bad 

fauna may decrease or may be altered through exposure to full sunlight; in turn, 

changes in micro-organismic life may detrimentally affect decomposition and 

nutrient transfer, disappearance of the myconhizae may, in particular, retard or 

prevent the re-establishment of the many tree species that feed symbiotically 

with these soil fungi; organic matter increase under forest plantations, with 

beneficial effects on soil structure, infiltration capacity, soil-moisture holding 

capacity and caution-exchange capacity. 
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Sedimentation: Sediment load in steams made increase with adverse effect on 

channel stability, navigation, fish spawning, bottom organisms, light penetration and 

other aspects of aquatic life, accelerated sedimentation may shorten the useful life 

span of reservoirs; on sloping ground, sediment from logged over areas may bury 

the roots of the adjacent uncut forest or the crops on nearby field; re-and 

afforestation may decrease sediment loads and thus reverse the negative effects 

described above. 

Water Resources: Denuded slopes, compacted soil and decreased infiltration and 

canopy interception may lead to larger volumes of storm runoff and to quicker 

responses of runoff to precipitation; despite lower infiltration of rainfall, base flow 

may increase locally after de-forestation owing to decreased transpiration; however 

large-scale deforestation usually result in lower down-base low flows because of 

decreased infiltration and groundwater recharge, greater storm runoff and increase 

evaporation; smaller discharges may interfere with down-stream withdrawals for 

agriculture and domestic use. These effects may be reversed with re-or 

afforestation. 

Climate and Air Quality: Logging may mcrease ground temperatures and lower 

atmospheric humidity locally which, in tum, may interfere with seedling growth 

and micro-organismic life in the soil; large-scale deforestation may cause regional 
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desiccation of the climate as transpiration is decreased and local convection 

patterns. 

Wildlife and Fisheries: Logging can injure and kill some animals outrigh but 

more likely it damages or destroys key habitats such as nesting sites, including old 

hollow trees, feeding and breeding ground. It can also interrupt or eliminate the 

aerial pathways of arboreal species that seldom move at ground level. Some 

endemic species of animals could be eliminated altogether. 

Demographic-Economic Expansion: Forestry projects can stimulate the local 

cash economy through direct and indirect employment and increased demand for 

goods and service. These projects can also result in improved facilities such as new 

or better road, medical facilities, schools etc. A larger scale to new settlement 

created by the influx of people directly or indirectly employed in the forestry 

sector. 

Epidemiology: Forest removal may increase the rates of the incidence of certain 

diseases or introduce new diseases such as malaria and scrub typhus. Any water 

impoundment associated with forestry could lead in certain regions, to outbreaks 

of schistosomiasis or onchocerciasis. Destruction of forestry may bring forest 

arthropod vectors of the arbovirus diseases into closer contact with man. On 

the other hand, clearing of riparian forest is used to control trypanosomiasis. The 
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influx of the forest workers and outsiders may increase the incidence of certain 

diseases such as trypaosomiasis sexually transmitted diseases. On the other hand, 

medical facilities and standards established in connection with forestry project 

can significantly improve local or regional health conditions [1] . 

2.3 NATURE AND DEVELOPMENT OF SPRUCE BUDWORM: 

The spruce budworm ( choristoneura fumiferana) is a forest pest insect. 

It is a inborn defoliator of North American coniferous forest whose size 1s 

immense and their activity impact on a regular basis over extensive forest areas 

at least past three centuries [2-6]. Outbreaks of the spruce budworm occur in 

intervals of 0-40 years and it is periodically destroy most canopy balsam fir, 

which is a tall, pointed tree and usually an evergreen that has their needle-like 

leaves, over large areas and release small tree in the seedling bank [7-11]. 

Moreover periodic outbreaks of such defoliating insect cause major growth 

reduction but not destroy most of the trees. Last outbreaks were in 1910, 1940, 

and 1970. Also there are another type of insect C. biennis has been found in 

the forest northern British Columbia and further appears about 32 years [12-19]. 

In every year the spruce budworm gives one generation. The female moth 

which is as like as similar to butter flies and that flies lay eggs on the flat 

under surface of balsam fir or spruce needles, generally within 3 inches of the 
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buds or defoliated areas. When the populations are extremely high, eggs may be 

laid on almost any surface. The eggs hatch in 14 days. Generally, newly hatched 

larvae immediately search a suitable place to spin their hibernacular. However, 

during hot season, the larvae begin to move about and feed on needles before 

spinning a hibernacula. In this stage they may spin down from a branch on 

silken thread used in sewing dispersed by wind flow. At this time the young 

larvae transforms into second phase within hibernaculum's and remains dormant 

all through the winter. 

When spring start and weather become hot and balsam fir bud not begin to 

expand, then the larva emerges from hibernation and sta11 feeding. At the first 

stage, feeding is confined to the new buds of staminate flowers, m case the 

new buds of the staminate flowers are available. If the staminate flowers are 

rare, then the larvae depend on previous year's needle. The new flower buds 

provide ready source of food before the vegetative buds expand. The larvae 

which are early emerging that feed on staminate flower buds grow much 

rapidly and have higher survival rate, than those, which feed on old needle. 

In this stage the larvae advance to the end of a twig and bores into a needle 

or an expanding vegetative bud. On the other hand, some larvae spin down on 

silken threads and at first instars larvae may be dispersed by wind flow. The 
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larvae feeding on staminate flower buds and flowers stay in until the immediate 

food supply is depleted and after this stage the larvae feed on the new foliage 

of developing shoot. In this way, when the larvae is reaches in fifth instars, it 

start tying the tips of twigs together with silk and finally formatting a small 

nest. At this stage the new foliage is eaten first. In epidemic situation old 

needle and bark may also eaten in such a proportion that branch tips and 

terminal shoots are ruined. During the last days of the June to middle of the July, 

the larva completes its development and finished its feeding. 

At the last, the larvae transforms to pupa and some pupa are found base of 

needle of the twigs. And the moth emerges about 10 days. Peak moth flight 

activity occurs from about evening to end of the mid night. From this time the 

moth may be transforms up to 10 miles or more by wind flow and can be 

reached of 100 miles by storm fronts. 

From the foregoing life history of the spruce budworm, we can understand that, 

it is a higher reproductive insect. Moreover favorable weather, especially warm 

and spring, sufficient food and suitable hibernation site can lead to an 

outbreak. 

If the budworm reaches to an epidemic level, environmental factor such as 

adverse weather, disease, and predator can not stop the outbreak. On the other 
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hand, once spruce budworm outbreak start it usually continuous until the 

consume much of the available foliage. In this stage the use of biological and 

chemical insecticides may be urgent to supplement natural control agent. A 

close scrutiny of the situation reveals that the predation itself follows a natural 

pattern. Initially the budworms so few that the birds can not easily locate them. 

At a later stage, the population attains a good size, as the size of the 

population tends the carrying capacity of the system (the available leaf-area) 

their rate of reproduction declines due to defoliation, Fig.-2.1 presents a 

schematic description of this situation. 

L-11-~ 

L_11, 
Budworm Population If/ 

Fig.-2.1: Curve shows the effect of predation on the growth rate [ d:] ofbudworm 

population at various levels of the population If.I. Regions marked I, II and m 
represent the three stages discussed in the text. (Not to scale) 

40 



Chapter Two Qualitative Analysis of Spruce Budworm Pest and Forest 

2.4 THE BUDWORM EQUATION AND ITS EQUILIBRIA 

THE LUDWIG, JONES AND HOLLING'S NON-LINEAR 

DETERMINISTICS MODLE: 

The maintenance, proper management and protect North American coniferous 

forest from spruce budworms in 1978, Ludwig, Jones and Holling [20] propose 

a nonlinear deterministic differential equation, which satisfies by local budworm 

B is 

dB B B2 

dT = rB(l- K'S)-/3 (a'S)2 +B2 .................................... . ...... . ........ ( 2.1) 

Here the parameters and variable are as follows: K' is the carrymg capacity, S 

is the area of the branch surface, f3 is the consumption rate of the predators 

which kill the spruce budworm. The parameters a' S are the density of the 

budworm. 

The right hand side of the Eq.-(2.1) is consisting with two parts. The first 

part of the Eq.-(2.1) is a logistic term where involves K'S which indicates that 

K' is proportion to the branch surface area S. The wideness of the surface 

area is measure of the size of the balsam fir tree and the evergreen foliage is 

th~ main source of the food of the budworm. 
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The second part on the right hand side of the Eq.-(2.1) gives the rate of the 

consumption of the budworm by the predators, one kind of birds and they 

kill and eat the spruce budworm. But this predators have a limited numerical 

response and individual the predators have a fixed eating capacity and for this 

reason at high levels of budworm B, the second term saturates to the 

consumption rate /J. At low budworm densities, the predators can not locate the 

budworm easily then the consumption rates drops sharply because the predators 

switch to alternate pray. The parameter a' s gives the density of budworms at 

which predators consume at half the saturation rate. It will be demonstrated 

these saturation and switching effects can create several stable equailibriums in 

the spruce budworm population. 

The units of the measurement which use in the Eq.-(2.1) are arbitrary: they will 

never affect our next dimensionless version. In the Eq.-(2.1), Ludwig, Jones 

and Holling [20] introduce the units are as follows: 

(i) B, the density of the budworm is measured in larvae per acre which feed 

on staminate flower buds. 

(ii) T and .!. are measured m years. 
r 

(iii) S is the surface area of branches which is measured in branches per acre. 

Therefore K' and a' must be measured in larvae per branch. 
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(iv) /3, the consumption rate is measured in larvae per years. 

These units suggest several possible scaling for the budworm density. The 

combination K'S, a'S and rB all of these are used in the Eq.-(2.1) are 

measured in larvae per acre. 

In this stage we introduce the dimensionless quantities: 

B 
1/f=­

a'S 
or, B = a'Sl/f 

or, dB= a'Sdl/f 

rT=t 

1 
or, T=-t 

r 
I 

or, dT =-dt 
r 

R = ra'S 
/3 

ra'S 
/3=­

R 

K' l Q=-
a' 

or, K' = Qa' 

Put these values in the Eq.-(2.1) we have, 

or, 

or, 
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or, dt = ¢(lfl; R, Q) . . ..................... . ........................................... (2.2) 

lf/2 1 lf/2 
Where ¢(If/ ;R,Q) = If/----• 2 ... . ................................... . .......... . .. (2.3) 

Q R l+lf/ 

In the Eq.-(2.1 ), we introduce the parameters R and Q and the variable lf/. The 

variable If/ have been used in the above equation for the purpose to make 

predation part most simply. If the surface area S is increase or decrease then R 

is also increase or decrease. So R varies with the surface area S. However, the 

parameters Q depends upon the properties of the budworm and predators. The 

qualitative nature of the solution of the Eq.-(2.1) or Eq.-(2.2) will be observed 

by the parameters R and Q, though Q does not depend Eq.-(2.1) upon the 

forest condition. 

As we are interested about the qualitative nature of the solution of the Eq.-(2.1) 

or Eq.-(2.2), and for this purpose we first locate and describe the equilibrium of 

the Eq.-(2.2). It is clear to us that the equilibrium depends upon If/ for which 

¢(lfl; R, Q) = 0 and it is to be mentioned that one such equilibrium 1s for If/ = O, 

however it is always unstable because ¢(If/; R, Q) >O for all sufficiently small 

positive value of If/· The remaining zeros of ¢ satisfy 

If/ If/ 
R(I - Q) = l + lf/2 · .. · · · .. · · · · · · · · · ······ · ···· · · · · · · · ·· · · ········· · · · · · · · · · · ......... . ... (2.4) 
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This is an equation of curve and we indicate it by C, given by 

where 

and 

V = k(lf/) 

k(lf/) = I If/ 2 
+If/ 

v = R(I - If/) .......................................................... .... .. ....... .. .. (2.5) 
Q 

It is straight forward that v is a equation of straight line and we denoted it 

by L,1 • However Eq.-(2.5), If/ and v are variables and R and Q are parameters. 

Eq.-(2.4) is cubic equation and the curve C and straight line LR intersect at 

most three points and these are the roots of the Eq.-(2.4). We graphically solve 

the Eq.-(2.4). The straight line L11 depend upon the value of Q and R. Q 

depend upon the properties of the budworm and predators but we omitted this, 

since we are specially interested to investigate in the behavior of the roots of 

the cubic Eq.-(2.4) keeping Q fixed and R varies since R is related with the 

forest condition. Now multiplying the Eq.-(2.4) by (I +lf/ 2
) and rearrange it we 

obtain 

v3-Qv2+v(l+~)-Q=O ························································C2.6) 

Eq.-(2.6) is a cubic equation that will provide three roots which are positive or 

negative and real or complex and be discussed in later. 
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2.5 THE BEST FIT OF REGRESSION LNNE: 

If we draw a graph of k(l/f) vs 1/f where 1/f is the explanatory variable represents 

the population size following estimated parameters value Q = 17.72 and R = .28, 

the corresponding estimated regression line is 

0.6 

0.5 

0.4 
Cl) 

·x 
n, 0.3 I 

'§: 
~ 

0.2 

0.1 

0 . 
0 5 10 15 

qi-axis 

Fig-2.2: Depicts the relationship between line Ln and the 

curve C for the value of control parameter 
Q = 17.72 and R = 0.28. 

20 

y = -0.0158x + 0.28 .......... . .. . ... .. ........................... ................ .. .. . ............ (2.7a) 

and R2 = 0.3763. 
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Another set of parameters value Q = 17 .0578 and R = 0.2951 and 

1/) ·x 
cp 
~ 
~ 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 5 10 15 20 

1p-axis 

Fig-2.3 : Depicts the relationship between line Ln and 

the curve C for the value of control parameter 
Q = 17.0578 and R = 0.2951. 

the estimated regression line is 

y= - 0.173x+0.2951 . ...... ......................................... .. ...... ... ....... (2.7b) 

and R2 = 0.3801. 
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Further when the parameters value Q = 16.85393 and R = 0.30, 

0.6 

0.5 

0.4 
VI ·x 
ctl 

I 

'§: 
::i'" 

0.2 

0.1 

0 
0 5 10 15 20 

lJ.1-axis 

Fig-2.4 : Depicts the relationship between line L11 and the 

curve C for the value of control parameter Q = 16.85393 

and R = 0.30. 

the estimated regression line is 

y = -0.0l 78x + 0.3 ........................................ ................................................... ............. (2.7c) 

and R2 = 0.3797. 

We summarized the value of Q, R and R2 in the Table-2.1. 

48 



Chapter Two 
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2.2 

2.3 

2.4 

Qualitative Analysis of Spruce Budworm Pest and Forest 

Table-2.1: Coefficient of determination R2 for 
different set of control parameter (Q, R) is 
cited in table. 

Control parameter Control parameter Coefficient of 

Q R determination R2 

17.72 0.28 o.3763 

17.0578 0.2951 0.3801 

16.85393 0.30 0.3797 

From the Fig.-(2.2) to Fig.-(2.4) we have R2 = 0.3763, R2 = 0.3801 and R2 = 0.3797 

and the highest value of R2 received from Fig.-(2.3) which is 0.3801. From the 

properties of best fit of regression line, we may conclude that when the control 

parameters Q = 17 .0578 and R = 0.2651 the regression line is best. Moreover line is 

intersects the lf/-axis at A(17.0578, 0) and k(lfl) axis at B(0, 0.2951). 

The Fig.-(2.3) represents the regression line L,l intersect the curve at three 

points clearly. So the Eq.-(2.4) must have three roots and either one or three 

nonzero. Again the line LR and the curve C intersect at three point in the 

first quadrant and the curve C is always situated in the first quadrant, so the 

Eq.-(2.4) must have three nonzero positive roots. 
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2.6 DETERMINATION OF THE NATURE OF ROOTS OF THE CUBIC 

EQUATION: 

From the Eq-(2.6) we have, 

1/13 -Qlf/2 + 1/f S- Q = 0 ............................... .. ............................. (2.8) 

Where, S=l+Q 
R 

We have from the best fit of the regression line, Q=l7.0578 and R=0.2951. 

So S = 58.80436. 

Substitute the values of Q, R and S in Eq.-(2.8) we have, 

1f13 -17 .05781/f 2 + 58.803461/f -17 .0578 = 0 ......... . . .............................. (2.9) 

Compare Eq-(2.9) with the general cubic equation, 

ax3 +bx2 +cx+d=0 .............................................................. (2.10) 

we get a= 1, b = -17.0578 c = 58.80346, d = -17.0578 

Put x = y-..!?_ in Eq.-(2.10) this is a transformation that mcreases the roots by 
3a 

b 

3a 

Hence, 
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Now simplify Eq.-(2.11) we have, 

3 3ca-b2 2b3 -9abc+27a2d 
y + 3a2 y+ 27a3 =O 

or, y 3 + py + q = 0 ...... .. ............ .. ...... . ................. . ... .. ....... . . . .... . ..... (2.12) 

where, 
3ca-b2 

p= 
3a2 

2b3 -9abc+27a2d 
q= 

27a3 

The discriminate of the cubic equation, Eq.-(2.12) is denoted by D and define 

p3 q2 
by D=-+-. 

27 4 

If the coefficients of the given cubic equation are real numbers then, 

3 2 

(i) the equation have one real root and two imaginary roots if L + !L > 0. 
27 4 

3 2 

(ii) the equation have three real and distinct roots if L + !L < 0. 
27 4 

(iii) the equation have three real roots but two are equal if 
p3 q2 
-+-=0. 
27 4 

and p 3 +q2 -:t- 0. 

(iv) the equation 
3 2 

have three real roots but all are equal if L + !L = 0. 
27 4 

and p = q = 0. 

3ca-b2 

Therefore, p = 
2 

= -38.1861 and 
3a 

3 2 

Finally, we have, L+!L=-1428.37. 
27 4 

q 2b3 -9abc+27a2d =-50.3559 
27a3 
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Which is negative and it holds the property (ii), thus the cubic Eq.-(2.9) provides 

three real and distinct roots. Which informs that best fit of regression provided 

the nature of the roots of the cubic equation [21]. 

2.7 ANALYSIS OF THE MODEL: 

It is natural to define the zeros of Eq.-(2.4) are the points of intersection of the 

curve C and the straight line Ln- Thus Eq.-(2.4) can be solved graphically, as 

shown in Fig.-2.4 to Fig.-(2.6). Of course, the straight line Eq.-(2.5) depends 

upon Q and R are both. In fact we avoid Q, as we are specially interested the 

role of the roots of the designed cubic function ¢( If/ ; R, Q) in agreement with 

Eq.-(2.1) when Q is fixed and R varies. This operation is because R changes with 

the forest conditions but Q does not depend upon the forest conditions, rather 

it depends upon the behaviours of the attitude of the bud worm and predators. 

In this connection, for various values of Q we have drawn lines LR which 

intersect the curve C at one, two or three points. This situations arise for a 

fixed value of Q, when R varies. But if Q moves to left and fixed for 

3.6 55 then for any value of R, the line LR cut the curve C in one point only, 

which has been shown in Fig.-2.4. The drawn line through the points (3.655, 0) 

and (0, 0.9) for the fixed value Q = 3.655 provides R = 0.9. 
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Fig.-2.5: Depicts the relationship between the straight line 
LR and the curve C, where Q = 3.655 and R = 0.9. 
Graph shows that the line intersect the curve C 
at only one point. 
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Fig.-2.6:Depicts the relationship between the straight line L1 

and the curve C, where Q = 3.655 and R = 0.855. 
Graph shows that the line intersect the curve C at 
only one point. 
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Fig.-2.7: Depicts the relationship between the straight line 
L2 and the curve C, where Q = 3.655 and R = 1. 
Graph shows that the line intersect the curve C 
at only one point. 

Impelled by this analogy, we thought it worthwhile to investigate ¢(If.I ;R,Q) along 

similar lines. The findings of this investigation tum out to be quite striking. 

The Fig.-2.5 indicates that If.It = 2 and on the basis of this observed value, 

¢(If.I ;R,Q) have been listed in Table-(2.2) for various values of If.I· 
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Table-2.2: ¢(lfl ; R, Q) is positive when 1/1 < I/Ii and ¢(1/1 ; R, Q) is negative 

when 1/f 1 < 1/f for a particular set of control parameters (R, Q) 

when the lower root, lf/1 of the cubic equation is to be exercised. 

This table shows that 1/f 1 is a stable equilibrium. 

1/11 < 1/1 ¢(1f1;R,Q) 1/f < 1/f I ¢(1f1; R, Q) 

2.2 -0.09353 1.8 0.019799 

2.4 -0.17250 1.6 0.058536 

2.6 -0.26839 1.4 0.08929 

Where R = 0.855, Q = 3.655 and lf/1 = 2 

Keeping fixed Q = 3.655 and the two lines L1 and L2 are obtained through the 

points ( 0, 0.855) and (0, l). Therefore from Fig.-(2.5) two Fig.-(2.7) we see that 

the line LR cut the curve one point when minimum and maximum values of R 

are considered. It is clear that for fixed value Q = 3.655 and any value of 

R, 0 < R <co, the line LR cut the curve C at one point only and never form a 

tangent to C. In this circumstance there is exactly one positive real root of the 

Eq.(2.4), denoted by I/Ii (R,Q) and lf/1 < Q and Q• = 3.655 Ludwig and et al. [20] 

argued that if Q < 3.f3, then there will not any tangencies between the curve C 

and the line LR, however our analysis states that Q• = Q = 3.655 (a particular value 

) only then tangencies will not formed between C and LR . 
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It is remarkable to note that when If/ moves to the right of I/Ii = 2, that is, 

'fl, < vi, ¢(If! ; R, Q) 1s negative and when If/ decreases below 2, that is, 

1/1 <I/Ii, ¢(If ;R,Q) become positive. These findings suggest that the root 

I/Ii (R, Q) is a stable equilibrium. 

Further to monitor the qualitative behaviour of the system, the imposed 

conditions on control parameters may be determined when R varies and Q 

fixed. Moreover, when interpreted graphically the maximum and minimum 

values of the cubic expression cut axes at separate points: 

(a) When Q is Sufficiently Large: 

For a fixed value of Q, there are two distinct values of R for which the line 

Ln is tangent to the curve C. Suppose R1 (Q) and R2 (Q) are the values for 

which the tangencies formed at the upper and lower positions in Fig.-(2.8). It 

is clear that R1 (Q) is greater than R2 (Q) , while lines are drawing through 

tangencies to the If/ - axis, they cut two points, namely lf/1 (Q) and lfl z (Q) 

which are the If/ -coordinates of the corresponding points of the tangency and 

shows I/Ii (Q) < If/ 2 (Q). 

The analysis argue that higher value of R = R1 (Q), forced lower value of 

lf/(Q) = I/Ii (Q) and conversely, the lower value of R = R2 (Q) provides higher 
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value of 1/f (Q) = 1/f 2 (Q). It follows that for each value of 1/f there is a unique 

line L which passes through the points (1/f, k(l/f)) on C and the corresponding 

value be R(l/f). Following earlier argument, further Fig.-2.8 states that, 

R1(Q) 0.7 

~Q) 0.6 -

0.5 
U) 

·x 0.4 
rp 
]: 0.3 
~ 

0.2 

0.1 

0-f----~ -'----~ - - - -~ --- ~ 
0 6 8 

lp-axis 

Fig-2.8: Drawn the upper and lower tangent from the fixed 
point on the curve and the upper tangent passes 
through (6, o)and (o, 0.664) and the lower tangent 

passes through (6, o)and (o, 0.584). 

(i) R(l/f) increases from O to R1 (Q) as 1/f increases from O to l/f1 (Q). 

(ii) R(l/f) decreases from R1 (Q) to R2 (Q) as 1/f increases from 

1/f 1 (Q) to 1/f 2 (Q) and finally, 

(iii) R( 1/f) mcreases from R2 (Q) to infinity as 1/f mcreases from 1/f 2 (Q) to 

Q. 
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(b) When Q is Sufficiently Small: 

In this situation the straight line L , never tangent to the curve, C and R is a 

monotonically increasing function of the population size, 1/f. 

( c) When Q is Moderate: 

In this context, Fig.-2.8 reflects that the curve, C is convex up at 1/f(Q) = lf/
1 
(Q) 

and convex down at 1/f (Q) = 1/12 (Q). Suppose Q moves to the left until the upper 

and lower tangents coalesce, that is, our interest is to determine a value of Q, say 

Q such that 1/f 1 (Q) = 1/f 2 (Q), which depends upon the nature of the roots of 

cubic equation. 

Since we have, 

so, 

and 

k(l/f) = 1 1/1 2 
+l/f 

k"(u) = -21/f(3-1f12) . ... . . . ... . . . .. .. . . . ......... . .... . ..... ...... . .... . ........ .. (2.13) 
(1 + 1/12 )3 

It is clear that I/Ii (Q) is a limit point as the second derivative IS negative and 

simultaneously the second derivative is positive when 1/f 2 (Q) IS also a limit 

point. However, k"(I/I) = o at that is, roots are repeated and the curve touches 

the 1/1 -axis. 
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Further, the equation which we have constructed m Eq.-(2.4), provides 

I/Ii (Q) = 1/12 (Q) = ✓3. With this aid we have k(I/I) = ✓3. As we have achieved 
4 

. . ,,; ✓3 . 1· the most important pomt ( -v 3 ,-) , so we can easily construct the tangent me 
4 

at this point, Q =3✓3 :5.2 and accordingly R1(Q)=R2 (Q)= 3✓3 :0.65.(seeFig.-2.8) 
8 

0 .7 

0 .6 

(✓3, ~) 0 .5 
II) 

'ij 0.4 

'§: 0 .3 
~ 

0.2 

0.1 

0 

0 1/f 2 2 4 6 

q,-axis 

Fig.-2.9: Depicts the relationship between the curve C and 

straight line L, which is tangent at ( ..f3, ~} 

It 1s obvious that through the point (5.2, 0) and (0, .65) the tangent line 

,,;-✓3 
touches the curve C at (v.J,-). For Q > 3✓3 we have drawn two tangent for 

4 

1/f = 1/1 (Q) when R = R1 (Q) and R = R2 (Q) . 
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Further, from Fig-2.7 we see that if R < R2 (Q) then the Eq.-(2.5) has only one 

positive root which we denote by rf/1 (R, Q). This root is stable for the same 

reason as discussed in Table-2.2. 

The graphical construction of Fig.-(2.10) asserts that r/li (R, Q) < r/1 (Q) < ✓3, it is 

another reason that rf/1 (R, Q) may be thought of as a low endemic state. 

Following Fig.-(2.9) we observe that if R2 (Q) < R < R1 (Q), three real and distinct 

roots of the Eq.-(2.5) appeared, so that 0<f//1(R,Q)<f//1(Q)<f//2 (R,Q)< 

lfl i (Q) < If/ 3 (R, Q) < Q. Our graphical representation shows that as Q increases 

3✓3 I 
from 3✓3 to oo, R1 (Q) decrease from - to - while R2 (Q) decreases from 

8 2 

3✓3 
to zero. Beside these we also observe that Q increases from 3✓3 to 

8 

oo, lf/1(Q) decreases from ✓3 to 1, while l/f2 (Q) mcreases from ✓3 to oo (see 

Fig.-2.10 and 2.11). 
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8 

7 

6 

. 
. . , . 
. . 

, . 

"' 5 ,.,,•· 

Q=2'1j1 ---····· 
/ ~2(Q) 

4 

3 .. ···•· 
,,,' 

A ________ ,.._.:___ 
1

wi<Q> 
. ' ,• ' 

1 •• , •• , , • - - - - - - - - ~ - - -:: • • ::-: •• :-:. :-:. -~-.:-:-. =-=-................. n,rr........, ........ ,.,..... 

0+------n--------.-------.....---
0 53'1! 10 15 

Q 

Fig.-2.10: Depicts the relationship between control 
parameter Q and the population size l.f/ for 

various values of control parameter R. 

30 

25 

20 

a:: 15 

R = R(Q) 
10 

5 

o Li ---,-----,----==:======:::::;.....-_ _J 
0 0.1 0.2 0.3 0.4 

Q 

Fig.-2.11: Depicts the relationship between control parameter Q 
and control parameter R 

0.5 
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0.5 

0.4 

0.3 

0.2 -

0.1 
Q 

0 
, I \ I I 

,6: 2\ 4 6 8 10 12 14:16 18 20 22 24 26/28 30 
, f \ I 

I I I \ I II ~ - - - - - --- - ---· - - ·-·- - - - -.;.----~ 

Fig.-2.12: Depicts the relationship between the population 
size 1/f' and the control parameter R for fixed 
value of the control parameter Q. 

When R > R1 (Q) another line can be drawn through the point (5, 0) and (0, 1.5) 

which cut the curve at l/f'3 = 4.3 is shown in Fig.-(2.13). Now the value of 

¢(1/f;R, Q) for different values of 1/f' for which l/f'<l/f'3 and l/f'3 <1/f' are 

tabulated in the Table-2.3 . 
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1.6 

1.4 

1.2 

/JI 1 ·x 
,10.8 
3-
3"' 0.6 

0.4 

0.2 

0-r----.-----,-----r---.- •------~ 
0 1 2 3 4 1/13 5 6 

q.,-axis 

Fig-2.13: Depicts the relationship between the straight 
line Ln and the curve, C and straight line intersect the 

curve at one point for large value of Q .At 

intersecting point If 3 = 4.3 and it is a stable 

equilibrium. 

35 l 
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25 

en 20 

! 15 

10 
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0 
0 0.2 0.4 0.6 0.8 1.2 

ljJ-axls 

Fig-2.14 : Depicts the relationship between the 
control parameter R and population size 
If for different values of Q. 

1.4 
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Table2.3: ¢('I' ; R, Q) is positive when 'I' < 'I' 3 and ¢('I' ; R, Q) is 

negative when 'I' 3 < 'I' for a particular set of control 

parameters (R, Q) when the higher root, 'If 3 of the cubic 

equation is to be exercised. 

If/ 3 < If/ ¢(If!; R,Q) If/ < If/ 3 ¢(If!; R, Q) 

4.4 -0.10592 4.0 0.172549 

4.8 -0.44694 3.6 0.389089 

5.2 -0.85089 3.2 0.544645 

5.6 - -1.13807 2.8 0.640748 

Where R = 1.5, Q = 5 andlf/3 = 4.3 

From Table-2.3 we observe that for the root 1f13 (R,Q), ¢('I' ;R,Q) is negative 

while 1f13 < 'I' and ¢('I' ;R,Q) is positive when If/< lf/3 • Therefore conveniently we 

can say that the root If/ 3 (R, Q) is another stable equilibrium. Graph of the roots 

for various Q are shown in Fig.-( 2.14) 

2.8 CONCLUDING REMARK: 

In this chapter we have thoroughly investigate the potential impact of 

parameters on environment as well as discussed and represented them 

physically. 
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(i) If Q < 3✓3 = 5.2, the tangencies between the straight line through (Q, 0) and 

curve C gives exactly one positive root of Eq.-(2.4) which has been 

rl:!presented by lf/1 < Q and it follows that ¢(If ;R < Q) > O for each value of R. 

(ii) ¢(1f;R,Q)>0 if O<lf/<lf/1 and ¢(1f;R,Q)<0 if lf/1 <If. 

Therefore in the same sprit, the root lf/1 (R, Q) is also stable equilibrium for Eq.-

(2.2). 

(iii) If Q > 3✓3 = 5.2 then we observed two tangencies, namely If/= lf/1 (Q), 

R = R1 (Q) and If/ = If/ 2 (Q), R = R2 (Q) . In this situation exactly one positive root 

of Eq.-(2.4.), represented by lf/1(R,Q) will be obtained for R < R2 (Q). Thus the 

root lf/1 (R, Q) encountered here does indeed obey stability. 

(iv) It is straight forward from Fig.-2.12 that lf/1 (Q) < If/ (Q) < .Ji Therefore, lf/1 (Q) 

may be considered as a low endemic state. 

(v) If R2 (Q) < R < R1(Q) then there are three roots of Eq.-(2.4). The following 

relationshipO < lf/1(R,Q) < lf/1 (Q) < lf/2 (R,Q) < lf/2 (Q) < lf/3(R,Q) < Q, which indicates, 

how closely the forest condition parameter R with the predators behaviour 

parameter .Q are related. In view of this fact we carryout further analysis of 

Eq.-(2.3) and monitor the signs of ¢(If/ ;R,Q) that reveals the lower root lf/i 

and upper root lf/3 are stable equilibrium. However the ·middle root lf/
2 

is 

unstable. Impelled by this mathematical development we may interpret these 
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three striking roots f//1 , f// 2 and f// 3 as low endemic threshold point and 

outbreak states of the system. 

Also for the nature of the roots of the Eq.(2.6) which depends on Q and R, we 

may encountered three distinct possibilities: 

(i) By making time t ➔ oo in Eq.-(2.2), we find that the system shifted to low 

endemic state, that is, f// ➔ f//1 as t ➔ oo when O < f// < f//2 at t = 0. 

(ii) Further the system tends to outbreak state which is beyond control, that 1s, 

1/1 ➔ 1/1
3 

as t ➔ oo when f// > f// 2 at t = 0 and finally 

(iii) if R > R
1 
(Q), then we have only one root f// 3 (R, Q) remain. It is to be 

mentioned that this outbreak state will be reached from any positive initial 

density of the budworm population. 
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CHAPTER THREE 

CRITICAL WIDTH FOR BUDWORM OUTBREAK 

3.1 INTRODUCTION: 

A very important aspect pertaining to a physical system is its stability, which 

is determined by the solution process modeling system. Intuitively speaking, one 

may say that a system is stable if its response to an impulse function 

approaches zero as time approaches infinity. The stability of the system, local 

or global, is judged in terms of the stability of the moments of the random 

variables. Here our limited aim is to convey the sprit of mathematical aspect 

without much rigor. An elaborate exposition may be consulted for finer details from 

Thom, R [l] and J. Wu and Freedman_ [2]. Murdoch, Crawford, H. S. and D.T. 
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Jennings [3-4] introduces the concept of stability effects of heterogeneous system 

also. Those describing a more classical language should consulted Skellam [5] and 

Kiersteat and Slobpkin [6]. 

In present chapter, we shall investigate the evolution of the budworm 

population which inhabits a strip of dimensionless width, where it is assumed 

that no member of the population can survive outside the strip. In this context 

we shall search a region called refuge, which is a patch of favorable 

environment and is surrounded by an area where survival is not possible. If 

the population is diffusing, some of the populations will be lost around the 

boundary because the survival is impossible near the patch also. 

3.1.1 LINEAR GROWTH 

First of all we have considered the linear growth model. Let 1r and L• be 

the strip size and critical patch size of the budworm population. By the 

comparison method we will show that if L. < 1r then every solution of the 

diffusion equation come close to zero as time increases. On the hand, we will 

prove that there will be arbitrarily small initial populations which will be 

grown without bound when L
0 

> 1r. Thus m the case of linear growth L0 < 1r 

will be the critical strip width. 
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3.1.2 LOGISTTIC GROWTH 

Secondly we have considered the logistic and using the method of first 

integrals, we will prove that the logistic diffusion equation has a unique 

positive equilibrium solution if L• > 1r Further if L" < n the equation has only 

the zero solution. As narrated in the first cases, for the logistic growth 

model critical width will be L• = n 

3.2 SCALING OF LENGTH AND TIME: 

Coniferous forest is situated in North America and area of this forest is very 

large. The forest is ever green but it has a inborn defoliator for pest which is 

spruce budworm (choristoneura fumiferana). To maintenance, management and 

protect this forest from spruce budworm, D. Ludwig. D. G. Aronson and H.F. 

Wienberger [7-12] propose a diffusion equation 

:: ~ o; ( ::~ + :~~) + /(B) ..... . .. ..................................... ....... .. . .... (3.1) 

Where 

(i) X and Y be rectangular coordinates. 

(ii) (ii) B 1s the population density and 

(iU) f(B) 1s the rate of change of density for uniformly distributed population 

with density B. 
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Skellam (1951), Okubo (1975), Levin (1976,1978) and McMutrie (1978) have 

discussed about this topics at some length. [5,13-16] 

Propose Eq.-(3 .1), for purpose of illustration, D. Ludwig. D. G. Aronson and 

H. F. Wienberger [7] have introduce a linear or logistic form for / . In linear 

case they propose 

f(B) = rB ....... . ..... . . . ...... .. .............. . ... . ....... ....... . .. . ... .. .. . ..... ..... .. (3.2) 

Since / is a rate of change of density, r must have dimensions of reciprocal 

time. For the same reasons o2 has dimensions of (length) 2 I time. If X and Y 

are measured in kilometer then o2 has units of km2 I year. 

By Eq.-(3.2), we get from Eq.-(3.1) 

; : = o; ( :~ + :~~) + rB ............ . .... . ... .. ... .. . . ...... . ... ........ . . . .. . . . . . .... (3.3) 

If we introduce the dimensionless time t = rT, then we get from Eq.-(3.3) 

~~ = ~: ( :~ ~ + :~~) + B .. . .. ...... ....... ......... .. ............... .. .. .. .. . . . . . ...... . (3 .4) 

In Eq.-(3.4) the coefficient (o2 /2r) has dimensions of (length) 2
• Thus we can 

introduce the dimensionless length, 

x = ff,x ~d y = ff,Y ............................................ .. ............ .... (3.5) 

Then we get from the Eq.-(3.4) 
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as a2 B a2 B at= ax2 + ay2 + B ....................................................................... (3.6) 

Which is the linear growth model. 

In the same scaling, if we put J(B)=rB(1-!) m Eq.-(3.1) similarly we 

obtain 

as= a2 ! + a2 ~ + B(1-~) .............................................................. (3.7) 
01 ax- 8y K 

Here K is the parameter. This parameter may be removed from the Eq.-(3.7) 

if we introduce the dimensionless population density 1/1 = ~. Therefore finally 
K 

we obtain from Eq.-(3.7) 

a If/ a21/f a21/f 
- =-2 +-2 +l/f(l-'lf) .............................................................. (3.8) a, ax ay 

Whil'l1 is t11e logistic model. 

Eq.-(3.6) and Eq.-(3.8) have less number parameters and it 1s very easy to 

interpreate. 

3.3 CRITICAL PATCH WIDTH FOR THE LINEAR MODEL: 

The linear growth model of the population in Section -3.2 is given by 

as a2 B a2 B -=-+-
2 

+B ......................................................................... (3 9) at 8x2 8y . . 

71 



Chapter Three Critical Width for Budworm Outbreak 

Here B is population size, t is time, and x & y are X and y coordinate. For the 

sake of clarity, let the patch size is the infinite strip: 

1 1 
1).:--L<x<-L -ao<y<ao 

2 2 ' 

Here the population density assumes to be independent of the y coordinate. 

By use of comparison method we are able to get global stability and 

convergence result [5-6]. 

For the strip !)., the scaled linear growth model Eq.-(3.9) become 

aB a2B at= ax2 +B ... ........ . ..... _ ............................ . . . .......................... (3.10) 

H B ·11 b .f I 1 . h . l ct· . h h ere w1 e zero 1 x = --L or x = - L, t at 1s t 1e con 1tlon t at t e 
2 2 

survival is not possible out side !)., which implies that, 

B=O if x=-_!_L or, x=_!_L . . .. .... . . . .... . . ... .... . . .. ......... . ........... (3.11) 
2 2 

Let the solution of Eq.-(3.10) and Eq.-(3.11) be 

7r
2n 2 

• n1r I 
Bn =exp[(l-~)t].sm[L(x+2L)] .... . ................. . .... . ........... .... (3.12) 

For any positive integer value of n. 
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3.3.1 VERIFICATION: 

We have 

BB= 1- 1!2n2 ex 1- 1!2n2 . n1r _!_ at ( L2 ). p[( L2 )t]sm L (x+ 
2 

L) ............ ...... .. ............ (3.12a) 

and 

82 B 1r2 n2 
• mi 1 1r

2
n -~ =exp[(l--

2
-)t].-sm-(x+-L).(-

2 
) . ................. . .............. (3.12c) 

ax- L L 2 L 

So 

82 B 1r 2n 1r
2n2 

• 1m 1 
-

2 
+B = (1--

2 
).exp[(l--

2
-)t].sm-(x+-L) ........................... (3.12d) 

ax L L L 2 

From Eq.-(3.12a) and Eq.-(3.12d) we get, 

So the Eq.-(3.10) is verified. 

I 
Again if x = -L 

2 ' 

So 

1r2n2 n7! 1 1 
B = exp[(l--

2
-)t] .sin[-(- L +-L)]. 

L L 2 2 
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or, 

or, 

1r2n2 
B = exp[(l - - 2-)t] . sin n,r 

L 

B=O 

And if x = _ .!. L , 
2 

So 

1r
2

n
2 

. n,r l l 
B = exp[(l--2-)t]. sm[-(--L+-L)]. 

L L 2 2 

1r2n2 
or, B = exp[(l -~ )t]. sin 0 

or, B = 0 

So Eq.-(3.11) is also verified. 

Therefore our assumed solution (3.12) satisfy Eq.-(3.10) and Eq.-(3.11). So 

the value of B in Eq.-(3.12) is a solution of Eq.-(3.10) and Eq.-(3.11). 

By the use of Fourier analysis, any smooth preliminary density B(x,O) can be 

written as superposition of such a sine function it follows that the general 

solution of Eq.-(3.10) and Eq.-(3.11) can be obtained as a superposition of 

the solution B. Now let B(x,t) be any solution of Eq.-(3.10) and Eq.-(3.11) and 

1 1 
let U be a number such that B(x,O) ~ U for- - L 5 x ~ - L. If B(x, t) denotes the 

2 2 
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solution of Eq.-(3.11) and Eq.-(3.12) with B(x, O) = U then by the Fourier 

analysis 

B=~~-1-ex [(l (2' 2 ~ • ( 2j+l)n- 1 ( 13) ,r LJ
2

. 
1 

P + J+I) 2 )t] .sm--"---'--(x+-L) .................. 3. 
jcl } + L L 2 

If we carefully consider the value U, at the first stage B is not greater than 

B , however the two population follows the same growth law as well as satisfy 

the same condition at the boundary of identical habitats. This is why B always 

remain below B ; that is 

0 ~ B(x,t) ~ B (x, t) 
1 1 

for --L ~ x ~-L, t ~ 0 ......... . ......... ... ........ (3.14) 
2 2 

n2n-2 
From the solution, Eq.-(3.12), we observe that if L < n- then 1---< 0 for any 

L 

positive integer value of n and all the equation Eq.-(3.12) decay exponentially to 

zero as t ➔ oo. If we observe the Eq.-(3.13), it is clear that B is also decays 

exponentially to zero as t ➔ oo. In this circumstances we can say; if B(x, t) 

denotes the density of a population in !),, which evolves according to the Eq.­

(3.10) and Eq.-(3.11) from an arbitrary smooth initial density and 

if L < n-, then 

lim B(x,t) = 0 1 1 
if - - L ~ X ~ - L. 

t ➔ oo 2 2 

Therefore !),, dose not act as a refuge. 
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Now we shall show that if L is sufficiently large, then I:!,. can act as a refuge. 

In fact if L > 1r then populations with arbitrarily small initial density can 

grow indefinitely in I:!,.. To prove this we consider the function ? B
1 
(x, t), where B1 

is defined by Eq.-(3.12) and ~ is any pre-assign positive constant. It is 

remarkable to note that ~ B1 (x, 0) can be made as small as one can choose ~ to 

be sufficiently small. Therefore, if L > 1r, it follows from Eq.-(3.12) that for any 

Therefore we may conclude that 1r is a critical patch width for the proposed 

linear model. 

3.4 CRITICAL PATCH SIZE FOR THE LOGISTIC MODEL: 

Under proper assumption for the strip I:!,., we have from the Section-3.2 another 

model which called logistic model is, 

Olfl . 02
1/f 

- = lf/(l - lfl) +-........ .... .... ..... ............................... .... .. ....... (3.15) ot . 8x2 

The boundary condition is 

I 
1/f = 0 if lxl =-L ... . ........... .......... . .. ................ . .......... . . ....... . ... (3.16) 

2 
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At first we investigate for steady solution of Eq.-(3.15) and Eq.-(3.16) and for 

this purpose we let the positive solution '1'/ = TJ(x) of the ordinary differential 

equation 

77" +TJ(l-77) = 0 if-~ L <x <½L , ........... .. ............... ... . . . . .. ............. (3.17) 

which satisfy the boundary conditions 

77 = 0 if lxl = ~ L ............ ............ .. ...................... ........ .......... .. ......... (3.18) 

Let 77 is a solution of the Eq.-(3.17) and Eq.-(3.18) such that 77(x) > 0 for 

_ _!_L<x<l.L. At the end point x=..!_L and x=-..!_L the solution 77=0. So 77 
2 2 2 2 

must take on its maximum value µ at some point x = a within the interval 

1 1 
- - L<x<-L. 

2 2 

Thus in the interval - ..!_ L < x < ..!_ L , we have O < 77(x) 5, 77( a) = µ with 
2 2 

77'(a) = 0, 77"(a) 5, 0 ........... . .............. .. ....... . .............................. (3.19) 

Using the Eq.-(3.18), we get from Eq.-(3.17) 77"(a) = -µ(1- µ). Thus µ"(a) 5, O 

means that O < µ 5, I. At first we choice that µ = 1 then TJ(x) = 1 is the only one 

solution of the initial value problem 77(a) = 1, 77'(a) = 0 but if so then 77 

does not satisfy the Eq.-(3.18). Therefore we can say that O < µ < 1. Thus the 

equilibrium density will be below the carrying capacity everywhere [17]. 
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1 1 Therefore from the Eq.-(3.17), if - -L ~ x ~ -L, then rJ"(x) = o. It follows that 
2 2 

TJ(X) < µ if X -:f= a. 

Now ,ve find out the solution of Eq.-(3.17) and Eq.-(3.18), by means of the 

method of the first integral. After multiplication by rj' Eq.-(3.17) have 

or, 
d I ,2 ry2 r;3 

- (-r; +---) = 0 
dx 2 2 3 

or, d [ 1 ,2 ] - -r; +F(r;) = 0 
dx 2 

where 

7] 2 7]3 
F(r;) =--- .... . ................................................................. (3.19a) 

2 3 

Since the first derivative of [!..7712 + F(17)] is zero, so [!..7712 + F(17)] is constant. 
2 2 

In the view of Eq.-(3.18) this constant must be equal to F(µ). Therefore if 77 is 

the solution of Eq.-(3.17) and Eq-(3.18) then 7J and r,' are related by the first 

integral 

!..7712 + F(TJ) = F(µ) ........ . .......... ............. · · · .... · ........ .. ............... .. (3.20) 
2 

It is interesting to note that F is strictly increasing function of r; for 17 < 1. 

Therefore when x is not equal to a, we can solve Eq.-(3.20) for r;' 
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{✓2.J F(Jt)-F(77), if 
77'(x) = 

-✓2.J F(µ)-F(77), if 

Critical Width for Budworm Outbreak 

1 . 
--L5.x5.a 

2 l ............................................... (3.21) 
a5.x5.-L 

2 

For any x within the interval - .!. Ls; x s; a, both side of the Eq.-(3.21) divided 
2 

by .J F(Jt) - F(17) and integrate from x to a in order to obtain 

µ dz .L .jF(µ)-F(z) = ✓2(a-x) .................. . .... ... ........................... .. .. (3.22) 

which gives 77 implicitly as function of x for x < a. Similarly integrate from 

a to x in order to obtain 

'' dz 
,i,,JF (Jt)- F (z) = ✓2(x - a) ........................ .. ... ....... ..... . ........ ... .... (3.23) 

The Eq.-(3.22) and Eq.-(2.23) contains a parameter a which is not appearing 

in the original formulation in Eq.-(3.17) and Eq.-(3.18). In order to eliminate 

the parameters, we apply the boundary condition, Eq.-(3.18) and then the 

parameters will be eliminated. So using the boundary conditions, Eq.-(3.22) and 

Eq.-(3.23) we have, 

· '' dz 1 f-;:=====✓2(-L + a) .. . ....... .. ..... .. . ..... . . ..... .... . ... . . ... ........ .. (3 .24a) 
0 ,JF (µ)-F(z) 2 

µ dz 1 f----;:::==== = ✓2(-L - a) .. ... ... . ............................ . ..... . . . . ........ (3.24b) 
0 .J F (Jt)- F (z) 2 
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By subtracting one of these equation from the other we conclude that a = 0, 

thus the unique maximum of 77 must be occurs at the midpoint of the interval. 

Therefore two equations reduce to the single equation 

µ dz 
L = ✓2 I -J'ii(µ) - F(z) ................................................................ (3.25) 

which determines L in terms of µ . As we shall see in the next the integral 

in Eq.-(3.24) is an increasing function of µ. In this connection Eq.-(3.25) 

can be solved for µ in terms of L . 

To summarize we have shown that the positive solution of Eq.-(3.17) and 

Eq.-(3.18) is given implicitly by the formula 

µ · dz f-=== = ✓2!xl ................................................................ (3 .26) 
0 .J F(p)- F(z) 

where JL = p(L) is defined in Eq.-(3.25). In order to study the relationship 

between L and µ, let h(L) represents the right-hand side of Eq.-(3.25) and 

suppose 

z 
w=-

µ 

therefore, 

µdw = dz and the limit w = 0 and w = I. 

Substitute JI and wµ in Eq.-(3. I 9a) and subtract second from first we get 
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µ2 µ3 µ2w2 3 3 
F(µ)-F(µw)=------+µ w 

2 3 2 3 

2 =: [3(1-w2)-2µ(1-w 3
)] 

put the above values in Eq.-(3.25) 

µ ~ I 

h( ) - ✓2 f µ«w - r;; f dw ) µ - .J - 2-v3 ✓ ................... (3.27 
o F(p)-F(µw) o 3(1-w2 )-2p(l-w3 ) 

The singularity at w = 1, and this function is integrable if µ < I, but it is not 

integrable when µ = I . 

The following facts can be derived from Eq:.(3.27); 

(i) h is an increasing function of µ for O ~ µ < 1, 

(ii) h(JL) -> oo as Jl t 1, 

(iii) h(fl) -> 1r as Jl -l- 0. 

The value of µ is determinate by the equation h(p) = L. According to 

property (i) there exist at best one value of µ for each value of L. Because 

of properties (ii) and (iii) there is no positive value of µ which satisfies 

h(µ) = L if L < 1r, while for L?: 1r the corresponding value of µ increase from 

0 to 1 as L increase from 1r to oo. Thus for L~,r Eq.-(3.17) and Eq.-(3.18) 

have exactly one trivial solution 17 = 0. For L > 1r, there is an extra solution 
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given by Eq.-(3.26). This information is summarized in the Fig.-(3.1), which 

is a graph of Eq.-(3.27). It has been cleared that as µ approaches to zero 

h(µ), resulted n which is equivalent to 3.142. Alternatively when µ 

approaches to one h(µ) provided infinity. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

Fig.-3.1: Depicts the faster increasing trend at the initial 
stage and slow increasing tendency at the upper 
values ofµ. 

Further the graph in Fig.-(3.1) is called bifurcation diagram for the Eq.- (3.17) 

and Eq.-(3.18). Because it shows a branching or bifurcation in the solution 

set in the critical value L. = 1r. It is also a critical value of the linear model. 
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On the other hand if 77 1s very small, the quadratic term m the Eq.- (3.17) 

is negligible and it satisfy the linear model, 

1Jn +TJ - 0 (3 28) - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . 

This problem is so much complicated and it is not easy to solve in such a 

non-linear problem as we have done as before. Thus it is usually not possible 

to obtain complete bifurcation diagram which has shown m Fig.-(3.1). 

However its local shape may obtain near the bifurcation point L' by exploiting 

the relationship between the non linear and it linearization problem near to 

zero. 

Fig.-3.2 : Depicts the solution processes of h(µ) 
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In the Fig.-(3.1) only maximum value µ of the solution TJ as a function of L. 

The vertical segments which join every point of the graph to the L - axis are 

the projection of the actual solution. For the various values of L solution 

plotted in the Fig.-(3.2). Here it is be mentioned that 17 increases while 

increasing value of L . 

3.5 STABILITY ANALYZE : 

Let 1;/(x) = lf/(x,O), where If/ satisfy Eq.-(3.15) and Eq.-(3.16). Also assume that 

v/ (x) ~ 0 and If/. (x) :;t: 0. It is clear that 

(i) if O < L < 1l then lf/(x,t) ➔ 0 as t ➔ oo 

(ii) if L > 1l then !f(x,t) ➔ 17(x) as t ➔ oo 

Here 17 is given by Eq.-(3.25) and Eq.-(3 .26). In this direction we can say 

that that the strip 6. is a stable refuge if its width is greater than 1l and 

!). is not a refuge at all when L < 1l. The following arguments will be 

established through (i), however, the proof of ( ii) is somewhat complicated [18-

20]. In view of our assumption lf/2 < 0 shows that 1/f(x,t) ~ 0. Moreover Eq.­

(3.15) can be written as 

all' - all': -II'= -1112 .... . ... . ............ . .. . ... .. . .. . . . .... ......... ... . .... . ........ (3.29) 
at ax 
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Eq.-(3.29) can be explained as follows: the left-hand side of Eq.-(3.29) is the 

difference between the time rate of the change in 1/f and the sum of the contribution 

to the rate of change of 1/f from diffusion and the linear component of the 

logistic grovvth term however, -1/1 2 
:$; 0. Further Eq.-(3 .29) implies that the density 

of a population which is governed by the logistic law grows less rapidly than 

the density of a population which is governed by the corresponding linear law. Now 

we crin imagine an experiment in which we begin with identical population in 

identical habitats in which one population P evolves according to the logistic 

law in Eq.-(3.15), while the other population P obeys the linear law of equation, 

Eq.-(3.10). As we have observed the density 1/f of P grows less rapidly than 

the density 1/1 of P . It follows that 

0 :$; 1/f (X, t) :$; If/ (X, t) .... , .. , ..... , .................... , , . , , .. ....... .. ... , ............ (3 .30) 

for all x in b.. and t > 0 . However in our analysis of linear growth model at the 

beginning of this Chapter, we have shown that 1/1 (x, t) ➔ 0 as t ➔ oo if L < ~ . 

Therefore (ii) follows from Eq.-(3.30). 

3.6 OUTBREAK PATCH SIZE FOR THE BUDWORM EQUATION: 

In the previous section we have dealt with the critical width of a strip for a 

population which obeys the logistic growth law with diffusion. In this section 

our concerns with analogous problem for a scatter ness budworm population. 
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The budworm has two critical width. The smaller of these provides a lower 

bound for the width of a strip which can support a nonzero population. On 

the other hand the larger critical width is a lower bound for the width of a 

strip which can support an outbreak. 

According to Ludwig, Jones and Holling [21] the non-linear diffusion equation 

is 

BB 8282 B B f3B
2 

-=--+rB(l--)-
2 2 

•••••••••••••••••••••••••••••••••••••••••••• (3.31) 
ar 2ax2 K'S (a'S) + B 

Now we want to introduce the scaled variable, as 

and 

x= ,fj; X 
a 

X
2 = 2r x2 or, 2 a 

2 

ax 2 ==!!-ax2 

2r 

K'1 Q=-
a' 

B 
1/f=-

a'S 

or, B = a'S1/f 

or, BB= a'S81/f 

82 B = a'S81/f 2 

· R = ra'S1 

ra'S = iifJ 

Then Eq.-(3 .31) becomes of the form, 

2 I 2 IC, 2s2 2 
ra'S81/f a 2ra'S8 1/f , _ a i.Jl/f )-/3 a 1/f 

at =2· a 28x2 +ra'Sl/f(l Qa'S (a'S)2 +(a'S1/1)
2 
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or. 

or. 

or, 

or 
al// a2

1f/ 
-
8 

= -
8 

2 +</J(I// ;R, Q) ............................................................. (3.32) 
f X 

where 

As before the Eq.-(3.32) is hold in the strip lxl < ]_L. Outside the strip, we let 
2 

that the environment is not favorable, since If/ obeys a non-linear growth law 

with non-positive net growth rate. However for the sake of sincerity, we 

confined ourselves to the limiting case where the survival is not possible 

outside the strip, so that 

v; = o if x = .!.r or x = _ _!_L fort> 0 ............................................ (3 .33) 
2 2 

The problem is same as Eq.-(3.10) and Eq.-(3.11). Ifwe apply the method of 

first integral as in Section- 3.4 to the problem, Eq.-(3.32) and Eq.-(3.33), the 

result explained that there is a critical size L" for the strip which can support 

a stationary non-zero population. For the small population density, the length 
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L' may be computed from the approximating linear problem. In this context we 

can say f = rc 

Till now, the above discussions does not achieve our mam objective to 

calculate a critical length for the strip in order to support an outbreak [22-24]. 

By definition, we know that an out break involves large population density 

[25-26]. Therefore we can not reach near the Eq.-(3.33) by linear equation. 

Instead of this we can apply the first integral method, which was employed 

in Section-3.4. We assume that 77(x) denote a steady-state population density, 

which satisfy 

TJ"(x)+¢('11 ;R,Q)=O ...................... . ............ . ... . ......... .. ......... (3.34a) 

and the boundary condition 

f//=0 if x=- ~L or, x= ~L .. . . .............................. ................. . (3.34b) 

Now set 

,, 
F(77) = F(TJ; R, Q) = J¢(f//; R, Q) dl/f 

0 

= .!. 77
2 _ _ l_ 77

3 _!Z_+_!__arctan T/ ............................. (3.35) 
2 3Q R R 

In the interval _ ..!._ L :S x :S ..!.. L, let µ denote the maximum value of TJ where 
2 2 

µ = T/ we must have 17x = O. From the first integral we have 

88 



Chapter Three Critical Width for Budworm Outbreak 

½77'
2 

+ F(17) = F(µ) · · · · · · · · · · · ·,., ......... . .............. . ................ ... .. ...... (3.36) 

The integral then leads to the formula 

" dw I,J = ✓2x . . . . . . . . . . . . . . . . . . . . . . . . . (3 37) 
0

F(µ)- F(w) .. · ........... . .. " ... " ·· .. ..... ·· .... . · 

If we apply the boundary condition, Eq.-(3.34b) which are satisfied, then µ 

and L are related as follows 

µ dw 
h(µ) = ✓2 J-J = ✓2.✓2x 

0 F(µ)-F(v) 

or, h(J,i) = L . ........ . ........... . . ............. .. .... ...... . . . ................ .. . . . . . . ..... (3.38) 

It is remarkable to note that 77 varies between O and f.' whenever x varies from 

I 
--L to 0. Therefore we have from Eq.-(3.34) 

2 

F(w) < F(µ) if O < w < µ .. ....................... .. .. .. ......... .... ... . .. .... . . .... (3.39) 

For a ce11ain value of µ, the condition, Eq.-(3.39) is a restriction. The 

integral of Eq.-(3.38) is defined if the condition, Eq.-(3.39) is satisfied. Now we 

have to consider, how F varies following the changes in 77 and R. It has been 

shown in Section-2. 7 of Chapter-Two that Q>(! , R2 (Q) < R1 (Q) and also 

1/11 < 1/12 < 1/f 3 with the following properties: 

89 



Chapter Three Critical Width for Budworm Outbreak 

(i) R ~ R2, if and ¢(rJ) < 0 For our convenience 

we have used ¢(rJ) instead of ¢(rJ;R,Q) . 

Table-3.l(a) : The relationship between ¢(77; R, Q) and 77 for a particular set 

of control parameters (R, Q) when the lower root, I/Ii of the 

cubic equation is to be exercised and 7J lies between O and lf/
1

• 

0 < 77 < 1/11 ¢(7J ;R, Q) 

0.9 0.03013 

0.8 0.041037 

0.7 0.047396 

0.6 0.048839 

0.5 0.045388 

Where R = 0.5and Q = 6 

Table-3.l(b) : The relationship between ¢(77 ; R, Q) and T/ for a particular set 

of control parameters (R, Q) when the lower root, lf/1 of the 

cubic equation is to be exercised and 77 greater than lf/1 • 

77 > 1/11 ¢(Tl ;R, Q) 

1.2 -0.02388 

1.5 -0.09691 

1.8 -0.17660 

2 -0.23015 

2,2 -0.28322 

Where R = 0.5 and Q = 6 
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Table-3.2(a) : The relationship between ¢(TJ; R, Q) and T/ for a particular 

set of control parameters (R, Q) when the lower root, I/Ii of the 
cubic equation is to be exercised and T/ lies between 0 
and If/,. 

0 < T/ < If/, ¢(TJ ;R, Q) 

0.9 0.094847 

0.8 0.089525 

0.7 0.081954 

0.6 0.071902 

0.5 0.059423 

Where R = 0.62 and Q = 6 
Table-3.2(b): The relationship between ¢(TJ ;R, Q) and TJ for a particular 

set of control parameters (R, Q) when the middle and higher 

roots, 1f12 and 1f13 of the cubic equation are to be exercised 

and T/ lies between If/ 2 and. If/ 3 

lf/2 < T/ < lf/3 ¢(17 ;R, Q) 

2.0 0.115473 

2.5 0.144509 

3.0 0.175880 

3.5 0.182566 

4.0 0.131247 

Where R = 0.62 and Q = 6 
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Table-3.2( c) : The relationship between ¢(77 ; R, Q) and 77 for a particular set 

of control parameters (R, Q) when the higher root, 1f1
3 

of the 

cubic equation is to be exercised and 77 is greater than. 1/f 3 

1] > 1/f 3 ¢(TJ ;R, Q) 

5.5 -0.74557 

5.8 -1.11623 

6.0 -1.42025 

6.4 -2.12259 

6,8 -3.01815 

Where R = 0.62 and Q = 6 

(iii)For R>R1, ¢(17)>0 if 0<77<1//3 and ¢(77)<0 if 1J>l/f3 

Table-3.3(a) : The relationship between ¢(77; R, Q) and TJ for a particular 

set of control parameters (R, Q) when the higher root, 1/f 3 of 

the cubic equation is to be exercised and 77 is smaller than 

1/f 3 • 

7J<l/f3 ¢(77 ;R,Q) 

2.0 0.563499 

2.5 0.801711 

3.0 1.054495 

3.5 1.290274 

4.0 1.556899 

Where R = 0.9 and Q = 6 
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Table-3.3(b): The relationship between ¢(17 ;R, Q) and 77 for a particular set 

of control parameters (R, Q) when the higher root,'/1
3 

of the 

cubic equation is to be exercised and T/ is greater than. 1/f 
3 

T/>'/13 ¢(17 ;R,Q) 

8.0 -3.72616 

8.5 -5.82229 

9.0 -8.37762 

9.6 -11.4337 

10.0 -15.0321 

Where R = 0.9 and Q = 6 

The properties (i), (ii) and (iii) have been verified in Table-3.1 to Table-3.3. 

Further, as F is the integral of ¢ , this information can be expressed into 

facts about F : 

(i) If R < R
2

, then F is increasing for o < T/ < 1/f I and again F is decreasing for 

1/1, < 17. Thus F has a local maximum at 1/f I and this situation is shown in 

Fig.-(3.3). 
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0.09 

0.08 

0.07 

0.06 

,.,, 0.05 · 
'i( 
cii 0.04 a: 
u:- 0.03 

0.02 

0.01 

0. 

-0.01 ~ 0.5 1.5 
~-axis 2·5 

Fig.-3.3: Increasing and decreasing trends of F for the steady­
state populations density within (o, 1,Vi} and l,V

1 

represents the local maximum. 

(ii) If R2 < R < R1 then at beginning F is increasing for T/ < l,tf I and later on 

decreasing for lf/1 < 77 < l,V 2 • Further, F is increasing for l,V 2 < T/ < l,V 3 and after 

that decreasing further for 1,tf 3 < r,. Thus F has two local maxima at l,V1 and 

1/13 and a local mm1mum at l,V 2 • If R2 ,1. R then l,V 2 and l,V 3 are coincide and 

F(1,V1) > F(1,V3). So the highest maximum is observed at l,V1 • On the other 

hand Rt R1 then 1,tf1 and 1,tf2 are coincide and F(1,V1) < F(1,V3 ). So the highest 

maximum is observed at l,V 3 • 
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0.09 

0.08 

0.07 

0.06 
Ill ·x o.o5 
'JI 
~ 0.04 
u.. 

0.03 

0.01 

0 --t----,----~--~--r--=-----..:..........----'-------~ 

0 0.5 21//2 2.5 lf/3 3 3.5 

qi-axis 

Fig.-3.4 : Depicts the variation in the shape of the F curves 
with the changes in the control parameters Q = 6 

and R = 0.595 (which is close to R2 but away from 

R1 ), being kept constants leads to the sudden jump: 

occurrence of catastrophe. 

4 
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0.14 

0.12 

0.1 

-~ 0.08 
«ii 
~ 0.06 
u.. 

0.04 

0.02 

0 -r----- .--'---__J_-,--!..,__ __ :.,.-___ --r--...l.,__~ 

0 4 

tp-axls 

Fig.-3.5 : Depicts the variation in the shape of the F curves 
with the changes in the control parameters Q = 6 and 

R = 0.61 (which is close to R1 but away from R2 ), 

being kept constants leads to the sudden jump: 
occurrence of catastrophe. 

By the way if we define R(Q) with the condition 

if R = R(Q) 

we have obtained for a large value of Q 

= 16 1 
R= - +0(-). 

3Q Q2 

5 

Now if R
2 

< R < R then F(f/1
1

) > F(l/13 ) and the graph of such situation is depicted 

in Fig.-(3.4). Condition imposed in Eq.-(3.33) implies that if R2 < R < R, h(I/I) is 
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defined only if O < µ < 1//1 • On the other hand 

and the graph of such situation is depicted in Fig.-(3.5). Suppose f// be the 

unique value of T/ between f//2 and f//3 ,forwhich F(f//)=F(f//
1
). 

0.7 

0.6 
1/J ·x 
IU 

0.5 ~ 
i:r 

0.4 

0.3 

0.2 

0.1 

-0.1 

RI <R 

1 2 3 4 5 6 

111-axls f//3 

Fig.-3.6: Depicts the variation in the shape of the F 
curves with the changes in the control parameters 
Q = 6 and R = 0.9 (which is upper neighborhood 

of R1 ), being kept constants leads to the sudden 
jump: occurrence of catastrophe. 
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18 

16 

14 · 

12 

6 

4L------
2 -

Critical Width for Budworm Outbreak 

0 -i----,-----,----,---~-~--

0 0.2 0.4 0.6 

µ 
0.8 1.2 

Fig-3.7: Depicts the relationship betweenµ and h(µ) which 
is reversed of the Fig.-3.2. 

Now we can define on two intervals : h is defined for O < µ < f//1 and for 

lfl < µ < If/ 
3 

• It is to be noted that as R t R1 , these intervals coalesce, smce, 

(iii) If R > R,, then F has a local maximum at If/ 3 and h 1s defined for 

0 < µ < f//
3 

and the whole situation is depicted in Fig.-(3.6). 

From Fig.-(3.3) to Fig.-(3.6), the difference, F(p)- F(w) ➔ 0 to the first order as 

wtµ, ifµ < lf/i. However, this difference vanishes to the second order if µ = f//i. 

Thus the integral, Eq.-(3.39) is finite if I-'< f//1 but ht oo as I-' t f//1 if R < R1 • 

98 



Chapter Three Critical Width for Budworm Outbreak 

further, a quadratic approximation to F(w) shows that h(O) = 1r and this represents 

that h is monotone increasing when O < µ < I/Ii • Therefore, if R < R the graph of 

L == h(µ) will be alike Fig.-(3.7). 

L, 

1t 

I 
I I 

STABLE I I 
I I 
I I 
I I 
I I ----- -~--~-----+-
' I 
I I 
I I 

1 I I 
I I I I I 

------~~--i-----l-J __ _ 
I I I I 
I I I I 
I I I I 
I I I 
I I I 
I I I 

I I 
I I 
I I 
I I 
I I 

,. 

I 
I 
I 
I 

ljl µ2 
ljl 

Fig.-3.8 : Depicts the relationship between Land Jt and 

represents the asymptotes 1/11 , If/ 2 and If/ 3 • 
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µ 

Fig.-3.9 : Depicts schematic representation of the stability 

of the model depends upon roots of the cubic equation. 

If R approaches to R1 and coincide to R1 then 1/f 2 = 1/1 = l/f3 = 1/f 2. Thus two 

vertical asymptotes of the left of the Fig.-(3.8) coincide. If R > R1 , for O < µ < 1/f 3 

h(O) = 1r and h(l/f3 ) = ro. By the definition of continuity, when R is above and 

not too far from R1 , h(µ) has a local maximum near 1/12 , which has been 

observed 111 Fig.-(3.9). Again it can be shown that h is monotone increasing 

when R 1s sufficiently large. 
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3.7 PHYSICAL INTERPRETAION OF THE RESULTS: 

All the previous information's are summarized in Fig.-(3.10), in which log
10 

µ 

have been considered m the ordinate and the length, L in x-axis for several values 

of R , keeping Q = 302 fixed. 

L 

Fig.-3.10: Depicts the relationship between Land log10 I-' for 

the highest value of the control parameter Q = 302 , 

following various values of R. 

The result may be interpreted as follows: if R < R , then outbreak steady state 

is impossible. If L > 7r, a low endemic state persist, but the maximum scaled 

budworm density is below 1//i • That is, If is less than the spatially uniform 
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solution. Every point on the graph, Fig.- (3,10) corresponds to a solution of the 

Eq.-(3.35). On the other hand if L < 11:, then all solution of Eq-(3.32) and Eq.­

(3.33) tends to zero as t ➔ oo . If L > n and if the initial density is not 

identically zero, then the solution of Eq.-(3.32) and Eq.-(3.33) tends to the 

steady solution 77(x) whose maximum µ is represented in Fig.-(3.8) or the 

corresponding lower curves of Fig.-(3.10). So that solutions are globally attractive. 

qJ._ ____ _,.---,---r---r--.-----i 
<'> 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

R 

Fig.-3.11: Depicts the relationship between Rand L2 

following various values of Q. 

the situation will be more completed because 
an additional 

length L
2

(R) forces an outbreak in the strip whose width L > L2 (R). For different 
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values of Q (lS,30, lOO and 302), L2(R) are depicted in Fig.-(3.11). As mentioned 

earlier, only the low endemic steady state is possible if :c < L < r
2 
(R). On the 

other hand, there are three steady states as shown in Fig.-(3.8), if L > L
2

• The 

left-most part of Fig.-(3.8) corresponds to the low endemic state and the right­

most one 1s an outbreak. The initial budworm density in the strip will be 

determined by these three states the budworm will finally be reached. The methods 

we have discussed is not sufficient to determine whether or not an outbreak 

will occur for arbitrary initial budworm densities, however, the development is 

sufficient that the low endemic state and the outbreak state are both 

asymptotically stable. Moreover, the solution processes which correspond to the 

middle branch in Fig.-(3.8) is unstable. If we choose the initial density, which 

is everywhere greater than the unstable one, then the budworm population 

will tends to outbreak state. On the other hand if we choose the initial density 

which is everywhere less than the unstable one, then the budworm 

population will tends to the low endemic state. 

It is more simple, if the initial density lfl(x,O), which is bounded above by 

the function 1J(x) defined in Eq.-(3.37) with a value of J.l < J.t2 , then there 

will be no outbreak. 
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\ 

\ 

\ 

0.5 1.0 1.5 

X 

R=2 
0=302 

2.0 2.5 

Fig.-3.12: Graphical representation of 17(x) and µ for 

R = 2 and Q = 302 

3.0 

For R = 2, Q = 302, the graph of function 17(x) and different values of µ is 

depicted in Fig-(3.12). By the way it is to be mentioned that an outbreak will 

be occurred either by a very high but narrow peak in the initial population 

density or by a somewhat lower but broader initial population density. 
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Fig.-3.13: Graphical representation of L1 (R, Q) 

and Li (R, Q) instead of Q = 302 

3.0 3,5 

When R 1s increased through R,, the two branches of the graph in Fig.-(3.8) 

coalesces which has also been established in Fig-(3.9). Two critical lengths 

Li (R, Q) and Li (R, Q) have been monitored. When L1 < L2 , only then the low 

endemic state exists. Further when L2 < L < L, , then both the low endemic and 

outbreak states exist, however, for L > L1 , outbreak will exist. Moreover, R 

continuously mcreases, then the maximum and mm1mum m Fig.-(3.9) 

ultimately coincide. In all these situations the graph becomes monotone 

increasing and there are no critical length. From Fig.-(3 .13), we have 
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L
1
(R,Q) and Li(R,Q) which are the functions of R for different small changes 

in Q and Fig.-(3.14) depicted a partial part of the graph of Li(R,Q) and 

Li (R, Q) are also the function of R , for a particular value of Q = 302. 

0 
<O 

"' lri 

L "1 .. 
0 
..; 

~---.---.------------0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

R 

Fig.-3.14: Graphical representation of L1 and L2 for highest 

value Q = 302, which a part of the previous figure. 

3.8 CONCLUDING REMARKS: 

In this chapter we have investigated the evolution of budworm pest population 

which inhabits a strip of dimensionless width L, where it is considered that no 

member of the pest population can survive outside the strip. First of all we have 

considered the linear growth model and shown that if L < n, where n 
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be the strip size, then every solution of the diffusion equation approaches zero 

as time increases. On the other hand, if L > n there are arbitrarily small populations 

which will grow without bound. Secondly we have considered the logistic 

growth model for L = n is the critical width and in order to prove this 

concept we have used the first integrals method. A unique positive solution 1s 

observed when L > n, and has zero solution for L < n . In this context a 

bifurcation is occurred at L = n. Further, Eq.-(3.9) has been verified with the 

assumption made by Eq.-(3.11) and Eq.-(3.12). The positive and negative values 

of ¢(17 ;R,Q) have been presented in Table- 3.1 to Table- 3.3 to meet the 

properties of roots corresponding to the vital parameters R and Q. Two local 

maxima and a local minimum have been cited at 1/f 1 and 1/f 3 and at 1/f 2 for F . 
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CHAPTER FOUR 

ANALYSIS THE CRITICAL 

BEHAVIOUR OF SPRUCE BUDWORM PEST POPULATION 

4.1 INTRODUCTION: 

Forests constitute an important category of renewable resources. They are 

important not only for agricultural industry but also for several other activities 

and ecological balance. They cover a large proportion of the land surface of 

the earth. On the hand, though photo-bio-chemical processes they entrap 

enormous amount of solar energy and store in the form of valuable resources 

for the humanity, on the other they consume carbon dioxide (a challenging 

pollutant growing with industrialization), and liberate oxygen for the sustenance 
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of the aerobic world. They enrich the fertility of the soil through a constant 

supply of decaying matter, make the soil structure porous and conducive to 

retention and seepage of the precipitation received, and thereby augment the 

underground water supply. Put succinctly, forests have a great bearing on 

ground water supplies, soil erosion, climate regulation, flood control which have 

been elaborately discussed in chapter two, section 2.2. 

Forestry management involves a number of interesting economic and biological 

problem. From the economic point of view, a standing forest is just one 

particular form of growing capital, growing with the growth of the timber. 

An obvious and impmiant objective in the management of forestry is to 

improve the growth and quality of the trees. To this end, clear cutting and 

replanting, and thinning from and/or below are the common strategies and 

practice adopted in the forestry management. 

Leaves prepare food for the plant, and thus they play a cardinal role in the 

healthy and rapid growth of the forestry. The conservation and protection of 

leaves from the insect and pests is a very important aspect in the forestry 

management. 
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Recently, Wright [1] has carried out a detailed qualitative analysis of 

management problems related to forestry by employing concepts of Thom' s 

Catastrophe theory [2,3]. Regarding forestry management, he has examined the 

Holling' s model [ 4] and has prescribed a management strategy for controlling 

the pest using a combination of felling trees and spraying with a pesticides. 

The model relates to the occasional population burst of the spruce budworm at 

an epidemic level in the Coniferous forests of Canada. 

In this chapter, we propose and analyze a deterministic version of the Ludwig, 

Jones, and Holling's model [5]. The model has been formulated as a birth-

and-death process. The purpose of this 

mathematical structures m the model 

work 1s to explore possible 

by incorporating 'fluctuation' 

components. The mean evolution of the process and the stead-state solution 

along with the minimum and maximum values of the dominant control 

parameters have been analyzed in this direction. 

4.2 DETERMINISTIC FORMULATION OF THE MODEL: 

Left to itself, the growth of the population of budworm is governed by two 

factors, the leave-area, leaves being the food for the budworm, the predation 

by the birds. In the absence of the predation, the population growth would 
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follow the logistic law. However, the predation by the birds puts a control on 

the growth. 

A close scrutiny of the situation reveals that the predation itself follow a 

natural pattern. Initially the budworms are so few that the birds can not 

easily locate them. At the later stage, the population attains a good size, as 

the size of the population tends towards the carrying capacity of the system 

(the available leaf-area) their rate of reproduction declines due to defoliation. 

Fig.-(4.1) presents a schematic description of the this situation. 

'II ,JJJjt Unstable 
equilibrium 

l l ll l r·rr Stable 
equilibria 

t ti 
A 

Fig.-4.1: With increasing age of tree, the leaf area (A) available 
as food increases and result into catastrophe growth of 
bud worm population (If.'). The broken part of the curve 
represents the unstable population. 
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It has been empirically observed that when sufficiently large leaf-area becomes 

available with aging of trees, the two distinct stable states become accessible 

to the system (see Fig.-4.2). In the view of these facts Ludwig et al. [5] 

described the population growth of budworm by deterministic differential 

equation 

dry 1/f b 1/f 2 
-=rry(l--)- 2 2 . ..... . .......................... . ... . . . .. . ............. . .... (4.1) 
dt K a +1/f 

where 1/f = 1/f (t) is the population size at time t, r the intrinsic growth rate of 

the pest, K the carrying capacity of the system, 'b' a measure of the intensity 

of the predation, and 'a' as measure of the discouragement of the predator 

when only a few prays are left. The solution to the Eq.-( 4.1) with the initial 

condition 

ry(O) = 1/f O ....... . . . . . ......... ..... ................................... . ..... .. ........ . ... ( 4.2) 

describe the deterministic temporal evolution of the budworm population that 

we shall frequently call as the system in the sequel. 
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4.3 THE STOCHASTIC VERSION OF THE MODEL : 

As already mentioned m the introduction, in reality f//(1) can not be a 

deterministic variable. So we consider f//(t) as a non-negative integer-valued 

random variable with p"' (t) as the probability of there being f//(1) budworm at time 

t. The phenomenon of the pest growth may be considered as a birth-and- death 

process, characterized by the following transition probabilities during the time 

interval (t , t + o t) : 

pr[l/f ➔ 'II+ 1 Interval] = ;..,"'o t + O(o t), 'II;?: 0, .......................................... ( 4.3) 

pr[l/f ➔ 'II -1 Interval] = µ"'8 t + 0(8 t), 1/1;?: 0, ....... . ... ................................ ( 4.4) 

with slightly modified birth and death rate constants J"' and µ"' given 

and 

f//2 
/3-

µV' = K 2 ................................. . .. . . . ......................................... (4.5) 
02+!!!_ 

K2 
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The coefficients 'a' and 'b' of the deterministic model have been so related 

as to incorporate the effect of spraying and felling the trees thereby matching 

the control measures competitive with the intrinsic growth rate r . Thus 

r=r, b=K/3 and a= K8 ....................... . . . ....... .. ........ . ... ... (4.6) 

4.4 ANALYSIY OF THE MODEL: 

The master equation of the growth process is given by 

p(lf/,I) = ).,'11_1 p(lf/ -1,t) + µ'lf+I p(lf/ + 1, t)- ().,'II +µ'II) p(lf/, t) ...... ....... .. ..... .. .. . .. ( 4.7) 

with initial distribution 

where o ( If/ - If O) is the usual Dirac's delta function. 

The non-linear character of transition probabilities renders the exact solution of 

Eq.-(4.7) well neigh impossible. The non-linearity leads to a rather intractable 

hierarchy of relationship among the moments of the probability distribution 

[6,7]. though an exact analysis of the model, valid for all times is not possible, 

nevertheless we can get significant insight into the stochastic evaluation of the 

process in the asymptotic regime K >> 1. The model can be represented 
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approximately by a continuous Markov process 1/f(t) and the analytic solutions 

can be obtained by employing 'diffusion approximation technique', developed 

and used by several researchers [8-11]. 

The time evaluation of the system can, for large K, be approximately described 

by the stochastic differential equation (SDE) 

1/1 2 1f1
2 I K I [ ]~ +[r(l- K] dw1 (t)- fJ O' + cf l' dw, (t) •••••. ............................... . . ( 4.8) 

to be interpreted in Ito sense [12]. Here [ w1 (t), w2 (t)] is two dimensional 

Wiener process whose components are statistically independent. 

In our model, the birth-and-death conceived involves non-linear transition 

probabilities, and in steady-state, multiple states may become available to our 

system. Therefore as already discussed in the First Chapter, Section 1.4, the 

usual law of scaling fluctuations as of order O(K) 2 would not work. At the 
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non-Morse critical point, and at Morse-critical points the scaling index v -:f:. _!_. 
2 

Consequently, keeping with the modified van Kampen's system size expansion, 

developed by Dekker [10] and Fox [13] independently, for large K, we split the 

stochastic variable f//(l) into a deterministic component and a purely stochastic 

component by setting 

f/l(t) = Krp(t) + Kv z(t), 0 < v < 1 ...................................................... ( 4.9) 

Here the first term on the right hand side represents the mean evolution of the 

system and the second term K 11 z(t), where z(t) = 0(1) , provides stochastic 

fluctuations around the mean. Further rp(t) is a smoothly varying function that 

governs the macroscopic development of process, and o < v < 1 is so-called the 

scaling index for fluctuations. It will not be out of place to mention here that 

in the region far away from the Morse-critical points and non- Morse critical 

points of the system, and the fluctuations are again to be scaled as of order 

I 1 
O(K 2 ), accordingly v = - therein. However, at the critical points of both types, 

2 

and in their close neighborhood, the fluctuations are enormously enhanced. 

Consequently, the Central limit theorem (CLT) does not hold in the close 

neighborhood of the critical point [14] and thus the system can not be 

subdivided into uncorrected subset. 
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Substituting Eq.-(4.9) in to Eq.-(4.8) and setting e = Kv-•, we obtain 

d(f) + e dz= [r(q, + e z)(l-q,- ez) /J(q, + 
6 

z ]dt 
<5 2 +(q,+ez)2 

I 

+ K -2 [r(rp + e z)(l-rp- e z)]dw1 

I I 

+K-2 (<q,+ez){82 +(q,+ez)2}J2dw2 

I 

+ K-2 [g
0 
(rp) + g 1 (rp)e z + g2 (rp)e2z2 + .... }:tw1 

I 

-K-2[h
0
(q,) + h

1 
(q,)e z + h2 (rp)e2z2 + ...... ylw2 ...................... ..... ...... .............. (4.10) 

where 

lo ~rrp(l-rp)- /Jq,2 ······························ · ··························· (4.11) 
52 + (()2 

dfo('l') 2f38 2
rp 

.. fi(<p)=.....c......::.~=y(l-2rp)- 2 2 2 ···························· .. ·············(4.12) 
drp (o +q, ) 
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1 d 3f 0 (rp) /38 2 (1+02 -2qi)cp 
J3(rp)=

6 
dqi = (t52+q/)4 ······ ........................................... (4.14) 

I 

g
0
(rp) = [rcp(l- (f) Ji • • • • • • • •. • ................... .......................................... ( 4.15 

I 

g,(q,} = ½o -2q,{ q,(I~ q,) r .......................................................... (1.16) 

I 

h, (q,) = ~ O' ! q,' r .................................................................... (1.17) 

I 

h,(q,) = o'[(o' :q,')' r .............................................................. ... (1.18) 

Equating the coefficients of the leading term on both sides, we obtain 

dcp(t) = f 0 (q;)dt 

or. 

d(f) /3 2 
dt=yq;(l-q;)- 02:cp2 ········ ···················································(4.l9) 
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The term of the next lower yield the stochastic differential equation 

I 

+K2-v [g1('P)B'z+g2('P)B'2Z2 + .... }tw1 

I 

-K-2[h1(q,)sz+h2(q,)s2z2 + .... }tw2 .......................•................................ (4.20) 

Eq-(4.19) governs the mean evolution of the growth process. While Eq.-(4.20) 

describes the corresponding fluctuations. The non-linear Fokker-Planck equation 

(FPE) corresponding to the SDE, Eq.-( 4.20) can be written as 

_Bp_(z_,t_) = __ a [A(q,,z)p(z,t)]+_!__a_
2

2 
[B(q,,z)p(z,t] ....................................... (4.21) 

dt Bz 2 az 

where 

and 

B(rp,z) = K 1- 2
v g(<p) .........................................................................•.............. (4.23) 

with 

g(rp) = g/ (q,) + ho 2 (rp) = yq,(1-q,) + /32 2 ............. .. ................... ... ........... . (4.24) 
8 +<p 
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In Eq-( 4.21 ), the term A(rp, z) is referred .to as drift velocity (transportation or 

convection term) or simply the drift coefficient; the term B(rp,z) as conduction 

term or diffusion coefficient. 

4.5 THE MEAN EVOLUTION OF THE PROCESS AND THE 

STEADY-STATE SOLUTION: 

The differential Eq.-( 4.19) governs the mean evolution of the process and can 

be written as 

(82 + rp2)drp -------= -r dt ......................... ...... ....................... ...... ...... ( 4.25) 
tp[tp3 -rp2 +(82 + ,B)rp-82] 

r 

Setting O = rp1 ~ rp2 ~ rp3 ~ rp4 , where (f); = 2, 3, 4 are the roots of the cubic 

equation., 

({}3 -rp2 + (82 + ,B)rp- 52 = 0 ... . ................................................. ( 4.26) 
r 
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( 52 + ql) == A(<p - fP2 x(f) - (fJ3 xrp - <p 4) + B <p( <p - <p3 )(rp - rp 4) 

.. + C<p(<p-<p2)(rp-rp4 )+ D<p(<p-rp2)(rp-rpJ 

putrp==O, <p2 , <p3 ,and (f)4 in Eq.-(4.26c) respectively, we have 

-82 
A=--, 

(f)2 (f)3 (f) 4 

Now from Eq.-( 4.25) we get, 

.. ......... (4.26c) 

.......... . (4.26e) 
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m Eq.-(2.26e) we obtain, 

rp = - Jrdt .. 

............... (4.26/) 

Integrating on both sides we have, 

log(cp-cp
1
) + (82 + rp/)rp

3
rp4 (rp4 -rpJ 1og(rp-rp2) + (82 + rp/)rp2(f)4 (rp4 -rp2) log(rp-rp3) + 

(82 + <p/ )<p2rp3 (rp3 - (f)2) log(rp - {f)2) = -rrp2rp3rp 4 (rp4 - {f)3 )( {f)4 - {f)2 )( {f}3 - (f)2 )t + log A 
...... (4.26h) 

Setting 

rp0 = rp(O) ~ 0 

a2 = (82 +rp/)(rp4 -rp3){f)4{f)3 ~ O ..................................... ....... (4.26i) 
a3 = (82 + rp/)(rp4 -rp2){f)4(f)2 ~ 0 

a4 = (82 + rp/)(rp3 -rpi)rp3(fJ2 ~ 0. 

we obtain from Eq.-(2.26h) 

log(rp-((J
1
) + a

2 
log(((J-((J2 ) + a3 log(q.,-rp3) + 

a4 log(rp- (fJ2) = -rrp2(fJ3{f)4 (q.,4 - rp3 )(q.,4 - (fJ2 )(rp3 - q.,2 )t + log A 
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.... . ......... .... .... ........ (2.27) 

When t = 0 then <p = <p(O) = (f)0 , so we have 

Thus finally we get, 

We conclude from the structure of Eq.-(4.27), that as t ➔ oo, the asymptotic 

value cp( oo) of cp(t) remains bounded, and hence system will remam always 

bounded. 

The state rp = rp1 = O is an absorbing state and is of no relevance for us. In 

the limit of the large time the steady state value rp tend to <p2 or rp3 or rp4 , 

according to as rp
0 

is less than or equal to greater than rp3 ( i. e., according 

to as ({Jo < (fJ3 or (f)o = (f}3 or (/Jo > (f}3 ) . 
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To explore the catastrophic behavior of the model, it would be instructive to 

examine the steady-state solution (f)s of Eq.-( 4.19), which describes the eventual 

population size. To this we begin with Eq.-( 4.1 ). For the sake of clarity we 

would like to workout with the extensive variable 1/1. Eq.-( 4.1) can be easily 

restored by setting 1/1 = K(f), b = K/J and a= o K, thus we obtain, 

On the carrying out the transformation 

1/1 X=-, 
a 

bt 
r =-, 

a 

Eq.-(4.1) transform to 

R = ar and 
b 

K 
Q =-.................................................. (4.30) 

a 

dX = RX (1 - X) - X 2 ......... . ............................................ . . . ....... ( 4. 31) 
dr Q l+X 2 

or, 

: =- Q(11:;X2 )[ X 3 -QX2 +(1+ ~)X-Q ] ................. ............. .............. (4 . .32) 

Here it will be worth noting that Q is a measure of the carrying capacity 

which increases with the age of trees and can be reduced by felling them. 

Further, R is a measure of the intrinsic growth rate in the presence of the 

predation and can be regulated by spraying pesticides. In what follows we shall 

observe that Q and R would play the role of control variable. 

124 



Chapter Four Analysis the Critical Behaviour of Spruce Budworm Pest Population 

Considering the evolution quasi-static for large time, we note that the 

equilibriums are given by Xs = 0, and by the roots of the cubic equation 

x}-QXs
2

+(1+~)Xs-Q=0 ...................................................................... (4.33) 

X X 
or, R(l-Q)= l+X2 ••• • •••••••••••••••••••• ............................. ......... . ...... . ... . (4.33a) 

Ignoring the trivial value Xs = 0, which constitutes and absorbing state or a so­

called natural boundary of the system, we obtain the necessary quatric potential 

V(X;Q,R) = _!__X 4 
_ _!__QX3 +.!..(1 + Q)X2 -QX .......................... ............... .. (4.34) 

4 4 2 R 

for a cusp catastrophe. Within well defined parametric space, the Eq.-(4.33) 

possesses three non-negative distinct roots, 0 < X1 < X 2 < X3 (say). Further, 

using the concepts of linear stability, it can be shown that X1 and X 3 

correspond to stable states, while X 2 is unstable; and by changing the control 

parameters R and Q, it is possible to cause the unstable state is coalesce 

with one of the stable steady-states. 

distinct roots and unstable-state for which occurs for X 2 is coalesce with any 
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one stable steady-state. For this reason the Eq.-(4.33a) has only double root. 

We adopt the following expressions for the two side of Eq.-( 4.33a): 

X 
F(X) = R(l--) ........... . ............... . ............. . .............................. ( 4.34a) 

Q 

and 

G(X) = I+XX2 ....... . .. . .. ................. .. ............................. . ............ (4.34b) 

A double root occur if 

or, 

and 

or, 

or, 

F(X) = G(X) 

X X 
R(l - -Q) = -1 +-X-2 

!!._(Q-X)= X ... . .. . ... .. . .... .. ............ . ........................ . .......... (4.34c) 
Q l+X 2 

dF dG 
-=-
dX dX 

!!___[R(l _ X )] = !!__[ X ] 
dX Q dx l+X2 

R X 2 -l 
-=--------,-
Q (l+X2)2 

x 2 -1 or, R = -----,--Q ..... . ............ . . ..... ... . .... . ............... .... . ............. . .. . . . ( 4.34d) 
0 + x2)2 
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R 
putting the value of Q into Eq.-( 4.34c) we have 

X+X 3 

or, Q-X= X2-l 

2X3 

or, Q= x2 -1 

so we get from Eq.- ( 4.34d) 

2X3 

R=---
(l+X2)2 

By this way we get, 

2X3 2X3 

R= - 2 2 ,Q= 2 •••••• • •• • •••••••• •• ••••••••••••••••• •••••• • •• • •••••••••••••• (4.35) 
(l+X ) X -1 

which is a parametric curve. 

Therefore for the proper changing the control parameters R and Q the 

unstable state will coalesce with one of the steady- state on the parametric curve 

which is given by Eq.-(4.35) (See Nisbet and Gurney page 59-60) [15 ]. 

127 



Chapter four Analysis the Critical Behaviour of Spruce Budworm Pest Population 

With the help of the parametric Eq.- ( 4.35), it can be seen that slow and small 

changes in R and/or Q can cause very rapid and large changes (outbreaks or 

collapse) in the population of budworm, exhibiting a catastrophe[16-20] . 

To get some deeper inside into the problem, we recast Eq.-( 4.33), into 

X/-QX. 2 +PX. -Q = 0 ............................................................................. (4.36) 

where 

P = 1 + Q or Q = R(P -1). 
R 

we shall obtain condition on P and R for the existence of the non-trivial cusp 

region. Already we have got an inkling that more than one stable state may 

be accessible to the system only when leaf-area available for given intrinsic 

growth rate exceeds a certain critical value. If this condition is fulfilled then 

the cusp region would demarcate a non-degenerate S - shape region. 

3✓3 
Doing a little bit of algebra, we can show that if P = 9, and R = - (hence 

8 

Q == 3✓3 ), then Eq.-( 4.33) possesses three identical roots equal to ✓3. That is 

the cusp-region degenerate into a single point in the parameter space given by 

3✓3 
(Q,R) = (3✓-3, -) .•...............•....................•...•...........•.............•....•......•... (4.37) 

8 
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This is a non-Morse critical point in the parameter space ( called the tip of the 

cusp), which unfolds into a cusp region extending over the interval (Rmin, Rmu) 

along the parameter R . 

Further, we write Eq.-(4.36) 

X 3 -QX2 +PX-Q = 0 

or, 

or, dX3 + 3eX2 + 3/X + g = 0 ............................................................ (3.37a) 

Q p 
where d = 1, e = - 3 , f = 3 and g = -Q 

If we reduce the roots of Eq.-( 3.37a) by _!!._ the it takes the form 
d 

d3 X 3 +3d(df-e2 )X + d 2 g-3def +2e3 = 0 ..................................... (3.37b) 

or, d 3x3 +3dHX+G=0 . .... . .. .. .. . ................ .. ........... .. ............. .. .. . .. (3.37c) 

where 

H = df-e2 and G = d 2 g-3def +2e
2 

Therefore Eq.-(3 .37c) becomes 

x3 + 3If!; + ~ = o ..................................................................... (3.37d) 
d d 

If we multiply the roots of Eq.-(3.37d) by d ,_ we obtained 
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X3 +3HX +G = 0 · · ·········· · ·· · ······ · ·· .. . ....... . .................................... . (3 .37e) 

The discriminate part of Eq.-(3 .37e) 

G2 +4H3 = d
2

{d
2g2 

-6defg+4df
3 -3e2/ 2 +4e3g} ...... .. .............. ........... (3.37f) 

Putting the value of d, e, J and g in right hand side of Eq.-(3.37f), we get 

2 6PQ2 4p3 3p2Q2 4Q4 
=Q ---+----+-........... . ................ . .... . .. .. .. . ... (3.37g) 

9 27 81 27 

Put the value of Q = R(P-1) in Eq.-(3.37g), we obtained 

or, G2 +4H3 = 4(P-1)4 R4 + {(p-1)2 2P(P-1)2 - p 2 (P-1)2 }R2 + 4p3 .. (3.37h) 
27 3 27 27 

which is quadratic in R 2 
• 

Therefore, G2 + 4H3 = O gives 

or, 4(P-1)4 R4 + 27(P-1)2 R2 - 18(p-1)2 -P2(P-1)2 + 4P3 = 0 

or, 4(P -1)4 R4 + 27(P-1)2 (27 -18P- P2 )R2 + 4P3 = 0 
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J-Ience 

2 _ -(P-1)2 (27-18P-P2 )± ✓(P-1)4 (27-18P-P2 )2 -4.4.4(P-1).P3 
R - 2.4(P-1)4 

(P-1)2(P2 +8P-27)±(P-1)2 ✓(27-18P-P2)2-64P3 
= 

8(P-1)4 

(P2 +(8P-27)±✓(27-18P-P2 )2 -64P3 

= 
8(P-1)2 

= 
(P 2 +(8P-27)± ✓729+324P2 +P4 -972P-54P2 +36P3 -P2 -64P3 

8(P-1)2 

(P2 + (8P - 27) ± .J P 4 
- 28P3 + 270P2 -972P + 729 

= 
8(P-1)2 

= 
(P2 +(8P-27)± ✓P4 -27P3 +243P2 -729P-P3 +27P2 -243P+729 

8(P-1)2 

_ (P 2 + (SP- 27) ± .J P(P 3 
- 27 P 2 + 243P - 729)- l(P3 

- 27 P 2 + 243P - 729) 
- 8(P-1)2 

Finally, 

Thus 

R2 = (P 2 +!8P - 27) ± ✓(P- l)(P-9)3 

8(P-1)2 

2 

[(P' + IBP-27)-{(p-l)(p-9)}½] 

R min = [S(P-})2 ] ..................................................... (4.38) 
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and 

[<P' +18P-27)+{(p-l)(p-9)}¼ l 
R

2
max = [S(P-l)2 j .............................................. (4.39) 

For Rmin < R, < Rmax there exists three realizable steady states; at R = Rmin, X
2 

coalesces with X 3 , and at R = Rmax , X 2 coalesces with X 1 • 

For P < 9, there exists on any one realizable steady- states. The whole 

situation is summarized in Fig.-4.2 

A very pertinent question arises at this stage : in which of these states does 

the system settle down ? From the point of view of forestry managers, a 

straight forward question is : What should be the optimal strategy to save the 

forest? Here we would address to the first question and would defer the 

second one till we carryout the stochastic analysis. 
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Fig.-4.2: variation of the Steady-State variable Xs with control 

parameter R is depicted of different values of P. The 

non-Morse critical point M occurs for P = 9 and P 

exceeds 9, it unfolds into a cusp region (not scaled) 

As mentioned earlier, with the help of linear stability analysis, it can be 

shown that the lower branch ABC and the upper branch EFG m Fig.-4.2 

correspond to stable states accessible to the system, the middle branch CDE 

depicted by the broken line, however, correspond to the unstable state cannot 

be realized. 
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from Fig.-4.2, we also find that as parameter R increases, the pest population 

also increases but remains confined to the lower branch ABC. But once the 

parameter reaches the threshold point C, the pest population jumps 

discontinuously from the lower branch ABC to the upper branch EFG. The 

analysis offers significant policy guidelines to the managers. They should not 

allow the attainment of the threshold value of the intrinsic growth parameter 

R. They have to bear in mind that once there is outburst, the control is not 

possible until R is managed to fall to the threshold level at point E on the 

upper branch (Fig,-4.2), by felling trees or heavy spray pests for, if it does not 

reach this level, the pest-size cannot be brought to the lower branch ( controlled 

state), and saving the forest would become next to impossible. This is the well­

known hysteresis effect [21] highlighted by Wright [1]. 

It is instructive to point out that model which involve discontinuities, (that is 

more than one stable states become accessible to the system represented by 

the model for a given set of control parameters), can be analyzed within the 

framework · of catastrophe theory [22-24]. catastrophe theory can account for 

discontinuous behavior and can be employed for modeling first-order phase 

transition [16,14,25] or sudden change in the behavioral variable due to 

continuous changes in terms of certain control parameters of the system. 
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In the realm of catastrophe theory, the behav1our of the system is characterized 

by the shape of the relevant potential function. for the model under 

consideration, the potential functions is given by relation (4.34). appropriate 

scaling and translation reduces this quartic potential to 

V(~ : A, B) = ~4 + A~2 + B .................................................................. ( 4.40) 

where A and B are functions of the control parameters Q and R, and 

~ = X s - X c • Obviously this canonical form correspond to Cusp Catastrophe 

which describes the behaviour of the model under consideration. In terms of 

the A and B, the different regions of the cusp are identified as follows : 

(i) 
A3 Bi If - + - > 0 the potential function has exactly one mm1mum. 
27 4 ' 

A3 Bi 
(ii) If - + - < 0, the potential function has two minimum. 

27 4 

(iii) 
A3 B2 M . . 1 . h When - + - = O it corresponds to the non- orse cntica pomt or t e 
27 4 ' 

tip of the · cusp beyond which the potential function starts unfolding, resulting 

into multiple steady-states. 
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4_6 CONCLUDING REMARKS: 

In this chapter we have investigated the deterministic approach of Holling's 

model applied to a problem of pest control in the preservation and protection 

of a forest from pests. Specially we have considered the spread of spruce 

budworm at epidemic level in coniferous forests of Canada. With the increase 

age of balsam fir trees the leaf area also increases which sense the availability 

of food for the pest as a result the abnormal growth trends of the budworm 

population brings catastrophe. We have received a cubic equation which provides 

three roots and the roots are considered as the three states of the system. From 

the point of view of forestry managers, a straight forward question is : What 

should be the optimal strategy to save the forest? Such questions have been 

addressed through our lengthy calculations. 
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CHAPTER FIVE 

THE APPLICATION OF CATASTROPHE 

THEORY IN BUDWORM PEST POPULATION 

5.1 INTRODUCTION: 

In the preceding chapter, we have discussed the qualitative and quantative 

aspects of budworm pest model by Ludwig et al. [1]. Also the model highlighted 

and demonstrated by Jones [2], Kendeigh [3], Morris [4] and Mitchell [5]. 

However, it is very complicated to define the dynamic nature of management 

problems as it involves an important factor of uncertainty, arising from various 

sources-intrinsic as well as extrinsic to the management system of the proposed 

Pest model. Jones [2] independent measure shows that among 150 to 200 larvae, 
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approximately 25% of the foliage of the balsam fir trees consumed by the larvae 

per branch. Environmental factors like temperature, seasonal impact etc. are also 

responsible for the smooth development of such pest. Therefore, most of the 

management problem involves very sensitive parameters and the parameters are 

sensitive in the sense that a very small changes in the parameter lead to the 

unexpected large effects reflected m the response. It is also true that when 

sensitive parameters are present, the system under study, may exhibit a 

catastrophic behavior over certain region in the parameter space. The qualitative 

aspects like spruce budworm problem using elementary catastrophe theory have 

discussed by Peterman [6] and Wright [7]. At the very out set, we would like to 

mention that for the exhibition of a catastrophe, at least two stable states and one 

intermediatory unstable state must be accessible to the system [8-12]. The stochastic 

version of the proposed model have been carried out in the present chapter and a 

part of this chapter has developed in the last chapter, Chapter-Four, which is 

logical in the sense that the stochastic formulation and its analysis based on the 

deterministic approach of the solution processes. We observe that besides the 

trivial solution, the time evolution exhibits accessibility of three states, one of 

which is 'meta-stable' implying a transition from one stable state to another 

stable state. The details of such a transition are worked out in this chapter 

and the population variable has been studied as a function of model 
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parameters. The model also depicts critical behaviour [ 13-15] in the sense that 

around the critical region, including the critical point, the relevant probability 

density function describing the model switches abruptly from uni-model to a 

bimodal distribution. It has also been shown that the model is related to the 

cusp catastrophe theory [16]. 

5.2 STOACHASTIC ANALYSIS : 

As pointed out in the introduction, chance plays a vital role in bringing out 

phase transition. To this end, we shall now examine the stochastic behaviour of 

the model and we shall examine the model in three distinct region following 

calculations of previous chapter : 

(1) Far From the Critical Point Outside the Cusp 

(2) At Critical Point and its Neighborhood within the Cusp Region and 

(3) Far From The Critical Point in the Cusp Region. 

5.2.1 FARFROM THE CRITICAL POINT OUTSIDE THE CUSP: 

This situation occur when the control parameter, representing the intrinsic 

growth rate is less than -9. There is only one real root of the Eq.-(4.33), 

signifying a unique population size of the pest. Under this condition, the 
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dominant non-vanishing term in the drift coefficient is J; (1//J, and consequently 

the scaling index v, representing the order of the drift of fluctuation IS 

obtained by equating 1 - 2v to zero ( so that the drift and diffusion may be of 

· .fi t· ) Th. 1 · 1 matching sigm ICa Ion . IS means v = 
2 

. Substituting v = 
2 

in Eq.-( 4.12 ) to 

Eq.-(4.18). then the Fokker Plank Equation (FPE), Eq.-(4.21) becomes 

8P(z,t) a { } I 82 

--= -J;(rp)- z p(z,t) +-g(¢)-p(z1) ................. ... ............ ....... (5.1) at az 2 2 

where J;(rp) IS given by equation Eq.-(4,12) and g(cp) by Eq.-(4.24) 

Equation Eq.-(5.1) corresponds to the well-know non-stationary Ornstein­

Uhlenbeck process [17], whose solution with natural boundaries is the Gaussian 

distribution given by 

I 2 
. 2 -2 z (5 2) p(z,t) = (27l(J'z ) exp(---2) .................................................................... . 

2az 

with 

a,2 = J; (cp/s[ g3(u) }u ................... ................................................... (5.3) 
1/\) lo (cp) 
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where fo(<p) is given in Eq.-(4.l l). Thus at any time t the mean and variance 

are given by 

E[n(t)] = K<p(t) ·······.................... ................................... (5 4) ·································· . 

[ ] 
2 

Var n(t) = Ku= (t) ......................... ................... ........................................... ... (5.5) 

with corresponding probability density function 

_ 2 -½ exp[-{n-K<p(t)}2] 
P(n,t) - (21rKu= ) 2 ••• • • • • •••• ••••••• •••••••••••••••• • •••••••••• ••• •• •••••••••••••• (5.6) 

2Ku= 

5.2.2 AT CRITICAL POINT AND ITS NEIGHBORHOOD WITIDN 

THE CUSP REGION: 

The critical point of the model corresponds to P = 9 and Q = 3✓3 . The usual 

I 

scaling of the fluctuation given o(K2) breaks down at the critical point, and its 

immediate vicinity, wherein the fluctuations are greatly enhanced. Once 

disturbed from the equilibrium, the system is restored to the equilibrium very 

slowly. At the critical point, all the three roots of Eq.-( 4.36) becomes identical 

i, e., X1 = X
2 

= X
3 

= ]3, and consequently we find that in the drift term 
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A(q,,x) (seeEq-(4.22)), f..(cps)=f2((f)J=O, leaving /
3

(cpsJ as the dominant term. 

Thus the Fokker Plank Equation (FPE) Eq.-(4.21) reduce to 

oP(z,t) = -&2 f ( )~ (z3 t) + 1 Kl-2v 8
2 
p-at 3 cps oz p ' 2 oz2 ............................................. ( 5.7) 

where 

and 3 
g(cps) = 

2 
/J ........................................................... (5.8) 

Further, since the stochastic variable z is supposed to be 0(1), the drift and 

diffusion processes are of comparable significance only when s 2 and K 1
-

2
v are 

of the same order of magnitude. This implies 2v-2 = 1-2v or 
3 

v=-
2' 

indicating that the usual scaling law of fluctuations ( i, e. v = .!_ ) is no more 
2 

valid at the critical point. Substituting v = I into Eq.-(5.7), we obtain 
4 

op= K-½[729/3 ~(z3 p)+(3/J)~(p)J ......................................... (5.9) 
a1 12s az 2 & 2 

Which is a non-linear Fokker Plank Equation (FPE) on account of non-linear 

d
, I 

nft term. The factor K-2 on the right hand side of Eq.-(5.9) indicates that 
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the approach of the system towards its steady-state is slowed down by a factor 

I K-2. The con-esponding lengthening of the relaxation time is called critical 

slowing [12], this phenomenon is always associated with the phenomenon of 

the phase transition [ 18]. 

To have an idea about the order of fluctuation, we solve Eq.-(5.9) for large 

time, with appropriate boundary conditions. Thus setting Bp = 0 for large time, a, ' 

and carrying out the integration, we obtain 

p
5

(z) = C exp(-~:! z4 ) ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• (5.10) 

where C is the normalization constant, obviously, the steady-state mean and 

variances are : 

E(z) = 0 

1 r(I) · 
2 

(256)2 4 ······························································· (5.11) 
Var(z)=a = - -
_ z 243 r( ¼) 

Accordingly, at the critical point the mean and variance of the population size 

at large times will be given by 
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E(l/lsJ = Krps 

I r(i) 
{ 256 2 4 

Var(w .. ) = K -(-) ---
'" 243 t) 

Eq.-(5.12) confinns occurrence of 

... ....... .... .................. .... .................. .. .......... (5 .12) 

anomalous variance, an important flag of 

catastrophe. Recalling that the steady-state probability density function Ps(z) and 

the corresponding catastrophic potential function V(z) of the system are related 

through 

p s ( z) = C exp(- v~)) ................................................................................. ( 5 .13) 

we see that 

V(z) = 729 /3 z4 .. ........ ........ . .................................................... ...... ....... (5 .14) 
512 

Thus we note that at the critical point ( the tip of the cusp ) the fonn of the 

potential function is a quadratic, which starts unfolding as we enter the cusp 

region. 
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~ 

CRITICAL REGION: 

The region around the critical point (R,, Q,) = ( 3';3, 3.Jj). where fluctuation 

become of the order O(K
2
v) is termed as critical region. Expressions, Eq.-(4.38) 

and Eq.-(4.39) for Rmin and Rmax, show that when P exceeds 9 even by a 

small amount, the roots of Eq.-(4.36) become distinct. Suppose small changes 

in R and P correspond to changes 771 and 772 in the value of R and Q 

around the critical point. Since rp2 , rp3 and rp4 become distinct for all R, 

lying in the interval ( Rrnin , Rma,J, we have J; (rps) * 0, i = 1, 2, 3 and 

(f)s =({)2, ({)3 , rp4 in this region. Using Taylor series expansion and following 

Karmeshu et al. [19] it can be shown that 

V(z;u, v) = z 4 + 4z3 + uz ...................................................................................... (5.15) 

where u, v are function of T/i and T/i · The canonical from Eq.-(5.15) of 

potential for cusp catastrophe illustrates the transition of uni-model probability 

density function into a bi-model probability density function. 

5.2.3 FAR FROM THE CRITICAL POINT IN THE CUSP REGION: 

Within the cusp region, multiple steady-state become accessible to the system. 

For R = R . or R = R one of the roots of Eq.-( 4.36) become repeated, mm max, 
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thereby implying that f,(<ps) = 0 while f2(({Js) * 0. Consequently the scaling 

2 
index parameter v = 3, accordingly the steady-state solution to the Fokker Plank 

Equation (FPE), at the threshold points E and C (see Fig.-4.2) tum out to be 

non-Gaussian and are 

with 

and 

with 

R=R max and 

Where C
1 

and C
2 

are the normalization constants. In these states, the 

system is marginally stable. However, at the points A and G on the lower 

1 
and upper boundary (see Fig.-4.2), /

1 
(<ps) * 0. Thus the scaling index v = 2 , and 
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the steady-state solution of Fokker Plank Equation (FPE) Eq.-(4.21) yields a 

Gaussian distribution. Further, for R, R < R < R · + ( ) o 
min - - max• agam J1 (fJs "F , 

therefore, as earlier v = .!_, and the probability density functions are 
2 

p 1(z) = C3 exp(-~] at the lower branch ........ ................. ........ ..... ..... (5.18) s, 20-
2 

and 

P511 (z) = C4 exp(-~] at the upper branch ..................................... (5.19) 
' 20-

4 

where 

C3 and C4 are the normalization constants and 

o-2
2 

= f, 2
(q,2)!;,}~~) }u ............................................................................ (5.20) 

a/= J/((fJ4 )9J[ g(u) ]du ............................................................................... (5.21) 
9't> J/(u) 

when R is slightly greater than Rmin • the pdf Ps(z) is dominant in the 

vicinity of If/,. = K(fJ2 • As R increases from Rmin, towards Rmax , being held 

constant, the pdf remains dominant on lower branch till R attains a value 
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R 
< R . At R = R0 , the probability of the system being on any one of the 

0 - max 

stable branch become the same. As R exceeds R0 and moves towards R111ax, 

the dominance shifts from the lower to the upper branch. The switching over of 

the pdf from uni-modal to bi-modal. In general, the pdf p(z) may be 

approximated by a mixture of P./z) and Ps,u (z). given by 

p
5 

(z} ~ C, (R}e -[ ,~,') + C, (R}e -[ 2~.' 1 .......................................................... (5 .22) 

where Cs(R) are C
6 
(R) depend on R, and are called mixing coefficients. 
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S.3 CONCLUDING REMARKS: 

In this chapter we have investigated the deterministic approach of Holling's 

model applied to a problem of pest control in the preservation and protection 

of a forest from pests. We have derived the conditions under which the system 

will exhibit cusp catastrophe. The display of hystereisis effect and the 

phenomenon of critical slowing down have been explained in a quantitative 

manner. We have also carried out a detailed stochastic study of the model in 

three regions of interest and of importance and have explained why and what 

extra care is to be exercised for the investigation of the associated cusp region. 
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