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Abstract

Identification of unexpected observations is a topic of great attention in modern
regression analysis. At the beginning statisticians differ but now they recognize robust
regression and regression diagnostics are two complementary remedies to study unusual
observations. We use both of them for identifying irregular observations at a time. We
find out the group deletion diagnostic methods that show better performance for
identifying influential observations in linear regression. These are based on robust
regression and/or relevant diagnostic methods so that these are free from huge
computational tasks and reliable in presence of masking and/or swamping because of
prior suspect-group identification. We find a technique that performs well in case of large
number and high-dimensional data sets. We have done a classification task of unusual
observations in linear regression according to their nature of consequences on the
analysis, and model building process. At the same time the method performs well for
identifying influential observations. This method may be a good addition to the existing
graphical literature. We have seen that our proposed procedures in linear regression are
also effective to the logistic regression after some modification and development to the
existing identification techniques in linear regression. Qur further contribution is to
propose two new identification techniques for influential observations in logistic
regression. The new methods show efficient performance for the proper identification of
unusual observations and thereby provide less misclassification error in the response
variable for the binomial logistic regression, Summarizing all the above issues we can say
that we have made contribution in three areas: identification of influential observations in
linear regression, classification of unusual observations in linear regression, and

identification of unusual observations in logistic regression.
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Chapter 1

“That which is statistic and repetitive is boring,
that which ts dynamic and random is confusing, in between lies art.”

John Locke

Introduction

1.1 Regression Analysis and Its Historical Background

Regression analysis is a statistical technique, most widely used in almost every field of
research and application in multifactor data, which helps us to investigate and to fit an
unknown model for quantifying relations among observed variables. “It is appealing
because it provides a conceptually simple method for investigating functional
relationships among variables,” (Chatterjee and Hadi, 2006). The standard approach in
regression analysis is to take data, fit a model, and then evaluating the fit using various
statistics.

First regression-type problems were considered in the 18" century to aid navigation with
the use of Astronomy and used exclusively in Physical science under Galton (cousin of
Darwin). Galton in 1870 studied the question of quantifying genetic inheritance
(intelligence, weight of sweet peas, heights of fathers and sons). He observed that sons of
tall (short) fathers tend to be tall (short) as their fathers. He termed the phenomenon
“regression to the mean”. Pearson in 1896 formulated the idea of correlation in its most
complete form, and developed ordinary least squares (OLS) as a method of parameter

estimation in regression.



1.2 Linear Regression

Let us have a set of n observations (y,,x,);i=12,..,nof (p+1) dimensional random

vector (y, x) and want to quantify relation between y and x. To serve the purpose in

regression !analysis, the classical model assumes a relation of the scalar type
yi=Ptx Bi+.+x, B, +e, i=12,..,n (1.1)
The relationship between ¥ (response) and X, X, ,..., X, (predictors) is formulated as
Y=p,+BX +5,X,+..+B,X, +¢. (1.2)
We can rewrite the system of equation by matrix notation as,

Y=XB+¢, (1.3)
where Yp.xp) is the vector of response, X,«p+y) is the design matrix , fp+p<s is the
parameter vector (regression coefficients) and €,x; is error-vector. The adjective linear
has a dual role, one is the relationship between response and the predictor(s) is linear and
other is the model is linear in the parameters. It is assumed that any set of fixed values of

X, X,,..., X ,that fall within the range of the data, the linear equation (1.2) provides an

acceptable approximation of the true relationship between ! and the X’s. In particular, ¢
contains no systematic information for determining ¥ that is not already captured by the

Xs.

1.3 Logistic Regression

Logistic regression, a type of generalized regression, has been widely used since last two
decades or so. From its original acceptance in epidemiological research, the method is
now commonly used in fields including biomedical research, business and finance,
criminology, engineering, wildlife biology, biometrics, data mining etc. Classically,
logistic regression model is fitted to data obtained under experimental conditions; current
use of these methods includes the analyses of data obtained in observational studies

(Pregibon, 1981). Logistic regression is useful in situations for which we want to study



about the prediction of presence or absence of a specific characteristics or outcome based
on values of a set of predictor variables. It is similar to a linear regression model but it is
more suitable when the dependent variable is dichotomous, not continuous type. Logistic
regression may use one of three types of categorical response variables: binary, ordinal,
or nominal. Binary logistic regression is a form of regression, which is used when the
dependent is a dichotomy and the independents are of any type. Multinomial logistic
regression exists to handle the case of dependents with more than two classes. When
multiple classes of the dependent variable can be ranked, then ordinal logistic regression

is preferred to multinomial logistic regression.

1.4 Robustness and Robust Statistics

Box (1953) first introduced the technical term ‘robust’ and the subject matter acquired
recognition as a legitimate topic for investigation only in mid-sixties, mainly due to the
pioneer works of Tukey (1960,1962), Huber (1964), and Hampel (1968). Exact
mathematif':al theory and probably the growing general awareness of the need for robust
procedureé due to the work E. S. Pearson, G. E. P. Box, and J. W. Tukey and others (see
Hampel et al, 1986; Huber, 1981; Maronna et al., 2006; Nasser, 2000) have been
brought robust statistics at this present stage.

Many assumptions commonly made in statistics (such as normality, linearity,
independence) are at most approximations to reality. A minor error in the mathematical
model should cause only a small error in the final conclusions. But this does not always
hold, some of the most common statistical procedures are excessively sensitive to
seemingly minor deviations from the assumptions. One reason is the occurrence of gross
errors, such as copying or keypunch errors. They usually show up as outliers and are
dangerous for many statistical procedures. Other reasons behind deviations from
initialized 'model assumptions include the empirical characters of many models and the
approximate characters of many theoretical models. The problem with the theories of

classical parametric statistics is that they derive optimal procedures under exact



parametric models, but say nothing about their behaviors (stability) when the models are
only approximately valid. In this regards, robust statistics try to study with ‘optimality’
and ‘stability’ both the mutually complementary characteristics in the same study. It is
concerned with evaluating and improving the stability of estimation techniques when data
points are deviated from assumptions. According to Davies and Gather (2004), the basic
philosophy of robust statistics is to produce statistical procedures which are stable with
respect to small changes in the data or model and even large changes should not cause a
complete breakdown of the procedures. Hampel et al. (1986) mentioned, “Robust
statistics, as a collection of related theories, is the statistics of approximate parametric
models. In a broad informal sense, robust statistics is a body of knowledge, partly
formalized into ‘theories of robustness’, relating to deviations from idealized assumptions
in statistics. The theory of robustness is not just a superfluous mathematical decoration. It
plays an essential role in organizing and reducing information about the behavior of

statistical procedures to a manageable form”.

1.5 Robust Regression

It is evident that least squares estimator (LSE) is extremely sensitive to atypical data and
violations of its assumptions. Lack of stability of the LSE is not the only serious problem
for estimating the parameters but also for the lack of normality assumptions on error
terms we cannot test the reliability of the estimated parameters by using the common test
procedures, we cannot check the model adequacy. Therefore, we depend on robust
regression that possesses some stability in variance and bias under deviation from the
regression model. A robust regression first wants to fit a regression to the majority of the
data and then to discover the outliers as those points that possess large residuals from the
robust output. Hence, the goal of robust regression is to safeguard against deviation from
the assumptions of the classical least squares. Most popular robust regression techniques
are LMS {(least median squares) regression, LTS (least trimmed square) regression,

reweighted least squares regression (RLS), M and MM- estimators.



1.6 Diagnostics

Diagnostics is another statistical approach that has been developing since sixties of the
last century with robust statistics side by side to handle departures from strict parametric
models. First use of this technique traced back about mid-nineteenth century (Barnett and
Lewis, 1995). Diagnostics have taken traditionally a somewhat different view from
robust statistics. Rather than modifying the fitting method, diagnostics condition on the
fit using standard methods to attempt to diagnose incorrect assumptions, allowing the
analyst to modify them and refit under the new set of assumptions, (Stahel and Weisberg,

1991).

1.7 Regression Diagnostics

“Regression diagnostics are techniques for exploring problems that compromise a
regression analysis and for determining whether certain assumptions appear reasonable”
(Fox, 1993). Field diagnostics is a combination of graphical and numerical tools. It is
designed to detect and delete the outliers first and then to fit the good data by classical
(least squares) methods. The basic building blocks of regression diagnostics are residuals,
leverage v’alues, vector of forecasts and vector of estimated parameters. The usual
regression outputs clearly do not tell the whole story about the cause and/or effect of
deviations from the assumptions of the model building process. Regression diagnostic
can serve as the identification purpose of the deviations from the assumptions. So that
basic need of regression diagnostics is to identify the unusual observations of a data set.
Most popular diagnostic methods are Cook’s distance, DFFITS, DFBETA, Atkinson’s

statistics, efc.



1.8 Interrelation between Robust Regression and Regression
Diagnostics

There seems to be much confusion, even among workers in the two fields, about what
robust and diagnostic methods are supposed to do. According to Huber (l 991),
“Robustness and diagnostics are complementary approaches to the analysis of data, and
any one of the two is not good enough.” Rousseeuw and Leroy (1987) mentioned, the

purpose of robustness is to safeguard against deviations from the assumption; the purpose
of diagnostics is to find and identify deviation from the assumptions. It means that each
views the some problem from the opposite sites, and counting the metaphor, the more
opaque the problem is, and the more important it is to view the problem from the all
sides. They also mentioned, when using diagnostic tools, one first tries to delete the
outliers and then to fit the ‘good’ data by least squares, whereas a robust analysis first
wants to fit a majority of the data and then to discover the outliers as those points that
possess large residuals from the robust solution. In robust regression, new procedures
have been developed from theoretical considerations. Regression diagnostics, on the
other hand, have been designed to supplement standard methodology with both graphical

and non-graphical procedures.

1.9 Limitations of Existing Diagnostic Methods

Diagnostic methods have some limitations as follows:

1. Most of the popular diagnostic methods are based on the methods, which measures the
sensitivity of a single observation at a time. Single diagnostic methods are failed to detect
the unusual observations in presence of masking and/or swamping phenomena.

2. In case of group deletion diagnostics, it is a cumbersome and sometimes impossible to
identify suspect group of unusual observations because of the sample size.

3. Diagnostic techniques those do not consider robustness can make non-robust decision.
4. It is hard to derive exact/asymptotic distribution of estimates obtained after classical

diagnostic methods.



1.10 Why Robustness and Robust Regression

Robustness does not deal well with large deviation from model. First, most robust
procedures geared towards large deviations lose uncomfortably much efficiency at
“good” data sets. Second, for “bad” data set, any automated procedure may produce
parameter estimates whose values are just as irrelevant for model interpretation as those
of its non-robust siblings. On the other hand, important and large deviation can easily be
missed by non-robust diagnostics, robust diagnostics are needed.

Robust regression estimates the regression parameter using the procedures that are
insensitive to outliers (unusual observation). In regression diagnostics outlier (unusual
observation) diagnostic is the main purpose and generally use the procedures which are
sensitive to the outliers (unusual observations). Robust regression can help us to reduce
the huge computational complexity and can meet as a first criterion of the identification

techniques.

1.11 Classification of Unusual Observations

Observations are unusual in the sense that they are exceptional, they have extra role on
model building process, or they may come from other population(s) and do not follow the
pattern of the majority of the data. The presence of unusual observations could make
huge interactive problems in inference. Because they can unduly influence the results of
the analysis, and their presence may be a signal that a regression model fails to capture

important characteristics of the data.

1.11.1Outliers, Leverage Points and Influential Observations

In regression analysis, generally we can categorize unusual observations into three:
outliers, high leverage points and influential observations. According to Hawkins (1980),
an outlier is an observation that deviates so much from other observations as to arouse
suspicion that it was generated by a different mechanism. In the scale parameter context,

by an outlier we mean an observation that is so much larger than the bulk of the
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observations that it stands out, and that there is doubt about it being from the proposed
model. A rule suggests: an observation as outlying if it is more than three times the inter-
quartile range from the median. (Staudte and Sheather, 1990). An observation that is
apart from the bulk of the data is treated as outlier. In regression, outliers can be deviated
into three ways (i) the deviation in the space of explanatory variable(s), deviated points in
x-direction called leverage points (leverage points are two types: a) good leverage, if (x;
yi) does fit the linear relation, it improves the precession of the regression coefficient, and
b) bad leverage, cases for which an x, is far away from the bulk of the x; , do not fit linear
relationship (ii) the change in the direction of response (¥) variable (outlier in Y-direction
but not a, leverage point is called vertical outlier) generally measured by absolute
magnitude of standardized/Studentized residual of the observation, (iii) the other is
change in both the directions (x;; direction of the explanatory variables and y;; direction of
the response variable). Influential observation “is one which either individual or together
with several other observations has a demonstrably larger impact on the calculated values
of various estimates than is the case for most of the other observations™ (Belsley et al.
1980). It is to be noted that an outlier or a leverage point is not necessarily an influential
observation and the converse is also true, that is an influential observation may not be an

outlier or a leverage point.

1.11.2 Classification Techniques and Their Limitations

Generally classification tasks of unusual observations are performed by identification of
outliers, high-leverage points and influential observations separately. Most of the
methods of identification are distance based and some well-known methods are
Mahalanobis distance, robust distance (RD), minimum covariance determinant (MCD),
and minimum volume ellipsoid (MVE). Most of the popular diagnostic techniques for
identifying outliers and high-leverage points focusing on both of them separately and
they do not have any combined visual perception power with respect to their influence on

analysis and decision making process.



1.12 Objectives of the Study

The identification of unusual observations is an issue of a great attention in regression
analysis. Classical diagnostics based on LS estimates often fail to reveal unusual
observations. Robust regression and regression diagnostics are two complementary
approaches (remedy) to deal with unusual observations in regression analysis. Regression
diagnostic methods perform their tasks by identifying unusual observations and studying
the sensitivity of the statistics engaged in identifying purpose.
Our main objectives in this study are:

i.  To study the existing diagnostic methods for influential observations in linear and

logistic regression.

1.  To expound the necessity of group deletion technique and use of robust regression
for identification task.

iii. ~To develop and propose some new identification techniques for influential
observations in presence of masking and swamping phenomena in linear and
logistic regression.

iv.  To develop diagnostic techniques for high dimensional and large data set.

v.  To study the basic properties of leverage and residual matrices and the regression

diagnostics measures.

1.13 Tl}esis Overview

We present a short review of ideas about regression, linear regression, logistic regression,
robustness, robust regression, regression diagnostics, types of unusual observations and
objectives of my thesis in Introduction, Chapter 1. The rest of the thesis is organized as
follows.

Chapter 2 contains some preliminary mathematics for regression diagnostics and data
source. It provides some matrix algebra concepts, (such as inverse, generalized inverse,

partitioned matrix, eigen-structure, efc.) some fundamental properties relevant with the



leverage and residual matrices, deletion diagnostic algebra that are urgently needed for
the calculation purpose, and existing methods and their interactive relations side by side.
Chapter 3 is a literature review of the two: robust Regression and regression diagnostics.
It deals with some popular approaches, fundamental ideas in both of them and
interrelations between them.

Chapter 4 proposes two new measures based on deletion idea for identifying influential
observations in linear regression. At the same time chapter provides some comparisons
showing better performance with existing popular methods through some well-referred
data sets.

Chapter 5 possesses a five-fold plotting technique on a potential-residual (P-R) plot with
robust distance that can separate unusual observations from the regular and the technique
classify unusual observations into: outliers, high-leverage points and influential
observations. Several demonstrations are also performed.

Chapter 6 presents different diagnostic aspects in logistic regression. It introduces two
diagnostic measures for the identification of multiple influential observations in binomial
logistic regression.

Chapter 7 makes the conclusions and some indications of further research.

Appendix A provides the data sets that are used in this thesis.

Appendix B attaches abstracts of the articles that are already published, accepted or

submitted for the publication. Those are related to our research work.
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Chapter 2

“True genius lies in the capactty for evaluation of [...]
conflicting information.”

Winston Churchill

Preliminary Mathematics for Diagnostics

and Data Source

Regression diagnostics by deletion of one or a group of observations (cases) are mostly
depending on some matrix algebra. Inverse matrix, generalized inverse, different
partitioned matrices and eigen-structure of a matrix are the basics of deletion diagnostics.
To study the deletion diagnostic algebra we have studied necessary diagnostic algebra
with their fundamental properties. The algebra of least squares technique is presented as a
cornerstone of regression diagnostic method. Prediction (leverage) and residual matrices
are the two basic building blocks of deletion diagnostics. Several new, interesting and
useful properties of leverage and residual matrices for deletion diagnostics are developed
and presented in this chapter. Algebra of most popular diagnostic measures is presented

side by side for the completion of the thesis. Data sources are also given here.

2.1 Least Squares Algebra

To fit a regression model we estimate the parameters, and the most well known method is
least squares (LS) method. From the time of its invention to last quarter of the last
century it was the cornerstone of regression analysis for its mathematical beauty and

computational simplicity. The underlying principle of this method is to estimate the
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unknown parameters of a regression model in such a way that the total squared deviations
of the observed and fitted response would be minimized. Most of the diagnostic methods
are based on LS or originated from the idea of LS. In favor of our study here we consider

the algebra of least squares.

2.1.1 Least Squares Estimation (LSE)

It is customary that the classical linear model can be defined in matrix notation as
Y=XB+¢ 2.1)
where Y is an nx 1 vector of response (continuous) variable, X is an nxk(n>k = p+1)
matrix formed by explanatory variables with a constant, 5 is a kx1 unknown vector of
parameters with a constant, and ¢ is the vector of identically and independently
distributed (i.i.d) random error terms. The method of least squares (LS), minimizes the

error sum of squares or equivalently, finds the vector of LS estimators/£, which minimizes

Ze —ee=(Y-xp) (¥ - Xxp). (2.2)
The least squares estimators must satisfy
& =2X"Y+2X"XB=0, (2.3)
By
which simplifies to X'xp=Xx"y, (2.4)

Equation (2.4) is the least squares normal equation and is identical to (2.2). To solve the
normal equation, premultiply both sides of (2.4) by the inverse of X "X . Thus the least

squares estimate of f is
p=(x"x)"'x"y. @.5)

The fitted regression model corresponding to the level of the regressor variables is,
.
Y=X"B=pB+D 8% (2.6)
j=

The corresponding residual vector

12



E=r=Y-Y=Y-XB=Y-X(X"X)'X"Y (2.7)
=Y-HY =(I-H)Y (2.8)
=(I-H)XB+¢) (2.9)
=(I-He, (2.10)

where H = X(X" X)™" X" is the leverage or prediction or hat matrix, In scalar form, i-th
residual is r=g-) he;  i=12,..n. (2.11)
J=l

Clearly, if the hy are sufficiently small, »; will serve as a reasonable alternative of &;.

2.2 Essential Matrix Algebra for Deletion Diagnostics

To serve the purpose of deletion diagnostic algebra we attach some fundamental concepts
of matrix algebra that are urgently needed in almost in all respect of computations of this

thesis. We try to arrange the ideas according to their technical necessity.

2.2.1 Rank and Inverse of a Matrix

Rank and inverse are two most useful and important characteristics of a matrix and play a
vital role throughout all aspects of matrix and also for diagnostic algebra.
The rank of a matrix is the number of linearly independent (LIN) rows (columns) in the
matrix. The rank of A is denoted by r4 or r(4). The following properties and
consequences of rank are important.

1. r4isapositive integer, except that rg is defined as rp= 0.

. (4

mg) S pand < q: the rank of a matrix equals or less than the smaller of its

nuraber of rows or columns.
ili. (A )< n:asquare matrix has rank not exceeding its order.

nxn

iv.  When r, =r # 0 there is at least one square sub matrix of 4 having order r that is

nonsingular.

<

r(4,.,) = n then by (iv) 4 is nonsingular, i.e., 4-inverse exists.

13



vi.  r(4,.,) <n then A is singular and A-inverse does not exist.

vii.  r(4,,)=p <g,Ais said to have full row rank, or to be of full row rank. Its rank

equals its number of rows.
viii.  r(4

pg) =4 < P, Als said to have full column rank. Its rank equals its number of

columns.

ix. r(4,,)=nr,Aissaid to have full rank. Its rank equals its order, it is nonsingular,

its inverse exists.
The concept of a matrix inverse has been established in the context of solving
simultaneous linear equations. We need this to estimate the parameters or to fit the values
of Y and for finding the values of residuals or leverage matrices.
The inverse of a square matrix A is a matrix whose product with A is the identity matrix.

It is denoted by the symbol A~'and is read as “the inverse of A” or as “A- inverse”,

ie.,AA™ = 1. Now the basic question: “Is there a matrix L whose product with the

’

matrix A is I7” There are three answers to this, depending on the characteristics of A:

1) In some cases L exists and is unique for a given A.

i1) Some times numerous L exists i.e., L is not unique, and

1i1) In some instances L does not exist at all.
Generalized Inverse, a generalized system of matrix inverse. A nxk rectangular
(singular) matrix A possess either a left inverse or a right inverse whenr(A4) = min(n, k),
when a matrix is not of full rank, neither a left nor a right inverse exists, and as a result
we cannot always use a matrix inverse to solve equations. The notion of a generalized
inverse can then be easily extended to inconsistent linear systems. It plays a major role in
regression estimation and in leverage matrix.

Moore-Penrose Inverse: Given any matrix A, there is a unique matrix M such that
(1) AMA=A (1) AM is symmetric

(i) MAM=M (iv) MA is symmetric.

14



This result (above four) is developed in Penrose (1955), on foundations laid by Moore
(1920). The Penrose paper established not only the existence of M but also its uniqueness

for a given A. One-way of writing M is based on the factoring of 4,  as A=KL, where K

ey
and L have full column and row rank respectively, equal tor(4). Then M of the above
four conditions is

M=L"(K"4L")"K". (2.12)
The matrix M defined by the four Penrose conditions is unique for a given A. But there
are many matrices G which satisfy just the first Penrose condition:

AGA=A. (2.13)

Any matrix G satisfying (2.13) is called a generalized inverse of A; when A is pxg then G
is g xp.
Inverse of a Partitioned Matrix
In case of group deletion diagnostics, we need to partition the design or the augmented
matrices and these are partitioned as of suspect cases and regular cases but it is not
always possible to exist inverse for all the partitioned matrices. We need the help of the
following fundamental formulae/properties of the partitioned inverse.
Theorem 2.2.1 ( Dhrymes, 1984)

Let 4 be a square nonsingular matrix of order m, and partition as

A =[iAll Al2}
AZI A22

such that 4., i =1 and 2, are nonsingular matrices of order m,, i =1 and 2, respectively
(m, +m, = m).Then
B, B,
B:,q'l:[ " '-}, (2.14)
B2I BZE

where

r

_ -1
Bu Z(All _Alezz IAZI) 5 B
T4

le = "‘Azz_lAzl(An

A Al’(AP A’IAH"]AI')) s
B ( 22 _AzaAn_lAl:)l-

!

)
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Theorem 2.2.2 (Chatterejee and Hadi, 1988)

Let A be a matrix partition as

(a) If A and A, are nonsingular, then
PR A.}‘A.ZA{/IINA;‘ 4 M| 2.15)
- AMMAII M
where M =(4, - A21AI_1IA12)—1'

(b) If A and Aj; are nonsingular, then

N — NA, 47!

-1

4 :[—A“l/{ N A7+ 43 ’ ]\2[2 —Ijl > (2.16)
24 n + An Ay NA,, Ay,

where N =(4,, — 4,45 4,,)".

2.2.2 Eigen Values and Eigen Vectors

It is known that eigenstructure of a matrix X can change significantly when a row of the
design ma{rix is added to or omitted from X. we can study the influence of the i-th row of
X on the eigenstructure of X in general and on its condition number and collinearity
indices. Let 4 be a square matrix of dimension kxk and Abe an eigen value of A. If
X,,,1s a nonzero vector such that

Ax =Ax. (2.17)
Then x is said to be an eigenvector (characteristic vector) of the matrix A associated with
the eigen value A .

Another point of view; Let A be a k x k square matrix and / be the kx % identity matrix.

Then the scalars 4, 4,,..., 4, satisfying the polynomial equation |4 — Al[=0are called the

eigen values of a matrix A.
The equation |4-41|=0 (2.18)

(as a function of A) is called the characteristic equation.
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2.2.3 Grammian Matrix and Its Properties

If A be nxm real matrix then the matrix S = 47 4is called Grammian matrix of A. If A is

mxn then S=A4"4 is a symmetric n-rowed matrix. It has the following important
properties.
i.  Every positive definite or positive semidefinite matrix can be represented as a
Grammian matrix.

ii. The Grammian matrix 4" 4 is always positive definite or positive semidefinite,
ana it depends on the rank of 4 or less than the number of its column accordingly.

iii. The rank of the matrix A’ A4 is same as that matrix 4 and A4" . That is if
r(A)=r then r(A"A)=r(44")=r
iv. If (44")=0then A=0.

2.2.4 Idempotent Matrices and Projections

Idempotent matrix, A square matrix A4 is said to be idempotent when 4 = 4°. For any

idempotent matrix we have A = A" for any integer »>0.

Theorem 2.2.3 (Basilevsky, 1983)
An idempotent matrix A is always singular, except for the unit matrix /.
Theorem 2.2.4 (Basilevsky, 1983)
Let 4 and B be idempotent matrices. Then we have the following:
i. A + Bisidempotent only when AB=BA=0.

ii. C=ABisidempotent only when AB=BA.

iil.  I-A is idempotent.
Property2.2.1 (Chatterjee and Hadi 1988)
Let A be an nxn idempotent matrix. Then we have the following:

)] The eigen values of A are equal to 0 or 1.

(i)  The trace and rank of 4 are equal.
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Projection and Projection Matrix

Consider an arbitrary vector ¥ e V, where the vector space V =¥, @V, is decomposed as
a direct sum (@) of ¥y and V. Also letY =Y, + ¥, , where ¥, e ¥, and Y, € V,. Then the
transformation PY=Y) is called the projection of vector ¥ onto the vector space V; along
the vector space V, if and only if PY;=Y), P is defined as a projection matrix, that
projects vector ¥ onto a subspace. P has the following:

i. P is associated with a linear transformation.

ii. P isa projection matrix if and only if P is an idempotent matrix.
Matrices of the form (X7 X)™ X" occur often in linear regression models. This is the

matrix that transforms the response vector Y into the least squares estimates of S in the

linear model Y = X3 + ¢, for example. It is a factor of the projection matrix of ¥ onto ¥,

that is, X (X7 X)™' X", the “hat” matrix. We recall that a matrix is a projection matrix if

and only if it is symmetric and idempotent (that means a projection matrix is necessarily

either the identity or it is singular).

2.2.5 Decompositions

Decompositions provide a numerically stable way to solve a system of linear equations,
as shown already in, and to invert a matrix. Additionally, they provide an important tool
for analyzing the numerical stability of a system. Decompositions allow us to transform
a general system of linear equations to a system with an upper triangular, a diagonal, or
a lower triangular coefficient matrix. Some of most frequently used decompositions are
the Cholesky, QR, LU, and SVD decompositions. Now we define the following two to
Serve our purpose.

The Spectral Decomposition, Let 4 be akxk symmetric matrix. Then 4 can be express

in terms of its k eigenvalue-eigenvector pairs (4,,¢,) as

[
A=Y leel . 2.19)
i=l
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Singular-Value Decomposition, Let 4 be an m x &k matrix of real numbers. Then there
exista mx m orthogonal matrix U and a & x k orthogonal matrix ¥ such that

A=UAV", (2.20)
where the m x k matrix A has (i) entry A, >0for i=/,2, ...,min{m,k) and other entries are

zero. The positive constant A, is called the singular value of A.

2.2.6 Fundamental Deletion Formula

Following results are useful for finding the inverse of leverage matrices when one or a
group of observations are added to or omitted from others.

(1) Let 4 be a nonsingular matrix and U and ¥ two column vectors, then
-ur' ]! = a4 a7 ult-v" au) v a4 (221)
Proof:
(4-vrfa + Ui -y amu) v 4t
= 1+U[I =V AU Y A — oy At v (- A ) Y
=]-UVTA"+uv 4" =1.

() (A+UVDY ' =47 -4 U+ VT A Y Y 47! ; (Rao, 1973) (2.22)
(iii) Let 4 and D be nonsingular matrices of orders & and m respectively, B be k x m, and

Cbekx m. Then, provided that the inverses exist,

(4+BpCTY" = {4 4" B(D" +C" a7 BY' C" 47| (2.23)
Proof:
(4+BDCT 4 — a7 B(D + CT A7 B CT 7|
=1-B(D" +C"4"'B)'C" 4" + BDC" 4" —=BDC" 47 B(D™ + C" 47 BY ' C" 4™
—I+BDC" 4™~ B(I+ DC" A7 B\D™ +CT 4™ B) ' C" 4™

= I1+BDC" 4™ —BD(D™ +C A BD" +C" 4" B)'C" 4"
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=]+ BDCTA'—=BDC" 47!
=1.

(Note, where the inverse of (A +BDC "') does not exist is found by taking 4=I, B=X,
C'=X",and D=—(X"X)". This  yields(4+BDC"Y=(I-H) ,whichis
singular, but this is also computable when we take the advantage of generalized inverse.)
(iv) Consider the k x k matrix X" X and let x| be the i-th row of X, then
LX) e (e x )

1-x" (X" x)'x,

(X7 x —xx! T =(x"x) (2.24)
Proof:
Multiplying right-hand side by (X "X - x,.x,f"),

(" x )" 2" (x" x)

1-x' (XTX)_! X
(X"'X)_1 x,x! —(XTX)_lx,xt" _ (XTX)“Ix,x;"

l—x,.T(XTX)_I x, o l—x,f"(X"'X)_l X,

b e - (e el () - () e () e e

1-x (X" x)'x,

(xrx)' + (x7x —xx")

i

(X"'X)-lx,.x,'"

=1+

=1,
2.3 Properties of Leverage and Residual Matrix

Chatterjee and Hadi (1986) call H as the prediction matrix because it is the
transformation matrix that, when applied to Y, produces the predicted values. Similarly,
(I-H) is the residual matrix, because applying it to ¥ produces the ordinary residuals. We

discuss a comprehensive account of their properties.
Property 2.3.1 (Chatterjee and Hadi, 1988; Atkinson and Riani, 2000)

(a) Leverage matrix, H and (b) Residual matrix (I-H) are

(1) Symmetric matrix (i1) Idempotent matrix.

20



Proof:

We have H=X(X"X)" X7
(@) (i) H =(X(X Xy XY = XXy X =H.
(i) H= HH=X(X'X)'X'X(X"X)' X" =X(X"X)"X" =H.
(b) (i) (I-H)Y =[I-XX"X)' X"/ =1-X(X"X)" X" =I-H.
(ii) (I-H)Y =(I-HYI-H)=I-2H+H*=]-2H+H=1I-H.

Property 2.3.2 (Chatterjee and Hadi, 1988)
Let Xbe nxk , then

(a) trace(H) =rank(H)=k,(b) lrace([ - H) =n—-k and, (c) i ihijz =k

=l =1

Proof:

@ ()= e (" x ' X7
—ofxrx ) X7 x|
=1r(7,)
k.

(b) (1 - H)

=lr(1)—tr(H)=n—k.

(c) Since H is idempotent,

H=H?
= h, = ih;
J=l
=>h= ZZ h=tr(H)=k. (2.25)

=1 =1
Property 2.3.3 (Chatterjee and Hadi, 1988)
For i=12,.,n and j=12,.,n wehave

(@) 0<h, <1 foralliand, (b) ~0.5<h, <05 forall j=i.
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Proof:
(a) By property 2.3.2 the i-th diagonal elements of H can be written as

hn = " hrz =hif2 + hi’z
;J ;’ (2.26)

ie., hi<h
from which it follows that0 < A, <1, for all i.
(b) Identity (2.26) can also be expressed as
hi=h' +h'+ > R}

reing
from which it follows that h,.J2 <h,(1-#,) and since 0< h; <1 hence hy.2 will be the
largest when h, =0.5,and thus —0.5< h; <0.5.
Property 2.3.4 (Chatterjee and Hadi, 1988)
Let X =(X,:X,) where X| isan nxr matrix of rank » and X, is an nx (k —r)matrix
of rank kr. Let H, =X, (X,'X)'X, be the prediction matrix forX,, and
W =(/ - H,)X,be the projection of X, onto the orthogonal component of X. Finally,
let H, =W (W "W)"'W 7" be the prediction matrix for . Then H can be expressed as
XXX X =Xx,(X, X)X, +(U-H)X X, U-H)X,} X, U -H))
or H=H +H,. (2.27)
Proof:

H=xX"x)y'x'

. e -1 7
R IR
M xx, xS A, r

By using the form of inverse of a partitioned matrix (eq. 2.15),

CAPORETIC AP AN AP N ' AP Ao AP AN —(X(”XJ"'X("&M}

X' x)" = . 22
—Wz Xl(Xl X:) M

where M=X,"X,-X,"X, X, X)X Xx,)"
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:{XZT(]“Xl(XITXI)_]Xlr)Xz}—'
={X,"(I~-H)X,}".
Hence, H =

XY+ X0 X MY XX XM X ey —X,<X.TXI>"Xf)gM+X2“{ng

=X X)X+ X G X XMy X G X)) xT
— X, M, X (X X)X =X G X)X XM+ XM,
= H, +HX,MX, H — H X,MX," ~X,MX,"H, + X,MX,", (Ist part)
=H, - HX,MX, + HX,MX," H ~ X,MX,"H, + X,MX,"
=H, ~ HX,MX," (I - H)+ X,MX," (1-H))
=H, -(H -)X,MX," (I-H,)
=H, +(I-H)x,mx, (I -H,)
= H,+ (- H)%, 00, (- )X, X (- 5)
=H +H,.
Property 2.3.5 (Chatterjee and Hadi, 1988)
Fori=12,.,n and j=12,.,n
(a) If X contains a constant column, then
(i) h,2n"" foralli.

(if) HI=1, where 1 is an n vector of ones.

(b) Suppose that the i-th row of X, x; occurs ¢ times and that the negative of x; occurs b
times. Then &, <(a+b)".

Proof:

(a) If X contains a constant column, define X = (1 X 2)where 1 is the n-vector of ones.

From property 2.3.4, we have N
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H =10")"1" =p7117,
W::(I_HI)XZ :(]._n“lll'f')Xz Ej(u';
H,=X(X"X)' %"
(Note, the matrix (/—n"'11") is called the centering matrix because it is the linear

transformation of X that produces the centered X).
Thus the prediction matrix H can be written

H=H +H,=n"11"+ (X" X)' X"
Each of the diagonal elements of H,is equal to »™'and since H, is a prediction matrix,
by property 2.3.3 (a) (0 < A, <1), its diagonal elements are nonnegative, hence 4, >n""'
forall i, since X"1=0,H,1 =0and thusHl =H,1=1.

(b) Suppose that x; occurs a times and —x, occurs b times.

LetJ = {j ix;=x, orx,=-x, ,j=12,.,n } be the set of the row indices of these
replicates. Since /; =x, (X"'X)_Ixj, then 4, =|h!.,.|for j&/ and by (eq.2.26) we can

reexpress /1, as

b= 07 +> b

JES jed
=(a+bh>+> b’ =h (a+Db),
Jet

from which it follows that &, <(a+5)"'.
Property 2.3.6 (Chatterjee and Hadi, 1983)
Fori=12,---,n,and j=12,---,n,

(@ If b, =0or 1, thenh, =0.

2

(b) hy +——<1.
rr
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Proof:

(a) Since H is an idempotent matrix,

he=Y R =R+ SR
=1

L}

If 4, =0 then, 0___0+Zh5

12 J
ie,h, =0;
if 4, =1 ,then

l=1+2h;

iy

ie., hu‘ =0.

(b) Define Z = (X: ¥), H, = X(X" X' X", and H, = 2(2"Z)" 2" . We can write,
(by virtue of eq.2.27)
([—H,Y)YYT(I—HX)

H,=H,+ =
2o Yr(i-H,)Y
rrr
=H, +——<1, since the diagonal elements of H. <1
rr
rZ
=h,+——<1 . (2.28)
rr

Property 2.3.7 (Atkinson and Riani, 2000)

In simple regression 4, will be large if x, is far from the bulk of other points in the data.
Proof:

In the case of simple regression of ¥ on X (one variable) through the origin, we have

X, 3

X
X =| . : XT :(x' X, x,,),
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=l

H " -
50 X'X=3%"x";hence H=X(X"X)"X" = XXT(Zx,ZJ :

From which it follows that

h,‘,‘ = = : 1 -—“1,2,...,}’1.

, & 25
252X
i=1

If a constant term is included in the model, i.e.,

1 x )

1 x,
X =

1 x

n

In this case X" Xand (X"X)™ are respectively equal to

1 n n

n Zx,. 1 ijz —Zx.

X'X = =l and (X'X)'= _— | i=l

n iz

in in2 HZ(‘xi—;)z —Z‘xi n

=] i=1

Then A, will be equal to

[
ny (x,—X)° -y x n '
i=l i=l

n ]
2 2
Zx, —foZx,. + nx;
i i=l
- n ) )
nZ(x,. - J?)
i=l

Adding and subtracting »X* in the numerator we obtain:
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H
—2 2
nx® —2x, E X; +nx;
h, =—+ =l

n n ,
ny (x, - %)
i=]

—\2
ie, h, =—1-+T(xL:£2——. (2.29)

Lo Z(x,—f)z

P
Thus in simple regression 4, will be large if x, is far from the bulk of other points in the
data.

Property 2.3.8 (Chatterjee and Hadi, 1988)

Let X be annxk matrix of rank k. Then for fixed n,h,,i=1,2,---,n, is nondecreasing
in k.

Proof: We have showed that H = i, + H,, where H, and H,are prediction matrices.

From the property 2.3.4 (€q.2.27), the diagonal elements of H, and H,are nonnegative.

Therefore,-for fixed n, h, ,i =1,2,---,nis non-decreasing in £.

!

2.4 Deletion Diagnostic Algebra

When an observation or a group of observations is deleted and the regression model
refitted, the parameter estimates, leverage values, residuals, and residual sum of squares
all will change. Statisticians observe the effects of deletion and measure the sensitivity of
the diagnostic measures, so that the explicit deletion of individual observations and
repeated refitting of the model are not necessary. The methods are collectively known as

deletion diagnostics. Relevant algebra in these methods is the deletion diagnostic algebra.

2.4.1 Single Case Deletion

The following results have found by deletion of one case. Results show how the effect of

deletion of one case impact on results from whole data set and on the estimates.
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Property 2.4.1

When /" is the jk-th element of the matrix H excluding the i-th row of matrix X,

~f h 'ihi
then (a) hG" =h, + 22
I- hii
: , h’
(b) hi,.") =h, + Uh ;  when j=k
- h;,
(c) h,.(,. V= #; when j=k=i
(d) For fixed £, h,,j=12,---,n is nonincreasing in n.
Proof:
T -
(a) We have Xy Xay) :

=(X"X —xx")"

= (e (e Y - (e T T O )
(XTX) ' xx (XX

=(X'X)" +
(X7X) o

premultiplying both sides by x J.T and postmultiplying by x, , we get

X (XX xx (XX x,

2 (X X)) x =2, (XX x4 —
—i h'ihﬂr
:>hjk’=hjk+1’_h :

) Ifj = k
_’, . " -
nS =xT(xpx, ) 'x,

X (X"'X)—Ix,.x,f" (X""X)_Ixj
l—hn’

= xj’ (X""X)-I x; +
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(©) If j=k=i

(d) We have

— J i
Hhﬂ 1-h, —hﬂ 1-hA h"':hﬁ'
heD = h h:’f h hi? + hi::- _ hr
i ii 1__ h” l_h” 1_ hl.r
. h,’
(- _ Yy
h,” =h, +1—h ,

the second term of the right side is positive.

: )
Hence, 1" 2 h,,

Property 2.4.2

i.e., h, is nondecreasing in #.

Excluding the i-th observation from the analysis,

(a)

(b)

Proof:
(a)

—1 -
B(—f)zﬁ_(XTX) XE,
1-h,
h. £,
5 _ -.( ,)_x (=) e
7 - BB =12,

B =lxihx, ) XY,

=l x)-x,

= (x"x)"+ )

'Y -x,)
x,x,.'r()("").’)_l
1-x, (X TX)—] x!

XY - XV
( )

TyvYy!l, = T
_ (X 'I'X)_I X,-y,- + (X 1{)hﬁxiyi _ (X /fz h‘jrhu
(XX 0y (-m)- (XY x5, (X ) 5y,
1-h, 1A,

XX x, +(X"‘X) xh v (X"'X)"x,.j;,_

1!
™)

1
™)

(x7x) " x,h,y

i II

il
™)

1- hn‘ 1- hn‘ 1- hii 1- hri
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Zﬂ_ l_h” (yi_yr = -
. X'X)'x 8
(b) p- g X 58
1- hii-
7 Ty Yo o
= x’[(ﬁ_ﬁ(_,)) - x, (X X) x,.Ej
]' - hti
= y =(=9 hirEi
i yl 1 _ h" *
Property 2.4.3
After deleting i-th case from the analysis,
(@) N =g e x(X" X (1-h,) ' xE,
h.
b N =81+
(b) , ( o J
g0 — Ei
© =
@ g3 =8+,
Proof:
(@) SARIED g Al
-V - Xﬁ(—')
(xTx -1
x| p A e
1- hii
A o B
v x+ x(x"x)'xg
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) g =) _ - j}i(ui)

=y T3
=Y _xj B — (XTX)—IxIEJ
;i i 1—-}1".
o T
=Yy ‘—x?.ﬁ'*‘x'l (XIX) xl""‘i
i i l—hﬁ
~ hn'gi
=g+
1-h

ii 1- hn‘ .
) £ =8 +x"(B- ) [using property 2.4.3 (b) and 2.4.2 (b)]
= ‘E’:i +5)i —ﬁi(-i)'

VEF 135 =8 43,
Property 2.4.4
The eigen ;falues of H and (I-H) are either 0 or 1.
Proof:
Both H and (I-H) are idempotent matrices. We know that the eigen values of an
idempotent matrix are 0 or 1, hence the eigen values of A and (/-H) are either 0 or 1.
Property 2.4.5
There are (n-k) eigen values of H equal to 0, and the remaining & eigen values equal to
1.similarly, & eigen values of (/-H) equal to 0 and (n-£) equal to 1.

Proof:
Let A, i =1,2,---,n be the eigen values of A.

Since H is an idempotent matrix, we get A s are either 0 or 1 for all i, and



trace(H) = 2/1, =k.

Therefore & eigen values of H are must be 1 and the remaining (n-k) are zero, 0.
The diagonal elements (J-H) will be zero when the diagonal elements at the same position

will be 1. Therefore, k eigen values of (/-H) equal to 0 and (r-k) eigen values equal to 1.

2.4.2 Group Deletion (Deletion of Multiple Rows)

Group deletion means deletion of multiple rows from the whole data set matrix. When a
group of observations is deleted at a time we see different types of effects are on every

type of analysis and estimations as follows.

Property 2.4.6 (Chattrejee and Hadi, 1988)

Suppose that X is nx k of rank & and that there are m < & diagonal elements of H equal to
1. Let I= {i thy, =1, i= 1,2,...,n} be the set of their indices. Then, for anyJ/ 2/,
rank(X ;) < k —m , with equality if J=I.

Proof:
Without loss of generality, we arrange the rows of X such that the m rows indexed by /

are the last m rows of X. Thus X can be written as

(o1 Yk
X !
X = (X(,?J :
I/ ek

Let H, denote the principal minor of H corresponding to X I, Sinceh, =1,iel,
then H, =1, where I is the identity matrix of dimension mxm. By property 2.3.6 (a)

(if h, =1 or0, then h,=0), Hcanbe expressed as

H= X(l)(XTX)_IX(TI') 0 ,
0 I

from which we see that (X (,)(XTX )_I X (1)) is idempotent with rank (k —m).
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Hence (k—m)= rank{X(,)(X"'X)_' X(",')}= rank{X(,)}
It follows that, forany J o 7,
rank(X(J))s rank(X(,)): k—m.
Property 2.4.7
Let H, be an mxm minor of H given by the intersection of the rows and columns of H
indexed by L If A, <4, <---< 4, are the eigenvalues of H, , then
(a) The eigenvalues of H, and (/ - H ;) are between 0 and 1 inclusive; that is,
0<A, <1,j=12,---,m.
(o) (I-H,) is positive definite (p.d) if A, <1; otherwise (/—H,) is positive
semidefinite (p.s.d).
Proof:
Let H,, bean mxm minor of H. Without loss of generality, let these be the last m rows

and columns of H. Partition H as

Since f1,, is symmetric, it can be written as
H,=VAVT, (2.30)
where A is a diagonal matrix with the eigenvalues of /,, in the diagonal and V' is a

matrix containing the corresponding normalized eigenvectors as columns. Now since

H=HH,

Hll le Hn le Hll le - -
H= . = - ” = "
HIIZ sz Hll2 sz Hll?. sz - HII?.HI.’! +H22H22

then H, = H.H,+H,H,. Since H,H,20, then (a matrix H >0we mean

VIHV 20V V)
Hyp2HypHy. 2.3
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Substituting (2.30) into (2.31) gives

VAV 2V AV VAV =V AV,
or A=A,
or (A-A?)>0.
Since A is diagonal, hence A,'s are diagonal elements of A, and

0<4 <1. (2.32)

Part (b) If 4, <4, <---< 4, are the eigenvalues of H,,, then (1 —Aj), Jj=12,---,m are
the eigenvalues of (/- H,,). Now, if4, =1, then(1-4,)=0, and hence (/- H,,) is
positive semidefinite. But if 4, <1, then(1-2,)>0, i=12,---,m, and hence (I-H,,)
is positive definite.
Theorem 2.4.1 Frisch-Waugh-Lovell (FWL)
Consider the partitioned regression model for K, + K, regressors estimated in matrix
form:

Y=[X :X,]8+¢
then

ﬁl = [(Mle)T(M:Xz)F(MIXz)TM1Y
M, matrix makes residuals for regression for the X, variables; M,Y is the vector of
residuals from regressing Y on X, variables. M X, is the matrix made up of the column-
by-column. residuals of regressing each variable (column) inX, on all the variables in
X,.
Proof:
We have, (XTX)ﬁ =Xy

x| | XY
X, X )8+ X, )8, ] XY
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Hence,
(07 x,)B, +(x,"x,)8, = x,"y
(" x,)B = x"v=(x"x,)3,
B =l x ] xy-(e x ) (x x, )5,

- x ) X - x,8,) (2.33)

and
(x,"x )3, + (%, %, )8, = x,"¥ . 2.34)
Putting the value of £, from (2.33) in (2.34) we get
(0, x Jx x T X (v - x,8,)+ (6, x, )3, = X,y
= 10,7 e xS Ty = (0 x N ) x0T X B + (0T X B, = x,TY
= (x,7x, )3, - (x,"x XX XV xxB =x, - x x x ) Y
=, |- x, (e Y s, = x0T - x e x ) x
= X, M X, B, =X, MY, let|l - XI(X, X)X =M,
By =l M, X My
=x, w7 (o G ey
=X,"'M MY =(MX,)' MY
= (%, ) a3, T (0, x, ),y
=) ) (Y My
M, is both idempotent and symmetric , we can then rewrite as,

Xz‘ leXz

T -1 _—
B?_:[Xz' Xz) X,y . where,
y =MY
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Property 2.4.8
If X 1s partitioned as X =(X,:X,) andX, and X, are two sets of independent
explanatory variables. Then the prediction matrix H can be represented as,
H=H +H,
=X, (X X)X+ X, X)X,
Proof:
H=x(x"x]"x"

I, x] N KX
) XZIXI X2IX2 X2I

We have two sets of independent variables, that are orthogonal to each other, and then the

sums of cross products of the variables in X, with X,are zero by definition. Thus

(X7 X)metrix formed out of X, and X, is block diagonal. Hence

r r
H=[X X, XXy ? Xl.,,
10 X, XX,
T -1 r
“lx, x,]¢ X ,.0 1 X',.
’ 0 X, X" X,

b minr

2
x0T x T x0T x, ) x
=H +H,.

2.5 Group Deletion Algebra

Property 2.5.1
If more than one observation (a group contains d observations) are deleted then the idea

of group deletion (GD) has been introduced.

Dy A =g-(xx) X5, -U,)'E,
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ii) The GD residual, £"* is defined as,

560 Ly _ B
g =grx(X"x) X001, -U,) ',
iii) The sum of squared differences of =) for £ is

(E(—D) - E)T (g(—D) - E) = E!)T (11) -U, )_l u, (11) -U, )_l £

iv) £-)an be partitioned as,

~ (-0} ~ .
£-0) = I:ER } _ |:ER + V(]n _Uu) lgl):l

£ o (ID_UD)-IED

D

Proof:
Let us denote a set of cases ‘remaining’ in the analysis by R and a set of cases ‘deleted’

by D. Let us also suppose that R contains (n-d) cases after d< (u-p) cases in D are
deleted. Without loss of generality, assume that these observations are the last d rows of

X, Y and ¢ so that they can be partitioned as
r

Y= Xy (n-dWp Y= Yy (n-d i e Er (n-da
RE Yy Ep  axi

X, (xTx) X! XR(X"'X)"X})}:[UR V}

HZ_XD(XTX)"X,"; x,(x"xy' x5 VU,

The weight or prediction matrix H =X (X X )_l X" can be partitioned as above,
where Uy =X (x"x)" X} and U, =X,(x"x)" x}, are
(n-d)x(n—d) and dxd symmetric matrices, and ¥V =X, (X"'X)—' X)) is an

(n~d)xd matrix.
(1) ,B(HD) = (X}IQXR )_l XITE‘YR

=" x - x7X,) X3,
- [(XTX)" +(x7x) X% (1,) —X,)(X”'X)"X,";T' X, (xx) }(X"'Y—X])'YD)
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(" x)' xTy+ (X x) x] (1,) X,)(X"'X)“X;’)')"X,,(X"'X)"'X"'Y
e x Y any, - (0 x ) x(r, - x, (e [, () g,

BT x Y X0, -U,) X B-(xTx ) X1y, - (XX ) X5, -UL)'ULY,
A x V' xi(, -u,) X, p-(xTx ) x2]1, + @, ~u,Y'u,
B+(XrX) ( n- ) :)B_(X'I‘X)vl X;l).(]u ‘Uu)_IY/)
,B (X X) ( )) [Y —X,),B]

=F-(x"x)' X1, -U,) ",

(ii) The GD residual vector, £’ can be expressed in terms of the LS residual vector € .
5(-1)) =Y —Xﬁ(_l))

—yr-xlg-(x) x5, -U, )5,
~Y-XB+x(x"x)V' Xx5(1,-U,) "8,
=5+X(X X) XD(II) ~U, Iéu-
(i) € -2)=x(x"x)' X}, U, )&,
hence the sum of squared differences of £ from £ s
AP —g @ —gy =8l (1, -u, ) X, (x X X x(x X) X1, -U,Y'E,
= 15( U/)) Xu(X X)IXIS Iy = 1) 51)
ELI,=U, ) U, -U,) &,

(iv) o) _ [szq {Y,e - Yi;} _ { Y, - Yﬁ‘(’)}
gy - -D
& Y=Yy Yy —XpPB

and

I

Ei(e P) = Y, —X/eB (-2)
=Y, - X, (,6 X x) x5, -uU,)’ 5,))
=Y, - X B+ X (X" x) X (1, -U,) &,
=g, +V( b U,)) ! Ep

51() ?) YI) _XDB(_D)
=YD _XDLE—(XTX)_IXIII)‘(ID _U.r))_lgnJ
=Y, —"XD'B'*'XD(XTX)_IX]).([D —UD)_IE

D
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= gl,) + UI)(II) _UI.))"EI)
= []I) + UD(]I) _Ul))—[JED
=(11) _Uz))_lél)-

Property 2.5.2 (Imon, 1996)

() Rank(U',) = p (ii) Rank(U,,)=min(d, p)
(iii) Trace(U,)=>"h, (iv) Trace(U,)=> A,

ieR iel
Proof:

We observe from the consideration of U, and U, matrices that they are symmetric. But
they are not idempotent, though they are sub matrices of the idempotent matrix H. As we
know, X isan nx p matrix of rank p, X, is an{n—d)x p matrix of rank p, and X" X
isa px p nonsingular matrix.
U, = X,\,(XTX)_1 XFisan (n—d)x(n—d) matrix of rank p ;
ie., Rank(UR )= p, assuming p < n—d.
On the other hand, X, is a dxp matrix of rank = min (d, p), and hence
U,=X, ()r\"[‘)()_I X is a d x d matrix having rank = min (d, p);
i.e, Rank(U,)=min(d, p).
From the partitioned form of H we get,
Trace(H) =Trace[lU, +U ]
=Trace(U,)+Trace(U ),
where Trace(U,) = Zh,, and, Trace(U ) = Zh,

el iel)

Idempotency of the Prediction Matrix

Here we see the idempotency on the partitioned matrices.

Property 2.5.3 (Imon, 1996)
WU, +VV" =U, (i) UU, +7V" =U,
(i) UV + VU, =V (V) VU, +U V" =y
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Proof:
Since H is idempotent, H=H*=H-H

(U V_(Us VYU ¥
- - VT Ul) B VT UD VT Ul)

UU,+vv' UV +ru,
' viu,+U ¥ Vv +U,U, )

That comes to the results as,
vUu,+vw'=u,, UU,+V'V=U,
U,y +vu, =V, ViU, +U, vt =vT.
Property 2.5.4 (Imon, 1996)
If 1 is a unit vector of order n and 0 is a same order null vector, then
Q) Upl +¥1, =1, (i) V"1, +U,l, =1,

(iii) UpE, +VE, =0,(iv) V', +U €, =0,

Proof:
By partitioning the relationships Hl =1land He =0,
we obtain *
Hl=1
_ Up V1 _ Uply +V1, _ Ly
v Up Np VTIR +U,l, Ly
Uply, +V1, =1,
hence , .
Volg +U1)1n =1,
Now

He =0

ie., _[UR 14 J(ERJ_( U.E, +VE, ]_[ORJ
v’ Up NEs VTER +UpE), 0,

U/agle + Vgl) = OR

hence - i .
Vie,+U,e, =0,
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Variance-Covariance Pattern of Group-Deleted (GD) Residuals
Property 2.5.5 (Imon, 1996)

It is possible to express the different components of GD residual vector £")in terms of

the vectors, £, and¢,,.
Proof: As we know,
£y =Y, = X,p
=g, - X, (X" X' (X6, + X]e,) (2.35)
=(1,-Uy)e, V"¢,
and substituting this result in property 2.5.1 (iv) (5 = (I, = U, )&, ) we obtain
NP =g, ~(1,-U,)'V'e,, (2.36)
which alsc implies
EfE™)=0,. (2.37)
Using the result of Henderson and Searle (1981) we also observed that
I,+(U,-U,)'v,=0,-U,)" (2.38)
Hence using property 2.5.3 (U, U, +¥V'V =U,,)) and equation 2.38
I,+(,-U)"'U,=(,-U,)" we obtain
Var(é,()'”)): E(§,()“”)§,()"))T )
=a?|1, + (1, - U, VTV (1, -U, )|

:O_zl[l) +(11 —Uu)-lUuJ

=c(I,-U,)" (2.39)
again g, =Y, - X0
=(I,~U,)e, - Ve, (2.40)
using the results (2.35) and (2.40) in property 2.5.1 (iv), we obtain
' 507 =1, U, -V, -U,) Y, (2.41)

41



which also implies E(g o )) 0,. (2.42)
It is obvious from standard least squares theory that l] =Up— v({li,-U, )ﬂl 4 TJ must be a
symmetric idempotent matrix, which implies
Var(e\) = E(E\E07T)
=01, -U, -V(1,-U,)" V"] (2.43)
Using property 2.5.3 of U, and U,, matrices we also observe
Cov(a,g " gl ”’) E(g,(( PIg o )

=0 lV(I.r) )) I _V(‘[D _Uu)—'J

=0,.
Property 2.5.6
H(“D) — [HI(".D)} - { UR + V([I) - Ul) )_1 VT }
H’()—D) Up (]D + (11) -U, )—; U, )
Proof:

B = x, (XTI x, ) X7
, =x, (X" x-xlx,] X
=X, [(X"'X)" rxrx ) x! (1 =X, (XX X )" X, (x"x)" ]X,”;
=X, () xE - x (X X)X, U, X (T X X
=U,+V(1,-U,)'v",
and HEY = x, (xtx, ] X7
=X, (X" x-xtx, V' X7
=X, [(X"'X) X x5, -,y X, (x x ) jx,’;
=U,+U,(I,-U,)"'U,

'—UI)(]I)+( 1), - I)) UD)
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Property 2.5.7

R 2 p,

Proof:

We have, W = (X0 x, ) x,
=x" (X" x-xTx,) %,
sl e, -0, ()
=x (X" X 5 41 (X XV X0 (1, -0, X, (0 X ) %,
=, +x (X XV X5, -0, X, (X x ),

Hence RSP > b

2.6 Deletion Diagnostics Algebra in Existing Methods

This section provides some basic relationships among the deletion diagnostic measures.

Property 2.6.1
: elzhii
’ IR
(i) DFFITS, =, (I——h_] (2.45)
Proof:
(1) We have
e R )
- Lp-py xrxlp-5)
ps
_ LB O (X
T pst| 1-h, 1—h, ’



putting the value of (ﬁ ~ g ), property 2.4.2

_ hifgiz
pst(1-h)"’

. R oy . ~32
since £,x, (X"X) x,& =E'h;

— hif 5;'2 @2 _ Ei2
p(l_hi!’)sz(l_hﬁ) i 52(1—/’1,',)
H p(l'—h”) .
(ii) We Know
_ 5=
DFFITS, =% Y i=12..n
S(Zf)hﬁ
T -1
and we have BB = (X 1X)h X,&;

Multiplying both sides by x/ produces
h.E,

, i = it
Yi—¥ _—l—hﬁ

Dividing both sides by .,/ s(z,.)h,.,. will produce DFFITS, :

.-(_j

- b
DFFITS, =22 = h"'g'{ 1 }

1/5(‘7;)hf, 1-A, s(zl)hii

1,.5‘(2,-)(1—/’1”) l—hn'

. hii yz
=¥ .
- hii

where r is the R-Student residual.
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2.7 Sources and Nature of Data

We use two types of data in our dissertation; one is secondary data and the other is
simulated data. Secondary data are collected from different referred books and journals
that are extensively used in diagnostic purpose and number of statisticians use them to
evaluate the performance and effectiveness of their own measures. We also use simulated
data for the purpose of simulation of the proposed measures. We generate and use
simulated data to demonstrate the performance of our measures for the case of high-

dimensional large data set. All the secondary data sets are given in appendix A.
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Chapter 3

“Finding the question is ofien more important than
finding the answer.”

John W. Tukey

Robust Regression and

Regression Diagnostics: Deletion Approach

This chapter provides a short literature review with the art of the state of robust
regression and regression diagnostics. This chapter is divided into two sections; in the
first section we make a short discussion about most popular robust regression methods
and a very short introduction to the robustness properties. Next section contains different

regression diagnostic methods that are mainly based on the deletion approach.

3.1 Robust Regression

This section gives the concepts of robust regression, measures of robustness and some

popular robust regression methods.

3.1.1 Main Concepts in Robust Regression

Robust regression techniques that are complement to the classical least squares (LS) in
the sense that they give similar results to the LS regression when the data are linear with
normally distributed errors, but differ significantly when the errors are non normal or the
data set contains significant outliers. Robust regression tries to fit a regression to majority
of the data and then to discover the outliers as those points which posses’ large residuals

from the robust output. These have the common strategy; all give less weight to
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observations that would otherwise influence the regression line. Robust regressions are

considered as good or better depend upon their robustness properties.

3.1.2 Measures of Robustness

Three most common measures of assessing the robustness of an estimator T (F),) are the
breakdown point, influence function and continuity of the descriptive measure T which
induces it. These notions are often described as quantitative, infinitesimal and qualitative
robustness. Very short discussions of the three robustness properties: breakdown point,
influence function and asymptotic normality are as follows.

The breakdown point characterizes the maximal deviation (in the sense of metric chosen)
from the ideal model Fj that provides the boundness of the estimator bias.

Breakdown point, as applied to the Huber supermodel or gross-error model

£l For=(l-g Yy +eH

5'(T,F)=sup{s: sup |T(F)~T(F0]<oc}. (3.1.1)

This notion defines the largest fraction of gross errors that still keeps the bias bounded. In
regression T is (p+2) dimensional functional defined on (p+1) dimensional sample space.
Two most important sample based classification of breakdown point are, additional
breakdown point (Hampel ef al. 1986) and replacement breakdown point

Let, x" ={x,,%,,...,x, Jof size n in R” = the finite sample addition breakdown point of an

estimator is defined as

:sup”T(x" v y”)— T(x”]

ABP(T, X" )= min{ =oc}, (3.1.2)

m+n

where y"denotes a data set of size m with arbitrary values, and x" U y” denotes

m

contaminated sample by adjoining y” tox".The finite sample replacement breakdown

point of an estimates T at x" is defined as

m

RBP (T, X" )= min {%:sgnp 7Gxz )-7(x) =oc} (3.13)

“m
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where x” denotes one corrupted sample from x” by replacing m points of with

x"arbitrary values.

Influence Function (IF) assess the robustness concept of an estimator T (F,), it (IF) is

the cornerstone of the infinitesimal approach, which was invented by Hampel (1968). It

gives us a precise idea of how the estimator responds to a small amount of contaminaticn

(infinitesimal perturbation) at any point. The influence function at z can be thought of as

an approximation to the relative change in an estimate caused by the addition of a small

proportion of spurious observations at z.

The influence function (IF) of T at F is given by

T((1-0)F +tA.)-T(F)
!

IF(z;T,F)=lim,, (3.1.4)

in those Z € ¥ where this limit exists. In regression,Z = (¥ : X); X is a p-dimensional
vector of regressors and Y is a one-dimensional vector of response variable. Hampel ef al.
(1982) defines two versions of finite sample influence functions, one by addition and the
other by replacement of observations.

Asymptotic Normality (univariate), A sequence of random variables {X ; } converges in
distribution to N (,u,crz), o >0, if equivalently, the sequence {(x” —/1)/ 0} converges in

distribution to N(0,1). More generally, a sequence of random variables {X”} is

asymptotically normal with “mean” p, and “variance “o’ if o, >0 for all n

sufficiently large and

X” - l['lll

! o,

45 N(0,1). (3.1.5)

We write “ X, ”is an AN (,u,, o ), where { .} and {cr” }are sequence of constants.

Asymptotic Normality (multivariate), a sequence of random vectors {X,} is
asymptotically (multivariate) normal with “mean vector” , and “covariance matrix” ¥,

if 2n has nonzero diagonal elements for all » sufficiently large, and for every vector A

such that AX, A" >0 for all n sufficiently large, the sequence AX;!
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is AN(Aul , A% A7), We write “X; is AN (pa, 2n).” Here {u,} is a sequence of vector

constants and {),} a sequence of covariance matrix constants.

3.1.3 Different Robust Regression

Many types of robust regression methods have been developed in literature, some of the
most popular robust regression methods are:

L, Regression

A first step toward a more robust regression estimator came from Edgeworth (1887) after
the little improvement of the proposal of Boscovich. He argued that outliers have a very

large influence on LS because the residuals r are squared. Therefore, he proposed the

least absolute value regression estimator, which is defined as

min%mizei'r,l (3.1.6)

! i=
L; regression does not protect against outlying x, but protects against y and is quite
preferable over LS in this respect. The breakdown point of L, is 0%.

Robust M-Estimator

Huber (1973) introduced M estimator in regression, that he had developed in 1964 to
estimate location parameter robustly. The name “M-estimator” (Huber, 1964) comes
from “generalized maximum likelihood”. Robust M-estimators attempt to limit the
influence of outliers and based on the idea of replacing the squared residuals r; > used in

LS estimation with less rapidly increasing loss-function of the data value and parameter

estimate, yielding
‘ minimize 3, p(r;), (3.1.7)
i=}

where p is a symmetric, positive-definite function generally with a unique minimum at

zero. Differentiating this expression with respect to the regression coefficients 8 yields

é:,u(r,.)x,. -0 (3.1.8)
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where i, the derivative of p, and x; is the row vector of explanatory variables of the i-th

X, = (X500, X,,)
0 = (0,...,0).

casc :

Equation (3.1.8) is a system of linear equation. One uses iteration schemes based on
reweighted LS (Holland and Welsch 1977) or the so-called H-algorithm (Huber and
Dutter 1974, Dutter 1977, Marazzi 1980). Unlike equation 3.1.6, however the solution of
3.1.8 is not equivariant with respect to a magnification of the y-axis. Therefore, one has

to standardize the residuals by means of some estimate of o, yielding
n r
dwl(L)x, =0, (3.1.9)
i=l g

where these must be estimated simultaneously. Motivated by minimax asymptotic
variance arguments, Huber proposed to use the function

w(t) = min(c, max(f,—c)). (3.1.10)
M-estimators are statistically more efficient (at a model with Gaussian errors) than L, -
regression while at the same time they are still robust with respect to outlying y,. It has
finite breakdown point 1/# due to outlying X, .

Generalized M-estimators
In order to avoid the vulnerability to leverage points generalized M-estimators (GM-
estimators) were introduced, with the basic purpose of bounding the influence of outlying

X; by means of some weight function w. Mallows (1975) suggested to replace (3.1.8) by
2w(x w(r/d)x, =0, (3.1.11)
i=l

GM estimator has breakdown point //(p+1). These estimators were constructed in the
hope of bounding the influence of a single outlying observation. The effect of which can
be measured by means of the so-called influence function (Hampel, 1974). Therefore, the

corresponding GM-estimators are generally called bounded-influence estimators.
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Redescending M-estimators

If the derivative of score function p of an M-estimator’s is redescending iy, i.e. satisfies,
lim,_,, p'(z)=0, (3.1.12)

then the M-estimator is called a redescending M-estimator. Redescending M-estimators
for regression parameters have special robustness properties. Due to Donoho and Huber
(1983) breakdown point of regression estimators allow outliers in the observations as
well as the regressors. Maronna, Bustos and Yohai (1979) found under this definition, all
M-estimators with non-decreasing i as the L, estimator behaves as bad as the least
squares estimator. Later, He ef al. (1990) and Ellis and Morgenthaler (1992) found that
the situation changes completely if outliers appear only in the observations and not in the
regressors, a situation which in particular appears in designed experiments where the

regressors given by the experimenter.

R-estimators of Regression

R-estimators are based on the rank of the residuals, r;. If R is the rank ofr, =y, -y,

then the ijective isto

min imizei a,(R ), (3.1.13)

=l

7
where the score’s functiona, (/) is monotone and satisfies > a, (i)=0.

i=l
S-estimators
Rousseeuw and Yohai (1984) introduced S-estimators; the idea is to define T, as the set

of parameters # that produces residuals with the smallest dispersion. i.e.,
T, =arg minimize ;$(r (B),....r, (5)) - (3.1.14)

It is a certain type of robust M-estimates, S,(8), of the residuals (7 (B),...,r,(8))is

defined as the solution to the equation

L& B
LS o8 .
Nl G.1.15)
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k is often put equal to E,(p), where ¢ is the standard normal. s, given in (3.1.15) is an

M-estimator of scale. The function p must satisfy the following conditions:

(S1) pis symmetric and continuously differentiable, and p (0)=0.

(82) There exists ¢ > Osuch that p is strictly increasing on [0, c] and constant on
[¢,%0).
[If there happens to be more than one solution to (3.1.15), then put

$(# 57, ) equal to the supremum of the set of solutions; this means s(#,,....7,) =
sup{s;(l/ n)Zp(r,./s)=k}.If there exists no solution to (3.1.15), then put
s(#y,...,7,)=0].

S-estimates for regression are consistent for the true regression parameter £ and

asymptotically normal when the distribution of the errors is symmetric around zero. But
these estimates can not achieve high efficiency and high breakdown point at the same
time.

MM-Estimators

Yohai (1985) introduced a new class of estimators named as MM-estimators toward
higher efficiency for high-breakdown estimators. It is defined in three stages. In the first
stage, a high-breakdown estimate £’ is calculated, such as LMS or LTS (see below). For
this purpose, the robust estimator does not need to be efficient. Then, an M-estimate of

scale s, with 50% breakdown is computed on the residuals 7 (£") from the robust fit.

Finally, the MM estimator ,@ is defined as any solution of

iw(r,.(ﬁ)/s,,)x, =0, (3.1.16)
which satisfies S(BHsS(B), (3.1.17)
where S(p) = ip(r,(,b’)/s,,). (3.1.18)
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The function p must be like those used in the construction of S-estimators, it must
satisfy conditions S7 and S2 of S-estimators. This implies that = p' has to be properly
redescending. Yohai (1985) showed that MM-estimators inherit 50% breakdown point of

the first stage and that they also possess the exact fit property, he also proved that MM-

estimators are highly efficient when the errors are normally distributed.

Least Median of Squares (LMS) Regression
It was proposed by Hampel (1975) and further developed by Rousseeuw (1984). Instead
of minimizing the sum of squared residuals, Rousseeuw proposed minimizing their

median

mini}ﬁnize med r,® . (3.1.19)

This estimator effectively trims almost the half (#2) observations having the largest
residuals, and uses the maximal residual value in the remaining set as the criterion to be
minimized. The basic re-sampling algorithm for approximating the LMS, called
PROGRESS, was proposed by Rousseeuw and Leroy in 1987 and later developed by
Rousseeuw and Hubert in 1997. This algorithm considers a trial subset of p (number of
explanatory variables) observations and calculated the linear fit passing through them.
This procedure is repeated many times, and the fit with the lowest median of squared
residuals is retained, for small data it is possible to consider all p-subsets whereas for
large data sets many p-subsets are drawn at random. The currently fastest exact algorithm
by Agullo (1996) is based on a branch and bound procedure that selects the optimal /-
subset without requiring the inspection of all 4-subsets. This algorithm is feasible for » up
to about 100 and p up to about 5. LMS has breakdown point of ([n/2]- p+2)/n) for p-
dimensional data set i.e., it attains maximum possible breakdown point /2 at usual
models but unfortunately it possesses poor asymptotic efficiency. LMS has excellent
global robustness. LMS methed has a lack of efficiency because of its convergence n'°.

Least Trimmed Squares (LTS) Regression

It was introduced by Rousseeuw (1984) and is given by
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h

mgn imz’zez r,..',,2 (3.1.20)

=1

where 7. * <---<r ? are the ordered squared residuals and /4 is to be chosen between

Z and n. The LTS estimators search for the optimal subset of size # which has the least

squares fit of the smallest sum of squares residuals. Hence, the LTS estimate of / is then

the least square estimate of that subset of size 4. For the data comes from continuous
distribution breakdown points of LTS equals min(n—A+1,A- p+1)/n, we have
h=[n/2]+[(p +1)/2]yields the maximum breakdown point, is asymptotically 50%,
whereas A=n gives the ordinary least squares with breakdown point =//n. LTS has the
properties such as affine equivariance and asymptotic normality. Its influence function is
bounded for both (directions: response and explanatory) the vertical outliers and bad
leverage points. Moreover, LTS regression has several advantages over LMS. Its
objective function is smoother, making LTS less ‘jumpy’ (i.e., sensitive to local effects)
than LMS. LTS has better statistical efficiency than LMS because of its asymptotically
normal property (Hossjer, 1994), whereas LMS has a lower convergence rate
(Rousseeuw, 1984). This also makes the LTS more suitable than the LMS as a starting
point for two-step estimators such as the MM-estimators (Yohai, 1987) and generalized
M-estimators (Simpson, Ruppert and Carrol, 1992; Cookley and Hettmansperger, 1993).
It also fails to fit a correct mode! when large number of clustered outliers exits and with
more than 50% outliers in the data. The main drawback of the LTS method is that the

objective function requires sorting of the squired residuals, which takesO(nlogrz)

operations compared with only O(n) operations for the median. The performance of this
method has recently been improved by the FAST-LTS (Rousseeuw and van Driessen,
1999) and Fast and robust bootstrap for LTS (Willems and Aelst, 2004).

Reweighted Least Squares (RLS)

The basic principle of LMS and LTS is to fit the majority of the data, after which outliers

may be identified as those points that lie far away from the robust fit; that is, the cases

:
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with large positive or large negative residuals. Rousseeuw and Leroy (1987) bring
another idea to improve crude LMS and LTS solutions, apply a weighted least squares
analysis based on the identification of outliers and use the following weights:

w=1 if |r,./cr|52.5 (3.1.21)
0 i |h/e]>25

This means simply that the case i will be retained in the weighted LS if it’s LMS residual
is small to moderate, but disregarded if it is an outlier. Then they defined weighted least

squares by
minimize Y w,r.. (3.1.22)
i=l

Therefore, the RLS can be seen as ordinary LS on a ‘reduced’ data set, consisting of only
those observations that received a nonzero weight. The resulting estimator still possesses
high breakdown point, but is more efficient in a statistical sense (under Gaussian

assumptions).

3.1.4 Reasons for Reluctance to Use Robust Regression

In spite of having some merits of robust regression it has some limitations/reluctances to _
use as follows:
1. The belief that large sample sizes make robust techniques unnecessary.
2. The belief that outliers can be detected simply by eye or by looking by OLS
estimates, or by sensitivity analysis, obviating the need for a robust analysis.
3. Existence of several ‘robust regression’ techniques with the guidance available as
to which is appropriate.
4, Unfamiliarity with interpretation of results from a robust analysis.

5. Unawareness of gains available from robust analysis in real data sets.
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3.2 Regression Diagnostics: Deletion Approach

This section gives the various ideas relevant to the regression diagnostics depending upon
the deletion approach. Many types of diagnostic measures have been developed bearing
different thinking by this time. Measures show that how statisticians try to develop and
modify the existing methods time to time. It is evident that none of the method is always
gained the success, This is the reason for identifying unusual observations and has seen a

grate deal of attention in almost every field of data analysis.

3.2.1 Deletion Approach and Its Main Concepts

The implicit assumption for OLS (Chatterjee and Hadi, 1988) states, ‘all the observations
are equally reliable and have an equal role for determining the results’. But the reality is
different, it is not always possible that all the observation have same role. Belsley et al.
(1980) pointed out, “ the ordinary least squares method may be so ineffective for the
estimation of true innovations that any simple type of modification defined for the entire
set may not be fruitful for all cases”. Deletion approach seems that different observation
has different weights on the analysis. There exist a vast number of methods for detecting
unusual observations and measuring their effects on various aspects of the analysis. Some
are individual and some are combination of interrelated methods that are based on one
function of the observations or the structure of the regression model or the function of
estimates.
Since the presence of unusual observations affects the estimation, the idea of deleting
them (unusual cases) from the analysis and re-estimating the model with the rest has been
generally proposed. Case-deletion requires five questions:

*  Which should be deleted?

»  What should be the criteria for deletion?

= How many cases (observations) should be deleted?

* What should be the role of deleted observations in subsequent analysis?



» How much information may be lost by deletion required number of observation
and how much gain can be achieved?

Atkinson (1986) pointed out, “There is no universal agreement among statisticians about

all these questions”. That is why a number of methods have been suggested and have lot

of arguments in favor of the respective methods.

3.2.2 Group Deletion Diagnostic Method

The methods of group (multiple) deletion are as well known as single deletion but the
basic difference is, in case of group deletion a number of observations (group) are deleted
at a time. Difficulty is identifying the cases to be deleted. Sometimes it is impossible for
the large number of observations. For example if consideration is given to deletion of 5
out of 30 :ases, there are 1, 42,506 possibilities. This is running with time and space

contains. Atkinson (1986) mentioned, in some examples, the sequential employment of

single deletion methods leads to the deletion of important sets of observations. He also
mentioned that, single deletion diagnostics are affected by masking and swamping
(masking occurs when an outlying subset goes undetected because of the presence of
another, usually adjacent and swamping occurs, when good observations are incorrectly
identified as outliers because of the presence of another, usually remote, subset of
observations; Hadi and Simonoff, 1993) phenomena, single deletion diagnostic methods
fail to reveal outliers and influential observations. In other words, the importance of the

individual observation is not evident unless several observations are not deleted at once.

3.2.3 Deletion of Unusual Observation

There exits a large number of interrelated methods for deleting unusual observations and
measuring their effects on various aspects of the analysis. These methods can be divided
into seven groups based on the specific aspect of the analysis that one is interested in.
Chatterjee and Hadi in 1988 mentioned that, measures may be based on any one of the

following quantities:
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1. Residuals,
2. Remoteness of points in the X-Y space,
3. Influential curve (center of confidence ellipsoids),
4. Volume of confidence ellipsoids,
5. Likelihood function,
6. Subset of regression coefficients, and
7. Eigen-structure of X.
We have a brief discussion on some of the above quantities that are most popular and

relevant to our study.

3.2.4 Measures Based On Residuals

“Residuals play an important role in regression diagnostics; no analysis is complete
without a thorough examination of the residuals”, Chatterjee and Hadi (1988). To assess
the appropriateness of the model

Y=Xf+¢, (3.2.1)
it is necessary to ensure whether the assumptions about the errors are reasonable. The
problem here is that the & can neither be observed nor they can be estimated directly.
This must be done indirectly using residuals. For the linear least squares, the vector of

residual # can be written as

E=r=Y-Y=(U-H)e (3.2.2)
where H=xX"xX)"x"
or in scalar form,
¢ Ej = r; = yi - yi
=g - he,, i=12..n (3.2.3)

where /7; is the ij-th element of H. The identity (3.2.2) indicates clearly that the

relationship between r and ¢ depends only on H. If h,’s are sufficiently small,  will serve
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as a reasonable substitute of &. Furthermore, if the elements of ¢ are independent and have
the same variance, identity (3.2.2) indicates that the ordinary residuals are not
independent (unless H is diagonal) and they do not have the same variance (unless the
diagonal elements of H are equal), because

Var(ry=o’(1-h,). (3.2.4)
The ordinary residuals are not appropriate for diagnostic purpose; it is preferable to use a

transformed version of the ordinary residuals. That is instead of ,one may use
ri
Slro)="=, (3.2.5)
O-I

where ¢; is the standard deviation of the i-th residual.
Some special types of scaled residuals are given below.

Normalized Residuals

The i-th normalized residual is obtained by replacing ¢;in (3.2.5) by vr'r as

r

a, = — i=12,..,n. (3.2.6)

Standardized Residuals

To overcome the problem of unequal variances, we standardize the i-th residual r by

dividing it by its standard deviation (square root of the mean square for error). Residuals

have zero mean and approximate average variance is estimated by

n s n )
;(rf_‘r) _;ri SS rl"r

= =—Ret = MS,., = (3.2.7)
n—p n—p n-p n—p
~ rl'r
ie. &= )
) n—p
Hence the i-th standardized residual is,

¥,

d =+
= (3.2.8)
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Studentized Residuals
Standardized residual is also referred to an internal scaling of the residual because 5lis

an internally generated estimate ofo’ obtained from the fitting of the model to all »

observations. The internally Studentized residuals are defined by

6, =————. i=1,2,..,n (3.2.9)

Another approach would be to use an estimate of o?, based on a data set with the i-th
observation deleted. This deleted scaled residual is referred as externally Studentized

residual and defined as

I p(=i) ()
. V.—-x f r .
; == = i=12,..,n, (3.2.10)
& JU-h) " 1-n,
. 1 '
where gt - ey TR
n_p_l;(yj , B

After some simplifications we get the relation between the Studentized residuals (external

e =e, f—”"p“—a (3.2.11)
n—p-1-e;

Under the usual assumptions Ellenberg (1976) showed that externally Studentized

and internal) as

residuals follow Student’s ¢, ,, distribution. Behnken and Draper (1972), Davies and
Hutton (1975), and Huber (1975) all of them recommended the external Studentized
residuals as more appropriate than the standardized (internal Studentized) residuals for
identifying outliers since the effect of i-th observation is more pronounced in the case of

the former.

PRESS Residuals
Predictive residual error sum of squares (PRESS) residuals proposed by Allen (1974) as a
criterion of model selection. The logic behind the PRESS residual is, if the i-th

observation y; is really unusual, the regression model based on all observations may be
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overly influenced by this observation. This could produce a fitted value y, that is very
similar to the observed value y,, and consequently, the ordinary residual 7, will be small.

If the i-th observation is deleted, then y; cannot be influenced by that observation, so the
resulting residual should be likely to indicate the presence of the outlier. After deleting
the i-th observation if we fit the regression model on the n-I observations, the
corresponding prediction error is

e =y 3, i=12,.,n (3.2.12)
Cook and Weisberg (1982) named PRESS residuals as predictive residuals and Atkinson
(1985) mentioned it as deletion residuals. It seems that the calculation of PRESS
residuals will require fitting different n regressions, but using the results from Miller

(1974), it is possible to calculate PRESS residuals from the results of a single least-

squares fit to all » observations. The i-th PRESS residual can be written as

P = i=12,...,n (3.2.13)

Generally, a large difference between the ordinary residual and the predicted residual will
indicate a point where the model fits the data well, but a model built without that point

predicts poorly. The variance of the i-th PRESS residual is

2
(e)

1-h,

n

Var(r'™) =

b

so that a standardized PRESS residual is
r 3 F,
Jar(r™y  Jor(-h)
If we use MSk.; to estimate o’ , then it would be the external Studentized residual.

Jackknife Residuals
Tukey (1958) proposed Jackknife method as an extension of the idea of Quenouille

(3.2.14)

(1949), which reduces bias in estimation, and provides approximate confidence intervals

in cases where ordinary distribution theory proves difficult. Let us suppose we have a
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sample Xx=(x;,...,.x,) and an estimator @ = f(x).The i-th jackknife sample consists the
data set with the i-th observation deleted , i.e. , the i-th jackknife sample is defined as
(-1

- r
X _(xl’”"xi—l7x1+l"“’xn)

Let us also define the i-th jackknife replication of @ by

g-n =f(x(‘”),
thus finally the jackknife estimator of € is defined as
g =nb-(n-1, (3.2.15)
Z" o
where 9() ==
"

In a regression problem, the jackknife technique was proposed to obtain less bias in the
estimation of the standard errors of regression coefficients, and in constructing precise

confidence intervals for them (Miller,1974; Hinkley 1977; Wu 1986).

There are at least two different ways one can define jackknife residuals. Let B be the

usual LS estimator of regression coefficients # and ﬁ(") be the corresponding estimates
with the i-th case deleted. Then the jackknife estimate of regression coefficients - is by

definition
B ~n[3———2ﬂ‘ ) (3.2.16)

Using these estimates of regression coefficients one can define the i-th jackknife residual

das
& =y =% By - i=1,2,....,n (3.2.17)

The other way to obtain jackknife residuals is to jackknife the set of LS residuals or some

other set of full-sample residuals. The i-th jackknife residual is then defined by

5 =né, ___Z A1) i=12,..,n (3.2.18)
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Sometimes PRESS residuals are misleadingly referred to as jackknife residuals in the
literature (Mosteller and Tukey, 1977).

Delete —d Jackknife Residuals

Wu (1986) proposed delete-d jackknife technique as a generalization of ordinary
jackknife where he left out o >1 observations at a time. Let 6" denote § applied to
the data set after the deletion of a group D of sized =1 . Then the delete-d jackknife

estimator of @ is
05y =n8 —(n-d)g, (3.2.19)
where

8y = e ,
n
4
and the sum is over all subset of R of size (n-d) chosen without replacement from the
data set. Like the ordinary jackknife there are two ways of calculating deleted-d jackknife
residuals. The standard practice is to use this method to estimate the regression
parameters and the residuals are estimated afterwards. The other way to calculating them
is to apply delete-d jackknife technique on LS residuals.

Let R be a subset of ‘remaining’ in the analysis after the ‘deletion’ of a group of 4
observations, indexed by D, from the data set. Without loss of generality, assume that the
deleted cases are last d rows of X, ¥, ande. Let 30" be the LS estimate of 4 based on
the {yi,x,.} in R, that is
B =(xtx, V' X7, (3.2.20)
where Y, =(yl,---,y,,_d)7. and X, = [x,.,,---,x,(,,_d) ]’
Wu (1986) defined a residual vector of order (n-d) computed on subset R by
Ea=Y,—X,B (3.2.21)

and the delete-d jackknife technique can be applied to them.
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It is, however, possible to obtain a full set of residuals by the use of deleted-d jackknife
methodology. Again there are at least two ways of computing a full set of delete-d

jackknife residuals. The first category of delete-d jackknife residuals can be defined by
By =Y = XBG2), (3.2.22)

~(- ~ n—d < 50
where ﬂ(flaz?) =nf— TZ B
R
The other type of delete-d jackknife residuals are

F=ng -2= d > es” i=12,..n (3.2.23)
n\ R
)

where £0P) =¥, — X, B, is the set of LS residuals in a subset indexed by R.

Bootstrap Residuals

Efron’s (1979) first article on bootstrap technique synthesized some of the earlier
resampling ideas and established a new framework for simulation based statistical
analysis. The idea of replacing complicated and often inaccurate approximations to
biases, variances, and other measures of uncertainty by computer simulations caught the
imagination of both theoretical researchers and users of statistical methods. Efron and
Tibshirani (1993), and Shao and Tu (1995) presented excellent reviews of all these
studies. There are two different ways in which one could generate a distribution of
bootstrap residuals. Firstly, one could estimate a set of residuals by the LS method and
then can generate bootstrap residuals by random sub sampling from that set. In other
words, a distribution of bootstrap residuals can be obtained by bootstrapping LS
residuals. The other approach is by bootstrapping cases to fit the regression model at first

and then use it to estimate residuals. There are again two different approaches of

bootstrapping a regression model. One is based on drawing an i.i.d. sample {a:} of size n

from the LS residuals {£, }.

The bootstrap observations are then defined by
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y' =x"[‘ﬁ+g:, i=12,.,n (3124)

by treating f as the true parameter and {£,}as the population of innovations.
Thus the Bootstrap Least Square (BLS) estimate of S for each bootstrap sample is

obtained by
g =(x"x)'xy (3.2.25)

where Y' = (y,',---,y,‘, )T .

The second bootstrap method is based on drawing n bootstrap samples of pairs
{(y,.',xi' )}from the n observed pairs {(y,, x, )}.

Then the BLS estimate of £ is computed as

n -1
g = [Zx;xf} Xyl (3.2.26)
=1

1=
Efron and Gong (1983) advocated use of the second bootstrap method for its lower
sensitivity to assumptions. Whatever the choice of 8°, the overall bootstrap estimate of

regression coefficients is then obtained by
A 1 N »
Broor = ﬁZﬂ, i=1,2..., N (3.2.27)
i=1

where N is the number of bootstrap replications.

One can now define a full set of bootstrap residuals as the differences between observed
and fitted responses when regression coefficients are estimated by ﬁ,,(,(,.,., computed by

either of these two approaches.

3.2.5 Measures Based on Remoteness of Points in X-Y space (Distance
Measures)

Chatterjee and Hadi (1988) pointed, “Examination of residuals alone is not sufficient for

detecting unusual observations, especially those corresponding to high-leverage points.

This can be seen from the property that,Os(h,.,+r,.2/ r"'r)sl, which implies that



observations with large 4;, tend to have small residual and therefore go undetected in the
usual plots of residuals™.

In this sub section we will discuss some related quantities for measuring the leverage of a
point.

Diagonal Elements of Hat Matrix, H

We know that the diagonal elements of the hat (prediction) matrix, &, = x; (X "X )-I X5
play an important role in determining the fitted values, the magnitude of the residuals,
and their variance-covariance structure. For these reasons, Hoaglin and Welsch in 1978
suggested the examination of both e, and 4,(e; for detecting outliers and A, for
detecting high-leverage points that are potentially influential), and added, “These two
aspects of the search for troublesome data points are complementary; neither is sufficient
by itself”. According to Hocking and Pendleton (1983), high-leverage points,...are those
for which the input vector x; is, in some sense, far from the rest of the data’. But the
question here is “how far is far?” some common suggested cut-off points for s, are as
follows:

(a) The reciprocal of A; can be thought of as the effective or equivalent number of
observations that determine ¥, (Huber, 1977 and 1981). Huber (1981) suggested that
points with

h, > 0.2 (3.2.28)

be classified as high-leverage points.

(b) Hoaglin and Welsch (1978) suggested that points with

2
h, =22 (3.2.29)
n

and Vellman and Welsch (1981) suggested that points with

3
ho>2P (3.2.30)

if
n

be classified as high-leverage points.
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(¢) If a regression model contains a constant term and the rows of X are i..d N, (1,2),

| 1
- n_pﬁlhﬁ_;'*F (3.2.31)
P 1-h, = Hpm-p-1)e .
which lead to nominating points with
" e (3.2.32)

" nF(p)+n(n—p—1)’

as high-leverage points, where /" is the /00(1-a) point of F,,, i) -
The suggested cut-off points for %, should not be used mechanically; they should serve

as rough yardsticks for general guidance and flagging of troublesome points. This is best

accomplished by graphical display of A, such as index plot, stem-leaf display, and/or box

plots.

Mahalanobis Distance

Distance measures are useful for identifying high-leverage points. The Mahalanobis
distance (1936) introduced by himself is the first and most well known distance measure

in multivariate analysis and is introduced as

MD, = (x;~ T(X)) CCO™ (x;~ TX)" (3.233)
where, T(X) and C(X) are the sample mean and covariance matrix and defined as
T(X) = le,. (3.2.34)
n e
and CX) = %Z(xi ~ T, - TEO). (3.2.35)
. n—145

This measure tells us how far x; is from the center of the cloud, taking into account the

shape of the cloud as well. Suppose that X contains a column of ones and 5( denote

centered X excluding the constant column. A statistic which measure how far x; is from

the center of the data set is commonly computed as(n~1)"' X[ (X"X)™ X,, where ¥, is

the i-th row of X . We are interested in measuring how far X; is from the rest of the other
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observations; hence it is natural to exclude x; when computing the mean and variance of

X. Therefore Mahalanobis distance can be written as

MD, =(n-2){X, —§(1) }T{i(T.) (I-(n- 1)_I1 17 ) 5Z(i) )}—l {Sz(i) _i(i)} (3.2.36)

where, )?(,.) is the average of X ,, and —)sz =(-D"X,1=-(n-1)"%,.

Finally we get the distance as

_n(n=2)h, —1/n
n-1 1-h,

MD,

i

i=12,..,n. (3.2.37)

Mahalanobis distance suffers from the masking effect, by which multiple outliers do not
necessarily have a large MD;. This can be realized from the equivalence relation:

2
_MD) 1

h .
n-1 n

(3.2.38)

Minimum Volume Ellipsoid
The minimum volume ellipsoid (MVE) estimator is defined as the pair (7, C), where T(X)
is a p-vector and C(X) is a positive semi-definite p Xp matrix such that the determinant of
C is minimized subject to

{i;, x-TDC'x-T)'<a’}>h, (3.2.39)
where # =[(n+ p+1)/2]. The number a’is a fixed constant, which can be chosen as-

;{;7_5 when we expect majority of the data to come from a normal distribution. For small

samples one also needs a factorc’ , which depends on » and p. The MVE has a

np>
breakdown point of nearly 50%.

Robust Distance

Mahalanobis distance is not robust, because 7(X) and C(X) are not robust. Therefore it
seems natural to replace 7(X) and C(X) by robust estimators. The first such estimator was
proposed by Stahel (1981) and Donoho (1982). Rousseceuw and van Zomeren (1990)

proposed robust distance RD; by inserting the MVE (minimum volume ellipsoid)
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(Rousseeuw, 1985) estimates for 7(X) and C(X) as an outliers and high-leverage points
diagnostic measure.

Minimum Covariance Determinant

The minimum covariance determinant (MCD) estimator is another method with high
break down point (Rousseeuw, 1985). It searches for a subset containing half of the data,
the covariance matrix of which has the smallest determinant. It has been proved by
Butler ef al., (1993) that MCD estimator is asymptotically normal but it needs somewhat
more computation time than MVE.

Weighted Squared Standardized Distance

Suppose that model (3.2.1) contains a constant term and define

¢, =B, ~ X, }i=120n  and j=12,..k (3.2.40)

where X i is the average of the j-th column of X the quantity c,, i=1,2,..,n, andj=1,2,...k

U‘ E
may be regarded as the effect of the j-th variable on the i-th predicted value y,. It is easy

to show that
_ k
y-Y=>¢,, (3.2.41)

where ¥ is the average of ¥. Daniel and Wood (1971) suggested Weighted Squared

Standardizes Distance, namely,

ko2
E _c,
J=] i

wSsD, = =420 i=1,2..n  (3.242)
Sy
n- (y o }7)2
where 5y = z’ = ,
n—1

to measure, the influence of the i-th observation on moving the prediction at the i-th point

fromY . Thus WSSD, is a measure of the sum of squared distances of x, from the
average of the j-th variable, X ; » weighted by the relative importance of the j-th variable

(the magnitude of the estimated regression coefficients). Therefore WSSD, will be large if
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the i-th observation is extreme in at least one variable whose estimated regression
coefficient is large in magnitude.

Diagonal Elements of Hz (Z, augmented matrix)

A diagonal element from prediction matrix ignores the information contained in Y. It can
be augmerited the matrix X by the vector Y, and obtain Z=(X: ¥). Now the diagonal

elements A,; of the corresponding prediction matrix A7 can be written as
h,=z (Z"Z) "'z, =h,+r}Ir'r (3.2.43)
and thus #&.; will be large whenever #4; is large, r,.z is large, or both. Hence #,; cannot

distinguish between the two distinct situations, a high-leverage point in the X space and
an outlier in the Z space.

Hadi’s Influence Measure (Potential)

Hadi (1992) mentioned in his paper that in the presence of a high-leverage point the
information matrix may breakdown and hence the observations may not have the
appropriate leverages. He introduced a single case deletion measure of leverage named

by potentiéls and defined as
Py =X/ (XX, (3.2.44)

where X " is the matrix with i-th observation deleted.
Generalized Potentials
Imon (1996) introduced generalized potentials by using group deletion for all the

observations in a data set as

p(—/))
it . R
P =T (3.2.45)

pS? for ieD

where D is the deletion group and R is the remaining set of observations.

’
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3.2.6 Measures Based on the Influence Curve

Measures of the influence of the i-th observation on the regression results are introduced
by Hampel (1968, 1974). Some very popular measures that are derived from that idea are
given below.

Cook’s Distance

Cook (1977,1979) has suggested a way for reducing the influence curve, using a measure

of the squared distance between the least-squares estimate based on all » points ﬁ and

the estimate obtained by deleting the i-th point, say 4. This distance measure can be

expressed in general form as

CD,(M,c) (ﬁﬂ(_“_B)TM(E(_i)_ﬁ), i=1,2,..,n  (3.2.46)

c

The usual choice of M and ¢ are M = X' X and ¢ = pMS,,,, so that equation (3.2.46)

es?

becomes

(i ~\F =i ~
CD,.(XTX,pMSRe.‘_)ECD, =(/i( )‘ﬂ) A);;)dﬁ( )‘ﬂ—), i=1,2..n (3247
Pivid g,

points with the values of CD, have considerable influence on the least-squares

estimate ,é The magnitude of CD; is usually assessed by comparing it toF, ,, .

IfCD, = F, then deleting point i would move A" to the boundary of an

S,pa-p>
approximate 50% confidence region for 4 based on the complete data set. This is a large
displacement and indices that the least-squares estimate is sensitive to the /-th data point.

Since F,

0.5,p.n—-p

influential for which CD; >1. Beckman and Trussell (1974) showed that
B-B =X XY x Y, - x] B, (3.2.48)

~1, Cook and Weisberg (1982) suggested considering points to be

and accordring to Bingham (1977), CD; can also be written as
(F-PN'F -1

CD. =
! kol

i=12,.,n (3.2.49)
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DFBETAS

Belsley et al. (1980) introduced measures of deletion influence. The first of these is a

~

statistic that indicates how much the regression coefficient §, changes, in standard

deviation units, if the i-th observation is deleted. This statistic is

3 _ Gen
DFBETAS ;= _’LL(__)'?_ , (3.2.50)

'\/S C_t;f
where Cis the j-th diagonal element of (X "X )-' and f'™is the j-th regression
coefficient computed without use of the i-th observation. Belsley ef al. (1980) suggested

a cutoff of 2/vn for DFBETAS,, ; that is, if|DFBETAS ;,| > 2/+/n , and then the i-th

observation warrants examinations.
Welsch-Kuh Distance (DFFITS)
The influence of the i-th observation on the predicted value can be measured by the
change in the prediction at x; when the i-th observation is omitted, relative to the standard
error of, that 1s,

IERIACE A

ofh,  oyh,

The denominator is just a standardization, since Var(3,) = o*h, .Welsh and Kuh (1977)

(3.2.51)

and Welsch and Peters (1978) suggested using &‘”as an estimate of ¢ in (3.2.51).
Belsley et al. (1980) called Welsch-Kuh’s distance (WK) as DFFITS,, because it is the
scaled difference betweenjand 7. Belsley er al (1980) suggests that any
observation for which |DFFITS,| > 2/+/n warrants attention.

Welsch’s Distance

Using the empirical influence curve based on (r-1) observations, as an approximation to
the influence curve for 4 and setting

M=X"x = (xTx - x,.x,?") and ¢ =(n~1)5"?,
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Welsch’s distance defined as
WP =CD X[ X (n-1)62 ). (3.2.52)

Welsch’s distance can be defined by Welsch-Kuh’s distance as

w=wk, [ (3.2.53)
1~pii

Welsch (1982) has suggested using W, as a diagnostic tool. The fact that WK, is easier to
interpret has led some authors to prefer WK, overW . It is clear from (3.1.53), however,
that W, gives more emphasis to high-leverage points. Equation (3.2.53) suggests that the

cut-off points for W, can be obtained by multiplying the cut-off points for WK,

i

by {n(n—1)/(n—p - 1)}'/2. Thus for example, if 2J(p +1)/(n— p—1)is used as cut-off

point forWK,, then the corresponding cut-off point for#,  would
be(2/(n—p-D)J(p+ l)nin ~1). However, if » is large as compared to p, this quantity is

approximately3,/p+1.
Modified Cook’s Distance

Atkinson (1981) has suggested using a modified version of Cook’s distance for the
detection of influential observations. The suggested modification involves replacing &?

by &2, taking the square root of C,, and adjusting C, for the sample size. This

modification of the C, yields

2
C' = JCD,[X"X,@%—II)—O‘-“”ZJ (3.2.54)
n—p-—
| ke n-p-1
= }e, 1\/1-11,, S (3.2.55)

n—p-1
=WK, / .
N pl (3.2.56)



Atkinson (1981) claims that this modification improves C, in three ways, namely,
(2) C; gives more emphasis to extreme points,

(b) C; becomes more suitable for graphical displays such as normal probability points,

and

(c) for the perfectly balanced case where h, =(p+1)/n, for all i, the plot of C; is
identical to that of le," :

The essential difference among C, ,WK,,W,,and C, is in the choice of scale. C, measures
the influence of the i-th observation on ,B only, whereas WK, ,W,, and C; measure the

influence on both 2 and &2 .

Table 3.1 The influence measures D; (M, c) for several choices of of M and ¢

M c Measure
XX (rz—l)2 kG? _1 by »
" kl-h, '
7 a2
XX (n 1)0' WK, = e,-‘ h,
- hn‘
T ~(=i)2
X X no WK’, _ le:l hn‘
hii
X'y (n— 1)2 k 5 ' =le h, n—k
n—k 1-h, £
X xE o (n-1)" 2 ok
W:-=n-1,-: “
I (n )EI (1 _hii )2
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3.2.7 Measures Based on Volume of Confidence Ellipsoids

The diagnostic measures based on the influence curve can be interpreted as given above,
as measures which are based on the on the change in the center of the confidence
ellipsoid when the i-th observation is deleted. An alternative class of measures of
influence of i-th observation is based on the change in the volume of the confidence
ellipsoid when i-th observation is deleted. Here are two most mentionable are given
below.

Andrews-]’?regibon Statistic

The volume of joint confidence ellipsoid for # is inversely proportional to the square
root ofdet(X "X ) Hence an important criterion in the theory of optimal experimental

design is based ondet(X D¢ ), because large values of det(X "X ) are indicative to
informative designs. Thus the influence of the i-th observation on the volume of
confidence ellipsoids can be measured by comparing det(X "X ) and det(X ="yt ) On
the other hand, omitting an observation with a large residual will result in a large
reduction in the residual sum of squares, SSE. The influence of the i-th observation can
be measured by combining these two ideas and computing the change in both r'» and
det(X ¢ ) when the i-th observation is omitted.
Andrews and Pregibon (1978) suggested the ratio

SSEC det(x 7 x)

), i=1,2,....n 32,57
SSEdet{X" X ) (.27

Define Z=(X:Y) and thus (3.2.57) becomes
SSE det(X " x)  det(z-7z")

SSEdet(x"x) detlz’z) (3.2.58)

which measures the relative change in det(Z"'Z) due to the omission of the ith

observation. Omitting an observation that is far from the center of the data will result in a
large reduction in the determinant and thereby large increase in the volume. Hence, small

values of (3.2.58) call for special attention. For convenience we define

’
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ap = detz7z) (3.2.59)
‘ det(Z"Z)

Cook-Weisberg Statistic
Under normality, the 100(1-a) % joint confidence ellipsoid for 3 is

{ p-B) (x’ XL B r Frepeines 1)}, (3.2.60)

(p+1)&?

when the i-th observation is omitted, (3.2.60) becomes

31 (=17 3y (-0
EGD ={/6 (ﬂ P )(E;i—l)o*)i)z Xﬁ IB ) F(a ;p+Ln-p- 2)} (3:2.61)

Cook and Weisberg (1980) proposed the logarithm of the ratio of £ to E™ as a measure

of the influence of the i-th observation on the volume of confidence ellipsoid for £,

namely,

Volume(E) .
CW. =lo —.  i=12,.,n 3.2.62
' 8 VolumeiE(") ) ( )

Since the volume of an ellipsoid is proportional to the inverse of the square root of the

determinant of the associated matrix of the quadratic form, (3.2.62) reduces to

Gy N2 2 NOE (p+h)/2
CI/I/’ _ lOg (det(X TX )J ( A?;) J ( (a;p+1 - p-1) J - (3263)
, det(X Xy o} Fkg;p+l,u—p—2)

Substituting

2
(i , h—-p—1—e ¥,
50N = 02(—1)——’—);where e = '

n—p-2 a(-h;)

and det(X " X7y = det(X” X)(1 - ,)in (3.2.63), we obtain

1 k n—P“z k Fia;m»l - p-1)
/= log(l =4, )+ —=log| ————— |+ —log| —=07P7 ) | 2.
CW, = og(l-h,) > g(n*p_l_rizj > g( P (3.2.64)
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Cook and Weisberg (1980) say this about CW, : “if this quantity is large and positive, then

deletion of the i-th case will result in a substantial decrease in volume...[and if it is] large

and negative, the case will result in a substantial increase in volume.” Inspection of

(3.2.64) indicates that CW, will be large and negative where e’ is small and 4, is large,

f

and it will be large and positive where e is large and #, is small. Butif ¢/ and A, are

either large or small, then CW, tends toward zero.

3.2.8 Measures Based on a Subset of the Regression Coefficients

The influence measures discussed thus far assume that all regression coefficients are of
equal interest. Diagnostic measures that involve all regression coefficients may some
times be nén informative and misleading (Comments Pregibon, in Atkinson 1982). It may
happen that an observation is influential only on one dimension (variable). Also an
observation with a moderate influence on all regression coefficients may be judged more
influential than one with a large influence on one coefficient and a negligible influence
on all others. Information about the influence of an observation on a subset of the

regression coefficient is, therefore, of interest.

3.2.9 Measures Based on Eigen-structure of X

It is known that the eigenstructure of X can change substantially when a row is added to
or omitted from X. Statisticians study the influence of the i-th row of X on the
eigenstructure of X in general and on its condition number and collinearity indices in
particular. Except for very special cases, no closed form expression connecting the
eigenstructure of X to that of X exists. Some concepts in numerical analysis are used to
define the condition number and collinearity indices of a given matrix, with graphical
illustrations that individual or small groups of observations can have substantial influence

on these measures of collinearity.
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3.2.10Limitations of Deletion Approach

Deletion diagnostic approach has some limitations like any other diagnostic approach,
some are as follows:

(1) Single deletion diagnostics are affected by masking and swamping phenomena.
(2)Multiple deletion diagnostic methods are sometimes impossible due to combinatorial
problem.

(3)Identiﬁcation of suspect cases that have to be deleted is a difficult task. Especially
group deletion diagnostic methods heavily depend on robust regression/or single deletion
diagnostic methods.

(4) Limitations of prior identification methods can make the group deletion results
eITONEOoUsS.

(5) Diagnostic techniques that are free from robustness can make the decisions non robust

and may be misleading.

78



Chapter 4

“For the things we have to learn before we can do them,
we learn by doing them.”

Aristotle

Identification of Influential Observations

in Linear Regression

The usual way to measure the influence of an observation in a regression analysis is to
delete the observation from the data set and compute a convenient norm of the change in
the parameters or in the vector of forecasts. In this chapter we propose two new measures
based on &eletion approach (single and group) for identifying influential observations in
simple and multiple linear regressions. We also study the different aspects of the
measures. We demonstrate the calculation and show the advantages of the proposed
measures in the identification of simple and multiple influential cases through several

well-referred data sets.

4.1 Squared Difference in Beta (SDFBETA)

We introduce a possible diagnostic measure for measuring the influence of the i-th
(single) observation. The measure is originated from the idea of Cook’s distance (1977)
and brings a modification in Difference in Beta (DFBETA) in Belsely ef al. (1980). We
name this measure Squared Difference in Beta (SDFBETA). The suggested measure is
defined to be

B AT r A=) 7
sprpirs, < B =B (X" XNB - ) o)
S( K (l—hn)
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where A" is the estimated i-th parameter and s (1-4,) is the variance of the i-th

residual respectively after deleting i-th observation.

4.1.1 Relation with Cook’s Distance and DFFITS

We see in Belsely ef al. (1980) that DFFIT, DFFITS, DFBETA and Cook’s Distance
(CD) can be defined as

o~ a0 _ LT p (=i hng:

DFFIT, =y, =3, =%, (f; = B, V=15 (4.2)

where £, = y, —¥,and A, is the i-th diagonal element of the leverage matrix.

aged) 142 -
Vi =D hy £
We have, DFFITS, =~ ——= £ - - (4.3)
‘7(_’)«/77: [1_}%} s N -hy)
T yy-l T o
DFBETA, = j, — B Q{—leh—xi (4.4)
RN _ BNTyT BN _ @ ’
and CDI = (ﬁ: ﬂl) (X ZX)(ﬁ: /B.r) . (45)
DS
After simplification (see section 2.6), Cook’s distance can be defined as
‘c::rzhi!
T psia-h,) @0
— hil giz S("i)z
1-h, s (1-h,) ps]
(i)’
= (DFFITS,)?."— 4.7)
DS;
2
and DFFITS} = C—l?’_—f;s— (4.8)
. $
B =B X XB - B)
hence SDFBETA, = — : : (4.9)
s d-h,)
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CD, ps/

. _CDps; (4.10)
S(_') (1 - hif)
2
:___DfFlhTSf , @.11)

4.1.2 Cut-off Value for SDFBETA

It may not be easy to find a theoretical distribution of SDFBETA, however it should not

make any problem to get a confidence bound type cut-off value for them. We use the
equation (4.11), |DFF1TS| >3+k/n (like Belsely ef al. 1980) and A, 23p/n (Vellman

and Welsch, 1981) to make the cut off value for SDFBETA. As a result, we may consider

the i-th observation to be influential if it satisfies the condition

GVkIn)? 9%

1-(3p/n) n-3p

SDFBETA, 2 , k=ptl. 4.12)

4.1.3 Examples

The measure, squared difference in beta (SDFBETA), is a single case deletion measure.
At first we show its performance for simple influential case identification and then for

identification of multiple influential observations.

Monthly Payments Data

The following real data is extracted from Rousseeuw and Leroy (1987), Rousseeuw ef al.
(1984); the data shows monthly payments of large Belgian insurance company in1979,
made as a result of the end of period of life-insurance contracts. In December a very large
sum was paid, because of one extremely high supplementary pension. We see simply
from the scatter plot (Figure 4.1 (a)) of the data set December situation is not usual. Table
4.1 presents few single case diagnostics to identify the influential observations. The cut-
off values for each of the statistics are given inside the braces. Sometimes standardized

residuals are used to detect outlier and cases having values grater than 2.5 are suspects.
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For this data only observation 12 (December) is under suspect. We see from figure 4.1
(b,c, and d) that SDFBETA successfully treats case December as an influential as well as
Cook’s distance and DFFITS and at the same time it confirms the presence of single

influential observation.

Table 4.1 Single case diagnostics for Monthly Payments data

_ stres hy CD, |DFFITS| |SDFBETA|
Month | Payment | (2.50) (0.25)  (1.000)  {0.82) (2.000)
1 322 0.248 0.295 0.013 0.152 0.033
2 9.62 0.784 0.225 0.089 0.413 0.221
3 4.5 0.085 0.169 0.001 0.036 0.002
4 4.94 -0.008 0.127 0.000 -0.003 0.000
5 4.02 -0.233  0.099 0.003 -0.073 0.006
6 4.2 -0.345 0.085 0.006 -0.100 0.011
7 11.24 0.223  0.085 0.002 0.065 0.005
8 4.53 -0.580 0.099 0.019 -0.186 0.038
9 3.05 -0.875 0.127 0.056 -0.330 0.124
10 3.76 -0.961 0.169 0.094 -0.432 0.224
I 423 -1.088 0.225 0.172 -0.592 0.452
12 42.69 3.063 0.295 1.961 7.550 80.842
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Figure 4.1 (a) Scatter plot Months versus Employment Payments; (b) Index plot of
Cook’s distance; (¢) Index plot of DFFITS; (d) Index plot of SDFBETA

Hawkins et al. (1984) Data

To demonstrate the performance and comparison of the new measure with existing single
case deletion diagnostic measures like Cook’s distance and DFFITS, we analyze the
Hawkins et al. (Hawkins et al. (1984)) artificial data as the identification of multiple
influential observations. The data set consists of 75 observations in 4 dimensions, one for
response variable others are explanatory variables. Rousseeuw and Leroy (1987) showed
that observations 1-10 are ten high leverage outliers and the observations 11-14 are four
(good leverage) points that are well accommodated by the LMS fit. Table 4.2 shows

single case diagnostic results, Cooks distance identifies only observation 14 as influential
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and DFFITS identifies 4 observations 11-14 as influential. At this stage we apply the
newly proposed measure SDFBETA to identify the observations. According to our
measure values consisting in column 6 of table 4.2, show observations 11-14 (four cases)
are influential observations, which are as same as DFFJITS. We know from the literature
that first 10 observations are the most influential as they are at the same time, outliers and
high leverage points, but they are masked by the next 4 observations (11-14). All three
(CD, DFFITS and SDFBETA) are totally failed to identify multiple influential cases.
Imon (2005) showed all first 14 observations as influential observations. We reach in
conclusion that our single case deletion diagnostic measure can not identify all the
influential cases properly as Cook’s distance and DFFITS, because of masking effect. We
want to improve our measure attach with the group deletion ideas like Hadi and Simonoff

(1993), and Atkinson (1994) and generalize it for multiple linear regression diagnostic

purpose.

Table 4.2 Single case diagnostics for first 14 cases of Hawkins ef a/., (1984) data

Index hi Stdres  CD;  |DFFITS| |SDFBETA]

(0.120) (2.500)  (1.000)  (0.693) (0.545)

1 0.063 1.552 0.040 0.406 0.176

2 0.060 1.831 0.053 0.470 0.235

3 0.086 1.396 0.046 0.430 0.202

4 0.081 1.187 0.031 0.352 0.135
- 0.073 1.413 0.039 0.399 0.172
6 0.076 1.588 0.052 0.459 0.228

7 0.068 2.077 0.079 0.575 0.354

8 0.063 1.762 0.052 0.464 0.230

9 0.080 1.255 0.034 0.372 0.150
10 0.087 1.413 0.048 0.439 0.211
11 0.094 3.657 0348  -1.300 1.865
12 0.144 -4.501  0.851  -2.168 5.488
13 0.109 -2.881 0254 -1.065 1.274
14 0.564 -2.558 2.114 -3.030 21.044
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Figure 4.2 Index plot of (a) SDFBETA, (b) Cook’s distance; (c) DFFITS

4.2 Generalized Squared Difference in Beta (GSDFBETA)

The diagnostic tool which is discussed in previous section designed for the identification
of a single influential observation. But reality, hardly ever data sets contain just a single
influential observation; a group of influential observations is present most of the times. It
is now well known that a group of influential observations may distort the fitting of a
model in such a way that influential observations have artificially very small residuals so
that they may appear as inliers. Atkinson (1986) pointed out, “in the presence of masking
single deletion diagnostic method fail to reveal outliers and influential observations.”
Therefore we need detection techniques for the identification of multiple influential

observations and are free from masking and swamping phenomena.

85



Basic Philosophy

A good number of diagnostic methods are available in literature and some of them are
placed in the previous sections. Most of them for the identification of multiple influential
observations, attempt to separate the data into a ‘clean’ subset without any types of
outliers and a complementary subset of the observations that contains all the potential
outliers. It is generally used robust techniques and/or popular diagnostic techniques like
Cook’s distance, DFFITS, etc for identifying suspects. To perform the task, first the
group of potential outliers/unusual observations are deleted at a time and then measure
sensitivity of the each of the observations by observing the difference between the
estimates without the group of unusual observations and the estimates adding another

observation one after another from the remaining set of observations.

4.2.1 GSDFBETA Algorithm

In this section, we introduce a group-deleted version of diagnostic measure, generalization of
squared difference in beta (SDFBETA), to develop effective diagnostic tool for the
identification of multiple influential observations in linear regression. We name this
GSDFBETA. We suggest here to use robust techniques for the identification of suspects to get
the advantages of robustness. We assume that d observations among a set of » observations are
suspects and are deleted from the data set. Let us denote the set of cases remaining' in the
analysis by R and the set of cases 'deleted' by D). Hence R contains (»-d) cases (each case is
closely associated with a single row of the data matrix JX and the corresponding element of )
after d cases in D are deleted. Without loss of generality, we assume that these observations are

the last of 4 rows of X and Y and V'is a variance-covariance matrix, so that we may rearrange

SRS KRS (I

data matrix as
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Let B, be the corresponding vector of estimated coefficients when a group of observations

indexed by D is omitted. Now by using the idea of Hadi and SimonofT (1993) we define our
proposed measure GSDFBETA as

where

where

((B(R) ﬁ(n_,)) XzeX/e( - B ,)) R
GSDFBETA, = { (R") (1 Pty ) _
(IB(R-H) IB(R)) Xi)Xn(ﬂ(im) “ﬁ(ie)) i¢ R
O (1 - hn‘(/m)) ’

~

t -
IB(R) (XRXR) XII(’YR’

_ 1 T 7N -1 iR}
hif(R+i) =X (Xp&Xp+x,x ) %, = ———,
L+ A

:E(R-i) = (Xz TXR —xixiT )—'(XleTYie _xiyi)

~ _ T n
8:‘(R) =Y, =X /B(R)'

4.2.2 Relation with GDFFITS and GSDFBETA

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

Imon (2005) developed generalized DFFITS (GDFFITS) for the identification of multiple

influential observations in linear regression as

j"le —'5)'/{—' .
i{R) H{R-i) . ieR

O(r-i) hr‘i(R)
Yirsiy ~ Yiewy

—~ 2
O_(R)'\/hir(l?d-i)

GDFFITS, =
i¢R

(4.18)
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Y 7 = h;
where Vit =% By = Py + 1 »

+ hii(R)

£ (4.19)

T ryrF -l L.
h,.,-(m =x; (XX, 'x, ;i=1,2,.,n

_ hnue)
Ry i+ h

h

H(RY
Imon (2005) suggests considering observations as influential if

|GDFFITS | > 3/k (n~d) . (4.20)
The above results of GDFFITS, together with results of (4.15), (4.17) and (4.19), helps us

to re-express GDFFITS in terms of group deletion residuals and leverages as

hii’(li‘) ‘C::f(ff) for ieR
V1t r V=i (4.21)
h
(

1
ii(R) g:‘ R) f .
/ or iz R
L 1+ h"'(R) Opqfl+ hii(R)

We may call the leverage components of GDFFITS as shown in equation (4.21) as

GDFFITS, =

generalized weights. These weights are denoted by 4, and defined as

h;
i) for ieR
K= - hn‘(k)

H

. (4.22)
hii(R) .
=——-=— for igR
1+ hii(l\’)

Thus, GDFFITS values can also be re-expressed in terms of generalized Studentized
residuals and generalized weights as
GDFFITS, =+/h;t;, i=12,--,n (4.23)
where ¢, are the generalized Studentized residuals and defined as
_fm for ieR

. 513—;’ "l - hir'(l() . (4.24)
£ for ig R

l, =
G pfl+ Py
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Now GDFFITS can be re-expressed as

(f~ ~ o _ -
('B(R) —ﬁ(n-:)) XRIXR (ﬁ(k) '"ﬁ(/e—r)) ieR
) >
GDFFITS? =1 , _ A ‘,fw—ﬂf’fm ) ) (4.25)
(/B(RH‘) "/B(R)) X, X:)(/B(:e+;) _/Bue)) 2 R
3 , L€
L O oMy

After some calculations we involve the equations (4.13) and (4.24) to make the relation
as follows.
(GDFFITS, ) .
GSDFBETA; =4 1—=hy,
(GDFFITS,) by, i2 R

ur> FER (4.26)

Finally, we define GSDFBETA (by using equation (4.22) and (4.25)) for calculation
purpose as

hﬁt({j‘ )2

GSDFBETA; =5 1= hy,

hi:t(t;.)z hr‘i(R) i¢ R

b ieR
ar) TEA 4.27)

4.2.3 Cutoff Value

Observations corresponding to large GSDFBETA are declared as influential observations. We
consider it (i-th observation) large and take as influential if it exceeds the following cut-off
value. With the help of cut-off points from Imon (2005) and Vellman and Welsch (1981), we
treat cut-off value for GSDFBETA as

| GSDFBETA, |2 (cutoff GDFFITS) by,

N NYTEN ;_{’d = (:fg“) . (4.28)
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4.2.4 Examples

In this section we consider two well-known data sets, which are referred for the identification
of multiple influential observations in linear regression. We show and compare the
performance of proposed GSDFBETA with GDFFITS as the group-deletion identification

technique of multiple influential observations.

Hawkins et al. (1984) Data

Now we apply the proposed algorithm to compute GSDFBETA for the Hawkins et al. (1984)
data set. Imon (2005) showed generalized Cook’s distance (GCD) is totally failed to identify
influential observations for the masking effects. Table 4.3 shows our proposed method and
GDFFITS both can identify 14 (1-14) influential observations successfully. But the figures 4.3
and 4.4 show better performance of GSDFBETA compare to GDFFITS in sense of smoothness
in regular observations and makes significant distances between regular and influential
observations. GSDFBETA shows better homogeneity among the regular observations and very

sensitive to influential observations.
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Table 4.3 Group deletion measures of influence for Hawkins e/ al. (1984) data

ind. |GDFFITS| GSDFBETA | Ind. |GDFFITS| GSDFBETA | Ind. |GDFFITS| GSDFBETA
(0.768) (0.087) (0.768) (0.087) (0.768) (0.087)

1 5.177 387.586 26 -0.298 0.006 51 0.259 0.004
2 5272 423.015 | 27 -0.342 0.011] 52 -0.334 0.011
3 5.169 453.267 | 28 0.137 0.001 | 53 0.733 0.075
4 4.759 408.008 | 29 0.111 0.000 | 54 0.340 0.010
5 5.003 435.023 | 30 -0.005 0.000 | 355 0.019 0.000
6 5.151 414.234 31 -0.045 0.000 56 0.026 0.000
7 5.475 470.745 | 32 -0.207 0.003 | 57 0.269 0.004
8 " 5.410 433.614 | 33 -0.216 0.002 | 58 -0.059 0.000
9 4.899 408.732 | 34 -0.363 0.012 | 59 -0.036 0.000
10 5.149 423540 | 35 0.216 0.004 | 60 -0.334 0.011
n 0.926 19.198 | 36 -0.287 0.003 | 6t -0.021 0.000
n 0.884 18.769 | 37 -0.198 0.004 | 62 0.324 0.009
13 1.171 31186 | 38 0.356 0.007 | 63 -0.187 0.003
14 0.857 20670 | 39 -0.349 0.009 | 64 -0.203 0.003
15 -0.229 0.005 | 40 -0.145 0.001 | 65 0.341 0.007
16 0.255 0.007 | 41 -0.006 0.000 | 66 -0.357 0.007
17 -0.101 0.001 | 42 0.219 0.004 | 67 -0.182 0.001
18 0.018 0.000 | 43 0.397 0.016 | 68 0.423 0.018
19 0.077 0.000 | 44 -0.262 0.006 | 69 0.055 0.000
20 0.237 0.005 | 45 -0.283 0.006 | 70 0.377 0.007
21 0.318 0.004 | 46 -0.098 0.001 | 71 0.097 0.000
22 0.222 0.004 | 47 -0.630 0.046 | 72 -0.029 0.000
23 -0.312 0.004 | 48 0.115 0.001 | 73 0.241 0.003
24 - 0.259 0.003 | 49 0.405 0.010 | 74 -0.326 0.006
25 -0.171 0.003 ] 50 -0.105 0.001] 75 0.267 0.007
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Figure 4.4 Index plot of GSDFBETA for Hawkins ef al. (1984) data
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Stack Loss Data

We consider the stack loss data presented by Brownlee (1965) that has been extensively
analyzed in the diagnostic literature since then. This three-predictor (Air flow, Cooling
water inlet temperature and Acid concentration and stack loss for response) data set
contains 21 observations with five influential observations; three of them are high
leverage outliers (cases 1, 3 and 21), one of them (case 4) is an outlier and another one
(case 2) is a high leverage point. When the OLS technique is employed to the data we
observe from table 4.4 that most of the traditional diagnostic methods fail to focus the
influential cases. Cook’s distance does not identify any one of the observations as

influential. Studentized residuals (r,) and DFFITS identify only one observation (case 21)

as unusual as well as SDFBETA. Leverage values fail to identify genuine high leverage
points but swamp in a good case (observation 17) as high leverage point. To compute
GSDFBETA, we at first select suspect cases for deletion. The robust RLS technique
identifies cases 1, 3, 4, and 21 as outliers. The rule based on generalized potential marks
observations 1, 2, 3, and 21 as high leverage points. Thus our deletion set contains five
different observations (cases 1, 2, 3, 4, and 21). When the regression model is fitted
without these five points we observed from table 4.5 that all these observations have
significant GDFFITS and GSDFBETA values that confirms our suspicion that these
observations are influential. But GCD (Generalized Cook’s Distance), another group
deletion diagnostic measure, again fails to identify any of the influential observations.

We obser;fe from figure 4.5 that GDFFITS correctly identifies all 14 influential
observations. Figure 4.6 shows that in the index plot of GSDFBETA all influential
observations are clearly identified and besides that all of them are far away from the
usual ones. GSDFBETA shows better smoothness among the regular observations when

we consider both the index plots at a glance.
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Table 4.4 Single deletion measures for Stack loss data

Index | t(2.50) w;;(0.381) CD(1.000) |DFFITS|(0.873) SDFBETA(1.067)
1 1.19 0.302 0.154 0.795 0.905
2 -0.72 0.318 0.060 -0.481 0.339
3 1.55 0.175 0.126 0.744, 0.671
4 1.89 0.129 0.131 0.788 0.713
5 -0.54 0.052 0.004 -0.125 0.016
6 -0.97 0.077 0.020 -0.279 0.084
7 -0.83 0.219 0.049 -0.438 - 0.246
8 -0.48 0.219 0.017 -0.251 0.081
9 -1.05 0.140 0.045 -0.423 0.208
10 0.44 0.200 0.012 0.213 0.057
11 0.88 0.155 0.036 0.376 0.167
12 0.97 0.217 0.065 0.509 0.331
13 -0.48 0.158 0.011 -0.203 0.049
14 -0.02 0.206 0.000 -0.009 0.000
15 0.81 0.190 0.039 0.388 0.186
16 0.30 0.131 0.003 0.113 0.015
17 -0.61 0.412 0.065 -0.502 0.429
18 -0.15 0.161 0.001 -0.065 0.005
19 -0.20 0.175 0.002 -0.091 0.010
20 0.45 0.080 0.004 0.131 0.019
21 -2.64 0.285 0.692 -2.100 6.168
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Table 4.5 Group deletion measures for Stack loss data

Index | GCD |GDFFITS| GSDFBETA

(1.00) (1.500) (1.260)
1 0.154 3.345 19.387
2 0.060 1.719 5.264
3 0.126 3.216 10.789
4 0.131 2.577 1.751
5 0.004 0.142 0.004
6 0.020 -0.020 0.000
7 0.049 0.220 0.019
8 0.017 0.718 0.204
9 0.045 -1.099 0.281
10 0.012 0.526 0.106
11 0.036 0.407 0.041
12 0.065 0315 0.043
13 0.011 -0.789 0.179
14 0.000 -0.575 0.093
15 0.039 0.113 0.005
16 0.003 -0.302 0.024
17 0.065 -0.308 0.100
18 0.001 -0.149 0.009
19 0.002 0.093 0.003
20 0.004 0.558 0.035
21 0.692 -2.228 4.217
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4.3 A New Measure for Identification of Multiple Influential
Observations

It is a common practice in linear regression of measuring influence of an observation is to
delete the case from the analysis and to investigate the norm of the change in the parameters or
in the vector of forecasts resulting from this deletion. Pena (2005) introduced a new idea to
measure the influence of an observation based on how this observation is being influenced by
the rest of the data. In this section we would like to extend this idea to the group deletion
technique suggested by Hadi and Simonoff (1993) and propose a new measure to identify
influential observations in multiple linear regression. We investigate the usefulness of the
proposed technique by two well-referred data sets and an artificial data with high-dimension,

heterogeneous variances and large number of observations.

4.3.1 Pena (2005)’s Statistic

Pena (2005) introduced a new statistic totally in a different way, he mentioned, ‘deletion of
each sample point affects the forecast of a specific observation’. In his paper he outlined a
procedure to measures how each sample point is being influenced by the rest of the data. He

considered the vector

5 =3, -3, 5 =557, (4.29)

where ${™ is the i-th fitted value when the i-th observation is deleted, and defined the statistic

for the i-th observation as

T
S = §; 8

v

where p is the number of explanatory variables and V(¥,) is the variance of the i-th fitted

(4.30)

value, This statistic can be re-expressed as
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n h__z"_z
1 > 431
poh S (-hy)

[

S, =

where /1, is the ji-th element of the leverage matrix ,

5, -5, = Ll (4.32)
I-h,
and v(p,)=6h,. (4.33)
Pena proposed the observations with values of the statistic larger than
(S, - E(S)))/ std(S,) (4.34)
as outliers and the observations having
S, = median(S,) + 4.5MAD(S,)
or S, <max(0, median(S;)—-4.5MAD(S,)) (4.35)

as heterogeneous observations. E(S,), std(S,) and med(S,) are the mean, standard

deviation and median of the statistic respectively.

4.3.2 Our Proposed New Measure, M;

From the beginning of the Cook’s (1977) seminal article, most of the ideas of finding
influential observations in regression are developed on the basis of ‘deleting the observations
one after another and measuring their effects on various aspects of the analysis.” It is now
evident that the single case deletion techniques fail to detect multiple influential observations
mainly because of masking and/or swamping problems. We develop an alternative way to look
at how the forecast values are influenced by deleting each of the cases after deletion of
suspected group of influential cases first. Basically we have accumulated the idea of Hadi and
Simonoff (1993) with Pena (2005) and developed a measure M,, which is expected to perform

better when a group of influential observations exist in a data set. It is also effective to identify a

98



set of low leverage points. We show that the performance of the proposed technique is quite
satisfactory in situations like clusters of high-leverage points and in large data sets in high
dimensions with heterogeneous variances that are not easy to handle by the existing influence

measures.

4.3.3 Algorithm of Proposed Measure

The proposed measure is a two-step measure based on Pena’s (2005) idea attach with formal
and/or informal group deletion methods. This helps us to reduce the maximum disturbance by
deleting them at a time and “the deletion of which produces the largest reduction in the residual
sum of squ%_u‘es” (Hadi and Simonoff, 1993). It helps to make the data more homogeneous than
before. WHen we delete each sample point one after another, the forecasts of a specific
observation would be more sensitive by the influential observations. Group deletion attaching
with Pena’s idea improves the measure and show nice results in presence of masking and/or
swamping phenomena. Sometimes graphical display like index plot and/or character plot of
explanatory and response variables could give us some prior ideas about the influential
observations, but these plots are not useful for higher dimension of regressors. There are some
suggestions in the literature (Atkinson, 1986; Rousseeuw and Leroy, 1987; and Rousseeuw and
van Zomeren, 1990) for using robust regression techniques like least median of squares (LMS)
(Rousseeuw, 1984), least trimmed squares regression (LTS) (Rousseeuw, 1985) and
reweighted least squares (RLS), (Rousseeuw and Leroy, 1987) to find the suspect
unusual/influential observations. Pena and Yohai (1995) introduced a method to identify
influential subsets in linear regression by analyzing the eigen vectors corresponding to the non-
null eigen values of an influence matrix. Here we consider one of the two proposed procedures
of Hadi and Simonoff (1993), which was an adaptation of Hadi (1992, 1994), and is related to
the proposals of Hawkins et al. (1984) and Atkinson and Mulira (1993). They suggest dividing
the data set into two initial subsets: a ‘basic’ subset that contains the first k+1 clean

observations and a ‘nonbasic’ subset that contains the remaining observations. In this purpose



some times they use an appropriate diagnostic measure and some times use clustering based

backward-stepping method (Simonoff, 1991).

In our method, at the first step we find out all suspect unusual cases. We propose to use
graphical display and/or regression diagnostic measure and/or robust regression methods
whatever can helps to find the suspected group with maximum number of influential cases. In
the second step, we assume that d observations among a set of # observations are suspected as
influential observations and to be deleted. Let us denote a set of cases ‘remaining’ in the
analysis by R and a set of cases ‘deleted” by D. Hence without loss of generality, assume that

these observations are the last d rows of X and Y so that

X{Xﬂ YZ[YR}
XD Yl)
=5(-0)

After formation of the deletion set indexed by D, we would compute the fitted values y

after d observations are deleted. Let B be the corresponding vector of estimated
coefficients when a group of observations indexed by D is omitted. We define the vector of
-D)

difference between y j(‘D) ( j—ﬂ; fitted value after the deletion of suspect group D) and y jm(

(j-th fitted value when the i-th observation is deleted after the deletion of D group first) as

t(,.)(—’)) — (371(_1)) —j}l(i)(-n)a ...,ﬁ"(_m _ I}n(j)(—l)))1‘ (4.36)
= (1Pt G 4.37)
- ~ (=) ~  (-0)
and tj(,.'))) =9, "=V
h ==
= adl . '=1,2,...,n 438
_n, " (4.38)

It

{-p) D))

where f, =x(X"X)'x, and £ =y, 9"
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Finally, we introduce our new measure as squared standardized norm, name this M; and define

as
; "”’Tt (=)
M= 0 (4.39)
k(5,7
-0 =(-n)
where vy Yy =5, and =55 (4.40)
n—-k
Using (4.36) to (4.39), we obtain
B 1 n ) 52,-(—’))
M, = >oh, (4.41)

kszhli J=t (l_hn')2 .
It may not be easy to find a theoretical distribution of M, . But in this situation it is a common
practice (see Hadi, 1992) to use a confidence bound type cut-off value for it.
We consider i-th observation to be influential if it satisfies the rule

|M,| > median (M) + 4.5 MAD (M), (4.42)

where MAD (M, ) = median {| M, —median (M )|}/0.6745.

4.3.4 Examples

In this section we demonstrate the proposed measure and show the performance of our newly
proposed measure in comparison with Pena’s (2005) statistic and other two existing popular
methods for the identification of influential observations in linear regression through several
well-knowr; data sets, which are frequently referred in the literature for studying the

identification of influential observations, high leverage points and outliers.
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Hertzsprung-Rusell Diagram Data

Our first example comes from Astronomy and the data is taken from the Hertzsprung-Rusell
diagram of the star cluster CYG OBI, which contains 47 stars in the direction of Cygnus.
Explanatory variable is the logarithm of the effective temperature at the surface of the star (Te),
and Y is the logarithm of the light intensity (L/Ly). This data is given in Rousseeuw and Leroy
(1987) and later analyzed by many authors as an interesting masking problem. The character
plot of this data is shown in Figure 4.7 reveals that there are four outliers (cases 11, 20, 30, and
34) in the data and many authors consider other two points (7, 14) seem to be far from the
regression line of the most of the data. Therefore, we consider all six observations as suspect
unusual cases. We apply our proposed measure together with Cook’s distance and DFFITS for
this data and the results are presented in Table 4.6. We observe from this table Cook’s distance
fails to identify even a single influential observation, DFFITS can identify 4 cases (14, 20, 30,
and 34), Pena’s statistic identifies 10 observations (7, 11, 14, 17, 19, 20, 29, 30, 34, and 45) i.e.,
this statistic is affected by swamping phenomena for the observations 17, 19, 29, and 45 . Our
proposed measure (M) can detect 5 influential observations (7, 11, 20, 30, and 34) correctly.
Figure 4.8 shows that the point 14 is close to LMS line than LS line, which supports that the

case is not influential for analysis. Moreover, the A, (proposed measure) as given in table 4.6

and figure 4.9 find out another influential observation 9, which was undetected before. The
histogram of A4 (in figure 4.10) clearly indicates the presence of heterogeneity among the

observations, which is not as much as clear in histogram of S;(figure 4.10, (€)).
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Table 4.6 Measures of influence for Hertzsprung-Rusell Diagram data

Si Mi Si Mi
Ind. | CD IDFFITS| (0.254, (-0.159, !Ind.|CD  |DFFITS| (0.254, (-0.159,
(1.00)  (0.412)  0.681) 0.234) (1.00) (0.412)  0.681) 0.234)
1| 0.002 0.065 0.463  0.0569 | 25| 0.000 0.010 0455  0.0080
2| 0044 0.300 0486 00431| 26|0004 -008 0437 00375
3| 0.000  -0027 0627 00853 27| 0005 -0.095 0572 00016
4| 0.044 0.300 0486 0.0431| 28| 0000 -0.022 0455  0.0005
5| 0.001 0.045 0554 01154 | 29| 0.017  -0.184 0705  0.0000
6| 0012 0.152 0437 0.0469 | 30| 0234 0.691 1.044  8.0440
7| 0045  -0299 1.039 07934 | 310012 -0.153 0455  0.0706
8| 0.009 0.131 0493  0.0095 | 32| 0.002 0067 0486  0.0334
9| 0.010 0.144 0627 04091 | 33| 0.003 0.078 0.435  0.0080
10| 0.001 0.035 0463  0.0208 | 34| 0413 0.935 1.044  8.8467
11| 0.067 0.365 1.044 6.5866 | 35| 0.019  -0.195 0686  0.0020
12| 0.010 0.140 0435 0.0697 | 36 0.043 0.296 0528  0.0006
13| 0.011 0.147 0442  0.0245| 37| 0.002 0.060 0.467  0.0163
14| 0.090  -0.439 0979 00321 | 38! 0.003 0.078 0435  0.0080
15| 0020  -0203 0572 00401 | 39| 0.004 0.086 0.467  0.0062
16| 0.006  -0.109 0437  0.0584 | 40| 0.015 0175 0435  0.1130
17| 0046  -0.314 0.686 0.0814 | 41| 0.005  -0098 0455  0.0212
18| 0.025  -0.226 0.437 02327 | 42| 0.000 0031 0435  0.0000
191 0028  -0.241 0.686 0.0199 | 43| 0.008 0.129  0.451  0.0052
20| 0.136 0.523 1.044  7.1984 | 44| 0.006 0113 0435  0.0262
21| 0014  -0170 0572 0.0165| 45| 0.024 0220 0479  0.0108
22 0022  -0.214 0572  0.0503 | 46| 0.000 0008 0435  0.0030
23| 0012 0155 0437 01143 | 47! 0009  -0.132 0437  0.0840
24| 0000  -0.027 0.446 _ 0.0425
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Figurer 4.9 Index plot of proposed measure (M;) for Hertzsprung-Rusell Diagram data
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Hawkins et al. (1984) Data

Hawkins ef al. (1984) presents an artificial data set with three regressors containing 75
observations with 14 influential observations, among them 10 cases (1-10) are high leverage
outliers and 4 cases (11-14) are high leverage points. Most of the single case deletion
techniques fail to detect all of these influential observations properly. Some of them identify
four high leverage points wrongly as outliers (Rousseeuw and Leroy, 1987). On the other hand,
robust regression techniques like LMS and RLS identify outliers correctly, but they do not
focus on the high leverage points and fails to identify them.

In our study we consider the first 14 data points as suspect influential cases and compute

M, measure based on the remaining 61. Table 4.7 shows these diagnostic measures together

with Cook’s distance, DFFITS and Pena (S;). Here we observe that Cook’s distance identifies
only one (case 14) out of 14 influential observations. DFFITS identifies 7 observations (cases
2,7,8,11,12, 13 and 14) correctly but fails to detect other 7 cases. Figure 4.11 and table 4.7
indicate that Pena’s measure identifies only one case (14) and greater variability is present
among the values of the statistic. Table 4.7 shows our measure can successfully identify all the
14 influential cases. The merit of our method is supported also from Figure 4.12, where the
index plots of M, shows that all 14 influential cases are identified and are clearly separated
from the other regular observations, in addition figure 4.12 shows comparatively less variability
in the values of M; than S;. Histogram of M; (Figure 4.13(d)) separates two groups of data
clearly. The S; versus Cook’s distance and M; versus Cook’s distance give emphasis of a

comparative performance between them, shows in figure 4.13 (e and f).
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Table 4.7 Measures of influence for Hawkins et al. (1984) data

[ Si Mi : e

ind. | CD IDFFITS| (-1.47,  (-019, |Ind. | CD |DFFITS] (s-|1.47 gf:)(z'?)w’
(1.00) 0.462 2.286) _ 0.027) (1.00) 0462  2.286)
1] 0.040 0.406 1.6004 1.8060 | 39{ 0003 -0109 07738 0.0058
2| 0033 0.470 1.8294 1.9454 | 40| 0.000 -0.002 02092  0.0021
3| 0.046 0430 16034 2.1760 | 41 | 0.003 -0.118 0.3741  0.0000
4| 0031 0352 16260 1.9243| 42| 0.004 0.120 0.3463  0.0023
5| 0.039 0.38¢  1.7113  2.0261 43 | 0.010 0.200 0.8728  0.0056
6| 0052 0.459 14338 1.9643| 44| 0.007 -0.168 1.3170  0.0026
7| 0.079 0.575 16522 21943 | 45 0.001 -0.059 0.4717  0.0035
8| 0052 0464 16748 2.0148| 46 0.004 0.127 1.2661  0.0004
g | 0.034 0.372 15926 1.9373| 47| 0.008 -0.182 03769 0.0127
10 | 0.048 0439 15000 2.0530| 48| 0.002  -0.081 04592 0.0006
11| 0.348 -1.300 1.7053 0.0914 | 49 | 0.001 0.065 0.1148  0.0098
12 | 0.851 -2.168  1.6328 0.0994 | 50 | 0.000 -0.039 0.0683  0.0007
13| 0.254 -1.065 1.9725 0.1533| 51 0.002 0.077 0.1369  0.0042
14| 2.114 -3.030  2.3380 0.4167 | 52 | 0.006 0.148 02823  0.0043
15| 0.001 -0.074  0.1486  0.0021 53 [ 0.000 -0.016 06842 0.0144
16 | 0.003 0.114  0.2407 0.0024 | 54| 0.006 0.169 1.1868  0.0050
17 | 0.001 0.059 0.3105 0.0004| 55| 0.001 0.061 0.5249  0.0000
18 | 0.000 -0.027 0.1740 0.0000 | 56| 0.001 0.069 0.9839  0.0000
19| 0.001 0.053 05737 0.0005| 57| 0.000 0.042 0.1922  0.0052
20| 0.000 0.034 0.3163  0.0021 58 | 0.000 0.025 0.7025  0.0002
21| 0.001 0.053 0.0830 0.0102| 59 | 0.001 -0.045 0.1954  0.0001
22| 0.002 0.093 0.5231 0.0025| 60 | 0.006 -0.158 0.2783  0.0042
23 | 0.000 -0.033  0.4077 0.0087 | 61| 0.000 -0.002 0.2602  0.0000
24 | 0.002 0.099 06894 0.0051 62 | 0.001 0.045 0.3167  0.0040
25 | 0.000 -0.020  0.4368  0.0011 63 | 0.001 0.056 1.0629  0.0016
26 | 0.000 -0.039  0.4395 0.0046 | 64 | 0.001 -0.065 0.1032  0.0018
27| 0.004 0.130 01132 0.0046| 65| 0.000 -0.023 10755 0.0070
28 | 0.000 -0.017 06837 0.0019| 66| 0.000  -0.023 0.2288  0.0085
29 | 0.000 0.024 0.1010  0.0011 67 | 0.000  -0.030 0.1875  0.0055
30| 0.004 -0.127 1.0067 0.0000| 68| 0.001 0.054 0.3846  0.0064
31| 0.000 -0.031  0.1057  0.0001 69 | 0.000 0.015 0.1470  0.0001
32| 0.001 0.049 0.7879 0.0021 70 | 0.000 0.035 0.0888  0.0103
33| 0.000 -0.008 0.8214 0.0037{ 71| 0.000 0.001 0.0839  0.0010
34 | 0.001 -0.055 03766 0.0049 | 72| 0.000 0.011 0.1358  0.0001
35 | 0.000 -0.034 0.1425 0.0020| 73] 0.000 0.042 0.0836  0.0045
36 | 0.002 0.081 00664 0.0075{ 74|0000  -0.040 0.1710  0.0069
37 | 0.000 0.026 02053 0.0016| 75|0.000  -0.041 05724 0.0028
38 | 0.002 0.082 0.1346 _ 0.0080
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High Dimensional, Large and Heterogeneous Artificial Data

Here we present an artificial data set that is generated in a similar fashion described by Pena

(2005). The data set is a mixture of two regressors; heterogeneous and categorical variables

generated by the following model.

Y= Bo+ BX +ot P Xy + B Z +E . (4.43)

We generate 500 observations, where X°s have 20 dimensions and they are independent
random drawings from uniform distributions. The first 400 observations for each of the X
variables are generated from Uniform (0, 10) and last 100 observations (401-500) from
Uniform (9, 10), that makes the presence of heterogeneous variance in the data set. For the
categorical variable Z, the first 400 observations are set at Z = 0 and the last 100 observations

are set at Z = 1. For the null model we generate errors from Normal (0, 1). The parameter
values have been chosen as f, = B, =...= f,; =1 and B, =— 100, so that the standard

diagnostics of the regressing model does not show any evidence of heterogeneity.

Since the data set is large, results that we obtain from this artificial data are shown by the figure
4.14. The residual plots (scatter plot and histogram) show no indication of heterogeneity, but
the residuals versus fitted values plot shows a clear indication of the presence of heterogeneity
when the last 100 observations are deleted. We consider above mentioned 3 measures (Cook’s
distance, DFFITS and S;) to identify the 100 influential cases but their index plots (figure 4.14
(&), (g) and figure 4.15(a)) show that they are totally failed to identify the influential cases.
Figure 4.15 (a) and (b) shows Pena’s measure identifies influential observations with some
wrong indications. But our proposed M, can successfully identify all influential cases (see
figure 4.15 (c) and (d)). In figure 4.15(d), histogram of M; also shows the heterogeneous
variances in the data set that is not such clear in histogram of S; (figure 4.15 (b)). The M; versus
cook’s distance and M; versus DFFITS (Figure 4.15 (f) and (h)) give the clear presentation of

the effective performance of our proposed measure.
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4.3.5 Simulation Results

In this section we show the performance of our measure (M) and compare with Pena’s
statistic (S;) through simulation. We have done the simulation study for number of
observatior}s n =150 and » =100. For each of sample size we consider simple (p = 1) and
multiple (p = 5) regression. The results are based on 1000 runs of each of the

combination in which the contamination rates by unusuals are 40%, 30%, 20% and 10%.

Simulation of Simple Regression (p =1)
For simple linear regression we generate observations according to linear relation
Y =By +Bix; +g
where By=2, B=1 and ¢ ~N(0,2).
For ‘good’ (G) observations x~ Uniform (1, 4) and a cluster of ‘bad’ (B) observations are

generated which possesses a spherical bi-variate normal distribution with mean (7 and 2)

and standard deviation 0.5.
Table 4.8

n=>50,p=1, Runs= 1000
(CR = Correct Identification Rate,
IMC = Identification More than Contamination, Z.e., presence of swamping)

G/B(Contm.%) | Statistic CR=100% CR>75% CR>50% CR>25% CR<25% CR=0% | IMC
30/20 M; 989 0 0 0 0 0 11
(40%) S; 601 99 20 14 8 258 0
35/15 M; 822 0 0 0 0 0 178
(30%) S; 546 69 24 15 9 337 0
40/10 M; 519 0 0 0 0 0 48]
(20%) S, 105 3 5 3 3 881 0
45/05 M, 192 0 0 0 0 0 808
(10%) S; 415 8 4 4 l 458 | 110
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Table 4.9

n=100, p=1, Runs = 1000
_ . (CR = Correct Identification Rate,
IMC = Identification More than Contamination, i.e., presence of swamping)

G/B(Contm %) | Statistic CR=100% CR>75% CR>50% CR>25% CR<25% CR=0% | IMC
60/40 M; 977 0 0 0 0 0 23
(40%) S, 647 198 26 20 11 98 0
70/30 M; 724 0 0 0 0 0 276
(30%) Si 587 110 40 29 30 204 0
80/20 M; 294 0 0 0 0 0 706
(20%) Si 82 12 3 3 3 897 0
90/10 M; 37 0 0 0 0 0 963
(10%) S; 419 10 7 3 3 499 59

Simulation of Multiple Regression (p=3)

We consider the multiple regression model
Vi = By + Bixy + Byxo, + Baxy, + Byxy + Bsxs +€, i=12,..n

where By=2, B, =1 Jj=12,....5and ¢, ~N(0,2).

3

For ‘good’ (G) observations xij ~ Uniform (1, 4), and for ‘bad’ (B) observations

x,; € N(7,.5) and y, € N(2,.5).
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Table 4.10

n=350,p=5, Run= 1000
' . (CR = Correct Identification Rate,
IMC = Identification More than Contamination, i.e., presence of swamping)

G/B(Con% | Statistic  CR=100% CR>75% CR>50% CR>25% CR<25% CR=0% | IMC
30/20 M; 923 0 0 0 0 0 7
(40%) Si 0 0 0 o 9 99| 0
35/15 M; 772 0 0 0 0 0 228
(30%) S; 0 0 i 0 7 992 0
40/10 M; 596 0 0 0 0 0 404
(20%) S, 0 0 3 2 6 989 0
45/05 M; 445 0 0 0 0 0 555
(10%) S; 0 2 3 8 24 962 I

Table 4.11

n=100,p=25, Run= 1000
(CR = Correct Identification Rate,
IMC = Identification More than Contamination, i.e., presence of swamping)

G/B
(Contm.%) | Statistic CR=100% CR>75% CR>50% CR>25% CR<25% CR=0% | IMC
60/40 M; 901 0 0 0 0 0 99
(40%) S, 0 0 0 0 0 1000 | ©
70/30 M; 735 0 0 0 0 0 265
(30%) S, 0 0 0 2 4 994 0
80/20 M; 567 0 0 0 0 0 433
(20%) S, 0 5 1 13 21 950 0
90/10 M 427 0 0 0 0 0 573
(10%) S, 0 0 0 1 1 998 0
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4.3.6 Findings from Simulation Study

gimulation tasks make some significant differences between the two: S; and M; as
follows:

(a) M; performs better than S; in higher contamination rate.

(b) M; performs better than S; for multiple regression as well as simple regression.

(c) Most Qf the times S; totally fails to identify unusual observations in multiple
regressions.

(d) For lower contamination M; affected by swamping.

(e) M; does not matter sample size.
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Chapter 5

[T & . .
Humans are good, she knew, at discerning subtle patterns that are really there,
but equally so at imagining them when they are altogether absent.”

Carl Sagon

Classification of Unusual Observations
in Linear Regression

Present chapter proposes a five-fold plotting technique with a robust distance measure on
a potential-residual (P-R) plot that can classify outliers, high leverage points and
influential observations as well as identify them properly at the same time in a same
graph. The proposed technique based on group deletion idea shows efficient performance
in presence of masking and/or swamping phenomena. It shows its efficiency for multiple
unusual observations by using three well-referred data sets and an artificial high-

dimensional large data with heterogeneous variances.

5.1 Necessity of Classification

In linear rf;gression, most of the time we try to diagnosis outliers and high leverage points
that have very close ties with influential observations. It is a common belief that outliers
would be highly influential, but that is not always true. Andrews and Pregibon (1978)
showed that outlying observations might be little influence on the results. Their examples
illustrated the existence of outliers that did not matter and high leverage points were
likely to be influential. Chatterjee and Hadi (1986) showed that ‘as with outliers, high
leverage points need not be influential, and influential observations are not necessarily
high leverage points’. Chatterjee and Hadi (1988) pointed out, “Patterns of the residuals

are often more informative than their magnitudes. Graphical displays of residuals are,
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therefore, much more useful than formal test procedures.” We make the sense, graphical
displays can help us to remove the problem of close ties of outliers and leverage values
by visualizing the real patterns of residuals and leverage values. An extensive search
(e.g., Atkinson, (1981, 1985), Atkinson and Riani (2000), Barnett and Lewis (1995),
Behnken and draper (1972), Cook and Weisberg (1982), Cook (1998), Rousseeuw and
Leroy (1987), Rousseeuw and van Zomeren (1990), and Hubert ef ol 2007) is still going
for a reliable plotting procedure for identifying outliers and high-leverage points. Most of
the diagnostic techniques in literature for identifying outliers and high-leverage points are
focusing on both of them separately. Identification of both of them at the same time is
necessary because presence of one makes the identification of the other very difficult
(Pena and .Yohai, 1995) and as a result proper identification of influential observations
may not be possible. We propose a new type of potential-residual (P-R) plot that
identifies outliers, high-leverage points and influential observations along with a
Mahalanobis type robust distance measure and classify them properly at a time in a same
five-fold graph, which is not possible by the plot analysis in literature and in existing

statistical software packages.

5.2 Classification of Regression Data

In regression analysis observations (data) are classified basically into two: regular
observations and unusual observations. Regular observations are those who have some
specific pattern and good in number in the data set. On the contrary, observations are
unusual in the sense that they are exceptional, they have extra role on model building
process, or they may come from other population/s and do not follow the pattern of the
majority of the data. Statisticians classify unusual observations into three: outliers, high-
leverage points and influential observations. Following diagram makes the clear

understanding about the classification in regression data.
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Regression Data
(Observations)
1

1
Regular Data LUnusual Data

Outliers:

Those do not follow the
pattern of the majority
data.

I 1

Leverage Points: Regression Outliers:
Cases for which x; are far Cases for which y; are far

away from the bulk of x; away from bulk of y;.

1 |

Good Leverage: Bad Leverage:

Vertical Outliers:

[f the (x;, y;) does fit the linear Cases for which x; far away from Regression outliers do not
relation; it  improves  the the bulk of the x;, do not fit the leverage point.

precession of the regression relationship.

coefficient.

Figure 5.1 Classification of regression data
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5.3 Classification through Identification

In regress19n diagnostics basic objective is to identify the influential observations that
influence the model building process and decision making. Proper classification of
unusual observations justifies identification of influential observations. In this regard we

give a short discussion of identification techniques of outliers, high leverage points and

influential observations successively.

5.3.1 Identification of Qutliers

Outliers are generally identified by measuring the residual vector, » and is defined as

r=Y-XB (5.1)
=(I~H)e, (5.2)
In scalar form, i-th residual is
n=g -y hes i=12.,n. (5.3)
Jj=1

Clearly, if the Ay are sufficiently small, r; will serve as a reasonable alternative of, .

Behnken and Draper (1972) use r; for plots of residuals to identify outliers. Identity (5.2)
indicates that the ordinary residuals are not independent (unless H is diagonal) and they
do not have the same variance (unless the diagonal elements of H are equal). According
to Montgomery et al. (2001), “non independence of the residuals has effect on their use
for model adequacy checking as long as » is not small relative to the number of
parameters, k. Scaled residuals are helpful for identifying outliers or extreme
observations. Chatterjee and Hadi (1988) pointed out that the ordinary residuals are not
appropriate for diagnostic purpose and a transformed version of them is preferable.

Since the approximate average variance of a residual is estimated by MS,.; (mean squared
residuals), a logical scaling for the residuals is the standardized residuals

N F;

v =——=;i=12..n (5.4)

i

res
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which have mean zero and approximate variance equal to one, consequently a large
standardized residual potentially indicate an outlier. Since the residuals have different
variances and are correlated, the variance of the i-th residual is

Vir)y=c*(1-h,), (5.5)
where o is an estimate of MS,.; Daniel and Wood in 1971, introduced a type of (i-th

internally Studentized) residual as

e = d

;= ﬁ-\/.—;h;’—,l = 1,2,...,”,

when o, =&+l —h, . But many of the authors feel that internally Studentized residuals

(5.6)

are over estimated by the extreme observations and they have suggested the i-th

externally Studentized residuals,

e. :—rl—-' i=1,2,...,n, (57)

" ik,

‘ _ N [y g yy-n
takingo, = & \{1 - h, where &* = Y ([ f 1 )Y i=12,..,n,
n.— —

is the residual mean squared error estimate when the i-th observation is omitted and

HED = x O (x0T img g s
is the prediction matrix for X . Atkinson (1981) prefers e, over e; for detecting outliers.

Imon (2005) proposed generalized Studentized residuals to coop up with multiple outliers

by using group deletion and defined as

r.
T ieR
. 6'1(’—: 1_hﬁ(l’?)
(= \’r (5.8)
HR) for i¢R

Or '\/l + hii(R)
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= y. — 7 B 3 = r -1 y7r .
where iy = ¥, =% Buy By = (X, X, )" XY, and h,,, is the i-th diagonal element of
(R o
Hy, (where ‘R’ is the remaining group of observations after the deletion), which are

analogous to residuals suggested by Hadi and Simonoff (1993) and Atkinson (1994).
5.3.2 Identification of High-Leverage Points

Observations corresponding to excessively large values of h, =x (X" X)"'x, are treated

as high-leverage points. Among them twice-the-mean rule proposed by Hoaglin and
Welsch (1978), thrice-the-mean rule proposed by Vellman and Welsch (1981) and
suggestions of Huber (1981) are commonly used. Mahalanobis distance (1936) is the first
distance measure used in multivariate analysis, also suggested to use as a measure of
high-leverage points. Rousseeuw and van Zomeren (1990) showed the diagonal elements
of hat matrix (H), 4; has the positive relation with non-robust MD, as

h, =—1—MDf WL (5.9)
n-1 n

Due to no;1 robustness, MD sufferes from both masking and swamping. To remove the
problems (masking, swamping) of multiple outliers Rousseeuw and van Zomeren (1990)
proposed robust distance, by using minimum volume ellipsoid (MVE, Rousseeuw 1985).
Hadi (1992) pointed out, “...in the presence of a high-leverage point the information
matrix may breakdown and hence the observation may not have the appropriate
leverage”. In this connection, Hadi (1992) introduced potentials based on single case
deletion and defined as

Bon =% (X, X)7'x,,  i=12,,nm, (5.10)

i#(0)
where X "is the matrix without the i-th observation. Observations corresponding to
excessively large potential values are considered as high-leverage points. It is reported
that the pr:asence of multiple high leverage points may cause masking and/or swamping
because of which some outliers and leverage points goes undetected (masking) and/or

some innocent observations reveal as outliers or leverage points (swamping). Imon
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(2002) suggested a group deletion measure (generalized potentials) for identifying
multiple high-leverage points.

5.3.3 Identification of Influential Observations

Most popular identification techniques of influential observations, Cook’s distance,
DFFITS or DFBETAS consider both of outliers and leverage points together in a
multiplicative form. Imon and Ali (2005) mentioned that, residuals together with leverage
values may cause masking and swamping for which a good number of unusual
observations remain undetected in the presence of multiple outliers and multiple high-
leverage points. As a result identification of multiple influential observations would be
troublesome. Hadi (1992) showed that the values of these statistics misleadingly small if
either residuals or leverage values used in these statistics in a multiplicative form are
small and consequently they could fail to identify potential outliers and leverage points.
Hadi (1992) suggested a new type additive measure for identifying influential

observations as
2
2 k d,. hn‘

;= - , i=12,.,m, (5.11)
1-h, 1-d? 1-h,

2

where a’,.2 = -,'r—IS the square of the i-th normalized residual and #;; is the i-th diagonal
F'r

elements of H for the full matrix. As a cut-off point, Hadi suggested A % to be large if it

exceeds median(H?) + cymad(H 2}, ¢ is appropriately chosen constant between 2 and 3.
Imon and Ali (2005) mentioned that, since H? is a single case deletion diagnostic
measure it may fail to identify multiple outliers and high-leverage points. They re-

expressed the Hadi’s (1992) statistic as

2
2ok T Y i=12,.. 0, (512)
' n—k—lo—(”’(l—h,,.) I-h,

r

and finally they suggested another statistic as an additive form of residual and leverage

and used group deletion idea (see Imon and Ali, 2005) as
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ARL =k [i}|+ ok i=12,..n, (5.13)

.

ra
Y — X, »B(R)

—/—=—= for ieR
where t, =4 KN ,,,ﬂ”
y:_xfﬂn

= Jor igR
Lo,“/1+h”.m)

h,
A SRaLICL for ieR
i l_hii(R) (5.15)

hii(R) Jor ieR

(5.14)

n L

k= Z ! |and k, = Z » By > Gy and h,x, all carry the above and usual meaning.

i=l i=1

They proposed to use confidence bound type cut-off point for ARL; and gave as
ARL >median (ARL)+ cMAD(ARL). (5.16)
As usual ¢ is any arbitrary chosen constant between 2 and 3. GDFFITS (Imon, 2005), a

group deletion technique is also used for identifying multiple influential observations.

S.4 Proposed Method

We propose our technique by putting all together following remarkable statements from
three leading regression diagnostic statisticians. Welsch (1982) pointed, “Neither the
leverage nor the Studentized residual alone will usually be sufficient to identify
influential cases”. Hocking (1983) said, “I find that the diagonal elements of the hat
matrix and ‘deleted’ Studentized residuals provide most of the evidence needed to track
down maverick cases”. Atkinson (1986) mentioned, “In presence of masking single
deletion methods fail to reveal outliers and influential observations”. We show the
situations and effectiveness of potential versus residual (P-R) plot in a same space and try
to keep away our measure from the affect of multiplicative phenomena. We define our
technique in the following steps and the section ‘Explanation’ clarifies the steps.

(i) Find the suspect (to be deleted) group of unusual observations.
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(ii) Estimate the parameters after deleting the suspect group of cases.

(iii) By using the estimated parameters we calculate deleted residuals and we compute
diagonal elements (group-deleted leverage/potentials) of the deleted leverage
matrix.

(iv) We make a scatter plot (group-deleted potentials versus group-deleted
standardized residuals (#;)) and classify the observations according to pre assigned
cut off points (which make boundary/confidence lines) that are given below.

V) We' draw a 95% joint confidence region of potentials and residuals for identifying

influential observations in the same plot.
5.4.1 Explanation

A general approach of group deletion is to form a clean subset of the data that are
presumably free of unusual observations and then test the outlyingness of the remaining
points relative to the clean subset. Let M be the set of indexes of the observations in the
clean sub set, and let Y}, and X}, be the subset of observations indexed by M. One way of
finding the sub set M is to determine the sub set of size d, the deletion of which produces
the largest reduction of the residual sum of squares. Problem is that d is rarely known,

and finding (», ) sub sets of size n-d with the minimum residual sum of squares involves

extensive éomputations and some times can not be possible for large n. We suggest here
to use robust ((e.g., LMS, LTS (Rousseeuw 1984, 1985), RLS (Rousseeuw and Leroy,
1987)) and/or diagnostic techniques (e.g., residual analysis, cook-type distances and/or
robust distances) as a first aid for identifying suspected outliers and/or high-leverage
points. Robust methods that are used for the identification of suspected group of
observations can make the estimation robust with their own robustness properties, so we
suggest giving the preference for using robust methods to find out initial suspicion-subset
of unusual observations. We perform our plotting procedure by the following steps. First

two steps for computations and last two steps help us to draw potential versus residual (P-

R) plot.
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5.4.2 Computation Steps

First step: Let us assume, ¢ observations among a set of » observations are treated as

unusual after the first diagnosis, a set of (n-d) cases ‘remaining’ in the analysis is R and a

set of cases which will be ‘deleted” is D. Without loss of generality, we arrange these

suspected cases at the end of data matrices of X, Y, and V is a variance-covariance matrix

as follows.
X Y V., 0
X = le Yzl:R:l Vo=l R 517
I:XD Y, 0 Vl) G47
where ) VR = (X;'X/e)_l and VI) = C’Y;IJ.X/))HI .

Second step: In this stage we compute standardized deleted residuals by the formula
v Taw Ty
Pog = —2—0 (5.18)
S.E.( Fomy)

where Tagy =Y =X Buy s By = (Xp X )" X2 Yy,
Fatry = mean(r_s_,( ry) and S.E.(7, ., )is the residual standard error and to get the group-
deleted potentials (name as potentials) we compute the diagonal elements of Hg),

Pu =X (X3 X ) 'xs  i=12,..n (5.19)
and , Hp = XXy X )" X" (5.20)
Third Step: We draw a scatter plot of potentials versus deleted standardized residuals.
Since we transform the residuals into the standardized form (standard normal), we draw
the 95% boundary lines (-1.96,1.96) in Y-axis for finding outliers and
median (B, p)  +3MAD(hy ) cut-off line in X-axis for finding the high-leverage
points. These types of cut of points for high-leverage points are suggested by Hadi

(1992).
Forth Step: We draw a joint 95% confidence region (ellipsoid) by using deleted

potentials and deleted standardized residuals according to the formula (idea) of
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Mahalanobis distance for identifying influential observations, (see section 5.5). We
consider the observation outside the confidence ellipse and in the region of outliers
and/or high-leverage points as an influential observation. Since the equation of an ellipse
is an additive form therefore we can say our influence statistic is far from multiplicative
phenomena. Now the whole data set is classified into four as our requirements: regular
(good) observations, outliers, high-leverage points and influential observations by
making the figure fivefold. We say as Rousseeuw and van Zomeran (1990), “a single

diagnostic can never be sufficient for this fivefold classification!”

5.4.3 Decisions

To illustrate the terminology and to reach in conclusion of our plotting procedure let us
consider the figure 5.2, region (a), contains regular (good) observations inside the ellipse
(or outside the regions of outliers and high-leverage points); region (b), assigns the
observations possessing vertical outliers (regression outlier but not a leverage point), over
the horizontal line at 1.96; region (c), contains observations outlying in x, y , below the
horizontal line at -1.96; in region (d), right of the vertical cut-off line observations are
treated as high-leverage points; and, for region (e), observations (outside the boundary of
the 95% joint confidence region (ellipsoid) and at the same time in the regions of outliers

and/or high-leverage points ) are treated as influential observations.



(b} outliers

{e)influential observations

(alregular
observations

(d)high-leverage points

Standardized deleted residual
0
I

(c) optliers

T T T
[ -1 0 b

Deleted leverage

Figure 5.2 Classification of observations with (a) regular observations, (b) and (c) both
are outliers, (d) high-leverage points, and (¢) influential observations.

We assign the above classification numerically,

(i) 1.96 < outliers < —1.96. (5.21)
(i) High-leverage points>  median(h;,) + 3MAD(h, ) - (5.22)

(iii) Observations outside the confidence ellipsoid and at the same time lie nto
the regions of outliers’ and/or high-leverage points are considered as influential

observations. (5.23)

5.5 Proposed Distance

Now we want to formulate our proposed distance and find out the distribution of it.

Following subsections are made to serve the purposes accordingly.
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5,5.1 Derivation of Distance

It is well know that the Mahalanobis squared distance (MSD) based on the population
mean and population scatter matrix is

MSD, = (x, ~T(X))" £7(x, - T(x)), (5.24)
where X = (xl,xz,...,x,,) is a data set matrix of # points in p dimensions and 7(X) is a

vector of ‘center’ (mean) and X is the matrix of ‘scatter’ (covariance) of X,

Its (MSD) sample counterpart is defined as 4
MSD, =(x, - X) s (x, - X),, (5.25)
where, X and S are the standard sample mean and covariance matrix.

We make a Mahalanobis type distance based on the sample mean X and sample scatter S
of the matrix Xpp (potential-residual matrix), which is defined as

X, pRTZ (vector of potentials, vector of residuals). (5.26)
Since X (without deletion of suspects) may be contaminated by the unusual observations,
the distance based on them will be sensitive to the unusual (extreme) observations.
Becker and Gather (1999) pointed out, “classical tools based on the mean and covariance
matrix are rarely able to detect entire multivariate outliers in given sample due to
masking effect”. To remedy from the problem of masking and/or swamping we try to
make our distance resistant/robust by deleting the suspected group of unusual
observations (extreme values) from the X. As a result we propose a type of robust

distance

RDST,. = ‘\/(xi _T(X(R)))TS(R)_] (xi —T(X(R))) (5-26)

where i =1,2,...,n and

mean h,,.( R) _ .
= U land S, ,, = variance(F . agn) -
T(X(R)) I:mean Fa) ) Ry Fs(r)

Since MD,is the distance of the test point from the center of mass divided by the width of

the ellipsoid in the direction of the test point, our robust distance (RDST) also measures
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distance by drawing an ellipsoid that is constructed as an additive form after the deletion

of the suspected group of unusual observations. Thus the ellipsoid (distance) holds
robustness in itself.

5.5.2 Distribution of the Distance

The distribution of the Mahalanobis distance (MD) with the both true location and shape
parameters is well known. For the better understanding we clarify the distributional

results for the Mahalanobis type distance and to find the distribution of RDST. We

consider three established distributional results.
1. If we consider the distance (a’z), MSD is based on true parameters zand 2 and the
data is normal then the d? follows x? distribution (Mardia, Kent and Bibby, 1979),

ie d® =(x,—u) Z7(x, - . (5.27)

2. If the distance (d?), MSD is based on standard mean and covariance estimates this

distance have an Beta distribution (Gnanadesikan and Kettenring 1972; Wilks, 1962),

(-1 oG-,

n n

lLe. ;

i
n

%) 57, - X)~ Bem(ﬁ, E 1) (5.28)

where f:lix,; S = 1 n(x,—fXx,.—/?)T.

R n-143
3. If the distance, d*is based on estimate, S of 2 that is independent of thex,, S is an

unbiased estimate of X based on sample of size #n. these distance have an exact F

distribution when u is the location argument (Mardia, Kent and Bibbey, 1979) and an

approximate F distribution when X is the location argument (Serfling, 1980). Given S

and x, are independent,

(n=p) o _ (=P (VS u)~ F (5.29)
(rz—l)p (rz—l)p(x' #) (. (pn=p)

Using a variant Slutsky’s theorem
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(n—- n =\
T IME  R

al{py-p)* (5.30)
Hardin and Rocke in 2005 pointed out, «

we apply an adjusted F distribution to the
extreme sample points. The F distribution i IS more representative of the extreme points

than the more commonly used y?distribution”, They showed in their paper that F

distribution is also more appropriate than others in case of robust distance. If we consider
the above arguments, we see our distance is analogous more appropriately to the 3" (eq.

5.30) and we may come to the conclusion, RDST follows F distribution,

: (n-1)p
e, RDST ~ \/ s LA (5.31)

5.6 Examples

In this section we investigate the effectiveness of our proposed procedure empirically. To
compare with existing identification techniques, we use three well-referred data sets from

the literature and an artificial and high-dimensional large data set.

Hawkins et al. (1984) Data

We use the artificial data set generated by Hawkins et al. (1984) as our first example. It
provides an example with masking effect. The data set consists of 75 observations in 4
dimensions, one for response variable others are explanatory variables. It is well
established in the literature that the first 10 observations are bad leverage points and the
next 4 observations are good leverage points. Hawkins ef al. (1984) mentioned that the
bad leverage points (outliers) are masked and the 4 good leverage points are appear
outlying because they possess large residuals. Rousseeuw and Leroy (1987) showed that
observations 1-10 are influential and the observations 11-14 (good leverage) are well
accommodated by the LMS fit. Columns 2-5 in table 5.1 show single case diagnostics,
Cooks distance identifies only observation 14 as influential , residuals r; identify 5
observations (7, 11-14) leverage values identify only 3 (12-14) as extreme cases. DFFITS
identifies observations 2, 7, 8,11,12,13 and14 as influential. Imon (2002) identified all the
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observations (1-14) as high leverage points. Hardin and Rocke (2005) showed that all the
14 observations are masked when the mean and covariance are used to determine
Mahalanobis squared distance. At this stage we apply the proposed algorithm to identify
and classify the observations. We consider all first 14 observations as the suspected
unusual observations and make the deletion set D by them. According to our algorithm
table 5.1; by the columns 6 and 7, shows observations 1-10 as outliers and all 14
observations (1-14) are identified as high leverage points. Now, if we see to the figure
5.3 potential versus residual (P-R) plot, it clearly builds a confidence region (ellipse) by
potentials and residuals in two dimensions. We know that first 10 observations are the
most influential as they are at the same time, outliers and high leverage points. But these
observations (1-10) are masked while the less influential (high leverage) 4 (11-14) points
are getting more importance in DFFITS. Our P-R plot (figure 5.3) shows a very neat
classification of 1-10 as outliers (good leverage), 11-14 as high leverage (bad leverage)

points and all 14 observations as influential observations.

Table 5.1 Diagnostic measures for Hawkins ef al. (1984) data

r; I CD; |DFFITS] rocn) Py
Index | (2.50) (0.107) (L00)  (0.462) | (1.96)  (0.169)
1 155 0.063 0040  0.406 2371 14.463
2 1.83  0.060 0.053  0.470 2487 15222
3 140 0086 0.046  0.430 2570 16.966
4 119 0.086 0031 0352 2407  18.015
5 141 0.081 0.039 0399 2505  17.381
6 1,59  0.073 0052 0459 2452 15.611
7 2.08 0068 0079  0.575 2641  15.704
8 1,76 0.063 0052 0464 2528  14.816
9 126 0080 0034 0372 2418  17.033
10 141  0.087 0048 0439 2480  15.974
1 3.66 0094 0348  -1.300 0.185  22.389
12 450 0144 0851  -2.168 0.176  24.026
13 288 0109 0254  -1065 0351 22731
14 256 0564 2114  -3.030 0202  28.158
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Figure 5.3 P-R plot; Classification of outliers, high-leverage points and influential
observations for Hawkins et al. (1984) data

Stackloss Data

This data set comes from Brownlee (1965) and has an extensive use in regression
diagnostics. It is a three-predictor data set with airflow, cooling water and acid
concentration, consisting 21 observations. Rousseeuw and van Zomeren (1990)
mentioned, 4 points (1, 2, 3 and 21) are regression outliers, observation 4 is vertical
outlier, more over, they mentioned case 21 is not far from X-space and case 2 is a mild
regression outlier. Hence we suspect all 5 observations (1, 2, 3, 4, and 21) are unusual
and form the deletion group (D) by these 5. We calculate standardized deleted residuals
and diagonal elements of deleted leverage (potential) matrix for the proposed method.
Table 5.2 (columns 2,3) shows that LS residual predicts only case 21 as outlier and case
17 as high.leverage point. Cook’s distance does not able to identify any influential case

and DFFITS can identify only 21 as influential observation. If we look at the last two
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columns of the same table, we see our proposed method clearly identify observations 1,
2,3,and 21 as high leverage points and observations 1 and 3 as outliers. When we look at
our figure 5.4, we can easily and accurately classify 1, 3 and 21 are bad leverage, 4 is
vertical outlier, and 4 observations (1, 2, 3 and 21) are most influential. According to the
distance from the center of the data we can say observation 1 is the worst case in the

whole data set.

Table 5.2 Diagnostic measures for Stack loss data

Index Iri ki  CD; |DFFITS| 1ol g
(2.50) (0.381)  (1.00)  (0.873)|  (1.960) (0.609)

1 119 0302  0.154 0.795 2153 1.732
2 072 0318 006  -0.481 0.956  1.781
3 1.55 0175  0.126 0.744 1971 1042
4 189 0129 0.131 0.788 1.938  0.263
5 -0.54 0052 0004  -0.125| -0.209 0.151
6 0.97 0077 0020  -0279|  -0332 0.188
7 -0.83 0219 00490  -0438| -0213 0282
8 048 0219 0017  -0.251 0.025  0.282
9 .05 0140 0.045  -0423|  -1.051 0.188
10 0.44 0200  0.012 0213|  -0.063 0277
11 0.88  0.155  0.036 0376 |  -0.059  0.199
12 097 0217  0.065 0.509|  -0.176  0.301
13 048 0158 0011  -0203{ -0.780  0.223
14 2002 0206 0000  -0.009| -0.659 0219
15 0.81  0.190  0.039 0.388|  -0.265 0283
16 030  0.131  0.003 0.113|  -0.505 0.208
17 061 0412 0065 0502 -0.394 0512
18 015 0161 0001  -0065| -038 0294
19 020 0175 0002  -0091| 0274 0282
20 045 008  0.004 0.131 0239  0.102
21 264 0285 0692  2100|  -1911  0.849
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Figure 5.4 P-R plot; Classification of outliers, high-leverage points and influential
observations for Stack loss data

Aircraft Data

Here we consider the well-known four-predictor Aircraft data that was presented by Gray
in 1985. It deals with 23 single-engine aircraft built over the years 1947-1979. The
dependent variable is cost, and the explanatory variables are aspect ratio, lift-to-drag
ratio, weight of the plane, and maximal thrust. Most of the traditional diagnostic
techniques identify case 22 as influential case. This observation possesses large
Studentized residual, high-leverage values and huge Cook’s distance and DFFITS.
DFFITS also identifies observation 17 as influential, and observation 14 is identified as
another high-leverage point. The most interesting feature is that the LMS and RLS
technique fail to identify even a single observation as an outlier.

We now apply our proposed technique; we consider 3 observations (14, 17, and 22) as

suspects by the existing popular methods. We find from the column 6 of table 5.3 that

’

136



observations 14, and 22 are outliers and column 7 shows (in the same table), observations
19, 21 and 22 as high-leverage points. However, when we draw the joint confidence
region for finding influential observations we get all 4 observations (14, 19, 21 and 22) as
influential observations. We finally reach the decision from the figure 5.5, observations

19 and 21 were masked and observation 17 was swamped before the diagnostic by our

proposed method.

Table 5.3 Diagnostic measures for Aircraft data

Index | #; h; CD;  |DFFITS; Ir«-r(k)l iy

, (250) (0.435) (1.00) (0.933) | (1.96) (0.235)
1 0.89 0.184 0.036 0.421 0.207 0.036
2 1.24  0.150 0.054 0.528 0.344 0.033
3 .30 0.152  0.060 0.561 0.620 0.033
41 <073 0.156 0.020 -0.309 | -0.296 0.036
51 -0.17 0.100 0.001 -0.056 | -0.172 0.072
6] -0.94 0257 0.06] -0.550 | -0.278 0.179
71 -0.57 0.135 0.010 -0.221 1 -0.277 0.069
8] 095 0209 0.047 0.485 0.206 0.065
9 0.05 0242 0.000 0.027 0.177 0.039
107 -0.97 0.218 0.052 -0.059 0.057 0.164
11| -0.29 0.166 0.003 -0.128 0.295 0.067
12 -1.83  0.062 0.044 -0.508 | -0.906 0.090
13| -0.15 0.079 0.000 -0.044 | -0.039 0.070
14| 003 0.880 0.002 0.086| 2290 0.122
151 -0.06 0.071 0.000 -0.016 | -0.281 0.035

16 0.10 0.169 0.000 0.042 0.711 0.161
171 -1.83 0243 0215  -L117]| -1.131 0.166
18| -0.25 0.108 0.002 -0.085 0.184 0.107
19| 0.66 0.283 0.035 0.410 0.256 0.312
20 1.08 0.153 0.042 0.462 | -0.115 0.012
21| =049 0309 0.022 -0.324 | -0.398 0.337
22| 321 0575 2.798 5564 | 3.555  0.410
231 -0.28 0.100 0.002 -0.092 | -0.429 0.082
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Figure 5.5 P-R plot; Classification of outliers, high-leverage points and influential
observations for Aircraft data
High Dimensional and Large Artificial Data
Here we present an artificial large data set that is generated in a similar fashion described by

Pena (2005). The data set is generated by the model

Y=0,+px +..4 Bipx, +€. (5.32)

We generate 500 observations, where X’s have 11 dimensions with a constant term and they
are indepelident random drawings from uniform distributions. The first 400 observations for
each of the x;-x9 vaﬂagles are generated from Uniform (0, 10) and 100 observations (401-500)
from Uniform (9, 10), makes the presence of heterogeneous variances in the data set. For the

null model we generate errors from Normal (0, 1). The parameter values have been chosen

asfy=p, =...= B, =1, so that the standard diagnostics of the regression model does not

show any evidence of heterogeneity.
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Figure 5.6 shows our proposed plotting procedure has done the classification task well for
Jarge and high-dimensional data set as well as the previous examples
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outfier

] T T

-1.0 -0.5 0.0 0.5 10

potential

Figure 5.6 P-R plot; Classification of outliers, high-leverage points and influential
observations for high dimensional, large and heterogeneous artificial data set.
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Chapter 6

13 . . \ - .
One can not conceive anything so strange and so implausible that

u has not already been said by one philosopher or another.”
Rene descartes

Identification of Unusual Observations
in Logistic Regression

Logistic regression diagnostics (LRD) have recently attracted much interest to the
theoreticians as well as practitioners in recent years. It requires a higher mathematical
level than most of the other material that steps backward to its study. This chapter
presents different diagnostic aspects in logistic regression. As such linear regression,
estimates of the logistic regression are sensitive to the unusual observations: outliers,
high leverage and influential observations. Sections 6.1 and 6.2 cover the basic ideas of
logistic regression and logistic regression diagnostics respectively. In section 6.3 we
propose two new identification techniques for the multiple influential observations in
binary logistic regression. The advantages and performance of the proposed methods in
the identification of multiple influential cases are then investigated through several well-

referred data sets in section 6.3.3.

6.1 Logistic Regression

Classically, logistic regression models were fit to data obtained under experimental
conditions. The current use of logistic regression methods includes epidemiology,

biomedical research, criminology, ecology, engineering, pattern recognition, wildlife

biology, linguistics, business and finance erc. It is useful for situations in which we want
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to be able to predict the presence or absepce of a characteristics or outcome based on
values of a set of predictor variables.

6.1.1 Difference between Linear and Logistic Regression

Main difference in a logistic regression model from the linear regression model is that the
outcome variable is dichotomous. Logistic regression use one of three types of
categorical response variables: binary, ordinal and nominal. Difference between logistic
and linear regression is reflected both in the choice of a parametric model and in the
assumptions. Among two most considerable differences, the first difference concerns the
nature of the relationship between the outcome and explanatory variables. In linear
regression the expected value of Y given the value of X, takes any value between -co and
+o0. In logistic regression with dichotomous data, the conditional mean must be greater
than or equal to zero and less than or equal to one. The second important difference
between them concerns the conditional distribution of the outcome variable. For linear
regression conditional distribution of the outcome variable ¥ given X will be normal with
mean E(Y IAO, and a constant variance. Conditional distribution of the outcome variable
of the logistic regression follows a binomial distribution with probability given by the
conditional mean, 7 (x). The changes in the conditional mean for per unit change in X

becomes progressively smaller as the conditional mean gets closer to zero or one.

6.1.2 Logistic Regression Model Formulation

In any regression problem the key quantity is the mean value of the outcome variable, given the
value of the explanatory variable(s), E (¥/X). In linear regression we assume that this mean may

be expressed as an equation linear in X (or some transformations of X or ) such as

E(Y!1X)= By +Bx +Poxy +t B, 6.1
hence Y=8,+Px+0x ++ %, +& (6.2)
=Xpf+¢ (6.3)
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=EY/X)+e. (64)
To represent the conditional mean of ¥ given X in case of logistic regression, we use the
quantity 7(X) = E(¥ /.X) . The specific relational form of the logistic regression model is

Bo+ Bixy *tf,x,

e
4 (X ) 15 Pt b < hx, 10SA(X) <] (6.5)
__exp(Z)
1+exp(Z)’ ©©)

where Z = Xf. This form gives an S-curve configuration. The well-known ‘logit’

transformation in terms of z(X) is

X
g(X)=ln[lffz()){):l=ﬁ° + B o+ Bx,. (6.7)

Hence, in logistic regression
Y=n(X)+e, (6.8)
here n(x,.)= 7, is known as the probability for the i-th factor/covariate. Thus & has a

distribution- with mean zero and variance equal to 7 (X )1 - (X))

6.1.3 Assumptions in Logistic Regression

Following assumptions are hold for performing logistic regression tasks:
1. The model is correctly specified, i.e.,
a) The true conditional probabilities are a logistic function of the independent
variables.
b) No important variables are omitted.
¢) No extraneous variables are included, and
d) The independent variables are measured without errors.

2. Cases are independent.
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3. The independent variables are not linear combination of each other. Perfect

multicolinearity makes estimation impossible, while strong multicolinearity makes
estimation imprecise.

6.1.4 Parameter Estimation in Logistic Regression

We can use OLS for estimating parameters in logistic regression, but the assumptions
under which the OLS estimators possesses very good properties, do not hold for logistic
regression model. Mainly for this reason the maximum likelihood (ML) method based on
iterative-reweighted least squares become the most popular with the statisticians.
If we let X denote the design matrix and ¥ denote the vector of response values, 7 denote
the vector of E(¥/X), the likelihood equation can be written as
%lg =X"(Y -n) (6.9)

where [(f) = log({(f));and f is the parameter vector. From equation (6.9) it follows
that

X'm=X"7, (6.10)
since &l/0fis set equal to zero. SinceY =7 (ie, the predicted value of Y is the

estimated probability thatY =1 ), the solution to equation (6.10) will satisfy

X' (v-7)=0. (6.11)
In linear regression, the likelihood equations, obtained by differentiating the sum of

squared deviations function with respect to £ are linear in the unknown parameters and

thus are easily solved. But in logistic regression it is not possible for non linearity inf’s
and hence we use numerical optimization ‘Newton-Raphson’ method. This entails first
determining (5 /88)X " (¥ — z), which is equivalent to computing —(§/88)X "7 , which
equals — [(5 / 5,6)7:]X. From equation (6.5) we may obtain ox/df, = 72'(1 - 7r)
and 67 / 8B, = x,m,(1 - =,) .Hence we conclude (62/88)=X"n(1~7),

! 0] o

SO —E(Xrﬂ)z_gEX
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=-X'720-mXx =-x"wx, (6.12)

where W is the diagonal matrix with elements z(l-7), that would have to be

estimated. Iterative estimate of /[ are then obtained as

= = |sug]” 8B
/8:'+1 — M T T i
B [W] 55 (6.13)
=B, + (X"'WX)" X' (Y -7) (6.14)

until estimated f converges to its previous value, i.e, 3, = 3, .

i+l
6.1.5 Why Logistic Regression Diagnostics

Two main causes for logistic regression diagnostics that differ from linear regression are;
MLE estimation method for parameter estimation in logistic regression is very sensitive
to unusual observations and in presence of influential observations implicit assumption is

broken down as like as in linear regression.

6.1.6 Notion of Outliers, High-Leverage Points and Influential
Observations

H

In logistic regression the idea of outlier and influential point is somewhat different. In binomial
logistic regression, we observe outlier or influential point (unusual observations) may occur
mostly as: a) We see response variables (0, 1) are sometimes misclassified, b) By meaningful
deviations (we see also low leverage) in explanatory variables, and c) Disagreement may come
out in response and explanatory variables together. As a result all of the above three can break

the normal pattern (S-curve) of the majority of the data.

6.1.7 The Basic Building Blocks of Logistic Regression Diagnostics

The role of a regression diagnostician is to provide routine methods of model sensitivity
analysis which are both intuitively appealing and inexpensive. Clearly this requires a

through un’derstanding of the model and the nature of the fitting process.
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Pregibon mentioned in 1981, “For The logistic regression, the basic building blocks for

the identification of outlying and influentia} points will again be a residual vector and a

projection matrix”. In logistic regression model, residuals can be defined on several
scales. The two most useful are the components of chi-square (Pearson’s residual) and the
components of deviance. Hosmer and lemeshow (2000) pointed out that the key
quantities for the logistic regression diagnostics, as in linear regression, are the
components of the ‘residual sum-of-squares’ and the deviance for logistic regression.
Both of them play the same role that the residual sum of squares plays in linear

regression.

6.2 Logistic Regression Diagnostics

We want to detect the influential observations to correct and/or remove them from the data set
that makes the decision more meaningful and achieves analysts’ insight.
A large body of literature is available (see Belsley ef al., 1980; Rousseeuw and Leroy, 1987;
Chatterjee and Hadi, 1988; Cook and Weisberg, 1982; Ryan, 1997; Hosmer and Lemeshow,
2000) for the identification of unusual points. Pregibon (1981) provided the theoretical work
that extended linear regression diagnostics to logistic regression.
As the linear regression, identification of unusual observations in logistic regression are
classified into three categories:

1. Outliers identification,

2. High leverage points identification, and

3. Influential observations identification.
Besides the formal diagnostic procedures, a number of different types of plotting procedures
have been suggested for use of diagnostics in logistic regression. These consist of the
following;

(@) PlotAX; versus 7, (d) Plot AX} versus h,

(b) PlotAD; versus 7T, (e) Plot AD, versus hy,
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Plot A, 7 G
(c) Plot AB,  versus 7, () PlotAB,  versus h,

) -
where AX ;. AD;and Af, are the Pearson chi-square statistic, change in the deviance and

change in the estimated parameters respectively.
This section presents a short discussion of different diagnostic measures for logistic regression
that are originated from linear regression. We also try to modify and develop the most popular

diagnostic measures for logistic regression based on the work of Pregibon (1981).
6.2.1 Identification of Qutliers

Most of the times outliers are identified by using residuals or some functions of the residual. In

logistic regression, the i-th residual is defined as

E, =y, -7, i=12,..,n. (6.15)
Residuals measure the extent of ill-fitted factor/covariate pattems. Sometimes we also suppose
that there are ;j distinct values of observed x. We denote the number of cases

X=x by m;, j=L2,.,j .Inthissituation we define the j-th residual as

E,=y,~-ma7,, j=12,..n. (6.16)
We assume for the simplicity in our study, m; =1. The observations possessing large residuals
are suspect outliers. The unscaled residuals are not readily applicable in detecting outliers. Now
let us introduce with some scaled version of residuals that are commonly used in diagnostics
for the identification of outliers. In logistic regression the error variance is a function of the
conditional mean, ie.,

Var(y, /x)=v, =m7z,(1-7,). 6.17)
The Pearson residual defined for the i-th factor/covariate pattern is given by

R
p=d2t, i=1,2,
v;

Pregibon (1981) derived a linear approximation to the fitted values, which yields a hat matrix

..... . (6.18)

for logistic regression
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H=y'"2x(xTyxyt xTy12 6.19)
where V is the diagonal matrix with general elements v.
;-

The above approximation yields

~

E =Y, ~7& ~ -4y, (6.20)
and the variance of the residual is given by
V(E)Y=v,(1-h,) (6.21)

which suggests that the Pearson residuals do not have variance equal to 1. For this reason we

could use the standardized Pearson residual given by

yr‘ __ﬁ'r .
: Ty =—Fm—te,  i=12,.,n. (6.22)
vill-h,

4

“The quantities;, ry; and A, (i-th diagonal element of leverage/projection matrix) are useful

for detecting extreme points, but not for assessing their impact on the various aspect of the fit”

(Pregibon 1981). Standardized Pearson’s residual is suggested to use of single outlier

identification and the /-th observation is termed as outlier if] l”.w-! >3 (equation 6.22). Draper and

John (1981) pointed out that observation with the largest residual was not the most influential,
however, deletion of observation possessing a small residual, had a marked effect on the
parameter estimates. But the reality is no guarantee that the data set will contain just a single
outlier. Hampel ef al. (1986) pointed, “A routine data set may contain about 10% outliers in it”.
A group of outliers may cause of masking and swamping and as a result distort the fitting of a
model in SL'lCh a way that outliers may have artificially very small residuals so that they may
appear as inliers. A number of diagnostic procedures have been suggested to identify multiple
outliers in linear regression, but so far as we know this issue is not much addressed in logistic

regression. We mention here the generalized standardized Pearson residual (GSPR) suggested

by Imon and Hadi (2005), defined as
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for ieR

Vi(r-iy (1- hii(R))

rsi = -
w Vi =Ry P (6.23)
T, ——Jor ig¢R
vi(R)(l + hii(R))
where Puy = By (= Z )x (X, VX, ' (6.24)
Vi = Ty (=) 5 (6.25)

a group of observations D is omitted, and the fitted values for the entire logistic regression model

based on R ( group of remaining observations) set are defined as

;o

S exp(xi ﬂ(.re))

Ty = 7= s
1+exp(x, ﬂ(m

i=12,..n. (6.26)

6.2.2 Identification of High Leverage Points

In 1981 Pregibon derived the diagonal of the leverage and projection matrix for logistic
regression as

B, =m7z (1-7)x (X"VX)'x, 627)
and m; , which is the i-th diagonal element of M=(I-H) respectively. The i-th observation

bearing large 4; and small m; are used to treat as an extreme case in the design space.

6.2.3 Identification of Influential Observations

Among the diagnostic statistics in linear regression, Cook’s distance (Cook 1977, 1979),
DFFITS, and DFBETA (Belsley et al., 1980) have become very popular with the practitioners
of logistic regression. We may define the above statistics for logistic regression as the following

way. We define the i-th Cook’s distance as

~

cD, = (8- g (Xk:VX (3" '/}); i=12,.1, (6.28)

i

where B¢ is the estimated parameter of J with the i-th observation deleted. The i-th Cook’s

distance can be re-expressed in terms of the i-th standardized Pearson residual and leverage as

148



CD; = l rﬂ? Ry
k 1—h, (6.29)

We call an observation influential if its corresponding CD; value is greater than 1

We may define i-th DFBETA as Besley er al, (1980),

DFBETA, = 8, - B¢ (6.30)
and re-expressed by leverage and residual as
XX g,
DFBETA, = - (6.31)
DFFITS may be defined for logistic regression as
= .-.(-,')
DFFITS, =2 "2 i-12, ..n (6.32)

(1) ’
12 1-h,

L

where 7 and v are respectively the i-th fitted response and the estimated standard

error with the i-th observation deleted. DFFITS values can be expressed in terms of

standardized Pearson residual and leverage value as

DFFITS, =r, (6.33)

Observation possessing DFFITS value grater than 3vk/n is termed as an influential

observation.

We also introduce our newly proposed method for logistic regression as

SDFBETA. = (ﬁ,‘(—j) B ﬁ,)T—(VXTVX)(ﬂ,-(—j) - ﬁ,) (6.34)
, v} ’)(1 - hn)

14

where 5 is the estimated parameter vector and v (1-#h,) is the variance of the i-th

residual respectively after deleting i-th observation.
We make similar relationship of CD, DF. FITS and SDFBETA,

CD, pv,
ETA, = —tt— (6.35)
SDFB i vi(—l) (1 _ hﬁ)
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_ DFFITS?
1 _ hﬁ - (6.36)

Cut-off value: We may consider the i-th observation to be influential if it satisfies the condition

3k /n)? ok
[SDFBETA, | 2 Gkiny 9% _
1-(3p/n) n_3p,where k=p+l. (6.37)

6.2.4 Examples

To show the performance of the proposed SDFBETA with single deletion diagnostic measures:
Cook’s distance (CD) and DFFITS, we consider first the well-known Brown data and then we

make a modification in the data and show the comparison.

Brown Data

To illustrate the performance of identification task of the proposed method squared difference
in BETA (SDFBETA) we consider part of a data set in Brown et al., (1980). The original
objective was to see whether an elevated level of acid phosphates (A.P.) in the blood serum
would be of value as an additional regressor for predicting whether or not prostate cancer
patients also had lymph node involvement (L.N.I). The data set in Brown ef al (1980)
additionally contains data on the four more commonly used regressors, but we use only acid
phosphates in illustrating simple logistic regression. The data on the 53 patients are given in
table (A.6) in Appendix; the dependent variable is nodal involvement, with 1 denoting the
presence of nodal involvement, and 0 indicating the absence of such involvement. Scatter plot,
figure 6.1 (a) shows there is clearly an unusual observation (187, case 24) among the patients
without nodal involvement. Ryan (1997) considers the 24" observation as an outlier. We apply
our new diagnostic measure for the identification of the influential case. Table 6.1 shows the
evidence that SDFBETA along with Cook’s distance and DFFITS successfully identify the
case 24 as an influential. Figure 6.1 (b,c,d) justify the identification in favor of the single case

deletion diagnostic measures.
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Table 6.1 Diagnostic measures for Brown data; one outlier

Index | CDi  |DFFITSi| |SDFBETA|| Index| CDi IDFFITSi| |SDFBETA|
(1.000) _ (0.582) (0.353) (1.000)  (0.582) (0.353)

1| 0.006 -0.107 -0.110 281 0.006 0.106 0.109
21 0.005 -0.104 -0.107 291 0.006 -0.106 -0.109
3| 0.006 -0.106 -0.109 30| 0.006 -0.110 -0.115
4| 0.006 -0.105 -0.108 31§ 0.005 -0.104 -0.107
51 0.006 -0.106 -0.109 32| 0.005 -0.104 -0.106
6| 0.006 -0.106 -0.110 33| 0.038 0.280 0.289
71 0.006 -0.108 -0.112 34| 0.033 0.259 0.266
8! 0.005 -0.104 -0.106 35| 0.036 0.272 0.281
9| 0.025 0.228 0.234 36 | 0.006 -0.107 -0.110
10| 0.005 -0.104 -0.107 37| 0.006 -0.104 -0.107
11| 0.005 -0.104 -0.106 38 | 0.032 -0.254 -0.267
12| 0.006 -0.112 0.114 39| 0.008 -0.123 -0.125
13| 9.006 -0.105 -0.108 40| 0.021 -0.206 -0.214
14| 0.017 0.187 0.191 411 0.006 -0.106 -0.108
15| 0.006 -0.107 -0.111 421 0.018 0.188 0.193
16 | 0.006 -0.106 -0.110 43| 0.017 0.184 0.188
17 | 0.006 -0.106 -0.109 44| 0.016 0.180 0.184
18| 0.008 -0.128 -0.131 45| 0016 0.182 0.186
19| 0.011 -0.145 -0.149 46 | 0.016 0.181 0.185
200 0.025 -0.226 -0.236 47| 0.016 0.182 0.186
21| 0.006 -0.105 -0.108 48 | 0.017 0.187 0.191
22| 0.007 -0.120 -0.122 49 | 0.017 0.185 0.190
23 | 0.025 0.222 0.232 50( 0.017 0.187 0.191
24| 2.075 -2.149 -3.619 51| 0.016 0.181 0.184
251 0.044 0.294 0.343 52 0.020 0.198 0.204
26| 0.017 0.185 0.190 53| 0.040 0.281 0316
271 0.006 -0.110 -0.115
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Figure 6.1 (a) Scatter plot of acid phosphates versus nodal involvement, (b) Index plot of
Cook’s distance
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DFFITS

Fr‘igure 6.1 (c) Index plot of DFFITS, and (d) Index plot of SDFBETA
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Modified Brown data

Here we modify the Brown (1980) data by putting two more unusual observations as
cases 54 and 55 and this data set is presented in table (A.7) in the appendix. Scatter plot
of figure 6.2 (a) shows the isolation of these points. Now we apply above three diagnostic
measures again. Cook’s distance and DFFITS do not identify the unusual observations
properly. DFFITS identifies only 2 observations (54, 55), but SDFBETA identifies 3
observations (24, 54 and 55} correctly but at the same time swamps one (case 25) more,
and CD 1s ;totally failed to identify the influential cases. That is, none of them are reliable
for the identification of the multiple influential cases. Though the figures 6.2 (b,c,d), we
show the separation of the cases regular and unusual but table 6.2 (by using cut-off

values) shows the clear indication of failure of the measures.
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Table 6.2 Diagnostics measures for modified Brown data; 3 outliers

Index

IDFFITS]

CD

ISDFBETA|

Index | D

(0.572)  (1.000)  (0.340) l((l)?ls?g)s | (1?)130) IS]?&?EM
1 -0.119  0.007 -0.123 29 -0.117 0.007 -0.120
2 -0.110  0.006 -0.112 30 -0.131  0.009 -0.136
3 -0.117  0.007 -0.120 31 -0.111  0.006 -0.113
4 -0.114  0.007 -0.117 32 -0.107  0.006 -0.109
5 -0.117  0.007 -0.120 33 0.232  0.026 0.239
6| - -0.118  0.007 -0.121 34 0.222  0.024 0.228
7 -0.122 0.008 -0.126 35 0229  0.026 0.235
8 -0.105 0.006 -0.107 36 -0.119  0.007 -0.123
9 0.207  0.021 0.212 37 -0.104  0.005 -0.106
10 -0.111  0.006 -0.113 38 -0.136  0.009 -0.140
11 -0.105  0.006 -0.107 39 -0.102  0.005 -0.104
12 -0.101  0.005 -0.103 40 -0.122  0.008 -0.125
13 -0.103  0.005 -0.105 41 -0.103  0.005 -0.105
14 0.186  0.017 0.189 42 0.184  0.017 0.187
15 -0.121  0.007 -0.124 43 0.181 0.016 0.185
16 -0.118  0.007 -0.121 44 0.180 0.016 0.183
17 -0.117  0.007 -0.120 45 0.182  0.016 0.186
18 -0.103  0.005 -0.105 46 0.180  0.016 0.183
19 -0.106  0.006 -0.109 47 0.182  0.016 0.186
20 -0.128  0.008 -0.131 48 0.186  0.017 0.189
21 -0.114  0.007 -0.117 49 0.182  0.016 0.186
22 -0.102  0.005 -0.104 50 0.186  0.017 0.189
23 0.211  0.022 0.217 51 0.181  0.016 0.184
24 -0.498 0.124 -0.614 52 0.190 0.018 0.194
25 0.341  0.058 0.366 53 0.300  0.045 0.318
26 0.182  0.016 0.186 54 -0.594 0.176 -0.773
27 -0.131  0.009 -0.136 55 -0.782  0.303 -1.123
28 -0.117  0.007 -0.120
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Figure 6.2 (a) Scatter plot of acid_ ph
(b) Index plot of Cook’s distance

osphates (A.P.) versus nodal involvem_ent (L.N.L);
(in presence of 3 unusual observations)
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Figure 6.2 (c) Index plot of DFFITS; and (d) Index plot of SDFBETA

(In presence of 3 unusual observations)
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6.3 Identification of Multiple Influential Observations

In this section We propose two group deleted version of diagnostic measures for identifying

multiple influential observations in logistic regression. These proposed measures are very much

similar to the group deletion idea of Hadi and Simonoff (1993) and Atkinson (1994).

As noted earlier, a general approach of unusual observations identification is to form a clean
subset of data and a subset of suspect group of unusual (outliers/high leverage points)
observations, and then test the sensitivity of the observations on the estimated parameters and
on the model analysis before and after the deletion of suspect group of cases. This is essential
to find out the suspect group of d cases with the minimum residual sum of squares. Problem
with this approach is that d is rarely known and some times even impossible to compute, it
mostly depends upon the value of d comparing with total number of observations (r). Some
times graphical displays like scatter plot, index plot and character plot (two or three regressors
and a response variable) of explanatory and response variables may give us an idea about the
suspect group of unusual observations, but these plots are not helpful for higher dimension of
regressors. Like many others Atkinson (1986), Rousseeuw and Leroy (1987) and Rousseeuw
and van Zomeren (1990) suggest to use robust regression and/or diagnostic techniques to find
the suspects. As Rousseeuw and Leroy (1987), we suggest to use robust techniques for
overcoming the problem of masking/swamping and it is now evident that most of the times
results are fruitful to identify outliers in presence of a number of unusual observations. Here
one can use robust regression techniques like LMS (Rousseeuw, 1984), LTS (Rousseeuw,
1985), and re-weighted least squares (RLS) (Rousseeuw and Leroy 1987) for finding the
suspect unusual observations.

We assumé that d observations among a set of n observations are identified as suspect cases.
Let us denote a set of cases 'remaining' in the analysis by R and a set of cases 'deleted' by D.
Hence R contains (n-d) cases after d cases (group D) are deleted. Without loss of generality, we

assume that these observations are the last of d rows of X, ¥ and V (variance-covariance matrix)

so that we make
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X V= :
D p 0 vy
Now we compute group-deleted version of the residuals and weights (leverage values) that will

use later to develop the new diagnostic measures for the identification of multiple influential

observations in logistic regression. Necessary results from the above arrangements are

8. = — el _ — — g e _
iry =Y, ~ gy and hn(ze) = Ty (1= ﬂ,(,g))x,-l (X, Ve XD 'x,,
where 7,18 the estimated value for the i-th case after the deletion of d suspect cases, Le.,

based on the remaining group of observations R.

6.3.1 Generalized DFFITS (GDFFITS)

In this sub section we would like to introduce a generalized version of DFFITS, designed for
logistic regression model, we name this GDFFITS. When a group of observations [ is omitted,

the fitted values for the entire logistic regression model based on R set are defined as

N _ exp(x,'rﬁ(l?)) .
i(R) 1+ exp(x,-'r E(R) ))

We also define the i-th residual variance and the i-th diagonal element of the leverage matrix as

i=12,..,n.

Vigy = ”i(le)(l - ”r(R))
- - r r ! :
and Picry = Ty (1= T,y )X, (XR VRXR) X; respectively.

Using the above results and also using linear-regression like approximation, we define

generalized DEFITS for the logistic regression model as

fﬁi(m _ yi(R_i) for ieR
Vir-iy Piicr)

yi(RH) - j;i(R) for i¢ R '
Vir) hn’(R+i)

GDFFITS , = 4 (6.38)
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Results are

hif(R) -

Yicreny = Vigwy +T—h——£‘,(m , (6.39)
ir(R)
A 5 (XXt
Biiraiy = Biny +_1H—R—L)—S,(R) (6.40)
H(R)
h
_ HIR)

and hu(m,) - I—h_ 5 (6-41)

i)

help us to re-express the GDFFITS quantities in terms of GSPR and deleted leverages as

GDEFITS, =ry ks i=12,..n (6:42)
h
1 “}(zm for ieR
where hy = h o ’ (643)
JI(R) .
or igR
1+ A Ten

fi(R)

The detection rule of influential observations suggested for GDFFITS in linear regression (as
Imon 2005) may apply for GDFFITS in logistic regression. We consider i-th observation as
influential if

|GDFFITS,| > 3k i{n—d). - (6.44)
6.3.2 Generalized Squared Difference in Beta (GSDFBETA)

In a similar fashion of linear regression we suggest a generalized version of the squared
difference in beta (GSDFBETA) for the identification of multiple influential observations in

logistic regression.

We can define the generalized squared difference in beta (GSDFBETA) for the entire data set,

in presence of a group of influential observations, as

! (/B(R) /B(R-;)) (Xx VRXR)( l()—lg(li-—i)); ieR

GSDFBETA, =+ ( Viien U= Pucw (6.45)

) -
/B(R+.) ;B(R)) (Xl) VDXD)S {R+i) '_:B(le)); ie R

L ,‘(R) H(l\’+l)
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It also can re-express in terms of generalized standardized Pearson residuals (GSPR) and

deleted leverages A as

hi.lrj

#ﬂ for ieR
L))

ok - (6.46)

W*for igR

{i(R)

GSDFBETA, =

Using the relationship of GSDFBETA with other diagnostic GDFFITS as given in linear

regression, we get the relation for logistic regression as follows:

GDFFITS? |
Tohg, o F

GSDFBETA, = R (6.47)
GDFFITS}? | '
TTang, o ER

#(R)

Cut-off value: Observations corresponding to large GSDFBETA comparing with maximum
regular observations are declared as influential observations. Since the theoretical distribution
of GSDFBETA is not so easy we should make a boundary value type cut-off for them. We
may consider the ith observation to be influential in logistic regression as like as linear
regression of GSDFBETA, if it satisfies the condition,

GSDFBETA| 2 SV~ 49>
1-Bp/(n-4d)]

o (6.48)

6.3.3 Examples

Modified Brown Data
The discussion about modified Brown data is given by the ond example in the section 6.2.4.

Now we apply our two newly proposed group deletion measures GDFFITS and GSDFBETA.
Both of the methods identify all of the three suspect cases as influential properly. Besides that
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both identify one more case (38) as influentja which makes the decision that the case (38)

might be masked before the deletion of original 3 influential cases

Table 6.3 Proposed diagnostic measures for modified Brown data

Index [G(‘()).Fs‘;gs' |GSI())glg7ETAI Index | [GDFFITS] |GSDFBETA|
( ) (0.588) 0.367)
1 -0.0969 0.0097 | 29 -0.0984 0.0100
.2 -0.1021 0.0107 | 30 -0.0892 0.0083
3 -0.0984 0.0100 31 -0.1015 0.0106
4 -0.0996 0.0102 | 32 -0.1045 0.0112
5 -0.0984 0.0100 { 33 0.3944 0.1613
6 -0.0977 0.0099 | 34 0.3498 0.1264
7 -0.0953 0.0094 | 35 0.3791 0.1488
8 -0.1082 0.0120 | 36 -0.0969 0.0097
9 0.2851 0.0836 | 37 -0.1098 0.0123
10 -0.1015 0.0106 | 38 -0.5811 0.3710
11 -0.1082 0.0120 | 39 -0.1711 0.0302
12 -0.1369 0.0192 | 40 -0.4386 0.2076
13 -0.1141 0.0133 | 41 -0.1167 0.0139
14 0.1993 0.0406 | 42 0.1932 0.0391
15 -0.0962 0.0096 | 43 0.1903 0.0377
16 -0.0977 0.0099 | 44 0.1864 0.0358
17 -0.0984 0.0100 | 45 0.1905 0.0372
18 -0.1892 0.0370 | 46 0.1876 0.0364
19 -0.2453 0.0629 | 47 0.1905 0.0372
20 -0.4976 0.2694 | 48 0.1993 0.0406
21 -0.0996 0.0102 | 49 0.1913 0.0381
22 -0.1630 0.0274 | 50 0.1993 0.0406
23 0.1912 0.0399 | 51 0.1874 0.0360
24 -2.1214 43782 | 52 0.1964 0.0410
25 0.0860 0.0082 | 53 0.1160 0.0150
26 0.1913 0.0381 | 54 -2.3757 5.5408
27 -0.0892 0.0083 | 55 -2.7589 7.5386
28 -0.0984 0.0100
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Modified Finney data

We now consider another data set given by Finney (1947). The original data set was
obtained to study the effect of the rate and volume of air inspired on a transient vaso-
constriction in the skin of the digits. The nature of the measurement process was such that
only the occurrence and nonoccurrence of vaso-constriction could be reliably measured
We modify the data by putting five more outliers (cases 3, 4, 10, 11, 18, 20 and 21)'
where occurrence and nonoccurrence are replaced with each other. The modified data set
is presented in table 5, appendix (A). Following scatter type character plot gives us the 4
dimensional information of the data set. The index of the cases are given by using

respective numbers to the cases and colors red and blue respectively mean occurrence

and nonoccurrence of vaso-constriction.

4
15
6
36
5
3 13
12
3
14
k] 34
& 2 35 21
38 28 333 . 25 20 .
1 17
26 4 27
1823 23 24
1 4 18 29 2
7 9 31 1
1
10 30
0 3z
¥ i L i T 1 1 T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Volume

Figure 6.4 Character plot of modified Finney data
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App lication of single case deletion measyres

This data set was analyzed extensively by Pregibon (1981). Looking at the pattern of

occurrence and nonoccurrence with 259 0 . )
Yo and 75% contours in relation to rate and volume

of the original data, Pregibon (1981) pointed out that this data set might contain two

outliers (cases 4 and 18) in it.

Table 6.4 presents influence diagnostics for the modified Finney data. We see from this

table that the singe-deletion diagnostics CD and DFFITS fail totally to detect the

influential observations.

Table 6.4 Influence diagnostics for modified F inney data

Index | CD

DFFITS |Ind. |CD DFFITS
1.0)  (0.832) (1.0)  (0.832)
1 0.0154 02147 |21 | 0.1362 -0.6392
2 0.0141 02060 |22 |0.0110 -0.1820
3 0.0228 -02613 |23 |0.0108 -0.1796
4 0.0431 0359 |24 |00119 -0.1886
5 0.0300 03001 |25 |0.0089 0.1634
6 0.0400 03464 |26 |0.0663 -0.4460
7 0.0143 -02068 |27 100104 0.1767
8 0.0093 -0.1674 |28 10.0099 -0.1726
9 0.0151 -02128 |29 [0.018 0.2360
10 0.1398  0.6477 |30 |0.0245 -0.2711
11 0.1386  0.6449 |31 00228 0.2615
12 0.0221 -02575 |32 |0.0695 -0.4567
Co13 00312 -03060 |33 |0.0094 -0.1683
14 00106 0.1781 |34 [0.0122  0.1913
15 00434 03609 |35 |0.0106 0.1785
16 00124 0.1927 |36 [0.0325 03122
17 00119 0.1890 |37 ]0.0099 -0.1726
18 0038 03395 |38 |0.0110 -0.1813
19 00171 -02265 |39 |0.0116 0.1865
20 0.0239  -0.2680
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Figure 6.5 (a) Index plot of Cook’s distance, (b) Index plot of DFFITS
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Application of group deletion measyres

Our newly proposed GDFFIT and GSDFBETA successfully identify all 7 influential

cases and at the same time both of them swamp 3 same cases (13, 32 and 39). Figures 6.6

(a and b) show the same evidence clearly.

Table 6.5 Influence diagnostics GDFFITS and GSDFBETA for modified Finney data

Index | |GDFFITS| [GSDFBETA[ [ Index | [GDFFITS| |GSDFBETA]
(0.918) (1.038) (0.918) (1.038)

1 0.0000 0.0000 | 21 -12.6585 160.2379
2 0.0000 0.0000 | 22 ~-0.0001 "~ 0.0000
3 -3.7293 13.6700 | 23 -0.0467 0.0024
4 6.7722 45.8560 | 24 -0.2572 0.0777
5 0.0065 0.0000 | 25 0.0189 0.0004
6 0.0018 0.0000 | 26 0.0000 0.0000
7 0.0000 0.0000 | 27 0.0126 0.0002
8 -0.0293 0.0009 | 28 -0.0202 0.0004
9 0.0000 0.0000 | 29 0.3810 0.2080
10 11.3037 127.7730 | 30 -0.0003 0.0000
11 11.5619 133.6776 | 31 0.0000 0.0000
12 -0.1454 0.0270 | 32 -1.2930 3.8080
13 -1.9011 6.8922| 33 -0.0886 0.0090
14 0.0023 0.0000 | 34 0.4066 0.2162
15 0.0001 0.0000 | 35 0.4288 0.2284
16 0.0000 0.0000 | 36 0.0019 0.0000
17 0.0000 0.0000 | 37 -0.0202 0.0004
18 6.3102 39.8080 | 38 -0.0010 0.0000
19 -0.3332 0.1349 | 39 1.1413 1.5432
20 -4.9304 24,2208
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Figure 6.6(a) Index plot of GDFF ITS, (b) Index plot of GSDFBETA
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Chapter 7

“A whole is what has beginning, middle and end.”

Aristotle

Findings, Conclusions and Areas of Future
Research

This chapter consists of three sections: the first and second ones depict our findings and

conclusions, while the other presents areas of further research.

7.1 Findings

In this dissertation we endeavor to make three contributions: identification of influential
observations in linear regression, classification of unusual observations in linear

regression and identification of influential observations in logistic regression.

7.1.1 Identification of Influential Observations in Linear Regression

At the name of the topic, ‘Identification of Influential Observations in Linear
Regression’, we develop two diagnostic measures: one is generalized SDFBETA
(GSDFBETA), originated from squared difference in beta (SDFBETA), based on the idea
of group deletion diagnostic, and the other is a new measure M, that is developed by the
idea of Pena (2005). We see that SDFBETA performs as well as a single case deletion
measure like cook’s distance and DFFITS and generalized measure GSDFBETA can

successfully identify multiple influential observations even in presence of masking and/or

swamping phenomena.
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The new measure M; extends the idea of Pena (2005) to the group deletion concept. It
measures the influence of an observation based on how this observation is being
influenced by the rest of the data. A number of well-referred data sets support the merit
of our proposed method for the identification of influential observations where the
commonly used methods fail. Moreover, this method is quite effective in finding
influential observations from high dimensional large data sets and when there is evidence

of variance heterogeneity in the data set. A simulation study shows the efficient

performance of the new measure.

7.1.2 Classification of Unusual Observations in Linear Regression

Under this topic we have proposed a new type of plotting procedure that is exploratory in
nature and which is able to identify and classify the multiple unusual observations:
outliers, high-leverage points and influential observations at a time in a same graph. This
method can make the five-fold plot by only one click in our computer key. Applications
of our préposed method on a number of well-referred data sets show its efficient
performance. Moreover, this method performs well for identifying unusual observations
in case of high-dimensional large data set. We think this plotting technique may be a
good addition to diagnostic literature and in statistical software packages for
identification and at the same time for classification tasks of multiple unusual

observations in linear regression.

7.1.3 Identification of Influential Observations in Logistic Regression

We also propose two new methods GDFFITS and GSDFBETA for the identification of
influential observations in logistic regression, originated from the same measures of
linear regression and based on the idea of group deletion. We see, most of the time the
new measures identify the multiple influential observations properly even in presence
misclassification of the response variable of the binomial logistic regression model,

where as we show the existing methods almost fail to do so. Hence the methods are based
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on group deletion of the suspect cases show nice performance in presence of masking

and/or swamping phenomena. A number of examples have made the success story of the
proposed methods.

7.2 Conclusions

This dissertation shows that proposed diagnostic measures successfully identify
influential cases for linear and logistic regression in presence of masking and swamping.
The methods based on robust regression in their construction process make them reliable
in sense of robustness. Classification task for unusual observations in linear regression
can give the accurate ideas about their consequences on the analysis and the decision
making process. This study reaches the conclusion, ‘robust regression and regression
diagnostics are two complementary approaches and anyone is not good enough without

the other’.

7.3 Areas of Future Research

I intend to continue the present work here along several main directions.

First of all, we intend to extend our proposed diagnostic measures to identify influential
observations for high dimensional large data sets in data mining contexts. That may helps
us to construct outliers free and fair observations in predictive modeling.

We plan to extend the identification techniques of influential observations for the
Generalized Linear Model (GLM) (McCullagh and Nelder, 1989), multivariate, and non-
linear regression.

We want to extend our ideas of classification of unusual observations in linear regression

to the logistic regression and for GLM and we hope it also be applicable in non-linear

regression.,
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Wwe want 10 extend the view that identification of outliers or unusual observations in
logistic regression can be performed for the classification tasks in data mining and pattern
recognition. The tasks of classification by logistic regression may be extended to the area
of kernel logistic regression (KLS), support vector machine (SVM) and import vector

machine (IVM) for performing multi class and non-linear classification.
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Appendix A

Data Sets Used in the Thesis
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Table A.1 Monthly Payments Data

Month | Payment

{x) ()

1 3.22
2 9.62
3 4.50
4 4.94
5 4.02
6 4.20
7 11.24
8 4.53
9 3.05
10 3.76
11 423
12 42 .69

Source: Rousseeuw et al., (1984a)
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Table A.2 Hawkins et o (1984) Data

index | Y Xi X2 X;[Index] Y X, X, X
11 97| 101 196 283 -
21 10.1 9.5 205 289 33 _8'; 21 0 12
3| 103] 107 202 ' 0.5 2 1.2
' 311 411 01 34 16 2.9
4 9.5 9.9 21.5 317 42 07 0.3 1 2.7
5| 10| 103 211 34| 43| op 0.1 33 0.9
6| 10| 108 204 202| 44| 07| 18 o5 39
7| 108| 105 209 201| 45| 05| 18 o1 o6
8| 103 99 196 288| 45| 04| 18 05 3
9| 96 9.7 207 31| 47| -09 3 0.1 0.8
10| 99 93 197 303| 48| 04 3.1 16 3
1| 02 11 24 35| 49| o9 31 25 1.9
12| -04 12 23 37| 50| 04| 24 2.8 2.9
13| 07 12 26 34| 51 07| 23 15 0.4
14| 04 11 34 34| 52| 05| 33 06 12
15| 0.4 3.4 29 21| 83| 07| 03 04 3.3
16| 06 3.1 22 03| 54| 07 1.1 3 0.3
17| 02 0 16 02| 55| 0| 05 24 0.9
18 0 2.3 16 2| 56| 0.1 18 3.2 0.9
19| 0.1 0.8 29 16| 57| 07 18 07 0.7
20| 0.4 3.1 34 22| 58| -0 24 34 15
21| 09 2.6 22 19| 59| 03 16 2.4 3
22| 03 0.4 32 19| 60| -09| 03 15 33
23| -08 2 23 08| 61| 03| 04 34 3
24| 07 13 23 05| 62| 06| 09 01 0.3
25 | . -0.3 1 0 04| 63| -03 1.1 2.7 0.2
26| -0.8 0.9 33 25| 64| 05| 28 3 2.9
27| 0.7 3.3 25 29| 65| 06 2 07 2.7
28| 0.3 18 0.8 2| 66| 09| 02 1.8 0.8
29| 03 1.2 09 08| 67| 07 16 2 1.2
30| -0.3 1.2 07 34| e8| 06] 01 0 14
31 0 3.1 1.4 1| e9| o2 2 06 0.3
32| -04 0.5 24 03] 70| 07 1 2.2 2.9
33| 06 15 31 15| 71| 02| 22 25 23
34| -07 0.4 0o 07| 72| 02 0.6 2 15
35 0.3 3.1 2.4 3 73 0.4 0.3 1.7 22
36| -1 1.1 22 27| 74| -09 0 22 16
37| .06 01 3 26| 75| 02 03 04 26
38| 09 1.5 1.2 0.2

Source: Hawkins et al. (1984)
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Table A.3 Stack loss Data

Stack

Acid
Index |loss Rate  Temperature Conc.
1 42 80 27 89
2 37 80 27 88
3 37 75 25 90
4 28 62 24 87
5 18 62 22 87
6 18 62 23 87
7 19 62 24 93
8 20 62 24 93
9 15 62 23 87
10 14 58 18 80
11 14| 58 18 39
12 13 58 17 88
13 11 58 18 82
14 12 58 19 93
15 8 50 18 89
16 7 50 18 86
17 8 50 19 72
18 8 50 19 89
19 9| 50 20 o
20 15| 56 20 o2
21 5] 70 20 o

Source: Brownlee (1965)
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Table A. 4 Hurtzs-Prung Russel Diagram Data

Inde?c LogT. | LogL.In. Index | LogT. LogL.In.
(i) (X1 (Y5 (i) (X)) (Y1)
1 437 5.23 25 4.38 5.02
2 4.56 5.74 26 4.42 4.66
3 4,26 4.93 27 4.29 4.66
4 4.56 5.74 28 4.38 49
5 4.3 5.19 29 422 4.39
6 4.46 5.46 30 3.48 6.05
7 3.84 4,65 31 4.38 4.42
8 457 5.27 32 4.56 5.1
9 4.26 5.57 33 4.45 5.22
10 4.37 5.12 34 3.49 6.29
11 3.49 5.73 35 4.23 4.34
12 4.43 545 36 462 5.62
13 4.48 5.42 37 4.53 5.1
14 4.01 4.05 38 4.45 5.22
15 4.29 426 39 453 5.18
16 442 4.58 40 4.43 5.57
17 4.23 3.94 41 4.38 4.62
18 4.42 418 42 4.45 5.06
19 423 4.18 43 4.5 5.34
20 3.49 5.89 44 4.45 5.34
21 429 4.38 45| 455 5.54
22| 429 4,22 46| 445 4.98
23 4.42 4.42 47 4.42 4.5
24 4.49 4.85

Source: Rousseeuw and Leroy (1987)
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Table A. 5 Aircraft Data

Index | Cost Aspect Lift-to-drag Weight Thrust
Ratio Ratio

1 2.76 6.3 1.7 8176 4500
2 4.76 6.0 1.9 6699 3120
3 8.75 5.9 1.5 9663 6300
4 7.78 3.0 12 12837 9800
5 6.18 5.0 1.8 10205 4900
6 9.5 6.3 2.0 14890 6500
7 5.14 5.6 16 13836 8920
8 4.76 3.6 12 11628 14500
9 16.7 2.0 1.4 15225 14800
10| 27.68 2.9 2.3 18691 10900
11| 26.64 2.2 1.9 19350 16000
12| 13.71 3.9 26 20638 16000
131 12.31 4.5 20 12843 7800
14| 1573 4.3 9.7 13384 17900
15| 13.59 4.0 2.9 13307 10500
16 51.9 3.2 4.3 29855 24500
17| 20.78 4.3 4.3 29277 30000
18| 29.82 24 2.6 24651 24500
19| 3278 2.8 3.7 28539 34000
20| 10.12 3.9 3.3 8085 8160
21| 27.84 2.8 3.9 30328 35800
221 1071 1.6 4.1 46172 37000
231 11.19 3.4 25 17836 19600

Source: Gray (1985)
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Table A. 6 Brown Data

Index | L.N.I AP.| Index| L.N.I A.P.
1 0 48 28 0 50
2 0 56 29 0 50
3 0 50 30 0 40
4 0 52 31 0 55
5 0 50 32 0 59
6 0 49 33 1 48
7 0 46 34 1 51
8 0 62 35 1 49
9 1 56 36 0 48

10 0 55 37 0 63
11 0 62 38 ol 102
12 0 71 39 0 76
13 0 65 40 0 95
14 1 67 41 0 66
15 0 47 42 1 84
16 0 49 43 1 81
17 0 50 44 1 76
18 0 78 45 1 70
19 0| 83| 46 o8
20 0 98 47 1 70
21 0| 52| 48 W
22 0] 75| 49 Woos
o4 o| 187 51 1 72
25 1] 136] 52 1 89
27 0 40

Source: Brown el al. (1980)
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Table A. 7 Modified Brown Data

Index | LN.L\ AP.[ Index| LNIL| AP,
1 0 48 29 0 50
2 0 56 30 0 40
3 0 50 31 0 55
4 0 52 32 0 59
5 0 50 33 1 48
6 0 49 34 1 51
7 0 46 35 1 49
8 0 62 36 0 48
9 1 56 37 0 63

10 0 55 38 0 102
11 0 62 39 0 76
12 0 71 40 0 95
13 0 65 41 0 66
14 1 67 42 1 84
15 0 47 43 1 81
16 0 49 44 1 76
17 0| 50| 45 o
18 0| 78| 46 oo
20 0 08 48 1 67
21 0| 52| 49 I
24 0 187 52 1 89
25 1] 136 53 1] 126
% y 82 54 0 200

Source: Brown et al. (1980)

180



Table A. 8 Modified F inney Data

“index | Response | Volume Rate [ Index | Response | Volume Rate
1 1 370 0.820 21 0| 250 2000
2 1 3.50 1.090 22 0 0.95 1.360
3 0 1.25 2.500 23 0 1.35 1.350
4 1 0.75 1.500 24 0 1.50 1.360
5 1 0.80 3.200 25 1 1.60 1.780
6 1 0.70 3.500 26 0 0.60 1.500
7 0 0.60 0.750 27 1 1.80 1.500
8 0 1.10 1.700 28 0 0.95 1.900
9 0 0.90 0.750 29 1 1.90 0.850
10 1 0.90 0.450 30 0 1.60 0.400
11 1 0.80 0.570 31 1 2.70 0.750
12 0 0.55 2.750 32 0 2.35 0.030
13 0 0.60 3.000 33 0 1.10 1.830
14 1 1.40 2.330 34 1 1.10 2.200
15 1 0.75 3.750 35 1 1.20 2.000
16 1 2.30 1.640 36 1 0.80 3.330
17 1 3.20 1.600 37 0 0.95 1.900
18 1 0.85 1.420 38 0 0.75 1.900
19 4] 1.70 1.060 39 1 1.30 1.630
20 0 180  1.800

Source: Finney (1947)
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Application of Robust Regression and Bootstrapping

in Purchasing Power Parity Analysis

A. A.M. Nurunnabi*, Mohammed Nasser®*

Abstract:  This article is an attempt to show how robust regression, a
computer based statistical technique introduced by P.J.Huber in 1973 and later
developed by Rousseeuw (1984), Rousseeuw and Yohai (1984), and many
others, can helps us in cases where OLS totally fails due to outliers, leverage
points and non-normality of error distribution. But to infer from the estimators
obtained from robust regression we generally need, especially for small
samples, bootstrapping (resampling) technique that is also a computer
intensive statistical technique introduced by Efron (1979), and later developed
in many directions. This talk illustrates the whole thing by an example using
data extracted from the Big Mac. Index, with a purchasing power parity

analysis.

*Assistant Professor, Department of Business Administration, Uttara University,
Dhaka-1230. ™" Professor, Department of Statistics, University of Rajshahi, Rajshahi-6205

Article Published in
Daffodil Intl. University Journal of
Business and Economics,
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Knowledge Inequality between Male and Female
on HIV/AIDS in Bangladesh

.1
A.A.M. Nurunnabi’', A.H.M. Rahmatullah Imon’, and Mohammed Nasser?
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ABSTRACT

Globally women are becoming infected with HIV at a faster rate than men.
Women accounted for nearly 41% of all people living with HIV worldwide
in 1997, but this figure increased up to more than 50% by 2004. It is
generally believed that the challenges to fight against HIV/AIDS are
closely related with many economic and social factors of a country. But it
is now evident that lack of knowledge and awareness about the causes and
preventions regarding HIV/AIDS can magnify the risk of infection to a
gregater extent. Bangladesh is one of the least developed countries with a
very low literacy rate and it has gender inequality in almost every respect.
In this paper we tried to show that the knowledge as well as awareness of
HIV/AIDS differs significantly between women and men based on the data
extracted from Bangladesh Demographic and Health Survey report 2004.

Keywords:  AIDS; BDHS; Exploratory data analysis; HIV; Knowledge

difference; Logistic regression.
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Abstract

Robust regression techniques are rarely used in business, economics or in
social sciences. It is a reliable alternative, where ordinary least squares
(OLS) totally fails due to unusnal observations and the violations of
normality assumptions of error distributions. We demonstrate the
importance of robust regression techniques by studying and comparing
with OLS. Three examples are taken from the literature in areas of

business, economics and social sciences.

Keywords: Influential observation; Least median of squares; Least
trimmed squares; Leverage point; Outlier; Reweighted least squares.
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A New Measure ff)r the Identification of Influential
Observations in Linear Regression
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Abstract{

In linear regression it is a common practice of measuring influence of an observation is to
delete the case from the analysis and to investigate the norm of the change in the parameters or
in the vector of forecasts resulting from this deletion. Pena (2005) introduced a new idea to
measure the influence of an observation based on how this observation is being influenced by
the rest of the data. In this article we would like to extend this idea to a group deletion
technique suggested by Hadi and Simonoff (1993) and propose a new statistic to identify
influential observations in linear regression. We investigate the usefulness of the proposed
technique by two well-referred data sets and an artificial data with high-dimension,

heterogeneous variances and large number of observations.

Key Words;  Influential observations; group-deleted measure; masking; swamping; high

dimensional large data; heterogeneous variances.
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SUMMARY

In this paper we propose a five-fold plotting technique with a robust
distance measure on a potential-residual (P-R) plot that can identify and
classify outliers, high leverage points and influential observations at the
same time in a same graph. The proposed technique based on group
deletion idea shows efficient performance in presence of masking and/or
swamping phenomena. We demonstrate the proposed technique by using
three well-referred data sets and an artificial high-dimensional large data
with heterogeneous variances.

Keywords: INFLUENTIAL OBSERVATION; LEVERAGE POINT; MAHALANGBIS
DISTANCE; MASKING; OUTLIER; POTENTIAL-RESIDUAL PLOT;

SWAMPING
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Identification of Multiple Influential Observations in
Logistic Regression
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ABSTRACT The identification of influential observations in logistic regression has
drawn a great deal of attention in recent years. Most of the available techniques like
Cook’s distance and DFFITS are based on single case deletion. But there is evidence
that lhése techniques syffer from masking and swamping problems and consequently
Jail to detect multiple influential observations. In this paper an atlemp! has been made
to develop a new measure for the identification of mulliple influential observations
based on a generalized version of DFFIIS. The advantage of using the proposed
method in the identification of multiple influential cases is then investigated through

several well-referred data sels.

KEY WORDS: Influential observation, High leverage point, Qutlier, Masking, Swamping,
Generalized DFFITS
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