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Abstract 

Identification of unexpected observations is a topic of great attention in modern 

regression analysis. At the beginning statisticians differ but now they recognize robust 

regression and regression diagnostics are two complementary remedies to study unusual 

observations. We use both of them for identifying irregular observations at a time. We 

find out the group deletion diagnostic methods that show better performance for 

identifying influential observations in linear regression. These are based on robust 

regression and/or relevant diagnostic methods so that these are free from huge 

computational tasks and reliable in presence of masking and/or swamping because of 

prior suspect-group identification. We find a technique that performs well in case of large 

number and high-dimensional data sets. We have done a classification task of unusual 

observations in linear regression according to their nature of consequences on the 

analysis, and model building process. At the same time the method performs well for 

identifying influential observations. This method may be a good addition to the existing 

graphical literature. We have seen that our proposed procedures in linear regression are 

also effective to the logistic regression after some modification and development to the 

existing identification techniques in linear regression. Our further contribution is to 

propose two new identification techniques for influential observations in logistic 

regression. The new methods show efficient performance for the proper identification of 

unusual observations and thereby provide less misclassification error in the response 

variable for the binomial logistic regression. Summarizing all the above issues we can say 

that we have made contribution in three areas: identification of influential observations in 

linear regression, classification of unusual observations in linear regression, and 

identification of unusual observations in logistic regression. 
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Chapter 1 
"That which is statistic and repetitive is boring, 

that which is dynamic and random is confusing, in between lies art. " 

John Locke 

Introduction 

1.1 Regression Analysis and Its Historical Background 

Regression analysis is a statistical technique, most widely used in almost every field of 

research and application in multifactor data, which helps us to investigate and to fit an 

unknown model for quantifying relations among observed variables. "It is appealing 

because it provides a conceptually simple method for investigating functional 

relationships among variables," (Chatte1jee and Hadi, 2006). The standard approach in 

regression analysis is to take data, fit a model, and then evaluating the fit using various 

statistics. 

First regression-type problems were considered in the 18th century to aid navigation with 

the use of Astronomy and used exclusively in Physical science under Galton (cousin of 

Darwin). Galton in 1870 studied the question of quantifying genetic inheritance 

(intelligence, weight of sweet peas, heights of fathers and sons). He observed that sons of 

tall (short) fathers tend to be tall (short) as their fathers. He termed the phenomenon 

"regression to the mean". Pearson in 1896 formulated the idea of correlation in its most 

complete form, and developed ordinary least squares (OLS) as a method of parameter 

estimation in regression. 



1.2 Linear Regression 

Let us have a set of n observations (Y;, x;); i = 1,2, .. . , n of (p+ I) dimensional random 

vector (y, x) and want to quantify relation between y and x. To serve the purpose in 

regression analysis, the classical model assumes a relation of the scalar type 

(1. I) 

The relationship between Y (response) and X, ,X2 , ••• ,X,, (predictors) is formulated as 

Y=/Jo +/J,X1 +/J2X2 + ... +/3,,X,, +.s. 

We can rewrite the system of equation by matrix notation as, 

y = X/3 + .s, 

(1.2) 

(1.3) 

where Yrn x /J is the vector of response, X,,x(p+IJ is the design matrix , /J(p+J)x/ is the 

parameter vector (regression coefficients) and E:n x / is error-vector. The adjective linear 

has a dual role, one is the relationship between response and the predictor(s) is linear and 

other is the model is linear in the parameters. It is assumed that any set of fixed values of 

Xi, X 2 , ... , X,, that fall within the range of the data, the linear equation ( 1.2) provides an 

acceptable approximation of the true relationship between Y and the X 's. In particular, E: 

contains no systematic information for determining Y that is not already captured by the 

X's. 

1.3 Logistic Regression 

Logistic regression, a type of generalized regression, has been widely used since last two 

decades or so. From its original acceptance in epidemiological research, the method is 

now commonly used in fields including biomedical research, business and finance, 

criminolog.y, engineering, wildlife biology, biometrics, data mining etc. Classically, 

logistic regression model is fitted to data obtained under experimental conditions; current 

use of these methods includes the analyses of data obtained in observational studies 

(Pregibon, 1981 ). Logistic regression is useful in situations for which we want to study 

2 



about the prediction of presence or absence of a specific characteristics or outcome based 

on values of a set of predictor variables. It is similar to a linear regression model but it is 

more suitable when the dependent variable is dichotomous, not continuous type. Logistic 

regression may use one of three types of categorical response variables: binary, ordinal, 

or nominat. Binary logistic regression is a form of regression, which is used when the 

dependent is a dichotomy and the independents are of any type. Multinomial logistic 

regression exists to handle the case of dependents with more than two classes. When 

multiple classes of the dependent variable can be ranked, then ordinal logistic regression 

is preferred to multinomial logistic regression. 

1.4 Robustness and Robust Statistics 

Box (1953) first introduced the technical term ' robust' and the subject matter acquired 

recognition as a legitimate topic for investigation only in mid-sixties, mainly due to the 

pioneer works of Tukey (1960, 1962), Huber (1964 ), and Hampel (1968). Exact 

mathematical theory and probably the growing general awareness of the need for robust 
! 

procedures due to the work E. S. Pearson, G. E. P. Box, and J. W. Tukey and others (see 

Hampel et al., 1986; Huber, 1981; Maronna et al. , 2006; Nasser, 2000) have been 

brought robust statistics at this present stage. 

Many assumptions commonly made in statistics (such as normality, linearity, 

independence) are at most approximations to reality. A minor error in the mathematical 

model should cause only a small error in the final conclusions. But this does not always 

hold, some of the most common statistical procedmes are excessively sensitive to 

seemingly minor deviations from the assumptions. One reason is the occurrence of gross 

errors, such as copying or keypunch errors. They usually show up as outliers and are 

dangerous for many statistical procedures. Other reasons behind deviations from 

initialized model assumptions include the empirical characters of many models and the 

approximate characters of many theoretical models. The problem with the theories of 

classical parametric statistics is that they derive optimal procedures under exact 
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parametric models, but say nothing about their behaviors (stability) when the models are 

only approximately valid. In this regards, robust statistics try to study with 'optimality' 

and 'stability' both the mutually complementary characteristics in the same study. It is 

concerned with evaluating and improving the stability of estimation techniques when data 

points are deviated from assumptions. According to Davies and Gather (2004), the basic 

philosophy of robust statistics is to produce statistical procedures which are stable with 

respect to small changes in the data or model and even large changes should not cause a 

complete breakdown of the procedures. Hampel et al. (1986) mentioned, "Robust 

statistics, as a collection of related theories, is the statistics of approximate parametric 

models. In a broad informal sense, robust statistics is a body of knowledge, partly 

formalized into 'theories of robustness', relating to deviations from idealized assumptions 

in statistics. The theory of robustness is not just a superfluous mathematical decoration. It 

plays an essential role in organizing and reducing information about the behavior of 

statistical procedures to a manageable form". 

1.5 Robust Regression 

It is evident that least squares estimator (LSE) is extremely sensitive to atypical data and 

violations of its assumptions. Lack of stability of the LSE is not the only serious problem 

for estimating the parameters but also for the lack of normality assumptions on error 

te1ms we cannot test the reliability of the estimated parameters by using the common test 

procedures, we cannot check the model adequacy. Therefore, we depend on robust 

regression that possesses some stability in variance and bias under deviation from the 

regression model. A robust regression first wants to fit a regression to the majority of the 

data and then to discover the outliers as those points that possess large residuals from the 

robust output. Hence, the goal of robust regression is to safeguard against deviation from 

the assumptions of the classical least squares. Most popular robust regression techniques 

are LMS Zleast median squares) regression, LTS (least trimmed square) regression, 

reweighted least squares regression (RLS), Mand MM- estimators. 
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1.6 Diagnostics 

Diagnostics is another statistical approach that has been developing since sixties of the 

last century with robust statistics side by side to handle departures from strict parametric 

models. First use of this technique traced back about mid-nineteenth century (Barnett and 

Lewis, 1995). Diagnostics have taken traditionally a somewhat different view from 

robust stat;.stics. Rather than modifying the fitting method, diagnostics condition on the 

fit using standard methods to attempt to diagnose incorrect assumptions, allowing the 

analyst to modify them and refit under the new set of assumptions, (Sta.he! and Weisberg, 

1991). 

1. 7 Regression Diagnostics 

"Regression diagnostics are techniques for exploring problems that compromise a 

regression analysis and for determining whether ce11ain assumptions appear reasonable" 

(Fox, 1993). Field diagnostics is a combination of graphical and numerical tools. It is 

designed to detect and delete the outliers first and then to fit the good data by classical 

(least squares) methods. The basic building blocks of regression diagnostics are residuals, 
' 

leverage values, vector of forecasts and vector of estimated parameters. The usual 

regression outputs clearly do not tell the whole story about the cause and/or effect of 

deviations from the assumptions of the model building process. Regression diagnostic 

can serve as the identification purpose of the deviations from the assumptions. So that 

basic need of regression diagnostics is to identify the unusual observations of a data set. 

Most popular diagnostic methods are Cook's distance, DFFITS, DFBETA, Atkinson's 

statistics, etc. 
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1.8 Interrelation between Robust Regression and Regression 
Diagnostics 

There seems to be much confusion, even among workers in the two fields, about what 

robust and diagnostic methods are supposed to do. According to Huber(1991), 

"Robustness and diagnostics are complementary approaches to the analysis of data, and 

any one of the two is not good enough." Rousseeuw and Leroy (1987) mentioned, the 

purpose of.robustness is to safeguard against deviations from the assumption; the purpose 

of diagnostics is to find and identify deviation from the assumptions. It means that each 

views the some problem from the opposite sites, and counting the metaphor, the more 

opaque the problem is, and the more important it is to view the problem from the all 

sides. They also mentioned, when using diagnostic tools, one first tries to delete the 

outliers and then to fit the 'good' data by least squares, whereas a robust analysis first 

wants to fit a majority of the data and then to discover the outliers as those points that 

possess large residuals from the robust solution. In robust regression, new procedures 

have been developed from theoretical considerations. Regression diagnostics, on the 

other hand, have been designed to supplement standard methodology with both graphical 

and non-graphical procedures. 
, 

1.9 Limitations of Existing Diagnostic Methods 

Diagnostic methods have some limitations as follows : 

1. Most of the popular diagnostic methods are based on the methods, which measures the 

sensitivity of a single observation at a time. Single diagnostic methods are fai led to detect 

the unusual observations in presence of masking and/or swamping phenomena. 

2. In case of group deletion diagnostics, it is a cumbersome and sometimes impossible to 

identify suspect group of unusual observations because of the sample size. 

3. Diagnostic techniques those do not consider robustness can make non-robust decision. 

4. It is hard to derive exact/asymptotic distribution of estimates obtained after classical 

diagnostic '.methods. 
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1.10 Why Robustness and Robust Regression 

Robustness does not deal well with large deviation from model. First, most robust 

procedures geared towards large deviations lose uncomfortably much efficiency at 

"good" data sets. Second, for "bad" data set, any automated procedure may produce 

parameter estimates whose values are just as irrelevant for model interpretation as those 

of its non-robust siblings. On the other hand, important and large deviation can easily be 

missed by non-robust diagnostics, robust diagnostics are needed. 

Robust regression estimates the regression parameter using the procedures that are 

insensitive to outliers (unusual observation). In regression diagnostics outlier (unusual 

observation) diagnostic is the main purpose and generally use the procedures which are 

sensitive to the outliers (unusual observations). Robust regression can help us to reduce 

the huge computational complexity and can meet as a first criterion of the identification 

techniques. 

1.11 Classification of Unusual Observations 

Observations are unusual in the sense that they are exceptional, they have extra role on 

model building process, or they may come from other population(s) and do not follow the 

pattern of ,the majority of the data. The presence of unusual observations could make 

huge interactive problems in inference. Because they can unduly influence the results of 

the analysis, and their presence may be a signal that a regression model fails to capture 

imp01iant characteristics of the data. 

1.11.1 Outliers, Leverage Points and Influential Observations 

In regression analysis, generally we can categorize unusual observations into three: 

outliers, high leverage points and influential observations. According to Hawkins ( 1980), 

an outlier is an observation that deviates so much from other observations as to arouse 

suspicion that it was generated by a different mechanism. In the scale parameter context, 

by an outlier we mean an observation that is so much larger than the bulk of the 
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observations that it stands out, and that there is doubt about it being from the proposed 

model. A rule suggests: an observation as outlying if it is more than three times the inter­

quartile range from the median. (Staudte and Sheather, 1990). An observation that is 

apart from the bulk of the data is treated as outlier. In regression, outliers can be deviated 

into three ways (i) the deviation in the space of explanatory variable(s), deviated points in 

x-direction called leverage points (leverage points are two types: a) good leverage, if (x;, 

y;) does fit the linear relation, it improves the precession of the regression coefficient, and 

b) bad leverage, cases for which an x, is far away from the bulk of the x; , do not fit linear 

relationship (ii) the change in the direction of response (Y) variable (outlier in Y-direction 
' 

but not a leverage point is called veriical outlier) generally measured by absolute 

magnitude of standardized/Studentized residual of the observation, (iii) the other is 

change in both the directions (x;; direction of the explanatory variables and y;; direction of 

the response variable). Influential observation "is one which either individual or together 

with several other observations has a demonstrably larger impact on the calculated values 

of various estimates than is the case for most of the other observations" (Belsley et al. 

1980). It is to be noted that an outlier or a leverage point is not necessarily an influential 

observation and the converse is also true, that is an influential observation may not be an 

outlier or a leverage point. 

1.11.2C1~1ssification Techniques and Their Limitations 

Generally classification tasks of unusual observations are performed by identification of 

outliers, high-leverage points and influential observations separately. Most of the 

methods of identification are distance based and some well-known methods are 

Mahalanobis distance, robust distance (RD), minimum covariance determinant (MCD), 

and minimum volume ellipsoid (MVE). Most of the popular diagnostic techniques for 

identifying outliers and high-leverage points focusing on both of them separately and 

they do not have any combined visual perception power with respect to their influence on 

analysis and decision making process. 
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1.12 Objectives of the Study 

The identification of unusual observations is an issue of a great attention in regression 

analysis. Classical diagnostics based on LS estimates often fail to reveal unusual 

observations. Robust regression and regression diagnostics are two complementary 

approaches (remedy) to deal with unusual observations in regression analysis. Regression 

diagnostic methods perform their tasks by identifying unusual observations and studying 

the sensitivity of the statistics engaged in identifying purpose. 

Our main objectives in this study are: 

1. To study the existing diagnostic methods for influential observations in linear and 

logistic regression. 

11. To expound the necessity of group deletion technique and use of robust regression 

for identification task. 

111. To develop and propose some new identification techniques for influential 

observations in presence of masking and swamping phenomena in linear and 

logistic regression. 

1v. To develop diagnostic techniques for high dimensional and large data set. 

v. To study the basic properties of leverage and residual matrices and the regression 

diagnostics measures. 

1.13 Thesis Overview 

We present a short review of ideas about regression, linear regression, logistic regression, 

robustness, robust regression, regression diagnostics, types of unusual observations and 

objectives of my thesis in Introduction, Chapter 1. The rest of the thesis is organized as 

follows. 

Chapter 2 contains some preliminary mathematics for regression diagnostics and data 

source. It provides some matrix algebra concepts, (such as inverse, generalized inverse, 

paititioned matrix, eigen-structure, etc.) some fundan1ental properties relevant with the 
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leverage and residual matrices, deletion diagnostic algebra that are urgently needed for 

the calculation purpose, and existing methods and their interactive relations side by side. 

Chapter 3 is a literature review of the two: robust Regression and regression diagnostics. 

It deals with some popular approaches, fundamental ideas in both of them and 

interrelations between them. 

Chapter 4 proposes two new measures based on deletion idea for identifying influential 

observations in linear regression. At the same time chapter provides some comparisons 

showing better performance with existing popular methods through some well-referred 

data sets. 

Chapter 5 possesses a five-fold plotting technique on a potential-residual (P-R) plot with 

robust dist~mce that can separate unusual observations from the regular and the technique 

classify unusual observations into: outliers, high-leverage points and influential 

observations. Several demonstrations are also performed. 

Chapter 6 presents different diagnostic aspects in logistic regression. It introduces two 

diagnostic measures for the identification of multiple influential observations in binomial 

logistic regression. 

Chapter 7 makes the conclusions and some indications of further research. 

Appendix A provides the data sets that are used in this thesis. 

Appendix B attaches abstracts of the articles that are already published, accepted or 

submitted for the publication. Those are related to our research work. 
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Chapter 2 
"True genius lies in the capacity for evaluation of[ . .. ] 

conflicting infonnation." 

Winston Churchill 

Preliminary Mathematics for Diagnostics 

and Data Source 

Regression diagnostics by deletion of one or a group of observations (cases) are mostly 

depending on some matrix algebra. Inverse matrix, generalized inverse, different 

partitioned matrices and eigen-structure of a matrix are the basics of deletion diagnostics. 

To study the deletion diagnostic algebra we have studied necessary diagnostic algebra 

with their fundamental properties. The algebra of least squares technique is presented as a 

cornerstone of regression diagnostic method. Prediction (leverage) and residual matrices 

are the two basic building blocks of deletion diagnostics. Several new, interesting and 

useful properties of leverage and residual matrices for deletion diagnostics are developed 

and presented in this chapter. Algebra of most popular diagnostic measures is presented 

side by side for the completion of the thesis. Data sources are also given here. 

2.1 Least Squares Algebra 

To fit a regression model we estimate the parameters, and the most well known method is 

least squares (LS) method. From the time of its invention to last quaiter of the last 

century it was the cornerstone of regression analysis for its mathematical beauty and 

computational simplicity. The underlying principle of this method is to estimate the 
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unknown parameters of a regression model in such a way that the total squared deviations 

of the observed and fitted response would be minimized. Most of the diagnostic methods 

are based on LS or originated from the idea of LS. In favor of our study here we consider 

the algebra of least squares. 

2.1.1 Least Squares Estimation (LSE) 

It is customary that the classical linear model can be defined in matrix notation as 

Y = X/J+e (2.1) 

where Y is an n x 1 vector of response (continuous) variable, Xis an n x k(n > k = p + 1) 

matrix formed by explanatory variables with a constant, /J is a k x 1 unknown vector of 

parameters with a constant, and e is the vector of identically and independently 

distributed. (U.d) random e1Tor terms. The method of least squares (LS), minimizes the 

error sum of squares or equivalently, finds the vector of LS estimators/3, which minimizes 

II 

S(/3) = Le/ =ere= (Y - X/3}" (Y - XfJ). (2.2) 
i=I 

The least squares estimators must satisfy 

(2 .3) 

which simplifies to (2.4) 

Equation (2.4) is the least squares normal equation and is identical to (2.2). To solve the 

normal equation, premultiply both sides of (2.4) by the inverse of xrx. Thus the least 

squares est,imate of /3 is 

(2.5) 

The fitted regression model corresponding to the level of the regressor variables is, 

p 

f = xTJJ = fJo + LfJJxj' (2.6) 
J=I 

The corresponding residual vector 
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i = r = Y-Y = Y-X[J = Y-X(X rxr' xry 
= Y - HY = (I - H)Y 

= (1-H)(X/J + s) 

= (1-H)s , 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

where H = X(Xrxr' xr is the leverage or prediction or hat matrix. In scalar form, i-th 

11 

residual is r; =&, -'IhiJ s 1 ; i=I,2, ... ,n . (2.11) 
J~l 

Clearly, if the hiJ are sufficiently small, r; will serve as a reasonable alternative of e;. 

2.2 Essential Matrix Algebra for Deletion Diagnostics 

To serve the purpose of deletion diagnostic algebra we attach some fundamental concepts 

of matrix algebra that are urgently needed in almost in all respect of computations of this 

thesis. We-try to arrange the ideas according to their technical necessity. 

2.2.1 Rank and Inverse of a Matrix 

Rank and inverse are two most useful and important characteristics of a matrix and play a 

vital role throughout all aspects of matrix and also for diagnostic algebra. 

The rank of a matrix is the number of linearly independent (LIN) rows (columns) in the 

matrix. The rank of A is denoted by rA or r(A). The following properties and 

consequences of rank are important. 

1. r A is a positive integer, except that ro is defined as ro = 0. 

11. r(Apxq) ~ pand ~ q : the rank of a matrix equals or less than the smaller of its 

number of rows or columns. 

n1. r(A,,x
11

) ~ n: a square matrix has rank not exceeding its order. 

1v. When rA = r -:t:- 0 there is at least one square sub matrix of A having order r that is 

nonsingular. 

v. r(A
11
x

11
) = n then by (iv) A is nonsingular, i.e. , A-inverse exists. 
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v1. r(A11x 11 ) < n then A is singular and A-inverse does not exist. 

vu. r( A pxq) = p < q , A is said to have full row rank, or to be of full row rank. Its rank 

equals its number of rows. 

v111. r(Apxq) = q < p, A is said to have full column rank. Its rank equals its number of 

columns. 

1x. r(A,,x
11

) = n, A is said to have full rank. Its rank equals its order, it is nonsingular, 

its inverse exists. 

The concept of a matrix mverse has been established in the context of solving 

simultaneous linear equations. We need this to estimate the parameters or to fit the values 

of Y and for finding the values of residuals or leverage matrices. 

The inverse of a square matrix A is a matrix whose product with A is the identity matrix. 

It is denoted by the symbol A -i and is read as "the inverse of A" or as "A- inverse", 

i.e., AA-1 =I. Now the basic question: " Is there a matrix L whose product with the . 
matrix A is I?" There are three answers to this, depending on the characteristics of A : 

i) In some cases L exists and is unique for a given A. 

ii) Some times numerous L exists i.e., Lis not unique, and 

iii) In some instances L does not exist at all. 

Generalized Inverse, a generalized system of matrix inverse. A nxk rectangular 

(singular) matrix A possess either a left inverse or a right inverse when r(A) = min(n, k) , 

when a matrix is not of full rank, neither a left nor a right inverse exists, and as a result 

we cannot always use a matrix inverse to solve equations. The notion of a generalized 

inverse can then be easily extended to inconsistent linear systems. It plays a major role in 

regression estimation and in leverage matrix. 

Moore-Penrose Inverse: Given any matrix A, there is a unique matrix M such that 
(i) AMA=A (iii) AM is symmetric 

(ii) MAM=M (iv) MA is symmetric. 
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This result (above four) is developed in Penrose (1955), on foundations laid by Moore 

(1920). The Penrose paper established not only the existence of M but also its uniqueness 

for a given A. One-way of writing Mis based on the factoring of A,,xq as A=KL, where K 

and L have full column and row rank respectively, equal to r(A). Then M of the above 

four conditions is 

(2. 12) 

The matrix M defined by the four Penrose conditions is unique for a given A. But there 

are many matrices G which satisfy just the first Penrose condition: 

AGA=A. (2.13) 

Any matrix G satisfying (2.13) is called a generalized inverse of A; when A is p xq then G 

is qxp. 

Inverse of a Partitioned Matrix 

In case of group deletion diagnostics, we need to partition the design or the augmented 

matrices and these are partitioned as of suspect cases and regular cases but it is not 

always possible to exist inverse for all the partitioned matrices. We need the help of the 

following fundamental formulae/properties of the partitioned inverse. 

Theorem 2.2.J ( Dhrymes, 1984) 

Let A be a square nonsingular matrix of order m, and partition as 

such that A;;, i = l and 2, are nonsingular matrices of order m;, i =l and 2, respectively 

(m , +m2 = m) .Then 

(2.14) 

where 
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Theorem 2.2.2 (Chatterejee and Hadi, 1988) 

Let A be a matrix partition as 

(a) If A and A 11 are nonsingular, then 

, A-I = [Al~I + Al~I A12MA21A1~1 

-MA21A1-i 

where M = (An -A21A1~1 A12 r 1. 

2.2.2 Eigen Values and Eigen Vectors 

(2.15) 

(2.16) 

It is known that eigenstructure of a matrix X can change significantly when a row of the 

design matrix is added to or omitted from X. we can study the influence of the i-th row of 

X on the eigenstructure of X in general and on its condition number and collinearity 

indices. Let A be a square matrix of dimension k x k and A be an eigen value of A. If 

x kx l is a nonzero vector such that 

Ax= AX. (2.17) 

Then x is said to be an eigenvector ( characteristic vector) of the matrix A associated with 

the eigen value 1. 

Another point of view; Let A be a k x k square matrix and I be the k x k identity matrix. 

Then the scalars Ai, 12 , ••• , lk satisfying the polynomial equation IA -111 = 0 are called the 

eigen values of a matrix A. 
( 

The equation (2.18) 

(as a function of ,1,) is called the characteristic equation. 

16 



2.2.3 Grammian Matrix and Its Properties 

If A be n xm real matrix then the matrix S = AT A is called Grammian matrix of A. If A is 

m xn then S = Ar A is a symmetric n-rowed matrix. It has the following important 
properties. 

1. Every positive definite or positive semidefinite matrix can be represented as a 
Grammian matrix. 

11. The Grammian matrix ArA is always positive definite or positive semidefinite, 
anci it depends on the rank of A or less than the number of its column accordingly. 

m . The rank of the matrix ATA is same as that matrix A and AA1
. That is if 

r(A) = r then r(ATA) = r(AAr) = r 

1v. If (AAr) = Othen A= 0. 

2.2.4 Idempotent Matrices and Projections 

Idempotent matrix, A square matrix A is said to be idempotent when A= A 2
• For any 

idempotent matrix we have A= Ar for any integer r>O. 

Theorem 2.2.3 (Basilevsky, 1983) 

An idempotent matrix A is always singular, except for the unit matrix /. 

Theorem J.:.2.4 (Basilevsky, 1983) 

Let A and B be idempotent matrices. Then we have the following: 

1. A +Bis idempotent only when AB=BA =0. 

11. C=AB is idempotent only when AB=BA. 

m. I-A is idempotent. 

Property2.2.J (Chatte1jee and Hadi 1988) 

Let A be an n xn idempotent matrix. Then we have the following : 

(i) The eigenvalues of A are equal to O or 1. 

(ii) The trace and rank of A are equal. 
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Projection and Projection Matrix 

Consider an arbitrary vector Ye V, where the vector space V = V, EB V2 is decomposed as 

a direct sum (EB) of Vi and V2. Also let Y = Y; + Y2 , where fi e Vi and Y2 e V2 • Then the 

transformation PY=Y1 is called the projection of vector Y onto the vector space Vi along 

the vector space V2 if and only if PY1=Y1, P is defined as a projection matrix, that 

projects vector Y onto a subspace. P has the following: 

1. P i~: associated with a linear transformation. 

11. Pis a projection matrix if and only if Pis an idempotent matrix. 

Matrices of the form (X.,.Xr' X .,. occur often in linear regression models. This is the 

matrix that transforms the response vector Y into the least squares estimates of /J in the 

linear model Y = X/J + s, for example. It is a factor of the projection matrix of Y onto Y, 

that is, xcxrxr' XT' the "hat" matrix. We recall that a matrix is a projection matrix if 

and only if it is symmetric and idempotent (that means a projection matrix is necessarily 

either the identity or it is singular). 

2.2.5 Decompositions 

Decompositions provide a numerically stable way to solve a system of linear equations, 

as shown already in, and to inve1i a matrix. Additionally, they provide an important tool 

for analyzing the numerical stability of a system. Decompositions allow us to transform 

a general system of linear equations to a system with an upper triangular, a diagonal, or 

a lower triangular coefficient matrix. Some of most frequently used decompositions are 

the Cholesky, QR, LU, and SYD decompositions. Now we define the following two to 

serve our purpose. 

The Spectral Decomposition, Let A beak x k symmetric matrix. Then A can be express 

in terms of its k eigenvalue-eigenvector pairs (.,i; ,e;) as 

k 

A= L;t;e;e; (2.19) 
i=I 
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Singular-Value Decomposition, Let A be an m x k matrix of real numbers. Then there 

exist a m x m orthogonal matrix U and a k x k 01thogonal matrix V such that 

A= UAVT, (2.20) 

where them x k matrix A has (i,i) entry A;~ 0 for i=l,2, ... ,min(m,k) and other entries are 

zero. The positive constant A; is called the singular value of A. 

2.2.6 Fundamental Deletion Formula 

Following results are useful for finding the inverse of leverage matrices when one or a 

group of observations are added to or omitted from others. 

(i) Let A be a nonsingular matrix and U and V two column vectors, then 

Proof: 

(A-UV T xA-l + A-1u(1- VT A-1U t vr A-1
} 

= f + u(! -vr A-'ut V TA -l -UVTA- 1 -UVTA-'U(I - VTA-'U t vrA-' 

= I -UVTA-' + u(!-vrA-'U Xi -VTA- 1U t V TA-' 

= 1-UVT A-' +UVTA-' =I. 

; (Rao, 1973) 

(2.21) 

(2.22) 
(iii) Let A and D be nonsingular matrices of orders k and m respectively, B be k x m, and 

C be k x m . Then, provided that the inverses exist, 

(A+BDcrt = {A- 1 -A-1B(n-1 +CTA-'BtcTA-'} 

Proof: 

(A+BDcr xA-1 - A-'B(D-1 +CTA-'Bt'cTA-1
} 

=1-B(n-' +CTA-'BtcrA-l +BDCTA-' -BDCTA-'B(n-' +CTA-'Bt' CTA-' 

= f + BDCTA-l -B(! + DCTA- 1BXD-1 + CTA- 1 Bt' CTA- 1 

= 1 + BDcrA-1 
- sn(n-' + c 1·A- 1 B Xn-' + crA- 1 B t c r A-1 

! 

(2.23) 
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= f + BDCTA-1 
- BDC TA-1 

=I. 

(Note, where the inverse of (A+ BDCr) does not exist is found by taking A =I, B=X, 

yields (A+ BDC1
) = (I - H) , which is 

singular, but this is also computable when we take the advantage of generalized inverse.) 

T T (iv) Consider the k x k matrix X X and let X; be the i-th row of X. then 

(X TX _ X XT )-' = (xrx)-1 + (xrx t' X;x:· (xrx t 
I I 'f' ( 1' )-1 1-x; X X X; 

(2.24) 

Proof: 
Multiplying right-hand side by (xrx - x;x{" ), 

=I . 

2.3 Properties of Leverage and Residual Matrix 

Chatterjee and Hadi (1986) call H as the prediction matrix because it 1s the 

transformation matrix that, when applied to Y, produces the predicted values. Similarly, 

(1-H) is the residual matrix, because applying it to Y produces the ordinary residuals. We 

discuss a comprehensive account of their properties. 

Property 2.3.1 (Chatte1jee and Hadi, 1988; Atkinson and Riani, 2000) 

(a) Leverage matrix, Hand (b) Residual matrix (1-H) are 

(i) Symmetric matrix (ii) Idempotent matrix. 
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Proof: 

We have 

(a) (i) 

(ii) 

(b) (i) 

(ii) 

H = X(Xrxr1 xr 

J-if =(X(X,..xr'x'')"/' =X(xrxr1xT =H 

I-! 2 = HH = X(XTXr' XrX(Xrxr' xr = X(XTX)-1 xr = H. 

(I -H)T = [I -X(XTx)-1 X Tf = / -X(X'l'x)-1 xr = f -H. 

(I - H) 2 =(I -H)(J -H) = 1 -2H + H 2 = I -2H + H = I -H. 

Property 2.3.2 (Chatterjee and Hadi, 1988) 
Let X be n x k , then 

,, 11 

(a) trace(H)=rank(H)=k,(b) Lrace(I-H)=n-k and,(c) I Ih/ =k 

Proof: 

(a) tr(H)=tr{x(xr xtxr} 

(b) 

(c) Since His idempotent, 
' 

= t,{,y'l'xt xrx} 

=tr(Ik) 

=k. 

tr(I - H) 

= tr(!)-tr(H) = n-k. 

H = H 2 

II 

⇒ h;; = Ihi 
J=I 

,, IJ 

i=I J=I 

⇒ Ih;; = II h/ =tr(H) =k. (2.25) 
l=I J=I 

Property 2.3.3 (Chatterjee and Hadi, 1988) 

For i = 1,2, ... ,n and j = 1,2, ... ,n we have 

(a) 0 ~ h;; ~ 1 for all i and, (b) - 0.5 ~ hiJ ~ 0.5 for all j :;t. i. 
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Proof: 

(a) By property 2.3.2 the i-th diagonal elements of H can be written as 

II 

h;; = Lhu 2 = h/ + Lhu 2 

J~J j'l'I 

2 i.e., h;; 5 h;; 

from which it follows that 0 5 h;; 5 I, for all i. 

(b) Identity (2.26) can also be expressed as 

h;; = h;; 2 + hij 2 + I h;, 2 

r'l'i,J 

(2.26) 

from which it follows that hiJ 
2 

5 h;; (1- h;;) and since 0 5 h;; 5 1 hence h!1
2 will be the 

largest when h;; = 0.5, and thus -0.5 5 hu 5 0.5. 

Property 2.3.4 (Chatte1jee and Hadi, 1988) 

Let X=(X1 :Xi) where X 1 isan nxr matrixofrankrand X 2 isan nx(k-r)matrix 

T T 
of rank k-r. Let HI = xi (XI xi r I xi be the prediction matrix for Xi, and 

W = (I - H1 )X2 be the projection of X 2 onto the orthogonal component of X 1• Finally, 

let H 2 = W (W r w )-1 W r be the prediction matrix for W. Then H can be expressed as 

X(XT X)-1 xr = xi (X1TX1)-1 XIT + (I -H1)X2 {X2T (I -HI )X2}-1 X2 T(I -HI) 

or 

Proof: 

H=H, +Hi. 

By using the form of inverse of a pa11itioned matrix ( eq. 2.15), 

(2.27) 

(xrx)-' = [(X/X1 f
1 
+ (X/X1 ~~1 x/·x_~MX/X1 (X1TX1 f' - (X/X1 )M_, X/.X 2M], 

-MX I X (X I X )-1 
2 I I I 

where 
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Hence, H = 

= {X/'(1-X,(X,'/'x,r' X/°)X2}-1 

= {X/(J-H,)X2r'. 

T -l T T -l '/' T T -l T = (X, (X, X,) X, + X, (X, X,) X, X 2MX2 X, (X, X,) X, 
T T -l T T -l T T T -X2MX2 X,(X, X,) X, -X,(X, X,) X, X 2MX2 +X

2
MX

2 
) 

T T T T = H, +H1X 2 MX2 H, -H,X2MX2 -X2MX2 H, +X2MX2 , (1st part) 

7' T T T = H, -H,X2MX2 + H,X2MX2 H, -X2MX2 H, + X 2M.X2 

= H, - ,H,X2MX2 r (1- H, )+ X 2MX/ (1- H,) 

= H, -(H, -I)X2MX/(I-H,) 

= H, +(1-H,)X2MX/(I-Hi) 

= H, +(1-H,)X2 {x/(1-H,)xi}-' x/(I -H,) 

=H, +H2 • 

Property 2.3.5 (Chatterjee and Hadi, 1988) 

For i = 1,2, ... , n and j = 1,2, ... , n 

(a) If X contains a constant column, then 

(i) h;; ~ n-' for all i . 

(ii) H 1 = 1, where 1 is an n vector of ones. 
' 

(b) Suppose that the i-th row of X, xi, occurs a times and that the negative of xi occurs b 

times. Then h;; ~ (a+ b t'. 
Proof: 

(a) If X contains a constant column, define X = (1 : X 2 ) where 1 is the n-vector of ones. 

From property 2.3 .4, we have 
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H 1 =I(1r1t1I1" =n- 11lr; 

( ) ( 
-I T)x ~ W=I-H 1 X 2 =1-n 11 2 =X; 

H2 = x(xrxt xr 
(Note, the matrix (I - n-11 1 r) is called the centering matrix because it is the linear 

transformation of X that produces the centered X). 

Thus the prediction matrix H can be written 

H=H1 +H2 =n-1llr +x(xrx)~1xr. 
Each of the diagonal elements of H 1 is equal to n -i and since H 2 is a prediction matrix, 

by property 2.3.3 (a) ( 0 ~ h;; ~ 1 ), its diagonal elements are nonnegative, hence h;; ~ n-1 

~r 
for all i, since X l = O,H2 1 = 0 and thus HI= I-11 1 = 1. 

(b) Suppose that xi occurs a times and - X; occurs b times. 

LetJ = {j: xi= X; or xi= -x; ,j = 1,2, ... ,n } be the set of the row indices of these 

replicates. Sincehu. =x/ (xrx)~1xi, then h;; =lhijlfor j&J and by (eq.2.26) we can 

reexpress h;; as 

from which it follows that 

" 2 "2 h,; = L., hij + L., hij 
JE.J jf../ 

=(a+b)h/ + Ih/ ~h/(a+b), 
Jf..1 

Property 2.3.6 (Chatterjee and Hadi, 1988) 

For i=l,2; ••· ,n,and j=l,2,···,n, 

(a) If h;; = 0 or 1, then hij = 0. 

2 r. 
(b) hu ++, ~ 1. 

r r 
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Proof: 

(a) Since His an idempotent matrix, 

II 

h;; = Lhi = h;; + Lhi 
J =I I"-} 

If h;; = 0 then, 0 = O+ Lhi 
, ... j 

i.e., hiJ =0 ; 

if h;, = I , then 

I= I+ IhJ 
i"-J 

(b)DefineZ=(X· YJ,Hx =X(xrxfxr,and Hz =Z(zrztzr . We can write, 

(by virtue <->f eq.2.27) 

H = H (I - Hx )yyr (I - Hx) 
z X + y T (I - H X )Y 

T 

= H x + r~ :s; I, since the diagonal elements of Hz S I 
r r 

2 r 
-h +-'-<I - ii T - (2.28) 

r r 

Property 2.3. 7 (Atkinson and Riani, 2000) 

In simple regression h ;; will be large if X; is far from the bulk of other points in the data. 

Proof: 

In the case, of simple regression of Yon X ( one variable) through the origin, we have 

X = ... x,, ) , 

x,, 
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so T "' 2 T -I T T "' 2 11 ( II )-1 
X X = 7:(x; ; hence H = X(X X) X = XX' f;(x 1 

From which it follows that 

T 2 
h = _x_1 _x_1 = x, 

" ,, i = 1,2, ... ,n. 
Ix/2 
i=I i=I 

If a constant term is included in the model, i.e., 

X = 

1 x
11 

In this case xrx and (XTxr' are respectively equal to 

II II 

Ix; Ix; 
2 n 

I xrx = i= I and (XTxr' = i=I 
II II II II 

Ix; Ix/ nI(x1 -;/ -Ix; 
i=I i=l i=I i =I 

n 

Then h11 will be equal to 

f x1
2 
-2x1 fx 1 +nx1

2 

= ~----''-'=I'-----
II 

nI(x1 -x)2 
i=I 

Adding and subtracting nx2 in the numerator we obtain: 

26 



II 

-? 2 '"' 2 

1 
nx- - X ; L.ix; + nx; 

h.. = -+ l=I 
II 

n /1 

nL(x, -x)2 
i=I 

i.e., (2.29) 

Thus in simple regression h;; will be large if x, is far from the bulk of other points in the 

data. 

Property 2.3.8 (Chatte1jee and Hadi, 1988) 

Let X be an n x k matrix of rank k. Then for fixed n, h;; , i = l,2,. • •, n, is nondecreasing 

in k. 

Proof: We have showed that H = H
1 
+ H 2 , where H, and H 2 are prediction matrices. 

From the property 2.3.4 (eq.2.27), the diagonal elements of H
1 

and H 2 are nonnegative. 

Therefore, ,for fixed n, h;;, i = l,2, • • •, n is non-decreasing in k. 

2.4 Deletion Diagnostic Algebra 

When an observation or a group of observations is deleted and the regression model 

refitted, the parameter estimates, leverage values, residuals, and residual sum of squares 

all will change. Statisticians observe the effects of deletion and measure the sensitivity of 

the diagnostic measures, so that the explicit deletion of individual observations and 

repeated refitting of the model are not necessary. The methods are collectively known as 

deletion diagnostics. Relevant algebra in these methods is the deletion diagnostic algebra. 

2.4.1 Single Case Deletion 

The following results have found by deletion of one case. Results show how the effect of 

deletion of one case impact on results from whole data set and on the estimates. 
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Property 2.4.J 

When hri is the Jk-th element of the matrix H excluding the i-th row of matrix X , 

then (a) 

(b) 

(c) 

(d) For fixed k, 

Proof: 

(a) We have 

') h hk he-, = h + _JI_'_ 
Jk Jk 1- h 

II 

l 
h~ 

he~; =h .. +--IJ _ . 
» » 1-h' 

II 

whenj=k 

whenj=k=i 

h ii, j = 1,2, · · ·, n is nonincreasing in n. 

= (xr X t1 + (xrx t' x; (1 - x/ (xrx t' x; j' x/ (xrx t' 
= (Xrxr' + (Xrxr

1 
X;x/ (XTxr

1 

1-h;; 

premultiplying both sides by x/ and postmultiplying by xk , we get 

h h k 
h <-il - h _JI_'_ 

⇒ jk - jk + 
1- h;; 

(b) If J = k 
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(c) lfj=k=i 

h<-il -h _!!l__ _ h;; -h;~ +h} h .. - . + - =--"-
II II l-h l-h 

II II l-h;; 
(d) We have 

2 

h<-i> -h ~ .. - .. + ' 
» » l-h 

II 

the second term of the right side is positive. 

II h<-il > h · h . d . . - ence, ii _ ii, l.e., ii 1s non ecreasmg m n. 

Property 2.4.2 

Excluding the i-th observation from the analysis, 

(a) 

(b) 

Proof: 

(a) 

- ( .,. )-' (xrx)-1 

xy-. (X' X)-1 
x h ·Y· = /3- X' X X;Y; + I I - I II I 

l-h;; l - h;; 

( 7' )-1 ( ) ( T )-1 ( T )-1 = P- X X X;Y; 1- h;; - X X X;J; _ X X X;h;;Y; 

l-h 1-h 
II II 

( T )-1 ( T )-1 ( 7' )-1 - ( T )-1 = P- X X X;Y; + X X x,h;,Y; + X X X;Y; _ X X X;h,,Y; 

1-h;; 1- h;; 1-h;; 1 - h,; 
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(b) 

⇒ x/' (P- p(-i)) = x/" (~·,: ]_, x;e; 
II 

Property 2.4.3 

After deleting i-th case from the analysis, 

(a) 

(b) 

(c) 

(d) 

Proof: 

(a) i(-i) = y _ y(-i) 

= Y-Xp(-i) 
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(b) 

( 

( T )-l J T - XX x.e 
= Y; - X; /3 - 1- h . I I 

II 

T ( T )-l -
T/3- X; X X X £ =y . -x. + I I 

I I 1-h 
II 

(c) s<-i> = 6 (1-h,; +h;,) =~ 
' ' 1 - h ;; 1 - h ;; . 

(d) s/-;) = &; + x/' (Ji- p<-;)) [ using property 2.4.3 (b) and 2.4.2 (b )] 

- - - - (-i) 
-£; + Y; -y; · 

Property 2.4.4 
, 

The eigenvalues of Hand (1-H) are either O or 1. 

Proof: 

Both H and (1-H) are idempotent matrices. We know that the eigen values of an 

idempotent matrix are O or 1, hence the eigenvalues of Hand (1-H) are either O or 1. 

Property 2.4.5 

There are (n-k) eigen values of H equal to 0, and the remaining k eigen values equal to 

I.similarly, k eigen values of (1-H) equal to O and (n-k) equal to 1. 

Proof: 
Let A;, i = 1,2, · · ·, n be the eigen values of H 

Since His an idempotent matrix, we get A; s are either O or I for all i, and 
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II 

trace(H) = LA, = k. 

Therefore k eigenvalues of Hare must be 1 and the remaining (n-k) are zero, 0. 

The diagonal elements (1-H) will be zero when the diagonal elements at the same position 

will be 1. Therefore, k eigen values of (1-H) equal to 0 and (n-k) eigen values equal to 1. 

2.4.2 Group Deletion (Deletion of Multiple Rows) 

Group deletion means deletion of multiple rows from the whole data set matrix. When a 

group of o·bservations is deleted at a time we see different types of effects are on every 

type of analysis and estimations as follows. 

Property 2.4.6 (Chattrejee and Hadi, 1988) 

Suppose that Xis n x k of rank k and that there are m < k diagonal elements of H equal to 

1. Let I = {i : h;; = 1, i = 1,2, ... , n} be the set of their indices. Then, for any J => I , 

rank(X(J )) ~ k- m, with equality if J=I. 

Proof: 

Without loss of generality, we an-ange the rows of X such that the m rows indexed by I 

are the last m rows of X. Thus X can be written as 

(

X )(11
-

111 ),<k 
X = (~_) 

XI mxk 

Let H
I 

denote the principal mmor of H corresponding to X J' . Since h;, = 1 , i E J , 

then H = I where I is the identity matrix of dimension m x m. By property 2.3.6 (a) I , 

( if h;; = 1 or 0, then hiJ = 0 ), H can be expressed as 

from which we see that (Xui{xrxf x(; )) is idempotent with rank (k-m). 
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Hence 

It follows that, for any J ::) I, 

rank(X(J))~ rank(Xu))= k-m. 

Property 2.4. 7 

Let H, be an m x m minor of H given by the intersection of the rows and columns of H 

indexed by I. If Ai ~ A-2 ~ • • • ~ Am are the eigenvalues of H, , then 

(a) The eigenvalues of H, and (I - H,) are between O and 1 inclusive; that is, 

0 ~ l 1 ~ 1 , j = 1,2, · · ·, m . 

(b) (I - H,) is positive definite (p.d) if ;im < 1; otherwise (I - H,) rs positive 

semidefinite (p.s.d). 

Proof: 

Let H 22 be an m x m minor of H. Without loss of generality, let these be the last m rows 

and columns of H. Partition Has 

Since H 22 is symmetric, it can be written as 

T H 22 = V AV , (2.30) 

where A is a diagonal matrix with the eigenvalues of H 22 in the diagonal and V is a 

matrix containing the corresponding normalized eigenvectors as columns. Now since 

H=HH, 

(2.31) 
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Substituting (2.30) into (2.31) gives 

V AV.,.~ V AV.,. V AVr=V A 2 V.,., 

or 

or (A-A 2 )~O. 

Since A is diagonal, hence A;' s are diagonal elements of A, and 

(2.32) 

Part (b) If Ai ~ A2 ~ • • • ~ A111 are the eigenvalues of H 22 , then (1 - ;i 
1 
h j == 1,2, • • •, m are 

the eigenvalues of (I - H 22 ) . Now, if ,1,
111 

= 1, then (1- A
111

) == 0, and hence (I - H 
22

) i~ 

positive semidefinite. But if A-111 < 1 , then (l - A;) > 0, i == 1,2, • • •, m, and hence (I - H 
22

) 

is positive 'definite. 

Theorem 2.4.1 Frisch-Waugh-Lovell (FWL) 

Consider the partitioned regression model for K1 + K 2 regressors estimated in matrix 

form: 

then 

M 1 matrix makes residuals for regression for the X 1 variables; M
1
Y is the vector of 

residuals from regressing Yon X 1 variables. M 1 X 2 is the matrix made up of the column­

by-column. residuals of regressing each variable ( column) in X 2 on all the variables in 

XI. 

Proof: 

We have, 
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Hence, 

and 

(x,rxi)p1 +(x/x2)P2 =X/Y 
(x, r xi )Pi = x/· Y - (x, r x 2 )P2 

Pi = (x/xi)-1 x/r -(x,rx1 f (x/x2)P2 
= (x1rx1f x1T(Y-X2P2) 

(x/x1 )Pi+ (x/xi)p2 = x/r. 
Putting the value of ,B1 from (2.33) in (2.34) we get 

(x/ xi Xx/·x1 t' x/·(r -x2fl2)+ (x/x2)P2 = x/Y 

(2.33) 

(2.34) 

⇒ '(x/ Xi Xx,rx1 f x/·r -(x/x, Xx/xi t' x,rX2P2 + (x/xi)p2 = x/r 

⇒ (x/xi)p2 -(x/xJx/·xJ-1 x/·x2p2 = x/r -(x/x, Xx,rxJ-1 x/r 

⇒ x/l1-x1(x/xJix/.}t\p2 =x/l1-xJx,rxJ1 x/f 
⇒ x/M1X2P2 =X/M1Y; let(1-x1(x/xi)- 1x,r)=M1 

:.p2 =(X/M1X2t'X/M1Y 
-x -IM-l(x r)-lx TM y 
- 2 I 2 2 I 

= x2-1M,- 1M1Y = (M1X2t'M 1Y 

= (M1X2t' [(M1X2Y J1 (M,X2Y M,Y 
1 = [(M1X2Y(M1X2)j'(M1XJ/'M,Y. 

M
1 

is both idempotent and symmetric , we can then rewrite as, 
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Property 2.4.8 

If Xis par,titioned as X = (X1 : Xi) and X 1 and Xi are two sets of independent 

explanatory variables. Then the prediction matrix H can be represented as, 

H=H1 +Hi 
T -I T 1' -I =X1(X1 X 1) X 1 +Xi(Xi X 2 ) Xi 

Proof: 

We have two sets of independent variables, that are orthogonal to each other, and then the 

sums of cross products of the variables in X, with Xi are zero by definition. Thus 

(XTX) matrix formed out of X 1 and Xi is block diagonal. Hence 

H=[Xl x,{ x,"x, 
- 0 ~ r<J Xi Xi Xi 

=[X, x {cx,'x,r' 
2 0 (X,':,r' ][;;:] 

=Xi(..,y/xJ'x/· +x2(x/xit'x/ 
=H,+H2 • 

2.5 Group Deletion Algebra 

Property 2.5.1 
If more than one observation (a group contains d observations) are deleted then the idea 

of group deletion (GD) has been introduced. 

i) p<-oJ = '/3-(xrx t' x:; (ID - Uo t ii) 
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ii) The GD residual, i HJ> is defined as, 

s(-/J) = Y - xp(-/J) 

s<-o> = i ~ x(xrxt x/;(10 -U/)t' i 0 

iii) The sum of squared differences of i(-n) for i(-/J) is 

( -(-D) _ -)T (-(-D) -)- - T (1 LJ )-1 LJ ( )-1 -6 6 6 -6 -60 D - /) 0 11) -U/) 6/) 

iv) i{-!J)an be partitioned as, 

Proof: 
Let us denote a set of cases 'remaining' in the analysis by R and a set of cases 'deleted' 

by D. Let us also suppose that R contains (n-d) cases after d< (n-p) cases in D are 

deleted. Without loss of generality, assume that these observations are the last d rows of 
I 

X, Y and 6 so that they can be partitioned as 

X = [XII (n-d)xp], Y = [YII (n-cl)xl] , & = [& // (11-c/)xl] 

xi) dxp YI) clxl 6 0 c/xl 

The weight or prediction matrix H = x(xrx t' xr can be partitioned as above, 

where and are 

(n - d)x (n -d) and d x d symmetric matrices, and V = X 11 (xrx t' xJ; is an 

(n-d)x d, matrix. 

(i) p(-o) = (x:;x11 t' x:;Y11 
= (xrx -x:;x0 t' x~·Y11 

= [ (xrx t' + (xrx t' x:; (1/) - xi) (xrx t' x:; J' Xn (x1·x t' J(xry -x//Yi)) 
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== (xrxt xry + (xTxt' x:;(10 -x0 (xTxt' x:; f x 0 (xrx t' xry 
-(xT xt' xJ;Y0 -(xrxt x:;(10 -x0 (xrxt x:; t' Xo(xrxt x:;Yo 

== p + (xr X t x1 (I,) -U/J t' x/)p -(xrx t x:;Y,) -(xrx Y' x:; (1,) - u ot' u,)Y/) 
== p + (xT'xJ' x;;(I/) -U/) t' x,)p-(xrx t x:.; [1/) + (!,) -Uot' u,Jr,) 
== p + (xrx t Xb (10 -UDt' X,;p-(xrx t x;;V0 - U0 t' Y,) 

== p-(xrx t' xJ;(10 -U/)t' [Yo -XoP] 
== p-(xr xt' x-:;(10 -u/)t' i 0 . 

(ii) The GD residual vector, i(-Dl can be expressed in terms of the LS residual vector i . 
i(-o) == y - xp(-o) 

== Y -x~ -(xTx t x:; (1,) - u,, )-' i 0 ) 

== y -XP + x(xrx t' x:; Vo -U,) t' if) 
= i +x(xrxr' xJ;Vo -uot' io. 

(iii) (i(-/J) - i )= x(x' X t x:; Vo -U/) t' ii)' 
hence the ~um of squared differences of ic-tJl from i is 

:. (i(-D) -i y (i(-D) -i) = i,~ (1 D -u,;)-I x,;(xrx t' xrx(xrx t x:; (ID -U/) t' if) 
=i~Vo -u/)txo(xrxtx:;(I,) -Uot'io 

(iv) 

and 

=i1~·v0 -U0 t'U0 (10 -U0 t'i0 . 

-(-D) - y - X /3-(-D) 6 11 - R II 

= Y11 - x 11 ~ -(xrx t' xJ; (10 - u0 t' i 0 ) 

=Y11 -X11P+X11(xrxtx:;v,) -Uot'io 
= i 11 + v(I0 -u,) t' i,) 

-(-o) - y - X /3-(-o) 
& /) - /) /) 

= Y0 - xi)~ -(xrx t' xJ; VI) - u,) t' in j 
= YD -X,)p + x,;(xrx t xJ;(I0 -U,) t' i 0 
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Property 2.5.2 (Imon, 1996) 
(i) Rank(U~i} = p 

(iii) Trace(U11 ) = I h;; 
ie/1 

Proof: 

=&o +u/)(11) -ul) te,) 
= li/) + u/)(1/) -u/)t ..leo 
=(io-Uot' 6o· 

(ii) Rank(U0 )= min(d,p) 

(iv) Trace(U/))= Lh;; 
ie/J 

We observe from the consideration of U11 and U0 matrices that they are symmetric. But 

they are not idempotent, though they are sub matrices of the idempotent matrix H. As we 

know, X isan nxp matrixofrankp, X 11 isan(n-d)xp matrixofrankp,and xrx 
is a p x p nonsingular matrix. 

U11 =X11 (xrxtx~· isan (n-d)x(n-d)matrixofrankp; 

i.e., Rank(U 11 ) = p , assuming p < n - d. 

On the other hand, X D is a d x p matrix of rank = min ( d, p ), and hence 

UD =X0 (xrxtxJ; isa dxdmatrixhavingrank =min(d, p); 

i.e., Rank(UD) = min(d,p). 

From the partitioned form of H we get, 

Trace( H) = Trace[U 11 + U IJ] 

= Trace(U11 ) + Trace(U0 ), 

where Trace(U11 ) = Lhu and, Trace(U0 ) = Lh;; . 
ie/1 iel) 

ldempotency of the Prediction Matrix 

Here we see the idempotency on the partitioned matrices. 

Property 2:s.3 (lmon, 1996) 

• T (1)U11U11 + VV = U11 

(iii) u11v + vu0 = v 
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Proof: 
Since His idempotent, 

( 

U11U11 + vvr 
- vru/1 + u/)vr 

That comes to the results as, 

1' u 11u11 + vv = u 11 , 

URV +VU/)= V' 

Property 2.5.4 (Imon, 1996) 

If 1 is a unit vector of order n and O is a same order null vector, then 

(iii) U1l11 + Ve D = 0 II (iv) vre/1 + U/)e/) = 0 /) 

Proof: 
By partitioning the relationships Hl =land He= 0, 
we obtain·· 

Hl =1 

hence 

Now 

He=O 

i.e., 

hence 
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Variance-Covariance Pattern of Group-Deleted (GD) Residuals 

Property 2.5.5 (Imon, 1996) 

It is possible to express the different components of GD residual vector g(-D\n terms of 

the vectors, E: 11 and E: /) • 

Proof: As we know, 

= GD -x/)(xrxt (x:i·G/1 +X~c/)) 

= (II) -u/))t::/) -Vrt::11 

and substituting this result in property 2.5. l (iv) ( i,~-o> = (II) - U 0 )i0 ) we obtain 

-(- D) _ ( )-1 T 
E:/) - E:D - ID -U/) V E:11, 

which also implies 

E(etD) )= o O • 

Using the result of Henderson and Searle (1981) we also observed that 

ID +(ID-uDtu/) =Vo-Uot' 

Hence using property 2.5.3 ( U0 U0 + vrv = U/)) and equation 2.38 

II) +(ID -u/)r1u I)= (ID -u/)r' we obtain 

again 

Var(eL-I>) )= E(e,~-D) i ,~o)r) 

= a-2 V/) +(1/) -Uot' vrv(I/) -Uot' J 

=0'2l1/) +(1/) -Uot'uoJ 

= a-2(1,> -Uot' 

6 11 =Y11 -Xu/J 

= (111 -U11)6 11 -VE:o 
using the results (2.35) and (2.40) in property 2.5.1 (iv), we obtain 

-(-0) - l ( )-' T L E: II - I I/ - u II - V I/) - u /) V 'f' II 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 
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which also implies E(eA-D)) = 0 11 • (2.42) 

It is obvious from standard least squares theory that l111 -U11 - v(!J) -u,J-1 V' J must be a 

symmetric idempotent matrix, which implies 

Var(e,~-/))) = E(ei-D>i,~-D)T) 

2 l ( )-1 T J = (Y 111 -VII-VII) -U/) V . (2.43) 

Using property 2.5.3 of U11 and U/) matrices we also observe 
I 

Property 2. 5. 6 

Proof: 

and 

C (-(-1)) - (-Dl)- E(-(-1>)-H>)T) 
OV E 11 , En - E II En 

(-D) ( T )-1 T H11 = xi/ x 11 xu x 11 

= Xu (xrx - x:;x/) f X/i. 

= Xu [ (xrx t' + (xrx t1 x:; (10 - x 0 (xrx t' x:; t' Xn (x rx t1 ]x:i· 

= Xu (xr x t' x:i· + x 11 (xrx t1 x:; (1/) - u0 t x 0 (xrx t' x:i· 

=Uu +V(!D-ul)tvr, 

(-D) ( T )-1 T H 0 = Xn X,1Xu XI) 

=X0 (xrx-x:;x0 f x~ 

= xi) l(xrx t' + (xrx t' x~ (1/) -Un t xi) (x 1·x t' }YJ; 

=U0 +u/) (10 -u0 tu/) 

= u/)(1/) +(!/) -uotu/)). 

42 



Property 2.5. 7 

Proof: 

We have, 

= h,; +xJ'(xrx t' x;;(I0 -u/)t' x 0 (xrx t' xi 

Hence h(-o) > h .. 
II - u• 

2.6 Deletion Diagnostics Algebra in Existing Methods 

This section provides some basic relationships among the deletion diagnostic measures. 

Property 2. 6. 1 

(i) 

(ii) 

Proof: 

(i) We have 

½ 
DFFITS. = r• (~J 

I I 1- h 
II 

CD; = - 1 [{x(p - p<-i> )Y {x(p - p<-i) )}] 
ps2 

(2.44) 

(2.45) 
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putting the value of(jj- jj<-il ), property 2.4.2 

=------
p(l- h;;) s2(1- h;;) 

= 
p(l-h;;) 

(ii) We Know 

-(-i) 

DF'F'J'T''S . = Y, - y . I 2 1,, ~ , z = , , ... ,n 
-yS(;)h;; 

and we have 

Multiplying both sides by x/" produces 

Dividing both sides by .Jsu)h;; will produceDFFITS;: 

½ 
• ( h.. ) 

2 

=r. - "-
, 1-h. ' 

II 

where r/ is the R-Student residual. 
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2.7 Sources and Nature of Data 

We use two types of data in our dissertation; one is secondary data and the other is 

simulated data. Secondary data are collected from different referred books and journals 

that are extensively used in diagnostic purpose and number of statisticians use them to 

evaluate the performance and effectiveness of their own measures. We also use simulated 

data for the purpose of simulation of the proposed measures. We generate and use 

simulated data to demonstrate the performance of our measures for the case of high­

dimensional large data set. All the secondary data sets are given in appendix A. 
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Chapter 3 
"Finding the question is often more important than 

finding the answer." 

John W. Tukey 

Robust Regression and 

Regression Diagnostics: Deletion Approach 
' 

This chapter provides a sh01i literature review with the art of the state of robust 

regression and regression diagnostics. This chapter is divided into two sections; in the 

first section we make a short discussion about most popular robust regression methods 

and a very sho1i introduction to the robustness properties. Next section contains different 

regression diagnostic methods that are mainly based on the deletion approach. 

3.1 Robust Regression 

This section gives the concepts of robust regression, measures of robustness and some 

popular robust regression methods. 

' 3.1.1 Main Concepts in Robust Regression 

Robust regression teclrniques that are complement to the classical least squares (LS) in 

the sense that they give similar results to the LS regression when the data are linear with 

normally distributed errors, but differ significantly when the errors are non normal or the 

data set contains significant outliers. Robust regression tries to fit a regression to majority 

of the data and then to discover the outliers as those points which posses' large residuals 

from the robust output. These have the common strategy; all give less weight to 
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observations that would otherwise influence the regression line. Robust regressions are 

considered as good or better depend upon their robustness properties. 

3.1.2 Measures of Robustness 

Three most common measures of assessing the robustness of an estimator T (Fn) are the 

breakdown point, influence function and continuity of the descriptive measure T which 

induces it. These notions are often described as quantitative, infinitesimal and qualitative 

robustness. Very short discussions of the tlu-ee robustness properties: breakdown point, 

influence function and asymptotic normality are as follows. 

The breakdown point characterizes the maximal deviation (in the sense of metric chosen) 

from the ideal model Fo that provides the boundness of the estimator bias. 
' Breakdown point, as applied to the Huber supermodel or gross-error model 

& '(T, F )- s~?, { & : , ,·,(~~Y,,;.)T (F )- T (F, ~ <oc}. (3.L I) 

This notion defines the largest fraction of gross en-ors that still keeps the bias bounded. In 

regression Tis (p+ 2) dimensional functional defined on (p+ I) dimensional sample space. 

Two most important sample based classification of breakdown point are, additional 

breakdown point (Hampel et al. 1986) and replacement breakdown point 

Let, x" = {x1, x2 , • • • , x
11

} of size n in RP = the finite sample addition breakdown point of an 

estimator is defined as 

ABP(T,X" )= min{_!!3__: supllr(x" u y" )-r(x" )J =oc}, (3.1.2) 
m+n 

where y" denotes a data set of size m with arbitrary values, and x" u y 111 denotes 

contaminated sample by adjoining y"' to x" .The finite sample replacement breakdown 

point of an estimates T at x" is defined as 

(3.1.3) 
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where x;, denotes one corrupted sample from x" by replacing m points of with 

x" arbitrary values. 

Influence Function (IF) assess the robustness concept of an estimator T (Fn), it (IF) is 

the cornerstone of the infinitesimal approach, which was invented by Hampel (1968). It 

gives us a precise idea of how the estimator responds to a small amount of contamination 

(infinitesimal perturbation) at any point. The influence function at z can be thought of as 

an approximation to the relative change in an estimate caused by the addition of a small 

proportion of spurious observations at z. 

The influence function (IF) of T at F is given by 

IF( ·T F)=l· T((l-t)F+tLiJ-T(F) 
z, , 1m,.J,o 

t 
(3.1.4) 

in those Z E x where this limit exists. In regression, Z = (Y: X); X is a p-dimensional 
, 

vector of regressors and Y is a one-dimensional vector of response variable. Hampel et al. 

(1982) defines two versions of finite sample influence functions, one by addition and the 

other by replacement of observations. 

Asymptotic Normality (univariate), A sequence of random variables {X,,} converges in 

distribution to N(p, a- 2
), a- >O, if equivalently, the sequence {(x,, - µ)!a-} converges in 

distribution to N(0,1). More generally, a sequence of random variables {X,, } 1s 

asymptotically no1mal with "mean" µ,, and "variance 

sufficiently large and 

X ,, -fl,, ~N(0,1). 
a-,, 

"(J"2 
II 

if a-,, > 0 for all n 

(3.1.5) 

We write "X,, "is an AN(µ,,, a-,;), where {µ,,} and {a-,,} are sequence of constants. 

Asymptotic Normality (multivariate), a sequence of random vectors {X
11

} 1s 

asymptotically (multivariate) no1mal with "mean vector" µ 11 and "covariance matrix" Ln 
if Ln has nonzero diagonal elements for all n sufficiently large, and for every vector A 

such that AL,,)}' > 0 for all n sufficiently large, the sequence AX,~· 
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isAN().,µ
1
~ ,AL,, ).,r) . We write " Xn is AN (µn, Ln)," Here {µn} is a sequence of vector 

constants and {1::n} a sequence of covariance matrix constants. 

3.1.3 Different Robust Regression 

Many types of robust regression methods have been developed in literature, some of the 

most popular robust regression methods are: 

L1 Regression 

A first step toward a more robust regression estimator came from Edgeworth (1887) after 

the little improvement of the proposal of Boscovich. He argued that outliers have a very 

large influence on LS because the residuals r; are squared. Therefore, he proposed the 

least absolute value regression estimator, which is defined as 

(3 .1.6) 

L1 regression does not protect against outlying x, but protects against y and is quite 

preferable over LS in this respect. The breakdown point of L1 is 0%. 

Robust M-Estimator 

Huber (1973) introduced M estimator in regression, that he had developed in 1964 to 

estimate location parameter robustly. The name "M-estimator" (Huber, 1964) comes 

from "generalized maximum likelihood". Robust M-estimators attempt to limit the 

influence of outliers and based on the idea of replacing the squared residuals r i 
2 used in 

LS estimation with less rapidly increasing loss-function of the data value and parameter 

estimate, yielding 

II 

minimize L p(r;) , 
i=I 

(3 .1.7) 

where p is a symmetric, positive-definite function generally with a unique minimum at 

zero. Differentiating this expression with respect to the regression coefficients /J yields 

II 

LIJl(r;)X; = 0 
i =I 

(3.1.8) 
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where If/, the derivative of p, and Xi is the row vector of explanatory variables of the i-th 

case: 
0 = (0, ... ,0). 

Equation (3.1.8) is a system of linear equation. One uses iteration schemes based on 

reweighted LS (Holland and Welsch 1977) or the so-called H-algorithm (Huber and 

Dutter 1974, Dutter 1977, Marazzi 1980). Unlike equation 3.1.6, however the solution of 

3.1.8 is not equivariant with respect to a magnification of the y-axis . Therefore, one has 

to standardize the residuals by means of some estimate of a- , yielding 

(3 .1.9) 

where these must be estimated simultaneously. Motivated by minimax asymptotic 

variance arguments, Huber proposed to use the function 

lf/(t) = min(c,max(t,-c)). (3 .1.10) 

M-estimators are statistically more efficient (at a model with Gaussian errors) than L1 -

regression while at the same time they are still robust with respect to outlying Y; . It has 

finite breakdown point 1 / n due to outlying x,. 

Generalized M-estimators 

In order to avoid the vulnerability to leverage points generalized M-estimators (GM­

estimators) were introduced, with the basic purpose of bounding the influence of outlying 

Xi by means of some weight function w. Mallows (1975) suggested to replace (3.1.8) by 

II 

I w(x; )1//(r; I a )x; = o, 
;~1 

(3.1.11) 

GM estimator has breakdown point 1/(p+ 1). These estimators were constructed in the 

hope of bo,unding the influence of a single outlying observation. The effect of which can 

be measured by means of the so-called influence function (Hampel, 1974). Therefore, the 

corresponding GM-estimators are generally called bounded-influence estimators. 
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Redescending M-estimators 

If the derivative of score function pof an M-estimator's is redescendingljl, i.e. satisfies, 
lim z=>±a p'(z) = 0, (3 .1.12) 

then the M-estimator is called a redescending M-estimator. Redescending M-estimators 

for regression parameters have special robustness prope11ies. Due to Donoho and Huber 

(1983) breakdown point of regression estimators allow outliers in the observations as 

well as the regressors. Maronna, Bustos and Y ohai ( 1979) found under this definition, all 

M-estimators with non-decreasing lfl as the L1 estimator behaves as bad as the least 

squares estimator. Later, He et al. (1990) and Ellis and Morgenthaler (1992) found that 

the situation changes completely if outliers appear only in the observations and not in the 

regressors, a situation which in particular appears in designed experiments where the 

regressors given by the experimenter. 

R-estimators of Regression 

R-estimators are based on the rank of the residuals, r;. If R, is the rank ofr; = Y; - Y;, 

then the objective is to 

11 

minimize L a
11 

(R; )r;, 
i = I 

II 

where the score's function a,, (i) is monotone and satisfies I a,, (i) = 0. 
i = I 

S-estimators 

(3 .1.13) 

Rousseeuw and Yohai (1984) introduced S-estimators; the idea is to define Tn as the set 

of parameters /3 that produces residuals with the smallest dispersion. i.e., 

T,, = arg minimize ps(r1 (/3), .. . , r,, (/3)). (3.1.14) 

It is a certain type of robust M-estimates, S,, (/3), of the residuals (r1 (P), .. . , r
11 
(P)) is 

defined as the solution to the equation 

(3.1.15) 
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k is often put equal to E/p), where (() is the standard normal. Sn given in (3.1.15) is an 

M-estimator of scale. The function p must satisfy the following conditions: 

(SJ) pis symmetric and continuously differentiable, and p (0)=0. 

(S2) There exists c > Osuch that p is strictly increasing on [O, c] and constant on 

[c,co). 

[If there happens to be more than one solution to (3. l.15), then put 

s(ri,·· ·, r,,) equal to the supremum of the set of solutions; this means s(r1 , ••• , r,,) = 

sup{s; (1 / n) L p(r; Is)= k}. If there exists no solution to (3 .1.15), then put 

s(r1 , •• • , r,,) =O]. 

S-estimates for regression are consistent for the true regression parameter /J and 

asymptotically normal when the distribution of the errors is symmetric around zero. But 

these estimates can not achieve high efficiency and high breakdown point at the same 

time. 

MM-Estimators 

Yohai (1985) introduced a new class of estimators named as MM-estimators toward 

higher efficiency for high-breakdown estimators. It is defined in three stages. In the first 

stage, a high-breakdown estimate p• is calculated, such as LMS or LTS (see below). For 

this purpose, the robust estimator does not need to be efficient. Then, an M-estimate of 

scale Sn with 50% breakdown is computed on the residuals r; (/J•) from the robust fit. 

Finally, the MM estimator p is defined as any solution of 

11 

Llf(r;(/J)I s,,)x; = 0, (3.1.16) 
i=l 

which satisfies S(/J) ~ S(/J.), (3.1.17) 

II 

where S(/3) = LP(r;(/J)I s11 ) . (3 .1.18) 
i=l 
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The function p must be like those used in the construction of S-estimators, it must 

satisfy conditions SJ and S2 of S-estimators. This implies that If/= p' has to be properly 

redescending. Yohai (1985) showed that MM-estimators inherit 50% breakdown point of 

the first stage and that they also possess the exact fit property, he also proved that MM­

estimators are highly efficient when the en-ors are normally distributed. 

Least Median of Squares (LMS) Regression 

It was proposed by Hampel (1975) and further developed by Rousseeuw (1984). Instead 

of minimizing the sum of squared residuals, Rousseeuw proposed minimizing their 

median 

minimize med r; 
2 

• 
p i 

(3.1.19) 

This estimator effectively trims almost the half (n/2) observations having the largest 

residuals, and uses the maximal residual value in the remaining set as the criterion to be 

minimized. The basic re-sampling algorithm for approximating the LMS, called 

PROGRESS, was proposed by Rousseeuw and Leroy in 1987 and later developed by 

Rousseeuw and Hubert in 1997. This algorithm considers a trial subset of p (number of 

explanatory variables) observations and calculated the linear fit passing through them. 

This proc~dure is repeated many times, and the fit with the lowest median of squared 

residuals is retained, for small data it is possible to consider all p-subsets whereas for 

large data sets many p-subsets are drawn at random. The cun-ently fastest exact algorithm 

by Agullo ( 1996) is based on a branch and bound procedure that selects the optimal h­

subset without requiring the inspection of all h-subsets. This algorithm is feasible for n up 

to about I 00 and p up to about 5. LMS has breakdown point of ([ n I 2] - p + 2) In) for p­

dimensional data set i.e., it attains maximum possible breakdown point 1/2 at usual 

models but unfortunately it possesses poor asymptotic efficiency. LMS has excellent 

global robustness. LMS method has a lack of efficiency because of its convergence n1 3
• 

Least Trimmed Squares (L TS) Regression 

It was intwduced by Rousseeuw (1984) and is given by 
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(3.1.20) 

where r;:
11 

2 ~ • • • ~ r
11

:
11 

2 are the ordered squared residuals and h is to be chosen between 

!!.. and n . The L TS estimators search for the optimal subset of size h which has the least 
2 

squares fit of the smallest sum of squares residuals. Hence, the L TS estimate of /3 is then 

the least square estimate of that subset of size h . For the data comes from continuous 

distributio~1 breakdown points of LTS equals min(n-h+l,h-p+l)/n, we have 

h=[n/2]+[(p+l)/2]yields the maximum breakdown point, is asymptotically 50%, 

whereas h=n gives the ordinary least squares with breakdown point =Jin. LTS has the 

properties such as affine equivariance and asymptotic n01mality. Its influence function is 

bounded for both (directions: response and explanatory) the vertical outliers and bad 

leverage points. Moreover, LTS regression has several advantages over LMS. Its 

objective function is smoother, making LTS less 'jumpy' (i.e. , sensitive to local effects) 

than LMS. L TS has better statistical efficiency than LMS because of its asymptotically 

normal property (Hossjer, 1994), whereas LMS has a lower convergence rate 

(Rousseeuw, 1984). This also makes the L TS more suitable than the LMS as a sta1ting 

point for two-step estimators such as the MM-estimators (Yohai, 1987) and generalized 
, 

M-estimators (Simpson, Ruppert and Carrol, 1992; Cookley and Hettmansperger, 1993). 

It also fails to fit a correct model when large number of clustered outliers exits and with 

more than 50% outliers in the data. The main drawback of the L TS method is that the 

objective function requires so1ting of the squired residuals, which takes O(n log n) 

operations compared with only O(n) operations for the median. The performance of this 

method has recently been improved by the F AST-L TS (Rousseeuw and van Driessen, 

1999) and Fast and robust bootstrap for LTS (Willems and Aelst, 2004 ). 

Reweighted Least Squares (RLS) 

The basic principle of LMS and LTS is to fit the majority of the data, after which outliers 

may be identified as those points that lie far away from the robust fit; that is, the cases 
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with large pos1t1ve or large negative residuals. Rousseeuw and Leroy (1987) bring 

another idea to improve crude LMS and L TS solutions, apply a weighted least squares 

analysis based on the identification of outliers and use the following weights: 

),\/. = {1 
I 0 

if 

if 
(3.1.21) 

This means simply that the case i will be retained in the weighted LS if it's LMS residual 

is small to moderate, but disregarded if it is an outlier. Then they defined weighted least 

squares by 

II 

minimize L w, r/ . 
i=I 

(3.1.22) 

Therefore, the RLS can be seen as ordinary LS on a 'reduced' data set, consisting of only 

those observations that received a nonzero weight. The resulting estimator still possesses 

high breakdown point, but is more efficient in a statistical sense (under Gaussian 

assumptions). 

3.1.4 Reasons for Reluctance to Use Robust Regression 

In spite of having some merits of robust regression it has some limitations/reluctances to 

use as follows: 

1. The belief that large sample sizes make robust techniques unnecessary. 

2. The belief that outliers can be detected simply by eye or by looking by OLS 

estimates, or by sensitivity analysis, obviating the need for a robust analysis. 

3. Existence of several 'robust regression' teclmiques with the guidance available as 

to which is appropriate. 

4. Unfamiliarity with interpretation of results from a robust analysis. 

5. Unawareness of gains available from robust analysis in real data sets. 
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3.2 Regression Diagnostics: Deletion Approach 

This section gives the various ideas relevant to the regression diagnostics depending upon 

the deletion approach. Many types of diagnostic measures have been developed bearing 

different thinking by this time. Measures show that how statisticians try to develop and 

modify the existing methods time to time. It is evident that none of the method is always 

gained the success. This is the reason for identifying unusual observations and has seen a 

grate deal of attention in almost every field of data analysis. 

3.2.1 Deletion Approach and Its Main Concepts 

The implic,it assumption for OLS (Chatterjee and Hadi, 1988) states, 'all the observations 

are equally reliable and have an equal role for determining the results'. But the reality is 

different, it is not always possible that all the observation have same role. Belsley et al. 

(1980) pointed out, " the ordinary least squares method may be so ineffective for the 

estimation of trne innovations that any simple type of modification defined for the entire 

set may not be fruitful for all cases". Deletion approach seems that different observation 

has different weights on the analysis. There exist a vast number of methods for detecting 

unusual observations and measuring their effects on various aspects of the analysis. Some 

are individual and some are combination of inten-elated methods that are based on one 

function of the observations or the structure of the regression model or the function of 

estimates. 

Since the presence of unusual observations affects the estimation, the idea of deleting 

them (unusual cases) from the analysis and re-estimating the model with the rest has been 

generally proposed. Case-deletion requires five questions: 

■ Which should be deleted? 

■ What should be the criteria for deletion? 

■ How many cases (observations) should be deleted? 

■ What should be the role of deleted observations in subsequent analysis? 
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■ How much information may be lost by deletion required number of observation 

and how much gain can be achieved? 

Atkinson (1986) pointed out, "There is no universal agreement among statisticians about 

all these questions". That is why a number of methods have been suggested and have lot 

of arguments in favor of the respective methods. 

3.2.2 Group Deletion Diagnostic Method 

The methods of group (multiple) deletion are as well known as single deletion but the 

basic difference is, in case of group deletion a number of observations (group) are deleted 

at a time. Difficulty is identifying the cases to be deleted. Sometimes it is impossible for 

the large number of observations. For example if consideration is given to deletion of 5 

out of 30 ·:::ases, there are 1, 42,506 possibilities. This is running with time and space 

contains. Atkinson (1986) mentioned, in some examples, the sequential employment of 

single deletion methods leads to the deletion of important sets of observations. He also 

mentioned that, single deletion diagnostics are affected by masking and swamping 

(masking occurs when an outlying subset goes undetected because of the presence of 

another, usually adjacent and swamping occurs, when good observations are incorrectly 

identified as outliers because of the presence of another, usually remote, subset of 

observations; Hadi and Simonoff, 1993) phenomena, single deletion diagnostic methods 

fail to reveal outliers and influential observations. In other words, the importance of the 

individual observation is not evident unless several observations are not deleted at once. 

3.2.3 Deletion of Unusual Observation 

There exits a large number of interrelated methods for deleting unusual observations and 

measuring their effects on various aspects of the analysis. These methods can be divided 

into seven groups based on the specific aspect of the analysis that one is interested in. 

Chatte1jee and Hadi in 1988 mentioned that, measures may be based on any one of the 

following quantities: 
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1. Residuals, 

2. Remoteness of points in the X-Y space, 

3. Influential curve ( center of confidence ellipsoids), 

4. Volume of confidence ellipsoids, 

5. Likelihood function, 

6. Subset of regression coefficients, and 

7. Eigen-structure of X. 

We have a brief discussion on some of the above quantities that are most popular and 

relevant to our study. 

3.2.4 Measures Based On Residuals 

"Residuals play an important role in regression diagnostics; no analysis is complete 

without a thorough examination of the residuals", Chatterjee and I-Iadi (1988). To assess 

the appropriateness of the model 

y = X/J + & ' (3.2.1) 

it is necessary to ensure whether the assumptions about the errors are reasonable. The 

problem here is that the e; can neither be observed nor they can be estimated directly. 

This must be done indirectly using residuals. For the linear least squares, the vector of 

residual r can be written as 

where 

or in scalar form, 

i = r = Y - Y = (I - H)& 

H = X(Xrxr' xr 

II 

=&;-IhiJ&j, 
J=I 

i=l,2, ... ,n 

(3.2.2) 

(3.2.3) 

where hiJ is the ij"-th element of H. The identity (3.2.2) indicates clearly that the 

relationship between r and e depends only on H. If hu 's are sufficiently small, r will serve 
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as a reasonable substitute of e. Furthermore, if the elements of e are independent and have 

the same variance, identity (3.2.2) indicates that the ordinary residuals are not 

independent (unless His diagonal) and they do not have the same variance (unless the 

diagonal elements of Hare equal), because 

(3.2.4) 

The ordinary residuals are not appropriate for diagnostic purpose; it is preferable to use a 

transformed version of the ordinary residuals. That is instead of r; one may use 

where O'; is the standard deviation of the i-th residual. 

Some special types of scaled residuals are given below. 

Normalized Residuals 

The i-th normalized residual is obtained by replacing O'; in (3 .2.5) by J;r-; as 

Standardized Residuals 

r, 
a .=-­, r-:r 

"I/ r · r 
i=I,2, ... ,n. 

(3.2.5) 

(3.2.6) 

To overcome the problem of unequal variances, we standardize the i-th residual r, by 

dividing it by its standard deviation (square root of the mean square for error). Residuals 

have zero mean and approximate average variance is estimated by 

n - p 

i.e. 

Hence the i-th standardized residual is, 

1' r r 
(3.2.7) 

(3.2.8) 
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Studentized Residuals 

Standardized residual is also referred to an internal scaling of the residual because B- 2 
is 

an internally generated estimate of a- 2 obtained from the fitting of the model to all n 

observations. The internally Studentized residuals are defined by 

i=l,2, ... ,n (3.2.9) 

Another approach would be to use an estimate of a- 2
, based on a data set with the i-th 

observation deleted. This deleted scaled residual is referred as externally Studentized 

residual and defined as 

i = 1,2, .. . ,n, (3.2.10) 

where -(-i)2 = 1 Ic _ r/J-(-i))2 O" --- y X . 
n-p-1 1 

1 1 

After some simplifications we get the relation between the Studentized residuals ( external 

and internal) as 

n-p - 2 
2 • 

n- p-1-e; 
(3.2.11) 

Under the usual assumptions Ellenberg (1976) showed that externally Studentized 

residuals follow Student's t,,_*_1 distribution. Behnken and Draper (1972), Davies and 

Hutton (1975), and Huber (1975) all of them recommended the external Studentized 

residuals as more appropriate than the standardized (internal Studentized) residuals for 

identifying outliers since the effect of i-th observation is more pronounced in the case of 

the former. 

PRESS Residuals 

Predictive ~esidual error sum of squares (PRESS) residuals proposed by Allen (1974) as a 

criterion of model selection. The logic behind the PRESS residual is, if the i-th 

observation Yi is really unusual, the regression model based on all observations may be 
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overly influenced by this observation. This could produce a fitted value Y; that is very 

similar to the observed value Y;, and consequently, the ordinary residual r; will be small. 

If the i-th observation is deleted, then y; cannot be influenced by that observation, so the 

resulting residual should be likely to indicate the presence of the outlier. After deleting 

the i-th observation if we fit the regression model on the n-1 observations, the 

c01Tesponding prediction enor is 

(-i) -(-i) 
r = Y; - y . i = 1,2, ... , n (3.2.12) 

Cook and Weisberg (1982) named PRESS residuals as predictive residuals and Atkinson 

( l 985) mentioned it as deletion residuals. It seems that the calculation of PRESS 

residuals will require fitting different n regressions, but using the results from Miller 

(1974), it is possible to calculate PRESS residuals from the results of a single least­

squares fit to all n observations. The i-th PRESS residual can be written as 

i = 1,2, ... , n (3.2.13) 

Generally, a large difference between the ordinary residual and the predicted residual will 

indicate a point where the model fits the data well, but a model built without that point 

predicts poorly. The variance of the i-th PRESS residual is 

so that a standardized PRESS residual is 

If we use MS Res to estimate o- 2 
, then it would be the external Studentized residual. 

Jackknife Residuals 

(3.2.14) 

Tukey (1958) proposed Jackknife method as an extension of the idea of Quenouille 

(1949), which reduces bias in estimation, and provides approximate confidence intervals 

in cases where ordinary distribution theory proves difficult. Let us suppose we have a 
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sample x=(x1, ... ,x,J and an estimator 0 = J(x) .The i-th jackknife sample consists the 

data set with the i-th observation deleted , i.e. , the i-th jackknife sample is defined as 

(-i) _ ( )T x - x 1,. • ·,X;_1 ,x,+1, • ·,x
11 

Let us also define the i-th jackknife replication of 0 by 

9<-i> = J(x(-i> ), 

thus finally the jackknife estimator of 0 is defined as 

0 =n0-(n-1~) 

where 
I ll fj (-i) 

Bo = __ i=-'--1 -­

n 

(3.2.15) 

In a regression problem, the jackknife technique was proposed to obtain less bias in the 

estimation of the standard errors of regression coefficients, and in constructing precise 

confidence intervals for them (Miller,1974; Hinkley 1977; Wu 1986). 

There are at least two different ways one can define jackknife residuals. Let /J be the 

usual LS estimator of regression coefficients /J and 'jJH) be the corresponding estimates 

with the i-th case deleted. Then the jackknife estimate of regression coefficients /3 is by 

definition 

1 II 
A - A n- A(-;) 

fJ(.1ack )-n/J--I/J · 
n i=I 

(3 .2.16) 

Using these estimates of regression coefficients one can define the i-th jackknife residual 

as 

i=J,2, ..... ,n (3.2.17) 

The other way to obtain jackknife residuals is to jackknife the set of LS residuals or some 

other set of full-sample residuals. The i-th jackknife residual is then defined by 

i = 1,2, ... , n (3.2.18) 
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Sometimes PRESS residuals are misleadingly referred to as jackknife residuals in the 

literature (Mosteller and Tukey, 1977). 

Delete -d Jackknife Residuals 

Wu (1986) proposed delete-d jackknife technique as a generalization of ordinary 

jack.knife where he left out d ~ l observations at a time. Let {J(-o) denote 0 applied to 

the data set after the deletion of a group D of sized~ I . Then the delete-d jackknife 

estimator of 0 is 

- (-n) - ( \o 
0(.lack) = n0 - n - d P(.) (3 .2.19) 

where 

and the sum is over all subset of R of size (n-d) chosen without replacement from the 

data set. Like the ordinary jackknife there are two ways of calculating deleted-d jack.knife 

residuals. The standard practice is to use this method to estimate the regression 

parameters and the residuals are estimated afterwards. The other way to calculating them 

is to apply delete-d jackknife technique on LS residuals. 

Let R be ~ subset of 'remaining' in the analysis after the 'deletion' of a group of d 

observations, indexed by D, from the data set. Without loss of generality, assume that the 

deleted cases are last d rows of X, Y, ands. Let jJH>) be the LS estimate of /J based on 

the {Y; , X;} in R, that is 

Wu (1986) defined a residual vector of order (n-d) computed on subset R by 

i,1 = Y11 - X 11 /J 
and the delete-d jackknife technique can be applied to them. 

(3.2.20) 

(3.2.21) 
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It is, however, possible to obtain a full set of residuals by the use of deleted-d jackknife 

methodology. Again there are at least two ways of computing a full set of delete-d 

jackknife residuals. The first category of delete-d jackknife residuals can be defined by 

where 

The other type of delete-d jackknife residuals are 

s = ni; - n(-)d IsA-o) 
n I/ 
d 

i=l,2, ... ,n 

where i,~- D) = YI/ - X,JJ(-o) , is the set of LS residuals in a subset indexed by R. 

Bootstrap Residuals 

(3.2.22) 

(3.2.23) 

Efron's (1979) first article on bootstrap technique synthesized some of the earlier 

resampling ideas and established a new framework for simulation based statistical 

analysis. The idea of replacing complicated and often inaccurate approximations to 

biases, variances, and other measures of uncertainty by computer simulations caught the 

imagination of both theoretical researchers and users of statistical methods. Efron and 

Tibshirani (1993), and Shao and Tu (1995) presented excellent reviews of all these 

studies. There are two different ways in which one could generate a distribution of 

bootstrap residuals. Firstly, one could estimate a set of residuals by the LS method and 

then can generate bootstrap residuals by random sub sampling from that set. In other 

words, a distribution of bootstrap residuals can be obtained by bootstrapping LS 

residuals. The other approach is by bootstrapping cases to fit the regression model at first 

and then use it to estimate residuals. There are again two different approaches of 

bootstrapping a regression model. One is based on drawing an i. i.d. sample {,<} of size n 

from the LS residuals {i\ }. 

The bootstrap observations are then defined by 
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• T - • 
Y; = x, /3 + &, , i = 1,2, ... ,n (3 .1.24) 

by treating fl as the true parameter and {i,} as the population of innovations. 

Thus the Bootstrap Least Square (BLS) estimate of /J for each bootstrap sample is 

obtained by 

(3.2.25) 

where • ( • • )T Y = Yi , .. ·,Yu · 

The second bootstrap method is based on drawing n bootstrap samples of pairs 

{(i ,x; )}from then observed pairs {(y, ,xi)}. 

Then the BLS estimate of /J is computed as 

(3.2.26) 

Efron and Gong (1983) advocated use of the second bootstrap method for its lower 

sensitivity to assumptions. Whatever the choice of p·, the overall bootstrap estimate of 

regression coefficients is then obtained by 

A 1 ~ • 
/Jnoor = - ~/3; 

N i = I 

i=l,2 ... , N (3.2.27) 

where N is the number of bootstrap replications. 

One can now define a full set of bootstrap residuals as the differences between observed 

and fitted r·esponses when regression coefficients are estimated by /J,ioor, computed by 

either of these two approaches. 

3.2.5 Measures Based on Remoteness of Points in X-Y space (Distance 
Measures) 

Chatterjee and I-Iadi (1988) pointed, "Examination of residuals alone is not sufficient for 

detecting unusual observations, especially those conesponding to high-leverage points. 

This can be seen from the property that, 0 $ (h;; + r/ I rr r) s 1, which implies that 
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observations with large hi, tend to have small residual and therefore go undetected in the 

usual plots ofresiduals". 

In this sub section we will discuss some related quantities for measuring the leverage of a 

point. 

Diagonal Elements of Hat Matrix, H 

We know that the diagonal elements of the hat (prediction) matrix, h;; = x/" (xrx t' X;, 

play an important role in dete1mining the fitted values, the magnitude of the residuals, 

and their variance-covariance structure. For these reasons, Hoaglin and Welsch in 1978 

suggested the examination of both e;• and h;; ( e; for detecting outliers and h;; for 

detecting high-leverage points that are potentially influential), and added, "These two 

aspects of ;'.he search for troublesome data points are complementary; neither is sufficient 

by itself'. According to Hocking and Pendleton (1983), high-leverage points, .. . are those 

for which the input vector xi is, in some sense, far from the rest of the data'. But the 

question here is "how far is far?" some common suggested cut-off points for h;, are as 

follows: 

(a) The reciprocal of hii can be thought of as the effective or equivalent number of 

observations that determine y;(Huber, 1977 and 1981 ). Huber ( 1981) suggested that 

points with 

be classified as high-leverage points. 

(b) Hoaglin and Welsch (1978) suggested that points with 

2p 
h;; ~ -

n 

and V ellman and Welsch ( 1981) suggested that points with 

3p 
h;;~-

n 

be classified as high-leverage points. 

(3.2.28) 

(3.2.29) 

(3.2.30) 
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(c) If a regression model contains a constant term and the rows of X are i.i.d. N f' (µ,r,), 

then 

1 
h -­n- p-1 ii 

--- ___ n ~ F,( ) 
1-h ~ p ,11-p-l ' 

p ii 

which lead to nominating points with 

h > nF(p)+(n- p-1) 
11 

- nF(p)+n(n- p-1)' 

as high-leverage points, where Fis the I 00(1-a) point of F'r_{',ll-p-l) . 

(3.2.31) 

(3 .2.32) 

The suggested cut-off points for h ii should not be used mechanically; they should serve 

as rough yardsticks for general guidance and flagging of troublesome points. This is best 

accomplished by graphical display of hii such as index plot, stem-leaf display, and/or box 

plots. 

Mahalanobis Distance 

Distance measures are useful for identifying high-leverage points. The Mahalanobis 

distance (1936) introduced by himself is the first and most well known distance measure 

in multivariate analysis and is introduced as 

where, T(X) and C(X) are the sample mean and covariance matrix and defined as 

and 

1 II 

T(X) = - Ixi 
n i=I 

C(X) = -
1- I (xi - T(X))(x i - T(X) 1· ). 

n-1 i=I 

(3.2.33) 

(3.2.34) 

(3.2.35) 

This measure tells us how far x; is from the center of the cloud, taking into account the 

-
shape of the cloud as well. Suppose that X contains a column of ones and X denote 

centered X excluding the constant column. A statistic which measure how far xi is from 

the center of the data set is commonly computed as(n - lf1 x;(5Fxr1 xj, where X; is 

-
the i-th row of X . We are interested in measuring how far Xi is from the rest of the other 
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observations; hence it is natural to exclude Xi when computing the mean and variance of 

X. Therefore Mahalanobis distance can be written as 

where, X<il is the average of Xc;i and Xe;> = (n-1r1 X~l 1 = -(n-Ir' x;. 
Finally we get the distance as 

MD = n(n-2) h;; -1/n 

' n-I I-h 
II 

i = 1,2, ... ,n. 

(3.2.36) 

(3.2.37) 

Mahalanobis distance suffers from the masking effect, by which multiple outliers do not 

necessarily have a large MD;. This can be realized from the equivalence relation: 

h = (MD;)2 +!. 
11 n-I n 

(3.2.38) 

Minimum. Volume Ellipsoid 

The minimum volume ellipsoid (MVE) estimator is defined as the pair (I', C), where T(X) 

is a p-vector and C(X) is a positive semi-definite p xp matrix such that the determinant of 

C is minimized subject to 

(3.2.39) 

where h = [(n + p + 1) / 2]. The number a 2 is a fixed constant, which can be chosen as · 

x~ . .s when we expect majority of the data to come from a normal distribution. For small 

samples one also needs a factor <fl, which depends on n and p. The MVE has a 

breakdown point of nearly 50%. 

Robust Distance 

Mahalanoois distance is not robust, because T(X) and C(X) are not robust. Therefore it 

seems natural to replace T(X) and C(X) by robust estimators. The first such estimator was 

proposed by Stahel (1981) and Donoho (1982). Rousseeuw and van Zomeren (1990) 

proposed robust distance RDi by inserting the MVE (minimum volume ellipsoid) 
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(Rousseeuw, 1985) estimates for T(X) and C(X) as an outliers and high-leverage points 

diagnostic measure. 

Minimum Covariance Determinant 

The minin1um covariance determinant (MCD) estimator is another method with high 

break down point (Rousseeuw, 1985). It searches for a subset containing half of the data, 

the covariance matrix of which has the smallest determinant. It has been proved by 

Butler et al., (1993) that MCD estimator is asymptotically normal but it needs somewhat 

more computation time than MVE. 

Weighted Squared Standardized Distance 

Suppose that model (3 .2.1) contains a constant term and define 

Cu =..B)xiJ-xi },i=l,2, ... ,n and j=l,2, ... , k (3.2.40) 

where Xi is the average of thej-th column of X. the quantity ciJ, i=l,2, .. ,n, andj=J,2, .. ,k 

may be regarded as the effect of the }-th variable on the i-th predicted value .Y; . It is easy 

to show that 

k 

Yi -Y = Icu , (3.2.41) 
i=I 

where Y is the average of Y. Daniel and Wood ( 1971) suggested Weighted Squared 

Standardizes Distance, namely, 

where 

"k 2 

WSSD = L.Ji =I Ci; 
/ 2 ' 

Sy 

LIi ( - )~ -Y-
2 i =I Y; 

S y = ' n-1 

i=J,2, .. ,n, (3.2.42) 

to measure. the influence of the i-th observation on moving the prediction at the i-th point 

from Y. Thus WSSD; is a measure of the sum of squared distances of xu from the 

average of the }-th variable, Xi , weighted by the relative impo1i ance of the j-th variable 

(the magnitude of the estimated regression coefficients). Therefore WSSD; will be large if 
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the i-th observation is extreme m at least one variable whose estimated regression 

coefficient is large in magnitude. 

Diagonal Elements of Hz (Z, augmented matrix) 

A diagonal element from prediction matrix ignores the information contained in Y. It can 

be augme~ted the matrix X by the vector Y, and obtain Z=(X· 1]. Now the diagonal 

elements h z;; of the corresponding prediction matrix Hz can be written as 

(3.2.43) 

and thus h z;; will be large whenever h;; is large, r/ is large, or both. Hence h z;; cannot 

distinguish between the two distinct situations, a high-leverage point in the X space and 

an outlier in the Z space. 

Hadi's Influence Measure (Potential) 

Hadi (1992) mentioned in his paper that in the presence of a high-leverage point the 

information matrix may breakdown and hence the observations may not have the 

appropriate leverages. He introduced a single case deletion measure of leverage named 
' 

by potentials and defined as 

P ·• = X T (X (- i )TX (-i) )-1 X 
II I I ' 

where x<-i) is the matrix with i-th observation deleted. 

Generalized Potentials 

(3.2.44) 

Imon (1996) introduced generalized potentials by using group deletion for all the 

observations in a data set as 

{ 

p <_-D) 
<-D> = 

11 

<- t)) for i E R 
P;; 1- Pii 

p~-m for i E D 

(3.2.45) 

where D is the deletion group and R is the remaining set of observations. 

70 



3.2.6 Measures Based on the Influence Curve 

Measures of the influence of the i-th observation on the regression results are introduced 

by Hampel (1968, 1974). Some very popular measures that are derived from that idea are 

given below. 

Cook's Dfatance 

Cook (1977,1979) has suggested a way for reducing the influence curve, using a measure 

of the squared distance between the least-squares estimate based on all n points /3 and 

the estimate obtained by deleting the i-th point, say p<-;J. This distance measure can be 

expressed in general form as 

i=l,2, ..... ,n (3 .2.46) 

The usual choice of Mand c are M = xrx and c = pMSRc., , so that equation (3.2.46) 

becomes 

CD,.(x rX,pMSRe ·)= CD = (p<-il _pyxrx(p<-i) _/3) , i=J,2, ... ,n 
., I MS 

p Rc .1· 
(3 .2.47) 

points with the values of CD; have considerable influence on the least-squares 
A 

estimate /J. The magnitude of CDi is usually assessed by comparing it to Fa,p,n- p. 

If CD; = F0_s,p,ll- p, then deleting point i would move p<-iJ to the boundary of an 

approximate 50% confidence region for /J based on the complete data set. This is a large 

displacement and indices that the least-squares estimate is sensitive to the i-th data point. 

Since Fos ,p,n-p ~ 1, Cook and Weisberg (1982) suggested considering points to be 

influential for which CD;> I. Beckman and Trussell (1974) showed that 

and according to Bingham (1977), CD; can also be written as 

(Y _ pc-;1)1· (Y _ y <-i) ) 
CD; = 2 • i = 1,2, ... , n 

ka-

(3.2.48) 

(3.2.49) 
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DFBETAS 

Belsley et al. (1980) introduced measures of deletion influence. The first of these is a 

statistic that indicates how much the regression coefficient jJ.i changes, in standard 

deviation units, if the i-th observation is deleted. This statistic is 

fJ jJ<-1) 
DFBETAS . . = 1 1 

1., ..Js<-;i2c .. , 
JJ 

(3.2.50) 

where C 11 is the j-th diagonal element of (xrx t' and fJt> is the j-th regression 

coefficient computed without use of the i-th observation. Belsley et al. (1980) suggested 

a cutoff of 2/ ✓n. for DFBETAS J,i ; that is, ifjDFBETAS J,i j > 2 / ✓n., and then the i-th 

observation warrants examinations. 

Welsch-Kuh Distance (DFFITS) 

The influence of the i-th observation on the predicted value can be measured by the 

change in the prediction at x; when the i-th observation is omitted, relative to the standard 

error of, that is, 

(3.2.51) 

The denominator is just a standardization, since Var(y;) = er 2 h;; . Welsh and Kuh ( 1977) 

and Welsch and Peters (1978) suggested using a c-;>as an estimate of cr in (3 .2.51). 

Belsley et al. (1980) called Welsch-Kuh' s distance (WK) as DFFITS;, because it is the 

scaled difference betweenji and y<-iJ . Belsley et al. (1980) suggests that any 

observation for which ID FF ITS; I > 2 / ✓n. warrants attention. 

Welsch's Distance 

Using the empirical influence curve based on (n-1) observations, as an approximation to 

the influen,::e curve for fJ and setting 

M = x<-i)Tx(-i) = (xrx - X;x;') and C = (n - 1)a<-iJ 2 , 
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Welsch's distance defined as 

2 { 'l' ( )-2 } W; = CD; X(;)X(;), n - l a-(;) . (3.2.52) 

Welsch's distance can be defined by Welsch-Kuh' s distance as 

(3.2.53) 

Welsch (1982) has suggested using W; as a diagnostic tool. The fact that WK; is easier to 

interpret has led some authors to prefer WK; over W,. It is clear from (3.1.53), however, 

that W; gives more emphasis to high-leverage points. Equation (3.2.53) suggests that the 

cut-off points for W, can be obtained by multiplying the cut-off points for WK; 

by{n(n-l)!(n-p-1)}'12
• Thus for example, if 2-J(p+l)/(n-p-I)is used as cut-off 

point for WK; , then the corresponding cut-off point for W, would 

be(2/(n- p-I)),J(p + I)n(n-l) . However, if n is large as compared top, this quantity is 

approximately 3-J p + I . 

Modified Cook's Distance 

Atkinson (1981) has suggested using a modified version of Cook's distance for the 

detection of influential observations. The suggested modification involves replacing 8 2 

by a(-il
2

, taking the square root ofC; , and adjusting C, for the sample size. This 

modification of the C; yields 

CD;[xrx, (p+I)(n-1)2 a-<-;>2J 
n- p-l 

h n-p-I 
ff 

I-h;; p + I 

m =WK . 
I 

(3.2.54) 

(3 .2.55) 

(3.2.56) 
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Atkinson ( 1981) claims that this modification improves C; in three ways, namely, 

(a) c;• gives more emphasis to extreme points, 

(b) c;· becomes more suitable for graphical displays such as normal probability points, 

and 

(c) for the perfectly balanced case where h;; = (p + 1)/ n, for all i , the plot of c; is 

identical to that of je; j. 

The essential difference among C, , WK;, W; , and c;· is in the choice of scale. C; measures 

the influence of the i-th observation on /3 only, whereas WK,, W; , and c;· measure the 

influence on both 'jJ and 8 2
• 

Table 3.1 The influence measures Di (M, c) for several choices of of Mand c 

M C Measure 

xrx 1 h. 2 C =---" -r i I 
k l-h;; 

(n -1)8<-;>2 
WK . = je~I✓ h,, 

I I l-h. 
II 

xrx na(-i)2 

xrx (n -1)2 k -c-;i2 
-'-----'-- (J' 

n-k 

(n -1 )8<-il2 
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3.2.7 Measures Based on Volume of Confidence Ellipsoids 

The diagnostic measures based on the influence curve can be interpreted as given above, 

as measures which are based on the on the change in the center of the confidence 

ellipsoid when the i-th observation is deleted. An alternative class of measures of 

influence of i-th observation is based on the change in the volume of the confidence 

ellipsoid when i-th observation is deleted. Here are two most mentionable are given 

below. 

Andrews-Pregibon Statistic 
' 

The volume of joint confidence ellipsoid for /J is inversely proportional to the square 

root of det(xrx ). Hence an important criterion in the theory of optimal experimental 

design is based ondet(xrx ), because large values of det(xrx) are indicative to 

informative designs. Thus the influence of the i-th observation on the volume of 

confidence ellipsoids can be measured by comparing det(xrx) and det(xc-;ir x c-; ). On 

the other hand, omitting an observation with a large residual will result in a large 

reduction in the residual sum of squares, SSE. The influence of the i-th observation can 

be measured by combining these two ideas and computing the change in both r r ,. and 

det(xrx) when the i-th observation is omitted. 

Andrews and Pregibon (1978) suggested the ratio 

SSE(-i) det x(-i)Tx (-i) 

SSEdet xrx 
i=J,2, .. .. ,n 

det z(-i)Tz (-i) 

Define Z=(X·Y,.) and thus (3.2.57) becomes 

SSE(-i) det x <-i)Tx (-i) 

SSEdet x rx 
= -~--,-- ---.--<-

det z rz 

(3 .2.57) 

(3.2.58) 

which measures the relative change in det(zrz) due to the omission of the ith 

observation. Omitting an observation that is far from the center of the data will result in a 

large reduction in the determinant and thereby large increase in the volume. Hence, small 

values of (3.2.58) call for special attention. For convenience we define 
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det z(-i)Tz(-i) 
AP; = I- T 

det Z Z 
(3.2.59) 

Cook-W cisberg Statistic 

Under normality, the 100(1-a) ¾joint confidence ellipsoid for/J is 

E={ :(fJ - JJ}"(xrxYJJ-JJ)~F, } /J (p+I)a2 (a ;p+l ,n- p-1 ) ' 
(3.2.60) 

when the i-th observation is omitted, (3.2.60) becomes 

E (;· I) = /J. (,) < F, . { (/J- JJ<-i>)r(x<-i>Tx<-i>X/J- jJ ) } 
• (p + I)a(-i)2 - (a ;p+l ,11-p-2) ' 

(3 .2.61) 

Cook and Weisberg (1980) proposed the logarithm of the ratio of E to Er-o as a measure 

of the influence of the i-th observation on the volume of confidence ellipsoid for /J, 
namely, 

CW= lo Volume(E) 
' g Volume(£ <-;> ) · 

i = 1,2, ... , n (3 .2.62) 

Since the volume of an ellipsoid is proportional to the inverse of the square root of the 

determinant of the associated matrix of the quadratic form, (3.2.62) reduces to 

CW; = log det X -, TX -, - ~i) (a;p+l,n-p-1) . 

{( 

( )'l' ( ) )1/2 ( )k ( F, )(p+l)/2} 
det X X O' F'r.a ;p+l ,n-p-2) 

(3.2.63) 

Substituting 

J 

( .>2 J n - p - I - e ~ r a -, = a- ( ' ) ; where e; = I 

n - p - 2 a ,J (I - h;; ) 

and det(XH>rxr) = det(XrX)(I -h;; ) in (3.2.63), we obtain 

CU"; = .!_ log(l - h;; )+ k log( ~ -~ --_2 
2

) + k log( F'r_a:r+i,,,_,,_,)) _ 
2 2 n p I ri 2 F'r.a;p+l,n-p-2) 

(3.2.64) 
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Cook and Weisberg (1980) say this about CW; : "if this quantity is large and positive, then 

deletion of the i-th case will result in a substantial decrease in volume .. . [and if it is] large 

and negative, the case will result in a substantial increase in volume." Inspection of 

(3.2.64) indicates that CW; will be large and negative where e;2 is small and h;; is large, 

and it will be large and positive where e;2 is large and h;; is small. But if e;2 and h;; are 

either large or small, then CW; tends toward zero. 

3.2.8 Measures Based on a Subset of the Regression Coefficients 

The influence measures discussed thus far assume that all regression coefficients are of 

equal interest. Diagnostic measures that involve all regression coefficients may some 

times be non informative and misleading (Comments Pregibon, in Atkinson 1982). It may 

happen that an observation is influential only on one dimension (variable). Also an 

observation with a moderate influence on all regression coefficients may be judged more 

influential than one with a large influence on one coefficient and a negligible influence 

on all others. Information about the influence of an observation on a subset of the 

regression coefficient is, therefore, of interest. 

3.2.9 Measures Based on Eigen-structure of X 

It is known that the eigenstructure of X can change substantially when a row is added to 

or omitted from X. Statisticians study the influence of the i-th row of X on the 

eigenstructure of X in general and on its condition number and collinearity indices in 

particular. Except for very special cases, no closed form expression connecting the 

eigenstructure of X to that of x_(-i) exists. Some concepts in numerical analysis are used to 

define the condition number and collinearity indices of a given matrix, with graphical 

illustrations that individual or small groups of observations can have substantial influence 

on these measures of collinearity. 
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3.2.l0Limitations of Deletion Approach 

Deletion diagnostic approach has some limitations like any other diagnostic approach, 

some are as follows: 

(1) Single deletion diagnostics are affected by masking and swamping phenomena. 

(2) Multiple deletion diagnostic methods are sometimes impossible due to combinatorial 

problem. 

(3) Identification of suspect cases that have to be deleted is a difficult task. Especially 

group deletion diagnostic methods heavily depend on robust regression/or single deletion 

diagnostic methods. 

(4) Limitations of prior identification methods can make the group deletion results 

erroneous. 

(5) Diagno'stic techniques that are free from robustness can make the decisions non robust 

and may be misleading. 
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Chapter 4 
"For the things we have to learn before we can do them, 

we learn by doing them. " 

Aristotle 

Identification of Influential Observations 

in Linear Regression 

The usual way to measure the influence of an observation in a regression analysis is to 

delete the observation from the data set and compute a convenient norm of the change in 

the parameters or in the vector of forecasts. In this chapter we propose two new measures 
{ 

based on deletion approach (single and group) for identifying influential observations in 

simple and multiple linear regressions. We also study the different aspects of the 

measures. We demonstrate the calculation and show the advantages of the proposed 

measures in the identification of simple and multiple influential cases through several 

well-refe1Ted data sets. 

4.1 Squared Difference in Beta (SDFBET A) 

We introduce a possible diagnostic measure for measuring the influence of the i-th 

(single) observation. The measure is originated from the idea of Cook's distance (1977) 

and brings a modification in Difference in Beta (DFBETA) in Belsely et al. (1980). We 

name this 'measure Squared Difference in Beta (SDFBET A). The suggested measure is 

defined to be 

(4.1) 
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where pt> is the estimated i-th parameter and s<-n
2 

(1- h;;) is the variance of the i-th 

residual respectively after deleting i-th observation. 

4.1.1 Relation with Cook's Distance and DFFITS 

We see in Belsely et al. (1980) that DFFIT, DFFITS, DFBETA and Cook' s Distance 

(CD) can be defined as 

DFFJT = y- . -y- (-il = xr(/J-. -p-(-i>) = h;,&; 
I I I I I I l-h. ' 

II 

where &; = Y; - Y; and hii is the i-th diagonal element of the leverage matrix. 

We have, DFFITS = Yi - Yi = _ ii_ &; 
- -<- il [ h ]112 -

I (J'(-i) -fiC 1- hii s(-i)2 -Jo - h;; ) 

DFBETA = /J- . - p- <-il (X rX )_, x{' ii 
I I I 1-h. 

II 

and 
CD = (pt> - P;) T (X T X)(Pti) - pi) 

I ps2 

After simplification (see section 2.6), Cook's distance can be defined as 

-2h 
CD= s, ;, 

and 

hence 

' psi2(1-h;;) 2 

(-i)2 
2 s = (DFFITS;) . - ? 

psi-

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 
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CD,ps} 
= 

s<-il
2 

(1- h;;) 
( 4.10) 

DFFJTS} 
=---.:...... ( 4.11) 

4.1.2 Cut-off Value for SDFBETA 

It may not be easy to find a theoretical distribution of SDFBETA, however it should not 

make any problem to get a confidence bound type cut-off value for them. We use the 

equation ( 4.11 ), IDFFITSI ~ 3~ (like Belsely et al. 1980) and h;; ~ 3 p In (Vellman 

and Welsch, 1981) to make the cut off value for SDFBET A. As a result, we may consider 

the i-th observation to be influential if it satisfies the condition 

4.1.3 Examples 

SDFBETA; ~ (3~)
2 

= 9k , k = p+l. 
1-(3pln) n-3p 

(4.12) 

The measure, squared difference in beta (SDFBET A), is a single case deletion measure. 

At first we show its performance for simple influential case identification and then for 

identification of multiple influential observations. 

Monthly Payments Data 

The following real data is extracted from Rousseeuw and Leroy (1987), Rousseeuw et al. 

(1984); the data shows monthly payments of large Belgian insurance company inl 979, 

made as a result of the end of period of life-insurance contracts. In December a very large 

sum was paid, because of one extremely high supplementary pension. We see simply 

from the scatter plot (Figure 4.1 (a)) of the data set December situation is not usual. Table 

4.1 presen~s few single case diagnostics to identify the influential observations. The cut­

off values for each of the statistics are given inside the braces. Sometimes standardized 

residuals are used to detect outlier and cases having values grater than 2.5 are suspects. 
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For this data only observation 12 (December) is under suspect. We see from figure 4.1 

(b,c, and d) that SDFBETA successfully treats case December as an influential as well as 

Cook's distance and DFFJTS and at the same time it confirms the presence of single 

influential observation. 

Table 4.1 Single case diagnostics for Monthly Payments data 

st.res hu CD; IDFFITS,I jSDFBETA,I 
IVionth Payment (2.50) (0.25) (1.000) (0.82) (2.000) 

1 3.22 0.248 0.295 0.013 0.152 0.033 
2 9.62 0.784 0.225 0.089 0.413 0.221 
3 4.5 0.085 0.169 0.001 0.036 0.002 
4 4.94 -0.008 0.127 0.000 -0.003 0.000 
5 4.02 -0.233 0.099 0.003 -0.073 0.006 
6 4.2 -0.345 0.085 0.006 -0.100 0.011 
7 11.24 0.223 0.085 0.002 0.065 0.005 
8 4.53 -0.580 0.099 0.019 -0.186 0.038 
9 3.05 -0.875 0.127 0.056 -0.330 0.124 
10 3.76 -0.961 0.169 0.094 -0.432 0.224 
11 4.23 -1.088 0.225 0.172 -0.592 0.452 
12 42.69 3.063 0.295 1.961 7.550 80.842 
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Figure ,4.1 (a) Scatter plot Months versus Employment Payments; (b) Index plot of 
Cook's distance; (c) Index plot ofDFFITS; (d) Index plot of SDFBETA 

Hawkins et al. (1984) Data 

To demonstrate the performance and comparison of the new measure with existing single 

case deletion diagnostic measures like Cook' s distance and DFFITS, we analyze the 

Hawkins et al. (Hawkins et al. (1984)) artificial data as the identification of multiple 

influential observations. The data set consists of 75 observations in 4 dimensions, one for 

response variable others are explanatory variables. Rousseeuw and Leroy (1987) showed 

that observations 1-10 are ten high leverage outliers and the observations 11-14 are four 

(good leverage) points that are well accommodated by the LMS fit. Table 4.2 shows 

single case diagnostic results, Cooks distance identifies only observation 14 as influential 
' 
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and DFFJTS identifies 4 observations 11-14 as influential. At this stage we apply the 

newly proposed measure SDFBETA to identify the observations. According to our 

measure values consisting in column 6 of table 4.2, show observations 11-14 (four cases) 

are influential observations, which are as same as DFFITS. We know from the literature 

that first 10 observations are the most influential as they are at the same time, outliers and 

high leverage points, but they are masked by the next 4 observations (11-14). All three 

(CD, DFFITS and SDFBETA) are totally failed to identify multiple influential cases. 

Imon (2005) showed all first 14 observations as influential observations. We reach in 

conclusion that our single case deletion diagnostic measure can not identify all the 

influential'cases properly as Cook's distance and DFFITS, because of masking effect. We 

want to improve our measure attach with the group deletion ideas like Hadi and Simonoff 

(1993), and Atkinson (1994) and generalize it for multiple linear regression diagnostic 

purpose. 

Table 4.2 Single case diagnostics for first 14 cases of Hawkins et al., (1984) data 

Index hu Std.res CD; IDFFITS;I ISDFBETA;I 
0.120) 2.500 1.000 (0.693 0.545) 

1 0.063 1.552 0.040 0.406 0.176 

2 0.060 1.831 0.053 0.470 0.235 

3 0.086 1.396 0.046 0.430 0.202 

4 0.081 1.187 0.031 0.352 0.135 
' 5 0.073 1.413 0.039 0.399 0.172 

6 0.076 1.588 0.052 0.459 0.228 

7 0.068 2.077 0.079 0.575 0.354 

8 0.063 1.762 0.052 0.464 0.230 

9 0.080 1.255 0.034 0.372 0.150 

10 0.087 1.413 0.048 0.439 0.211 

11 0.094 -3.657 0.348 -1.300 1.865 
12 0.144 -4.501 0.851 -2.168 5.488 
13 0.109 -2.881 0.254 -1.065 1.274 

14 0.564 -2.558 2.114 -3.030 21.044 
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Figure 4.2 Index plot of(a) SDFBETA; (b) Cook's distance; (c) DFFITS 

4.2 Generalized Squared Difference in Beta (GSDFBETA) 

The diagnostic tool which is discussed in previous section designed for the identification 

of a single influential observation. But reality, hardly ever data sets contain just a single 

influential .. observation; a group of influential observations is present most of the times. It 

is now well known that a group of influential observations may distort the fitting of a 

model in such a way that influential observations have artificially very small residuals so 

that they may appear as inliers. Atkinson (1986) pointed out, "in the presence of masking 

single deletion diagnostic method fail to reveal outliers and influential observations." 

Therefore we need detection techniques for the identification of multiple influential 

observations and are free from masking and swamping phenomena. 
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Basic Philosophy 

A good number of diagnostic methods are available in literature and some of them are 

placed in the previous sections. Most of them for the identification of multiple influential 

observations, attempt to separate the data into a 'clean' subset without any types of 

outliers and a complementary subset of the observations that contains all the potential 

outliers. It is _generally used robust techniques and/or popular diagnostic techniques like 

Cook's distance, DFFITS, etc for identifying suspects. To perform the task, first the 

group of potential outliers/unusual observations are deleted at a time and then measure 

sensitivity of the each of the observations by observing the difference between the 

estimates without the group of unusual observations and the estimates adding another 

observation one after another from the remaining set of observations. 

4.2.1 GSDFBETA Algorithm 

In this section, we introduce a group-deleted version of diagnostic measure, generalization of 

squared difference in beta (SDFBETA), to develop effective diagnostic tool for the 

identification of multiple influential observations in linear regression. We name this 

GSDFBETA. We suggest here to use robust techniques for the identification of suspects to get 

the advantages ofrobustness. We assume that d observations among a set of n observations are 

suspects and are deleted from the data set. Let us denote the set of cases 'remaining' in the 

analysis by R and the set of cases 'deleted' by D. Hence R contains (n-d) cases (each case is 

closely associated with a single row of the data matrix X and the coITesponding element of Y) 

after d cases in Dare deleted. Without loss of generality, we assume that these observations are 
r 

the last of d rows of X and Y and Vis a variance-covariance matrix, so that we may remange 

data matrix as 
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Let P<11i be the corresponding vector of estimated coefficients when a group of observations 

indexed by D is omitted. Now by using the idea of Hadi and Simonoff (1993) we define our 
' 

proposed measure GSDFBETA as 

(ft(,1J - fi(11-i)Y x~·x11 (ft(11) - Pul-i)) 
a/11-;i (1 - h;;(u)) 

(P(11+,J-Pu1JYx:xl)(p(11+;J-Pu1J 
a H1 - hii(ll+i)) , i ~ R 

GSDFBETA; = (4.13) 

where (4.14) 

(4.15) 

( 4. I 6) 

(4.17) 

where 

4.2.2 Relation with GDFFITS and GSDFBETA 

Imon (2005) developed generalized DFFITS (GDFFITS) for the identification of multiple 

influential 'observations in linear regression as 

GDFFITS; = 

- -
Y;<11J - Yi(IHJ 

iiu1-;i .J hii (lll ' 

i ER 

- -
Yi( ll+i) - Y;(/1) 
-----;:==-, i ~ R 

(4.18) 
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where 

- h,;uo 
h,;c11+;> - 1 h 

+ ii(/1) 

lmon (2005) suggests considering observations as influential if 

JGDFFITS;J ~ 3.Jk /(n-d). 

(4.19) 

(4.20) 

The above results of GDFFITS, together with results of ( 4.15), ( 4.17) and ( 4.19), helps us 

to re-express GDFFITS in terms of group deletion residuals and leverages as 

GDFFJTS; = 

hii(II) €;(11) 

1 - h;;(11) 8 /1-i .JI - hii(II) 

h;;(11) i;(11) 

1 + h,;(11) 8 ,1.Jl + hii(II) 

for i ER 

(4.21) 

for i 1c: R 

We may call the leverage components of GDFFITS as shown in equation (4.21) as 

generalized weights. These weights are denoted by h;: and defined as 

h;;(11) 
for i ER 

h;: = 1- h;;(!I) 
(4.22) 

h;;( II) 
= for i 1c: R 

I+ h;;(!I) 

Thus, GDFFJTS values can also be re-expressed in terms of generalized Studentized 

residuals and generalized weights as 

(4.23) 

where t; ar,e the generalized Studentized residuals and defined as 

8;(11) 
for i ER 

8 11_; .Jt - h;;(li) . (4.24) LI = 
8;(11) 

for i r!. R 
8 ,1.J1 + hii(II) 

88 



Now GDFFITS can be re-expressed as 

(..Bull - ..Bu1-;i Y x/x11 (jj<R> - ..Bu1-iJ 
i ER 

(4.25) 

After some calculations we involve the equations (4.13) and (4.24) to make the relation 

as follows. 

{

(GDFFITS,)2 h . 
GSDFBETA = 1-h ii(//) ' 1 

e R 
I 11(//) ' 

(GDFFJTS;)
2 

hii(lll' i !it R 

(4.26) 

Finally, we define GSDFBETA (by using equation (4.22) and (4.25)) for calculation 

purpose as 

[ 

,_ . /, . ,2 
~h 

GSDFBETA = 1-h ii(II) 
I 11(/1) 

• ( • )2 
h;, ~I hii(II) 

i ER 
(4.27) 

4.2.3 Cutoff Value 

Observations corresponding to large GSDFBETA are declared as influential observations. We 

consider it (i-th observation) large and take as influential if it exceeds the following cut-off 

value. With the help of cut-off points from Imon (2005) and Vellman and Welsch ( 1981 ), we 

treat cut-off value for GSDFBETA as 

I GSDFBETA; I~ (cutoff GDFFITS)2 h;;<iii 

= (3,.j k /(n - d) )2 _}_£_ = 27 
kp 

2 n - d (n-d) 
(4.28) 
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4.2.4 Examples 
In this section we consider two well-known data sets which are referred for the identification 

' 
of multiple influential observations in linear regression. We show and compare the 

performance of proposed GSDFBETA with GDFFJTS as the group-deletion identification 

technique of multiple influential observations. 

Hawkins ec al. (1984) Data 

Now we apply the proposed algorithm to compute GSDFBETA for the Hawkins et al. (1984) 

data set. Imon (2005) showed generalized Cook's distance (GCD) is totally failed to identify 

influential observations for the masking effects. Table 4.3 shows our proposed method and 

GDFFITS both can identify 14 (1-14) influential observations successfully. But the figures 4.3 

and 4.4 show better perfonnance of GSDFBETA compare to GDFFITS in sense of smoothness 

in regular observations and makes significant distances between regular and influential 

observations. GSDFBETA shows better homogeneity among the regular observations and very 

sensitive to influential observations. 
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Table 4.3 Group deletion measures of influence for Hawkins et al. (1984) data 

Ind. IGDFFITSI GSDFBETA Ind. IGDFFITSI GSDFBETA Ind. IGDFFITSI GSOFBETA 
(0.768) (0.087) (0.768) (0.087) (0.768) (0.087) 

! 5.177 387.586 26 -0.298 0.006 51 0.259 0.004 

1 5.272 423.015 27 -0.342 0.01 I 52 -0.334 0.0 1 I 

J 5.169 453.267 28 0.137 0.001 53 0.733 0.075 

1 4.759 408.008 29 0. 111 0.000 54 0.340 0.010 

~ 5.003 435.023 30 -0.005 0.000 55 0.019 0.000 

Q 5.151 414.234 31 -0.045 0.000 56 0.026 0.000 

1 5.475 470.745 32 -0.207 0.003 57 0.269 0.004 
' 

~ 5.410 433.614 33 -0.216 0.002 58 -0.059 0.000 

2 4.899 408.732 34 -0.363 0.012 59 -0.036 0.000 

lQ 5.149 423.540 35 0.216 0.004 60 -0.334 0.01 I 

!! 0.926 19.198 36 -0.287 0.003 61 -0.021 0.000 

12 0.884 18.769 37 -0.198 0.004 62 0.324 0.009 

13 1.171 31.186 38 0.356 0.007 63 -0.187 0.003 

H 0.857 20.670 39 -0.349 0.009 64 -0.203 0.003 

15 -0.229 0.005 40 -0.145 0.001 65 0.341 0.007 

16 0.255 0.007 41 -0.006 0.000 66 -0.357 0.007 

17 -0.101 0.001 42 -0.219 0.004 67 -0.182 0.001 

18 0.018 0.000 43 0.397 0.016 68 0.423 0.018 

19 0.077 0.000 44 -0.262 0.006 69 0.055 0.000 

20 0.237 0.005 45 -0.283 0.006 70 0.377 0.007 

21 0.318 0.004 46 -0.098 0.001 71 0.097 0.000 

22 0.222 0.004 47 -0.630 0.046 72 -0.029 0.000 

23 -0.312 0.004 48 0.115 0.001 73 0.241 0.003 

24 , 0.259 0.003 49 0.405 0.010 74 -0.326 0.006 

25 -0.171 0.003 50 -0. 105 0.001 75 0.267 0.007 
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Figure 4.3 Index plot of GDFFITS for Hawkins et al. (1984) data 
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Figure 4.4 Index plot of GSDFBET A for Hawkins et al. ( 1984) data 
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Stack Loss Data 

We consider the stack loss data presented by Brownlee (1965) that has been extensively 

analyzed in the diagnostic literature since then. This three-predictor (Air flow, Cooling 

water inlet temperature and Acid concentration and stack loss for response) data set 

contains 21 observations with five influential observations; three of them are high 

leverage outliers ( cases 1, 3 and 21 ), one of them ( case 4) is an outlier and another one 

(case 2) is a high leverage point. When the OLS technique is employed to the data we 

observe from table 4.4 that most of the traditional diagnostic methods fail to focus the 

influential cases. Cook's distance does not identify any one of the observations as 

influential.. Studentized residuals (t ;) and DFFITS identify only one observation ( case 21) 

as unusual as well as SDFBETA. Leverage values fail to identify genuine high leverage 

points but swamp in a good case ( observation 17) as high leverage point. To compute 

GSDFBETA, we at first select suspect cases for deletion. The robust RLS technique 

identifies cases l, 3, 4, and 21 as outliers. The rule based on generalized potential marks 

observations 1, 2, 3, and 21 as high leverage points. Thus our deletion set contains five 

different observations ( cases 1, 2, 3, 4, and 21 ). When the regression model is fitted 

without these five points we observed from table 4.5 that all these observations have 

significant GDFFITS and GSDFBETA values that confirms our suspicion that these 

observations are influential. But GCD (Generalized Cook's Distance), another group 

deletion diagnostic measure, again fails to identify any of the influential observations. 
, 

We observe from figure 4.5 that GDFFITS correctly identifies all 14 influential 

observations. Figure 4.6 shows that in the index plot of GSDFBETA all influential 

observations are clearly identified and besides that all of them are far away from the 

usual ones. GSDFBETA shows better smoothness among the regular observations when 

we consider both the index plots at a glance. 
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Table 4.4 Single deletion measures for Stack loss data 

Index ti(2.50) Wii(0.381) CD(l.000) IDFFITSl(0.873) SDFBETA(l.067) 

1 1.19 0.302 0.154 0.795 0.905 
2 -0.72 0.318 0.060 -0.481 0.339 
3 1.55 0.175 0.126 0.744. 0.671 
4 1.89 0.129 0.131 0.788 0.713 
5 -0.54 0.052 0.004 -0.125 0.016 
6 -0.97 0.077 0.020 -0.279 0.084 
7 -0.83 0.219 0.049 -0.438 . 0.246 
8 -0.48 0.219 0.017 -0.251 0.081 
9 -1.05 0.140 0.045 -0.423 0.208 
10 0.44 0.200 0.012 0.213 0.057 
11 0.88 0.155 0.036 0.376 0.167 
12 0.97 0.217 0.065 0.509 0.331 
13 -0.48 0.158 0.011 -0.203 0.049 
14 -0.02 0.206 0.000 -0.009 0.000 
15 0.81 0.190 0.039 0.388 0.186 
16 0.30 0.131 0.003 0.113 0.015 
17 -0.61 0.412 0.065 -0.502 0.429 
18 -0.15 0.161 0.001 -0.065 0.005 
19 -0.20 0.175 0.002 -0.091 0.010 
20 0.45 0.080 0.004 0.131 0.019 
21 -2.64 0.285 0.692 -2.100 6.168 
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Table 4.5 Group deletion measures for Stack loss data 

Index GCD IGDFFITSI GSDFBETA 
1.00 1.500 1.260) 

! 0.154 3.345 19.387 
£ 0.060 1.719 5.264 
3 0.126 3.216 10.789 
4 0.131 2.577 1.751 
5 0.004 0.142 0.004 
6 0.020 -0.020 0.000 
7 0.049 0.220 0.019 
8 0.017 0.718 0.204 
9 0.045 -1.099 0.281 
10 0.012 0.526 0.106 
11 0.036 0.407 0.041 
12 0.065 0.315 0.043 
13 0.011 -0.789 0.179 
14 0.000 -0.575 0.093 
15 0.039 0.113 0.005 
16 0.003 -0.302 0.024 
17 0.065 -0.308 0.100 
18 0.001 -0.149 0.009 
19 0.002 0.093 0.003 
20 0.004 0.558 0.035 
21 0.692 -2.228 4.217 
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Figure 4.5 Index plot of GDFFITS for Stack loss data 
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4.3 A New Measure for Identification of Multiple Influential 
Observations 

It is a common practice in linear regression of measuring influence of an observation is to 

delete the c.:IBe from the analysis and to investigate the norm of the change in the parameters or 

in the vector of forecasts resulting from this deletion. Pena (2005) introduced a new idea to 

measure the influence of an observation based on how this obse1vation is being influenced by 

the rest of the data. In this section we would like to extend this idea to the group deletion 

technique suggested by Hadi and Sin1onoff (1993) and propose a new measure to identify 

influential observations in multiple linear regression. We investigate the usefulness of the 

proposed technique by two well-referred data sets and an artificial data with high-dimension, 

heterogeneous variances and large number of observations. 

4.3.1 Pena (2005)'s Statistic 

Pena (2005) introduced a new statistic totally in a different way," he mentioned, 'deletion of 

each sample point affects the forecast of a specific observation' . In his paper he outlined a 

procedure to measures how each sample point is being influenced by the rest of the data. He 

considered the vector 

(4.29) 

where Ytn is the i-th fitted value when the i-th observation is deleted, and defined the statistic 

for the i-th observation as 

(4.30) 

where p is ·the number of explanatory variables and V(y;) is the variance of the i-th fitted 

value. This statistic can be re-expressed as 
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(4.31) 

where hJi is theji-th element of the leverage matrix H, 

(4.32) 

and (4.33) 

Pena proposed the observations with values of the statistic larger than 

(4.34) 

as outliers and the observations having 

S; ~ median(S;) + 4.SMAD(S;) 

or S; :::::; max(O, median(S;) - 4.SMAD(S; )) (4.35) 

as heterog,~neous observations. E(S;), std(S;) and med(S;) are the mean, standard 

deviation and median of the statistic respectively. 

4.3.2 Our Proposed New Measure, M; 

From the beginning of the Cook's (1977) seminal ruticle, most of the ideas of finding 

influential observations in regression are developed on the basis of 'deleting the observations 

one after another and measuring their effects on various aspects of the analysis.' It is now 

evident that the single case deletion techniques fail to detect multiple influential observations 

mainly because of masking and/or swan1ping problems. We develop an alternative way to look 

at how the forecast values are influenced by deleting each of the cases after deletion of 

suspected group of influential cases first. Basically we have accumulated the idea of Hadi and 

Simonoff (1993) with Pena (2005) and developed a measure M;, which is expected to pe1fo1m 

better when a group ofin:fluential observations exist in a data set. It is also effective to identify a 
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set of low leverage points. We show that the performance of the proposed technique is quite 

satisfactory in situations like clusters of high-leverage points and in large data sets in high 

dimensions with heterogeneous variances that are not easy to handle by the existing influence 

measures. 

4.3.3 Algorithm of Proposed Measure 

The proposed measure is a two-step measure based on Pena's (2005) idea attach with formal 

and/or informal group deletion methods. 111is helps us to reduce the maximum disturbance by 

deleting them at a time and "the deletion of which produces the largest reduction in the residual 

sum of squares" (Hadi and Simonoff, 1993). It helps to make the data more homogeneous than 
' 

before. When we delete each sample point one after another, the forecasts of a specific 

observation would be more sensitive by the influential observations. Group deletion attaching 

with Pena's idea improves the measure and show nice results in presence of masking and/or 

swamping phenomena. Sometimes grapllical display like index plot and/or character plot of 

explanatory and response variables could give us some p1ior ideas about the influential 

observations, but these plots are not useful for higher dimension of regressors. There are some 

suggestions in the literature (Atkinson, 1986; Rousseeuw and Leroy, 1987; and Rousseeuw and 

van Zomeren, 1990) for using robust regression techniques like least median of squares (LMS) 

(Rousseeuw, 1984), least trimmed squares regression (LTS) (Rousseeuw, 1985) and 

reweighted least squares (RLS), (Rousseeuw and Leroy, 1987) to find the suspect 

unusual/influential observations. Pena and Yohai (1995) introduced a method to identify 

influential subsets in linear regression by analyzing the eigen vectors con-esponding to the non­

null eigen values of an influence matrix. Here we consider one of the two proposed procedures 

of Hadi and Simonoff ( 1993), which was an adaptation of Hadi ( 1992, 1994 ), and is related to 

the proposals of Hawkins et al. (1984) and Atkinson and Mulira (1993). They suggest dividing 

the data set into two initial subsets: a 'basic' subset that contains the first k+ 1 clean 

observations and a 'nonbasic' subset that contains the remaining observations. In this purpose 
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some time~• they use an appropriate diagnostic measure and some times use clustering based 

backward-stepping method (Simonoff, 1991 ). 

In our method, at the first step we find out all suspect unusual cases. We propose to use 

graphical display and/or regression diagnostic measure and/or robust regression methods 

whatever can helps to find the suspected group with maximum number of influential cases. In 

the second step, we assume that d observations among a set of n observations are suspected as 

influential observations and to be deleted. Let us denote a set of cases 'remaining' in the 

analysis by R and a set of cases 'deleted' by D. Hence without loss of generality, assume that 

these observations are the last d rows of X and Y so that 

After formation of the deletion set indexed by D, we would compute the fitted values _y<-D> 

after d observations are deleted. Let pc-oi be the corresponding vector of estimated 

coefficients when a group of observations indexed by D is omitted. We define the vector of 

difference between y 
1 

(-D) (}-th :fitted value after the deletion of suspect group D) and y JUl (-J)J 

(}-th fitted value when the i-th observation is deleted after the deletion of D group first) as 

(4.36) 

( 
(-D) (-J)))T = 11ui , .•. ,tll(i) (4.37) 

and 
(-!)) - - (-D) - - (-/J) 

I iU> - y J y JU> 

h & c-oi 
J I I • 12 =---,J = ' , ... ,n 
1-h;; 

(4.38) 
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Finally, we introduce our new measure as squared standardized norm, name this M; and define 

as 

(4.39) 

where V(-c-o>)= 2h· Y, s ;;, and 
n-k 

(4.40) 

Using (4.36) to (4.39), we obtain 

I II -2 (-/)) 

M = __ "'\:' h 2 -
6-; -

I ks 2 h ~ Ji (I - h . ) 2 • 
11 J-1 11 

(4.41) 

It may not be easy to find a theoretical distribution of M . . But in this situation it is a common 
I 

practice (see Hadi, 1992) to use a confidence bound type cut-off value for it. 

We consider i-th observation to be influential if it satisfies the rule 

where 

4.3.4 Examples 

IM; I > median ( M,) + 4.5 MAD ( M,), 

MAD ( M,) = median {l M; - median ( M,)~1/0.6745. 

(4.42) 

In this section we demonstrate the proposed measure and show the pe1formance of our newly 

proposed measure in comparison with Pena's (2005) statistic and other two existing popular 

methods for th~ identification of influential observations in linear regression through several 
' 

well-known data sets, which are frequently refeITed in the literature for studying the 

identification of influential observations, high leverage points and outliers. 
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Hert7,,5prung-Rusell Diagram Data 

Our first example comes from Astronomy and the data is taken from the Hertzsprung-Rusell 

diagram o~ the star cluster CYG OBI, which contains 47 stars in the direction of Cygnus. 

Explanatory variable is the logarithm of the effective temperature at the smface of the star (Te), 

and Y is the logarithm of the light intensity (L/L0). This data is given in Rousseeuw and Leroy 

(1987) and later analyzed by many authors as an interesting masking problem. The character 

plot of this data is shown in Figure 4.7 reveals that there are four outliers (cases 11, 20, 30, and 

34) in the data and many authors consider other two points (7, 14) seem to be far from the 

regression line of the most of the data. Therefore, we consider all six observations as suspect 

unusual cases. We apply our proposed measure together with Cook's distance and DFFITS for 

this data and the results are presented in Table 4.6. We observe from this table Cook's distance 

fails to identify even a single influential observation, DFFITS can identify 4 cases (14, 20, 30, 

and 34), Pena's statistic identifies IO observations (7, 11, 14, 17, 19, 20, 29, 30, 34, and 45) i.e., 

this statistic is affected by swamping phenomena for the observations 17, 19, 29, and 45 . Our 

proposed measure (M;) can detect 5 influential observations (7, 11, 20, 30, and 34) c01Tectly. 

Figure 4.8 shows that the point 14 is close to LMS line than LS line, which supports that the 

case is not influential for analysis. Moreover, the M; (proposed measure) as given in table 4.6 

and figure 4.9 find out another influential observation 9, which was undetected before. The 

histogram of M; (in figme 4.10) clearly indicates the presence of heterogeneity among the 

observations, which is not as much as clear in histogram of S;(figure 4.10, (e)). 
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Table 4.6 Measures of influence for Hertzsprung-Rusell Diagram data 

Si Mi Si Mi 
Ind. CD IDFFITSI (0.254, (-0.159, Ind. CD IDFFITSI (0.254, (-0.159, 

(1 .00) (0.412) 0.681) 0.234) (1.00) (0.412) 0.681) 0.234) 

1 0.,002 0.065 0.463 0.0569 25 0.000 0.010 0.455 0.0090 
2 0.044 0.300 0.486 0.0431 26 0.004 -0.086 0.437 0.0375 
3 0.000 -0.027 0.627 0.0653 27 0.005 -0.095 0.572 0.0016 
4 0.044 0.300 0.486 0.0431 28 0.000 -0.022 0.455 0.0005 
5 0.001 0.045 0.554 0.1154 29 0.017 -0.184 0.705 0.0000 
6 0.012 0 .152 0.437 0.0469 30 0.234 0.691 1.044 8.0440 

z 0.045 -0.299 1.039 0.7934 31 0.012 -0.153 0.455 0.0706 
8 0.009 0.131 0.493 0.0095 32 0.002 0.067 0.486 0.0334 
9 0.010 0.144 0.627 0.4091 33 0.003 0.078 0.435 0.0080 

10 0.001 0.035 0.463 0.0298 34 0.413 0.935 1.044 8.8467 

11 0.067 0.365 1.044 6.5866 35 0.019 -0.195 0.686 0.0020 
12 0.010 0.140 0.435 0.0697 36 0.043 0.296 0.528 0.0006 
13 0.011 0.147 0.442 0.0245 37 0.002 0.060 0.467 0.0163 
14 0.090 -0.439 0.979 0.0321 38 0.003 0.078 0.435 0.0080 
15 0.020 -0.203 0.572 0.0401 39 0.004 0.086 0.467 0.0062 
16 0.006 -0.109 0.437 0.0584 40 0.015 0.175 0.435 0.1130 
17 0.046 -0.314 0.686 0.0814 41 0.005 -0.098 0.455 0.0212 
18 0.025 -0.226 0.437 0.2327 42 0.000 0.031 0.435 0.0000 
19 0.-028 -0.241 0.686 0.0199 43 0.008 0.129 0.451 0.0052 
20 0.136 0.523 1.044 7.1984 44 0.006 0.113 0.435 0.0262 
21 0.014 -0.170 0.572 0.0165 45 0.024 0.220 0.479 0.0108 
22 0.022 -0.214 0.572 0.0503 46 0.000 0.008 0.435 0.0030 

23 0.012 -0.155 0.437 0.1143 47 0.009 -0.132 0.437 0.0840 
24 0.000 -0.027 0.446 0.0425 
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Hawkins et al. (1984) Data 

Hawkins et al. (1984) presents an artificial data set with three regressors containing 75 

observations with 14 influential observations, among them 10 cases (1-1 O) are high leverage 

outliers and 4 cases (11-14) are high leverage points. Most of the single case deletion 

techniques fail to detect all of these influential observations properly. Some of them identify 

four high leverage points wrongly as outliers (Rousseeuw and Leroy, 1987). On the other hand, 

robust regression techniques like LMS and RLS identify outliers correctly, but they do not 

focus on the high leverage points and fails to identify them. 

In our study we consider the first 14 data points as suspect influential cases and compute 

M; measure based on the remaining 61. Table 4.7 shows these diagnostic measures together 

with Cook's distance, DFFITS and Pena (SJ Here we observe that Cook's distance identifies 

only one (case 14) out of 14 influential observations. DFFJTS identifies 7 observations (cases 

2, 7, 8, 11, 12, 13 and 14) correctly but fails to detect other 7 cases. Figure 4.11 and table 4.7 

indicate that Pena's measure identifies only one case (14) and greater variability is present 

among the values of the statistic. Table 4.7 shows our measure can successfully identify all the 

14 influential cases. The merit of our method is suppmted also from Figure 4.12, where the 

index plots of M; shows that all 14 influential cases are identified and are clearly separated 

from the other regular observations, in addition figure 4.12 shows comparatively less variability 

in the values of M; than S;. Histogram of M; (Figure 4.13(d)) separates two groups of data 

clearly. The S; versus Cook's distance and M; versus Cook's distance give emphasis of a 

comparative perfmmance between them, shows in figure 4.13 ( e and t). 
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Table 4.7 Measures of influence for Hawkins et al. (1984) data 

Si Mi Si Mi(-.019, 
Ind. CD IDFFITSI (-1.47, (-.019, Ind. CD IDFFITSI (-1 .47, 0.027) 

(1.00) 0.462 2.286) 0.027) (1.00) 0.462 2.286) 
1 0.040 0.406 1.6004 1.8060 39 0.003 -0.109 0.7738 0.0058 
£ 0.053 0.470 1.8294 1.9454 40 0.000 -0.002 0.2092 0.0021 
~ 0.046 0.430 1.6034 2.1760 41 0.003 -0.118 0.3741 0.0000 
~ 0.031 0.352 1.6260 1.9243 42 0.004 -0.120 0.3463 0.0023 
§ 0.039 0.399 1.7113 2.0261 43 0.010 0.200 0.8728 0.0056 
§. 0.052 0.459 1.4338 1.9643 44 0.007 -0.168 1.3170 0.0026 
r 0.079 0.575 1.6522 2.1943 45 0.001 -0.059 0.4717 0.0035 
!! 0.052 0.464 1.6748 2.0148 46 0.004 -0.127 1.2661 0.0004 
~ 0.034 0.372 1.5926 1.9373 47 0.008 -0.182 0.3769 0.0127 

10 0.Ci48 0.439 1.5000 2.0530 48 0.002 -0.081 0.4592 0.0006 
11 0.348 -1.300 1.7053 0.0914 49 0.001 0.065 0.1148 0.0098 
12 0.851 -2.168 1.6328 0.0994 50 0.000 -0.039 0.0683 0.0007 
13 0.254 -1.065 1.9725 0.1533 51 0.002 0.077 0.1369 0.0042 
14 2.114 -3.030 2.3380 0.4167 52 0.006 -0.148 0.2823 0.0043 
15 0.001 -0.074 0.1486 0.0021 53 0.000 -0.016 0.6842 0.0144 
16 0.003 0.114 0.2407 0.0024 54 0.006 0.159 1.1868 0.0050 
17 0.001 0.059 0.3105 0.0004 55 0.001 0.061 0.5249 0.0000 
18 0.000 -0.027 0.1740 0.0000 56 0.001 0.069 0.9839 0.0000 
19 0.001 0.053 0.5737 0.0005 57 0.000 0.042 0.1922 0.0052 
20 0.000 0.034 0.3163 0.0021 58 0.000 0.025 0.7025 0.0002 
21 0.001 0.053 0.0830 0.0102 59 0.001 -0.045 0.1954 0.0001 
22 0.002 0.093 0.5231 0.0025 60 0.006 -0.158 0.2783 0.0042 
23 0.000 -0.033 0.4077 0.0087 61 0.000 -0.002 0.2602 0.0000 
24 0.002 0.099 0.6894 0.0051 62 0.001 0.045 0.3167 0.0040 
25 0.000 -0.020 0.4368 0.0011 63 0.001 0.056 1.0629 0.0016 

26 0.000 -0.039 0.4395 0.0046 64 0.001 -0.065 0.1032 0.0018 

27 0.004 -0.130 0.1132 0.0046 65 0.000 -0.023 1.0755 0.0070 

28 0.000 -0.017 0.6837 0.0019 66 0.000 -0.023 0.2288 0.0085 

29 0.000 0.024 0.1010 0.0011 67 0.000 -0.030 0.1875 0.0055 

30 0.004 -0.127 1.0067 0.0000 68 0.001 0.054 0.3846 0.0064 

31 0.000 -0.031 0.1057 0.0001 69 0.000 0.015 0.1470 0.0001 

32 0.001 0.049 0.7879 0.0021 70 0.000 0.035 0.0888 0.0103 

33 0.000 -0.008 0.8214 0.0037 71 0.000 0.001 0.0839 0.0010 

34 0.001 -0.055 0.3766 0.0049 72 0.000 0.011 0.1358 0.0001 

35 0.000 -0.034 0.1425 0.0020 73 0.000 0.042 0.0836 0.0045 

36 0.002 -0.081 0.0664 0.0075 74 0.000 -0.040 0.1710 0.0069 

37 0.000 -0.026 0.2053 0.0016 75 0.000 -0.041 0.5724 0.0028 

38 0.002 0.082 0.1346 0.0080 
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High Dimensional, Large and Heterogeneous Artificial Data 

Here we present an artificial data set that is generated in a similar fashion described by Pena 

(2005). The data set is a mixture of two regressors; heterogeneous and categorical variables 

generated by the following model. 

(4.43) 

We generate 500 observations, where X's have 20 dimensions and they are independent 

random drawings from uniform distributions. The first 400 observations for each of the X 

variables are generated from Uniform (0, 10) and last 100 observations (401-500) from 

Uniform (9, 10), that makes the presence of heterogeneous variance in the data set. For the 

categorical variable Z, the first 400 observations are set at Z = 0 and the last 100 observations 

are set at Z = 1. For the null model we generate e1Tors from Normal (0, 1). The parameter 

values have been chosen as /30 = /31 = ... = /320 = 1 and /321 = - 100, so that the standard 

diagnostics of the regressing model does not show any evidence of heterogeneity. 

Since the data set is large, results that we obtain from this artificial data are shown by the figure 

4.14. The residual plots (scatter plot and histogram) show no indication of heterogeneity, but 

the residuals versus fitted values plot shows a clear indication of the presence of heterogeneity 

when the last 100 observations are deleted. We consider above mentioned 3 measures (Cook's 

distance, D FFITS and Si) to identify the 100 influential cases but their index plots ( figure 4 .14 

(e), (g) and figure 4.15(a)) show that they are totally failed to identify the influential cases. 

Figure 4.15 (a) and (b) shows Pena's measure identifies influential observations with some 

wrong indkations. But our proposed M; can successfully identify all influential cases (see 

figure 4.15 (c) and (d)). In figure 4.15(d), histogram of M; also shows the heterogeneous 

variances in the data set that is not such clear in histogram of S; (figure 4.15 (b )). The M; versus 

cook's distance and M; versus DFFITS (Figure 4.15 (f) and (h)) give the clear presentation of 

the effective performance of our proposed measure. 
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Figure 4.15 Influence measures plot for large-high dimensional artificial data 
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4.3.5 Simulation Results 

In this section we show the performance of our measure (Mi) and compare with Pena's 

statistic (S;) through simulation. We have done the simulation study for number of 

observatio?s n = 50 and n =100. For each of sample size we consider simple (p = 1) and 

multiple (p = 5) regression. The results are based on 1000 nms of each of the 

combination in which the contamination rates by unusuals are 40%, 30%, 20% and 10%. 

Simulation of Simple Regression (p =J) 

For simple linear regression we generate observations according to linear relation 

Y; = /30 + /31X; + &; 

where /30 = 2, /31 = 1 and &, ~ N(0,.2). 

For 'good' (G) observations x,~ Uniform (1, 4) and a cluster of 'bad' (B) observations are 

generated which possesses a spherical bi-variate normal distribution with mean (7 and 2) 

and standard deviation 0.5 . 

Table 4.8 
n = 50,p = 1, Runs= 1000 

(CR= CorTect Identification Rate, 
IMC = Identification More than Contamination, i.e., presence of swamping) 

G/B(Contm.%) Statistic CR=I00¾ CR>75% CR>50% CR>25% CR<25% CR=0% 

30/20 M; 989 0 0 0 0 0 

(40%) S; 601 99 20 14 8 258 

35/15 M; 822 0 0 0 0 0 

(30%) S; 546 69 24 15 9 337 

40/10 M; 519 0 0 0 0 0 

(20%) S; 105 3 5 3 3 881 

45/05 ' M; 192 0 0 0 0 0 

(10%) S; 415 8 4 4 1 458 

IMC 

I I 

0 

178 

0 

48 1 

0 

808 

110 
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Table 4.9 
n = 100,p = I, Runs= 1000 

(CR= Correct Identification Rate, 
IMC= Identification More than Contamination, i.e., presence of swamping) 

G/B(Contm;o/o) Statistic CR=I00% CR>75% 

60/40 M; 977 0 

(40%) s, 647 198 

70/30 M; 724 0 

(30%) S; 587 110 

80/20 M; 294 0 

(20%) S; 82 12 

90/10 M; 37 0 

(10%) S; 419 10 

Simulation of Multiple Regression (p=S) 

We consider the multiple regression model 

CR>50% CR>25% CR<25% CR=0o/o 

0 0 0 0 

26 20 11 98 

0 0 0 0 

40 29 30 204 

0 0 0 0 

3 3 3 897 

0 0 0 0 

7 3 3 499 

Y; =/Jo+ /J1X1; + /J2X2; + /33X3; + /34X4; + /35X5; + &; ' i = 1,2, ... ,n 

where /30 = 2, /3
1 

= 1, j =1,2, ... ,Sand &; ~ N(0,.2). 

For 'good' (G) observations xij ~ Uniform (1, 4), and for 'bad' (B) observations 

xiJ E N(7,.5)and Y; E N(2,.5). 

IMC 

23 

0 

276 

0 

706 

0 

963 

59 
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Table 4.10 
n = 50,p = 5, Run= 1000 

(CR= Correct Identification Rate 
IMC = Identification More than Contamination i e p;esence of swamping) , . . , 

G/B(Con¾ Statistic 

30/20 M; 

(40%) S; 

35/15 M-I 

(30%) S; 

40/10 M; 

(20%) S; 

45/05 M; 

(10%) S; 

CR=J00% CR>75% CR>50% CR>25% 

923 0 0 0 

0 0 0 0 

772 0 0 0 

0 0 I 0 

596 0 0 0 

0 0 3 2 

445 0 0 0 

0 2 3 8 

Table 4.11 
n = 100,p = 5, Run= 1000 

(CR= Correct Identification Rate, 

CR<25% CR=O% 

0 0 

9 991 

0 0 

7 992 

0 0 

6 989 

0 0 

24 962 

IMy = Identification More than Contamination, i.e., presence of swamping) 

GIB 

(Contm.%) Statistic CR=J00% CR>75% CR>50% CR>25% CR<25% CR=0o/o 

60/40 M; 901 0 0 0 0 0 

(40%) S; 0 0 0 0 0 1000 

70/30 M; 735 0 0 0 0 0 

(30%) S; 0 0 0 2 4 994 

80/20 M; 567 0 0 0 0 0 

(20%) S; 0 5 11 13 21 950 

90/10 M; 427 0 0 0 0 0 

(10%) S; 0 0 0 I I 998 

IMC 

77 

0 

228 

0 

404 

0 

555 

I 

IMC 

99 

0 

265 

0 

433 

0 

573 

0 
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4.3.6 Findings from Simulation Study 

Simulation tasks make some significant differences between the two: S; and M; as 
follows: 

(a) M; performs better than S; in higher contamination rate. 
(b) M; perfo1ms better than S; for multiple regression as well as simple regression. 
( c) Most of the times S; totally fails to identify unusual observations in multiple 

regressions. 
(d) For lower contamination M; affected by swamping. 
( e) M; does not matter sample size. 
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Chapter 5 

"lfwnans are good, she knew, at discerning subtle patterns that are real(y there, 
but equally so at imagining them when they are altogether absent." 

Carl Sagon 

Classification of Unusual Observations 

in Linear Regression 

Present chapter proposes a five-fold plotting technique with a robust distance measure on 

a potential-residual (P-R) plot that can classify outliers, high leverage points and 

influential observations as well as identify them properly at the same time in a same 

graph. The proposed technique based on group deletion idea shows efficient performance 

in presence of masking and/or swamping phenomena. It shows its efficiency for multiple 

unusual observations by using three well-referred data sets and an artificial high­

dimensional large data with heterogeneous variances. 

5.1 Necessity of Classification 

In linear regression, most of the time we try to diagnosis outliers and high leverage points 

that have very close ties with influential observations. It is a common belief that outliers 

would be highly influential, but that is not always true. Andrews and Pregibon (1978) 

showed that outlying observations might be little influence on the results. Their examples 

illustrated the existence of outliers that did not matter and high leverage points were 

likely to be influential. Chatterjee and Hadi (1986) showed that ' as with outliers, high 

leverage points need not be influential, and influential observations are not necessarily 

high leverage points' . Chatterjee and Hadi (1988) pointed out, "Patterns of the residuals 

are often more informative than their magnitudes. Graphical displays of residuals are, 
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therefore, much more useful than formal test procedures." We make the sense, graphical 

displays can help us to remove the problem of close ties of outliers and leverage values 

by visualizing the real patterns of residuals and leverage values. An extensive search 

(e.g., Atkinson, (1981, 1985), Atkinson and Riani (2000), Barnett and Lewis (1995), 

Behnken and draper (1972), Cook and Weisberg (1982), Cook (1998), Rousseeuw and 

Leroy (I 987), Rousseeuw and van Zomeren (1990), and Hubert et al. 2007) is still going 

for a reliable plotting procedure for identifying outliers and high-leverage points. Most of 

the diagnostic techniques in literature for identifying outliers and high-leverage points are 

focusing on both of them separately. Identification of both of them at the same time is 

necessary because presence of one makes the identification of the other very difficult 

(Pena and ,Yohai, 1995) and as a result proper identification of influential observations 

may not be possible. We propose a new type of potential-residual (P-R) plot that 

identifies outliers, high-leverage points and influential observations along with a 

Mahalanobis type robust distance measure and classify them properly at a time in a same 

five-fold graph, which is not possible by the plot analysis in literature and in existing 

statistical software packages. 

5.2 Classification of Regression Data 

In regression analysis observations ( data) are classified basically into two: regular 

observations and unusual observations. Regular observations are those who have some 

specific pattern and good in number in the data set. On the contrary, observations are 

unusual in the sense that they are exceptional, they have extra role on model building 

process, or they may come from other population/s and do not follow the pattern of the 

majority of the data. Statisticians classify unusual observations into three: outliers, high­

leverage points and influential observations. Following diagram makes the clear 

understanding about the classification in regression data. 
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Regression Data 
(Observations) 

Regular Data Unusual Data 

Outliers: 
Those do not follow the 
pattern of the majority 
data. 

Leverage Points: 
Cases for which Xi are far 
away from the bulk ofxi. 

Good Leverage: 
If the (x;, y;) does fit the linear 
relation; it improves the 
precession of the regression 
coefficient. 

Bad Leverage: 
Cases for which X; far away from 
the bulk of the x;, do not fit the 
relationship. 

Regression Outliers: 
Cases for which Yi are far 
away from bulk of Yi• 

Vertical Outliers: 
Regression outliers do not 
leverage point. 

Figure 5.1 Classification of regression data 
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5.3 Classification through Identification 

In regressi,on diagnostics basic objective is to identify the influential observations that 

influence the model building process and decision making. Proper classification of 

unusual observations justifies identification of influential observations. In this regard we 

give a short discussion of identification techniques of outliers, high leverage points and 

influential observations successively. 

5.3.1 Identification of Outliers 

Outliers are generally identified by measuring the residual vector, r and is defined as 

r = Y-X/J 

= (1-H)t:' 

In scalar form, i-th residual is 

II 

r; = e; - Lhue1 ; i = 1,2, ... ,n. 
J=I 

(5.1) 

(5.2) 

(5.3) 

Clearly, if the hii are sufficiently small, r; will serve as a reasonable alternative of e;. 

Behnken and Draper (1972) user; for plots of residuals to identify outliers. Identity (5.2) 

indicates that the ordinary residuals are not independent (unless H is diagonal) and they 

do not have the same variance (unless the diagonal elements of Hare equal). According 

to Montgomery et al. (2001 ), "non independence of the residuals has effect on their use 

for model adequacy checking as long as n is not small relative to the number of 

parameters, k:'. Scaled residuals are helpful for identifying outliers or extreme 

observations. Chatterjee and Hadi (1988) pointed out that the ordinary residuals are not 

appropriate for diagnostic purpose and a transformed version of them is preferable. 

Since the approximate average variance of a residual is estimated by MS,es (mean squared 

residuals), a logical scaling for the residuals is the standardized residuals 

(5.4) 
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which have mean zero and approximate variance equal to one, consequently a large 

standardized residual potentially indicate an outlier. Since the residuals have different 

variances and are correlated, the variance of the i-th residual is 

(5.5) 

where a is an estimate of MSres_ Daniel and Wood in 1971, introduced a type of (i-th 

internally Studentized) residual as 

e; = ~ ~;i=I,2, ... ,n, 
a\/ 1- h/i 

r. 
(5.6) 

when CY; = ii ,JI - hu . But many of the authors feel that internally Studentized residuals 

are over estimated by the extreme observations and they have suggested the i-th 

externally Studentized residuals, 

• ~ 2 e - -----===· i = I, , ... ,n, 
i - a-(-i) ~' 

\f 1 - fl;; 
, 

_ _ y<-il (I_ HC-il )yc-;i 
takinga = ac-,i 1-h. wherea<-,i2 =--....__ __ __,_ __ 

' \/ 
1 

- fl;; n - k - 1 i = 1,2, ... , n, 

is the residual mean squared error estimate when the i-th observation is omitted and 

( 
r )-1 r H<-il = x<-il x<-il xc-;i xc-il , i=l, 2, ... , n, 

(5.7) 

is the prediction matrix for xc-;i. Atkinson (1981) prefers e; over e; for detecting outliers. 

Imon (2005) proposed generalized Studentized residuals to coop up with multiple outliers 

by using group deletion and defined as 

t • -
;-

ii 11-; .JI - h ;;u1i 

r;cui 

for 

for 

(5.8) 

122 



T - -

where r i(R) = Y; -X; Pru)' Pru)= rx:i·xur'x:i·rf/, and hii(/1) is the i-th diagonal element of 

Hru; (where 'R' is the remaining group of observations after the deletion), which are 

analogous to residuals suggested by Hadi and Simonoff (1993) and Atkinson (1994). 

5.3.2 Identification of High-Leverage Points 

Observations corresponding to excessively large values of h = xr1xrX)-'x are treated 
II I(,. I 

as high-leverage points. Among them twice-the-mean rule proposed by Hoaglin and 

Welsch (1978), thrice-the-mean rule proposed by Vellman and Welsch (1981) and 

suggestions of Huber (1981) are commonly used. Mahalanobis distance (1936) is the first 

distance measure used in multivariate analysis, also suggested to use as a measure of 

high-leverage points. Rousseeuw and van Zomeren (1990) showed the diagonal elements 

of hat matrix (H), h;; has the positive relation with non-robust MD; as 

1 2 1 
h . =-MD +-. 
" n-1 ' n 

(5.9) 

Due to non robustness, MD sufferes from both masking and swamping. To remove the 

problems (masking, swamping) of multiple outliers Rousseeuw and van Zomeren (1990) 

proposed robust distance, by using minimum volume ellipsoid (MVE, Rousseeuw 1985). 

Hadi (1992) pointed out, " ... in the presence of a high-leverage point the information 

matrix may breakdown and hence the observation may not have the appropriate 

leverage". In this connection, Hadi (1992) introduced potentials based on single case 

deletion and defined as 

(5.10) 

where x<-;J is the matrix without the i-th observation. Observations corresponding to 

excessively large potential values are considered as high-leverage points. It is reported 
' that the presence of multiple high leverage points may cause masking and/or swamping 

because of which some outliers and leverage points goes undetected (masking) and/or 

some innocent observations reveal as outliers or leverage points (swamping). Imon 
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(2002) suggested a group deletion measure (generalized potentials) for identifying 

multiple high-leverage points. 

5.3.3 Identification of Influential Observations 

Most popular identification techniques of influential observations, Cook's distance, 

DFFITS or DFBET AS consider both of outliers and leverage points together in a 

multiplicative form. Imon and Ali (2005) mentioned that, residuals together with leverage 

values may cause masking and swamping for which a good number of unusual 

observations remain undetected in the presence of multiple outliers and multiple high­

leverage points. As a result identification of multiple influential observations would be 

troublesome. Hadi (1992) showed that the values of these statistics misleadingly small if 

either residuals or leverage values used in these statistics in a multiplicative form are 

small and consequently they could fail to identify potential outliers and leverage points. 

Hadi (1992) suggested a new type additive measure for identifying influential 

observations as 

i = 1,2, ... , n, (5.11) 

2 

where d .2 = ..!l_ is the square of the i-th normalized residual and hu is the i-th diagonal 
' rr r 

elements of H for the full matrix. As a cut-off point, Hadi suggested H;
2 

to be large if it 

exceeds median(H}) + c,/ mad(H;2 ) , c is appropriately chosen constant between 2 and 3. 

Imon and Ali (2005) mentioned that, since H/ is a single case deletion diagnostic 

measure it may fail to identify multiple outliers and high-leverage points. They re­

expressed the Hadi 's (1992) statistic as 

H _2 = k r/ + h ii 
' n - k - I er < - ; l 

2 
( I - h ii ) 1 - h ii 

i = 1,2 , ... , n , (5.12) 

and finally they suggested another statistic as an additive form of residual and leverage 

and used group deletion idea (see Imon and Ali, 2005) as 
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ARL; = k, It; I+ k2h;: i = 1,2, ... ,n, (5 .1 3) 

r~ 
Y; - X; /J(R) 

for i E R 
ii II ✓1 - hii(/1) where • 

t; = r ~ (5.14) 
Y, -x; /Ju 

ii 11 ✓1 + h,i(I/) 
for i <£. R 

{ h;;"' for iE R h~ = -
11 1 h;;c R> (5.15) 

hu<11> for i <£. R 

n II 

k, = 2): I and k2 = L h;: • /Jr11J , & R and h,;uo all carry the above and usual meaning. ~, ~, 
They proposed to use confidence bound type cut-off point for ARL; and gave as 

ARL; > median (ARL;) + cMAD(ARL, ). (5.16) 

As usual c is any arbitrary chosen constant between 2 and 3. GDFFITS (Imon, 2005), a 

group deletion technique is also used for identifying multiple influential observations. 

5.4 Proposed Method 

We propose our technique by putting all together following remarkable statements from 

three leading regression diagnostic statisticians. Welsch (1982) pointed, "Neither the 

leverage nor the Studentized residual alone will usually be sufficient to identify 

influential cases". Hocking (1983) said, "I find that the diagonal elements of the hat 

matrix and 'deleted ' Sh1dentized residuals provide most of the evidence needed to track 

down maverick cases". Atkinson (1986) mentioned, "In presence of masking single 

deletion methods fail to reveal outliers and influential observations". We show the 

situations and effectiveness of potential versus residual (P-R) plot in a same space and try 

to keep away our measure from the affect of multiplicative phenomena. We define our 

technique in the following steps and the section 'Explanation' clarifies the steps. 

(i) Find the suspect (to be deleted) group of unusual observations. 
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(ii) Estimate the parameters after deleting the suspect group of cases. 

(iii) By using the estimated paramete 1 1 · rs we ca cu ate deleted residuals and we compute 

diagonal elements (group-deleted leverage/potentials) of the deleted leverage 

matrix. 

(iv) We make a scatter plot (group-deleted potentials versus group-deleted 

standardized residuals (r;)) and classify the observations according to pre assigned 

cut off points (which make boundary/confidence lines) that are given below. 

(v) We, draw a 95% joint confidence region of potentials and residuals for identifying 

influential observations in the same plot. 

5.4.1 Explanation 

A general approach of group deletion is to form a clean subset of the data that are 

presumably free of unusual observations and then test the outlyingness of the remaining 

points relative to the clean subset. Let M be the set of indexes of the observations in the 

clean sub set, and let Y Mand XM be the subset of observations indexed by M. One way of 

finding the sub set Mis to determine the sub set of size d, the deletion of which produces 

the largest reduction of the residual sum of squares. Problem is that d is rarely known, 

and finding (nc.,) sub sets of size n-d with the minimum residual sum of squares involves 

extensive computations and some times can not be possible for large n. We suggest here 

to use robust ((e.g., LMS, LTS (Rousseeuw 1984, 1985), RLS (Rousseeuw and Leroy, 

1987)) and/or diagnostic techniques (e.g., residual analysis, cook-type distances and/or 

robust distances) as a first aid for identifying suspected outliers and/or high-leverage 

points. Robust methods that are used for the identification of suspected group of 

observations can make the estimation robust with their own robustness properties, so we 

suggest giving the preference for using robust methods to find out initial suspicion-subset 

of unusual observations. We perform our plotting procedure by the following steps. First 

two steps for computations and last two steps help us to draw potential versus residual (P­

R) plot. 
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5.4.2 Computation Steps 

First step: Let us assume, d observations among a s t f b · d e o n o servat1ons are treate as 
unusual after the first diagnosis a set of (n-d) cases 're · · , · h 1 · · R d ' mammg m t e ana ys1s 1s an a 
set of cases which will be 'deleted' is D Wi"thout loss of 1·ty th · genera 1 , we arrange ese 

suspected cases at the end of data matrices of X, Y, and vis a variance-covariance matrix 

as follows. 

(5.17) 

where 

Second step: In this stage we compute standardized deleted residuals by the formula 

(5.18) 
S. E. (r,,(liJ) 

where _ - - 'l' -I T 
r_,,(11) - y - X fJ (II) ' fJ (//) = (XII XII ) XII ~I ' 

r r, (Rl = mean(r.,,(R>) and S.E.(r.,,u1>) is the residual standard error and to get the group-

deleted potentials (name as potentials) we compute the diagonal elements of HrRJ, 

and 

(5.19) 

(5.20) 

Third Step: We draw a scatter plot of potentials versus deleted standardized residuals. 

Since we transform the residuals into the standardized form (standard normal), we draw 

the 95% boundary lines (-1.96,1 .96) m Y-axis for finding outliers and 

median (h;;<R> ) + 3MAD(hucR>) cut-off line m X-axis for finding the high-leverage 

points. These types of cut of points for high-leverage points are suggested by Hadi 

(1992). 

Forth Step: We draw a joint 95% confidence region (ellipsoid) by using deleted 

potentials and deleted standardized residuals according to the formula (idea) of 
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Mahalanobis distance for identifying influential observations, (see section 5.5). We 

consider the observation outside the confidence ellipse and in the region of outliers 

and/or high-leverage points as an influential observation. Since the equation of an ellipse 

is an additive form therefore we can say our influence statistic is far from multiplicative 

phenomena. Now the whole data set is classified into four as our requirements: regular 

(good) observations, outliers, high-leverage points and influential observations by 

making the figure fivefold. We say as Rousseeuw and van Zomeran (1990), "a single 

diagnostic can never be sufficient for this fivefold classification!" 

5.4.3 Decisions 

To illustrate the terminology and to reach in conclusion of our plotting procedure let us 

consider the figure 5.2, region (a), contains regular (good) observations inside the ellipse 

( or outside the regions of outliers and high-leverage points); region (b ), assigns the 

observations possessing vertical outliers (regression outlier but not a leverage point), over 

the horizontal line at 1.96; region (c), contains observations outlying in x, y, below the 

horizontal line at -1.96; in region ( d), right of the vertical cut-off line observations are 

treated as high-leverage points; and, for region ( e ), observations ( outside the boundary of 

the 95% joint confidence region ( ellipsoid) and at the same time in the regions of outliers 

and/or high-leverage points ) are treated as influential observations. 
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M 

(b) o Uiers 

Ni--------+---__J 

(e)inftuential observations 

(d)high-leverage points 

~..,- --------------------4------ __j 

'7 

-1 0 

Deleted leverage 

(c) o tliers 

Figure 5.2 Classification of observations with (a) regular observations, (b) and ( c) both 
are outliers, ( d) high-leverage points, and ( e) influential observations. 

We assign the above classification numerically, 

(i) 1.96 < outliers < -1.96. 

(ii) High-leverage points> median (huui>) + 3MAD(h;;c11>). 

(5.21) 

(5.22) 

(iii) Observations outside the confidence ellipsoid and at the same time lie into 

the regions of outliers' and/or high-leverage points are considered as influential 

observations. (5.23) 

5.5 Proposed Distance 

Now we want to formulate our proposed distance and find out the distribution of it. 

Following subsections are made to serve the purposes accordingly. 
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5.5.1 Derivation of Distance 

It is well know that the Mahalanobis squared distance (MSD) based on the population 

mean and population scatter matrix is 

MSD; = (x, - T(X )Y x-1 (x; - T(X )) , (5.24) 

where X = (xi,X2, ··· ,xJ is a data set matrix of n points in p dimensions and T(X) is a 

vector of 'center' (mean) and I is the matrix of 'scatter' (covariance) of X. 

Its (MSD) sample counterpart is defined as 

(5.25) 

where, X and S are the standard sample mean and covariance matrix. 

We make a Mahalanobis type distance based on the sample mean X and sample scatter S 

of the mat1~ix XPR (potential-residual matrix), which is defined as 

Xp/= (vector of potentials, vector of residuals). (5.26) 

Since X (without deletion of suspects) may be contaminated by the unusual observations, 

the distance based on them will be sensitive to the unusual (extreme) observations. 

Becker and Gather ( 1999) pointed out, "classical tools based on the mean and covariance 

matrix are rarely able to detect entire multivariate outliers in given sample due to 

masking effect". To remedy from the problem of masking and/or swamping we try to 

make our distance resistant/robust by deleting the suspected group of unusual 

observations (extreme values) from the X. As a result we propose a type of robust 

distance 

(5.26) 

where i = 1,2, ... , n and 

( ) 
[
mean h,;(ii)] d S . (h • ) T X - • an <Ill = var zance ;;(11)• r,,(11) . 

(R) - mean r_,,(!i) 

Since MD is the distance of the test point from the center of mass divided by the width of 
I 

the ellipsoid in the direction of the test point, our robust distance (RDS1) also measures 
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distance by drawing an ellipsoid that is constructed as an additive form after the deletion 

of the suspected group of unusual observations. Thus the ellipsoid (distance) holds 

robustness. in itself. 

5.5.2 Distribution of the Distance 

The distribution of the Mahalanobis distance (MD) with the both tme location and shape 

parameters is well known. For the better understanding we clarify the distributional 

results for the Mahalanobis type distance and to find the distribution of RDST. We 

consider tlu·ee established distributional results. 

1. If we consider the distance (d2 
), MSD is based on true parametersµ and I and the 

data is normal then the d 2 follows x 2 distribution (Mardia, Kent and Bibby, 1979), 

· d2 ( )7' \"'-I ( \ 2 z.e. = X;-µ £., X; -µ1 Xp · (5.27) 

2. If the distance ( d 2 
), MSD is based on standard mean and covariance estimates this 

distance have an Beta distribution (Gnanadesikan and Kettenring 1972; Wilks, 1962), 

i.e. (n~l)2 d 2 = (n~l)2 (xi -xYs-1(x; -X)~ Beta(;, n-;-1
),cs.28) 

where 1 II ( -x -)'/' S=-Ix;-X X;-X . 
n-1 i=I 

3. If the distance, d 2 is based on estimate, S of E that is independent of the X;, S is an 

unbiased estimate of I based on sample of size n. these distance have an exact F 

distribution when J-t is the location argument (Mardia, Kent and Bibbey, 1979) and an 

approximate F distribution when X is the location argument (Serfling, 1980). Given S 

and X; are 'independent, 

(n- p) 2 (n- p) ( )Ts-'( - )~ F d = ( ) X; - µ X ; µ a (p.11-p) • 
(n-l)p n-1 p 

(5 .29) 

Using a variant Slutsky's theorem 
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(n- P) d 2 _ (n - p) ( -)r ( _ 
(n-l)p - (n-l)p X; -x s-1 X ; -X)~ Fa ( p ,11-p) " (5.30) 

Hardin and Rocke in 2oo5 pointed out, "we apply an adjusted F distribution to the 

extreme sample points. The F dist1·1·but· · • • , ion 1s more representative of the extreme pomts 

than the more commonly used X
2 

distribution". They showed in their paper that F 

distribution is also more appropriate than others in case of robust distance. If we consider 

the above arguments, we see our distance is analogous more appropriately to the 3rd (eq. 

5.30) and we may come to the conclusion, RDST follows F distribution, 

i.e., RDST ~ n-1 p F 
(n _ p) a(p .11- p) • (5.31) 

5.6 Exam pies 

In this section we investigate the effectiveness of our proposed procedure empirically. To 

compare with existing identification techniques, we use three well-referred data sets from 

the literature and an a11ificial and high-dimensional large data set. 

Hawkins et al. (1984) Data 

We use the artificial data set generated by Hawkins et al. (1984) as our first example. It 

provides an example with masking effect. The data set consists of 75 observations in 4 

dimensions, one for response variable others are explanatory variables. It is well 

established in the literature that the first 10 observations are bad leverage points and the 

next 4 observations are good leverage points. Hawkins et al. (1984) mentioned that the 

bad leverage points (outliers) are masked and the 4 good leverage points are appear 

outlying because they possess large residuals. Rousseeuw and Leroy (1987) showed that 

observations 1-10 are influential and the observations 11-14 (good leverage) are well 

accommodated by the LMS fit. Columns 2-5 in table 5 .1 show single case diagnostics, 

Cooks distance identifies only observation 14 as influential , residuals r; identify 5 

observations (7, 11-14) leverage values identify only 3 (12-14) as extreme cases. DFF/TS 

identifies observations 2, 7, 8, 11, 12, 13 and 14 as influential. Imon (2002) identified all the 
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observations ( 1-14) as high leverage points. Hardin and Rocke (2005) showed that all the 

14 observations are masked when the mean and covariance are used to determine 

Mahalanobis squared distance. At this stage we apply the proposed algorithm to identify 

and classify the observations. We consider all first 14 observations as the suspected 

unusual o~servations and make the deletion set D by them. According to our algorithm 

table 5.1; by the columns 6 and 7, shows observations 1-10 as outliers and all 14 

observations (1-14) are identified as high leverage points. Now, if we see to the figure 

5.3 potential versus residual (P-R) plot, it clearly builds a confidence region (ellipse) by 

potentials and residuals in two dimensions. We know that first 1 O observations are the 

most influential as they are at the same time, outliers and high leverage points. But these 

observations (1-10) are masked while the less influential (high leverage) 4 (11-14) points 

are getting more importance in DFFITS. Our P-R plot (figure 5.3) shows a very neat 

classification of 1-10 as outliers (good leverage), 11-14 as high leverage (bad leverage) 

points and all 14 observations as influential observations. 

Table 5.1 Diagnostic measures for Hawkins et al. (1984) data 

r; /z;; CD; IDFFITS;I jr,:unl h ;;u1i 

Index 2.50 0.107 1.00 0.462 1.96 0.169) 
1 1.55 0.063 0.040 0.406 2.371 14.463 
2 1.83 0.060 0.053 0.470 2.487 15.222 
3 1.40 0.086 0.046 0.430 2.570 16.966 
4 1.19 0.086 0.031 0.352 2.407 18.015 
5 1.41 0.081 0.039 0.399 2.505 17.381 
6 1.59 0.073 0.052 0.459 2.452 15.611 
7 2.08 0.068 0.079 0.575 2.641 15.704 

8 1.76 0.063 0.052 0.464 2.528 14.816 
9 1.26 0.080 0.034 0.372 2.418 17.033 

10 1.41 0.087 0.048 0.439 2.480 15.974 

11 -3.66 0.094 0.348 -1.300 0.185 22.389 

12 -4.50 0.144 0.851 -2.168 0.176 24.026 

13 -2.88 0.109 0.254 -1.065 0.351 22.731 

14 -2.56 0.564 2.114 -3.030 0.202 28.158 
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Figure 5.3 P-R plot; Classification of outliers, high-leverage points and influential 
observations for Hawkins et al. (1984) data 

Stackloss Data 

This data set comes from Brownlee (1965) and has an extensive use m regression 

diagnostics. It is a three-predictor data set with airflow, cooling water and acid 

concentration, consisting 21 observations. Rousseeuw and van Zomeren (1990) 

mentioned, 4 points (1, 2, 3 and 21) are regression outliers, observation 4 is vertical 

outlier, more over, they mentioned case 21 is not far from X-space and case 2 is a mild 

regression outlier. Hence we suspect all 5 observations (1 , 2, 3, 4, and 21) are unusual 

and form the deletion group (D) by these 5. We calculate standardized deleted residuals 

and diagonal elements of deleted leverage (potential) matrix for the proposed method. 

Table 5.2 (columns 2,3) shows that LS residual predicts only case 21 as outlier and case 

17 as high. leverage point. Cook' s distance does not able to identify any influential case 

and DFFITS can identify only 21 as influential observation. If we look at the last two 
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columns of the same table, we see our proposed method clearly identify observations 1, 

2, 3, and 21 as high leverage points and observations 1 and 3 as outliers. When we look at 

our figure 5.4, we can easily and accurately classify I, 3 and 2 I are bad leverage, 4 is 

vertical outlier, and 4 observations (1, 2, 3 and 21) are most influential. According to the 

distance from the center of the data we can say observation 1 is the worst case in the 

whole data set. 

Table 5.2 Diagnostic measures for Stack loss data 

Index lr;I h;; CD; IDFFITS;I lrs:(/1) I h;; (R) 
(2.50) (0.381) (1.00) (0.873) (1.960) (0.609) 

1 1.19 0.302 0.154 0.795 2.153 1.732 
2 -0.72 0.318 0.06 -0.481 0.956 1.781 
3 1.55 0.175 0.126 0.744 1.971 1.042 
4 1.89 0.129 0.131 0.788 1.938 0.263 
5 -0.54 0.052 0.004 -0.125 -0.209 0.151 
6 -0.97 0.077 0.020 -0.279 -0.332 0.188 
7 -0.83 0.219 0.049 -0.438 -0.213 0.282 
8 -0.48 0.219 0.017 -0.251 0.025 0.282 
9 -1.05 0.140 0.045 -0.423 -1.051 0.188 
10 0.44 0.200 0.012 0.213 -0.063 0.277 
11 0.88 0.155 0.036 0.376 -0.059 0.199 

' 
12 0.97 0.217 0.065 0.509 -0.176 0.301 
13 -0.48 0.158 0.01 I -0.203 -0.780 0.223 
14 -0.02 0.206 0.000 -0.009 -0.659 0.219 
15 0.81 0.190 0.039 0.388 -0.265 0.283 

16 0.30 0.131 0.003 0.113 -0.505 0.208 

17 -0.61 0.412 0.065 -0.502 -0.394 0.512 

18 -0.15 0.161 0.001 -0.065 -0.388 0.294 

19 -0.20 0.175 0.002 -0.091 -0.274 0.282 

20 0.45 0.08 0.004 0.131 0.239 0.102 

21 -2.64 0.285 0.692 -2.100 -1.911 0.849 
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Figure 5.4 P-R plot; Classification of outliers, high-leverage points and influential 
observations for Stack loss data 

Aircraft Data 

Here we consider the well-known four-predictor Aircraft data that was presented by Gray 

in 1985_ n deals with 23 single-engine aircraft built over the years 1947-1979_ The 

dependent variable is cost, and the explanatory variables are aspect ratio, lift-to-drag 

ratio, weight of the plane, and maximal thrust. Most of the traditional diagnostic 

techniques identify case 22 as influential case. This observation possesses large 

Studentized residual, high-leverage values and huge Cook's distance and DFFITS. 

DFFITS also identifies observation 17 as influential, and observation 14 is identified as 

another high-leverage point. The most interesting feature is that the LMS and RLS 

technique fail to identify even a single observation as an outlier. 

We now apply our proposed technique; we consider 3 observations (14, 17, and 22) as 

suspects by the existing popular methods. We find from the column 6 of table 5.3 that 
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observations 14, and 22 are outliers and column 7 shows (in the same table), observations 

19, 21 and 22 as high-leverage points. However, when we draw the joint confidence 

region for finding influential observations we get all 4 observations (14, 19, 21 and 22) as 

influential observations. We finally reach the decision from the figure 5.5, observations 

19 and 21 were masked and observation 17 was swamped before the diagnostic by our 

proposed method. 

Table 5.3 Diagnostic measures for Aircraft data 

Index r; h;; CD; IDFFITS;1 Ir .. :(,/) I h;,uo 
2.50 0.435 1.00 0.933 1.96 0.235 

1 0.89 0.184 0.036 0.421 0.207 0.036 
2 1.24 0.150 0.054 0.528 0.344 0.033 
3 1.30 0.152 0.060 0.561 0.620 0.033 
4 -0.73 0.156 0.020 -0.309 -0.296 0.036 
5 -0.17 0.100 0.001 -0.056 -0.172 0.072 
6 -0.94 0.257 0.061 -0.550 -0.278 0.179 
7 -0.57 0.135 0.010 -0.221 -0.277 0.069 
8 0.95 0.209 0.047 0.485 0.206 0.065 
9 0.05 0.242 0.000 0.027 0.177 0.039 

10 -0.97 0.218 0.052 -0.059 0.057 0.164 
11 -0.29 0.166 0.003 -0.128 0.295 0.067 
12 -1.83 0.062 0.044 -0.508 -0.906 0.090 
13 -0.15 0.079 0.000 -0.044 -0.039 0.070 
14 0.03 0.880 0.002 0.086 -2.290 0.122 
15 -0.06 0.071 0.000 -0.016 -0.281 0.035 
16 0.10 0.169 0.000 0.042 0.711 0. 161 
17 -1.83 0.243 0.215 -1.117 -1.131 0.166 

18 -0.25 0.108 0.002 -0.085 0.184 0.107 

19 0.66 0.283 0.035 0.410 0.256 0.312 

20 1.08 0.153 0.042 0.462 -0.115 0.012 

21 -0.49 0.309 0.022 -0.324 -0.398 0.337 

22 3.21 0.575 2.798 5.564 3.555 0.410 

23 -0.28 0.100 0.002 -0.092 -0.429 0.082 
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Figure 5.5 P-R plot; Classification of outliers, high-leverage points and influential 
observations for Aircraft data 

High Dimensional and La,.ge A1tificial Data 

Here we present an artificial large data set that is generated in a similar fashion described by 

Pena (2005). The data set is generated by the model 

(5.32) 

We generate 500 observations, where X's have 11 dimensions with a constant tenn and they 
, 

are independent random drawings from unifonn dist:iibutions. The first 400 observations for 

each of the x1-x10 variables are generated from Unifonn (0, 10) and 100 observations (401-500) 

from Unif01m (9, 10), makes the presence of heterogeneous variances in the data set. For the 

null model we generate e1TOrs from Nonnal (0, I). The parameter values have been chosen 

as /J0 = /31 = ... = /310 = 1, so that the standard diagnostics of the regression model does not 

show any evidence of heterogeneity. 
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Figure 5.6 shows our proposed plotting d h • proce ure as done the classification task well for 

large and high-dimensional data set as well as the previous examples. 
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Figure 5.6 P-R plot; Classification of outliers, high-leverage points and influential 
observations for high dimensional, large and heterogeneous artificial data set. 
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Chapter 6 
"One ca, · · · · · 

. i not conceive a,~ything so strange and so implausible that 
it has not alrea~y been said by one philosopher or another." 

Rene descartes 

Identification of Unusual Observations 

in Logistic Regression 

Logistic regression diagnostics (LRD) have recently attracted much interest to the 

theoreticians as well as practitioners in recent years. It requires a higher mathematical 

level than most of the other material that steps backward to its study. This chapter 

presents different diagnostic aspects in logistic regression. As such linear regression, 

estimates of the logistic regression are sensitive to the unusual observations: outliers, 

high leverage and influential observations. Sections 6.1 and 6.2 cover the basic ideas of 

logistic regression and logistic regression diagnostics respectively. In section 6.3 we 

propose two new identification techniques for the multiple influential observations in 

binary logistic regression. The advantages and performance of the proposed methods in 

the identification of multiple influential cases are then investigated through several well­

refeITed data sets in section 6.3.3. 

6.1 Logistic Regression 

Classically, logistic regression models were fit to data obtained under experimental 

conditions. The current use of logistic regression methods includes epidemiology, 

biomedical research, criminology, ecology, engineering, pattern recognition, wildlife 

biology, linguistics, business and finance etc. It is useful for situations in which we want 
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to be able to predict the presence or absence of a ch t · · b d arac enst1cs or outcome ase on 
values of a set of predictor variables. 

6.1.1 Difference between Linear and Logistic Regression 

Main difference in a logistic regression model from the linear regression model is that the 

outcome variable is dichotomous. Logistic regression use one of three types of 

categorical response variables: binary, ordinal and nominal. Difference between logistic 

and linear regression is reflected both in the choice of a parametric model and in the 

assumptions. Among two most considerable differences, the first difference concerns the 

nature of the relationship between the outcome and explanatory variables. In linear 

regression the expected value of Y given the value of X, takes any value between -oo and 

+oo. In logistic regression with dichotomous data, the conditional mean must be greater 

than or equal to zero and less than or equal to one. The second important difference 

between them concerns the conditional distribution of the outcome variable. For linear 

regression 'conditional distribution of the outcome variable Y given X will be normal with 

mean E(YI X), and a constant variance. Conditional distribution of the outcome variable 

of the logistic regression follows a binomial distribution with probability given by the 

conditional mean, 1r (x) . The changes in the conditional mean for per unit change in X 

becomes progressively smaller as the conditional mean gets closer to zero or one. 

6.1.2 Logistic Regression Model Formulation 

In any regression problem the key quantity is the mean value of the outcome variable, given the 

value of the explanatory variable(s), E (Y/X). In linear regression we assume that this mean may 

be expressed as an equation linear in X ( or some transformations of X or Y) such as 

hence 

E(Y IX)= /30 + /31x1 + /32x2 + ... + /Jpx P (6.1) 

= X/3+& 

(6.2) 

(6.3) 
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= E(YI X)+c. 
(6.4) 

To represent the conditional mean of Y given x 1·n case of l · t' · th og1s 1c regress10n, we use e 

quantity 1Z"(X) = E(Y IX)· The specific relational fonn of the logistic regression model is 

(6.5) 

= exp(Z) 

1 + exp(Z)' (6.6) 

where Z = X/3 . This form gives an S-curve configuration. The well-known 'logit' 

transfonnation in tenns of 1Z"(X) is 

(6.7) 

Hence, in logistic regression 

(6.8) 

here 1Z"(x;) = 1Z"; is known as the probability for the i-th factor/covariate. Thus & has a 

distribution-with mean zero and vaiiance equal to7Z"(X)[1 -7Z"(X)] . 

6.1.3 Assumptions in Logistic Regression 

Following assumptions are hold for performing logistic regression tasks: 

I. The model is correctly specified, i.e., 

a) The tme conditional probabilities are a logistic function of the independent 

variables. 

b) No important variables are omitted. 

c) No extraneous variables are included, and 

d) The independent variables are measured without errors. 

2. Cases ar,e independent. 
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3. The independent variables are not linear combination of each other. Perfect 

multicolinearity makes estimation impossi'ble, h 'l 
w 1 e strong multicolinearity makes 

estimation imprecise. 

6.1.4 Parameter Estimation in Logistic Regression 

We can u~e OLS for estimating parameters in logistic regression, but the assumptions 

under which the OLS estimators possesses very good properties, do not hold for logistic 

regression model. Mainly for this reason the maximum likelihood (ML) method based on 

iterative-reweighted least squares become the most popular with the statisticians. 

If we let X denote the design matrix and Y denote the vector of response values, 7! denote 

the vector of E{YIX), the likelihood equation can be written as 

(6.9) 

where l(/3) = log(l(/J)) ;and /3 is the parameter vector. From equation (6.9) it follows 

that 

x r 7! = xry, (6.10) 

smce 5l I v/J is set equal to zero. Since Y = ii (i.e. , the predicted value ofY, is the 

estimated probability that Y = l ), the solution to equation (6.10) will satisfy 

xr(Y-Y)=O. (6.11) 

In linear regression, the likelihood equations, obtained by differentiating the sum of 

squared deviations function with respect to /3 are linear in the unknown parameters and 

thus are easily solved. But in logistic regression it is not possible for non linearity in/J's 

and hence we use numerical optimization 'Newton-Raphson' method. This entails first 

determining (8 I 8/J)Xr (Y - 7! ), which is equivalent to computing -(8 I 8/J)Xrl! , which 

equals - [(8 / 8/3)7! Jx. From equation (6.5) we may obtain 07! I 0/30 = 7!(1- 7!) 

and 07! I 8/J; = X;l!; (1- 7!,) .Hence we conclude (87! I 8/3) = Xrl!(l -7!), 

so -~(xr 7! )= - c>ff X 
8/J 8/J 
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⇒ -xrn-(l-n-)X =-XTWX , (6.12) 

where W is the diagonal matrix with elements n-; (1 _ n-;), that would have to be 

estimated. Iterative estimate of /J are then obtained as 

P, .. -P, -[ o;:r ~: 
= P; + (xrwx t' xr (Y -n-) 

until estimated ,B converges to its previous value, i.e. , P;+i = p; . 

6.1.5 Why Logistic Regression Diagnostics 

(6. I 3) 

(6.14) 

Two main causes for logistic regression diagnostics that differ from linear regression are; 

MLE estimation method for parameter estimation in logistic regression is very sensitive 

to unusual observations and in presence of influential observations implicit assumption is 

broken down as like as in linear regression. 

6.1.6 Notion of Outliers, High-Leverage Points and Influential 
Observations 

In logistic regression the idea of outlier and influential point is somewhat different. In binomial 

logistic regression, we observe outlier or influential point (unusual observations) may occur 

mostly as: a) We see response vmiables (0, 1) are sometimes misclassified, b) By meaningful 

deviations (we see also low leverage) in explanatory variables, and c) Disagreement may come 

out in response and explanatory variables together. As a result all of the above three can break 

the normal pattern (S-curve) of the majority of the data. 

6.1.7 The Basic Building Blocks of Logistic Regression Diagnostics 

The role of a regression diagnostician is to provide routine methods of model sensitivity 

analysis which are both intuitively appealing and inexpensive. Clearly this requires a 

through u;derstanding of the model and the nature of the fitting process. 
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Pregibon mentioned in 1981, "For The logistic regression, the basic building blocks for 

the identification of outlying and influential points will again be a residual vector and a 

projection matrix". In logistic regression model, residuals can be defined on several 

scales. The two most useful are the components of chi-square (Pearson's residual) and the 

components of deviance. Hosmer and lemeshow (2000) pointed out that the key 

quantities for the logistic regression diagnostics, as in linear regression, are the 

components of the 'residual sum-of-squares' and the deviance for logistic regression. 

Both of t~em play the same role that the residual sum of squares plays in linear 

regression. 

6.2 Logistic Regression Diagnostics 

We want to detect the influential observations to con-ect and/or remove them from the data set 

that makes the decision more meaningful and achieves analysts' insight. 

A large body of literature is available (see Belsley et al., 1980; Rousseeuw and Leroy, 1987; 

Chatterjee and Hadi, 1988; Cook and Weisberg, 1982; Ryan, 1997; Hosmer and Lemeshow, 

2000) for the identification of unusual points. Pregibon ( 1981) provided the theoretical work 

that extended linear regression diagnostics to logistic regression. 

As the linear regression, identification of unusual observations m logistic regression are 

classified into three categories: 

1. Outliers identification, 

2. High leverage points identification, and 

3. Influential observations identification. 

Besides the fonnal diagnostic procedmes, a number of different types of plotting procedures 

have been suggested for use of diagnostics in logistic regression. These consist of the 

following: 

(a) Plot MJ versus 1r1 

(b) Plot MJ1 versus if 1 

(d) Plot MJ versus hJJ 

(e) Plot W 1 
versus h ' .U 
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(c) Plot l1fi
1
. versus ~ 

Jri (f) Plot 11/3
1 

versus hii 
2 -

where MJ , l1DJ and 11/31 are the Pearson chi-square statistic, change in the deviance and 

change in the estimated parameters respectively. 

111.is section presents a short discussion of different diagnostic measures for logistic regression 

that are originated from linear regression. We also try to modify and develop the most popular 

diagnostic measures for logistic regression based on the work of Pregibon (1981). 

6.2.1 Identification of Outliers 

Most of the times outliers are identified by using residuals or some functions of the residual. In 

logistic regression, the i-th residual is defined as 

&; = Y; - ii; , i = 1,2, ... , n. (6.15) 

Residuals measure the extent of ill-fitted factor/covariate patterns. Sometimes we also suppose 

that there are j distinct values of observed x. We denote the number of cases 

x = x1 by m1 , j = 1,2, ... ,j . In this situation we define thej-th residual as 

(6.16) 

We assume for the simplicity in our study, m1 =l. The observations possessing large residuals 

are suspect outliers. The unscaled residuals are not readily applicable in detecting outliers. Now 

let us introc)uce with some scaled version of residuals that are commonly used in diagnostics 

for the identification of outliers. In logistic regression the error vruiance is a :fimction of the 

conditional mean, i.e., 

Var(y; IX;)= V; = m;ii; (1-ii;) . (6.17) 

The Pearson residual defined for the i-th factor/covariate pattern is given by 

Y; -Jr; . - 1 2 r;= C 'z-, , .. ... ,n . 
'V V; 

(6.18) 

Pregibon (1981) derived a linear approximation to the fitted values, which yields a hat matrix 

for logistic regression 
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H = v112 xcxTvx)-1 xTv112 , 

where Vis the diagonal matrix with general elements vi. 

The above approximation yields 

6; = Y; -fr~ (1-h)y. I II , 

and the variance of the residual is given by 

(6.19) 

(6.20) 

(6.21) 

which suggests that the Pearson residuals do not have variance equal to 1. For this reason we 

could use the standardized Pearson residual given by 

Y; -ir, 
r,; = .Jv;(l-hJ' i = 1,2, ... ,n. (6.22) 

"The quantities 'E , rsi and h,; (i-th diagonal element of leverage/projection matrix) are useful 

for detecting extreme points, but not for assessing their impact on the various aspect of the fit" 

(Pregibon 1981). Standardized Pearson's residual is suggested to use of single outlier 

identification and the i-th observation is tenned as outlier ifjr,i j > 3 ( equation 6.22). Draper and 

John ( 1981) pointed out that observation with the largest residual was not the most influential, 

however, deletion of observation possessing a small residual, had a marked effect on the 

parameter estimates. But the reality is no guarantee that the data set will contain just a single 

outlier. Hampel et al. (1986) pointed, "A routine data set may contain about 10% outliers in it". 

A group of outliers may cause of masking and swamping and as a result distort the fitting of a 
' 

model in such a way that outliers may have artificially very small residuals so that they may 

appear as inliers. A number of diagnostic procedures have been suggested to identify multiple 

outliers in linear regression, but so far as we know this issue is not much addressed in logistic 

regression. We mention here the generalized standardized Pearson residual (GSPR) suggested 

by Imon and Hadi (2005), defined as 
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where 

v (I h for i ER 
i( R-i) - ii( R)) 

Y; - iii(R) 
---..:..:.:.:.::..._for i rl R 
vi<Rl (1 + hii(Rl) 

hii(/1):: .ii\11)(1-iri(/l))x/(x/vllxl/ t X; 

i\ 11 ) == n\ul) (1 - n\uo) ; 

(6.23) 

(6.24) 

(6.25) 

a group of observations D is omitted and the fitted values fior tlie e t' I · 1· · d t ' n ire og,s ,c regression mo e 

based on R ( group of remaining observations) set are defined as 

_ _ exp(x/.Bull) 
lr;(/1) - ( r - )' 

1 + exp x; Pull 
i == 1,2, ... , n. (6.26) 

6.2.2 Identification of High Leverage Points 

In 1981 Pregibon derived the diagonal of the leverage and projection matrix for logistic 

regression as 

(6.27) 

and m; , which is the i-th diagonal element of M=(I-H) respectively. The i-th observation 

bearing large hii and small m; are used to treat as an extreme case in the design space. 

6.2.3 Identification of Influential Observations 

Among th~ diagnostic statistics in linear regression, Cook's distance (Cook 1977, 1979), 

DFFITS, and DFBETA (Belsley et al., 1980) have become very popular with the practitioners 

oflogistic regression. We may define the above statistics for logistic regression as the following 

way. We define the i-th Cook's distance as 

- (flHl - ,0)7' (XrVX)(}Hl - fl). (6.28) CD - _y_-~--'--'----'-...,__ __ ~, i == 1,2, ... , n , 
I kvi 

where ,o(-;) is the estimated parameter of /J with the i-th observation deleted. The i-th Cook's 

distance can be re-expressed in terms of the i-th standardized Pearson residual and leverage as 
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CD 1 2( h, . ) ; = k rsi 1 -1~;; (6.29) 

We call an observation influential if its corresponding CD I · h ; va ue 1s greater t an 1. 
We may define i-th DFBETA as Besley et al. (1980), 

DFBETA = /J- . - j3- H> 
I I j (6.30) 

and re-expressed by leverage and residual as 

DFBETA = cxrvxrl x/" i; 
' 1-h;; 

(6.31) 

DFFITS may be defined for logistic regression as 

i = 1,2, .. . , n (6.32) 

where y-i) and vt ;> are respectively the i-th fitted response and the estimated standard 

error with the i-th observation deleted. DFFITS values can be expressed in terms of 

standardized Pearson residual and leverage value as 

h . V 
DFFITS; = r,; ( _" )7=7f. i = 1,2, ... ,n 

1 h ;; V; 
(6.33) 

Observation possessing DFFITS value grater than 3 .J k I n is termed as an influential 

observation. 

We also introduce our newly proposed method for logistic regression as 

(!Jt> - /J; )1" (XTVX)(!Jt> - /J;) 
SDFBETA; = <-i>( -h) v, 1 ,, 

(6.34) 

where /Jt il is the estimated parameter vector and vtil (1 - h;; ) is the variance of the i-th 

residual respectively after deleting i-th observation. 

We make similar relationship of CD, DFFITS and SDFBETA, 

CD;PV; 
SDFBETA; = vtil (l-h;; ) (6.35) 
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DFFJTS 2 

= I 

l -h . (6.36) ,, 

Cut-off value: We may consider the i-th observation to be 1·nflue t' 1 'f ·t 
1
- fi h d. · n ia 1 1 sa 1s 1es t e con 1tlon 

JSDFBETA J ~ (J)IT;,)
2 

= 9k . . 
'1-(Jp!n) n-Jp'wheiek=p+l. (6.37) 

6.2.4 Examples 

To show the performance of the proposed SDFBETA with single deletion diagnostic measures: 

Cook's distance (CD) and DFFITS, we consider first the well-known Brown data and then we 

make a modification in the data and show the comparison. 

Brown Data 

To illustrate the perfom1ance of identification task of the proposed method squared difference 

in BETA (SDFBETA) we consider part of a data set in Brown et al., (1980). The original 

objective was to see whether an elevated level of acid phosphates (A.P.) in the blood serum 

would be of value as an additional regressor for predicting whether or not prostate cancer 

patients also had lymph node involvement (L.N.I). The data set in Brown et al. (1980) 

additionally contains data on the four more commonly used regressors, but we use only acid 

phosphates in illustrating simple logistic regression. The data on the 53 patients are given in 

table (A.6) in Appendix; the dependent variable is nodal involvement, with I denoting the 

presence of nodal involvement, and 0 indicating the absence of such involvement. Scatter plot, 

figure 6.1 (a) shows there is clearly an unusual observation (187, case 24) among the patients 

without noc,lal involvement. Ryan (1997) considers the 24th observation as an outlier. We apply 

our new diagnostic measure for the identification of the influential case. Table 6.1 shows the 

evidence that SDFBETA along with Cook's distance and DFFITS successfully identify the 

case 24 as an influential. Figure 6.1 (b,c,d) justify the identification in favor of the single case 

deletion diagnostic measures. 
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Table 6.1 Diagnostic measures for Brown data; one outlier 

Index CDi IDFFITSil ISDFBETAI Index CDi IDFFITSil ISDFBETAI 
(1.000) (0.582) (0.353) (1.000) (0.582) (0.353) 

1 0.006 -0.107 -0.110 28 0.006 0.106 0.109 
2 0.005 -0.104 -0.107 29 0.006 -0.106 -0.109 
3 0.006 -0.106 -0.109 30 0.006 -0.110 -0.115 
4 0.006 -0.105 -0.108 31 0.005 -0.104 -0.107 
5 0.006 -0.106 -0.109 32 0.005 -0.104 -0.106 
6 0.006 -0.106 -0.110 33 0.038 0.280 0.289 
7 0.006 -0.108 -0.112 34 0.033 0.259 0.266 
8 0.005 -0.104 -0.106 35 0.036 0.272 0.281 
9 0.025 0.228 0.234 36 0.006 -0.107 -0.110 

10 0.005 -0.104 -0.107 37 0.006 -0.104 -0.107 
11 0.005 -0.104 -0.106 38 0.032 -0.254 -0.267 
12 0.006 -0.112 -0.114 39 0.008 -0.123 -0.125 
13 il006 -0.105 -0.108 40 0.021 -0.206 -0.214 
14 0.017 0.187 0.191 41 0.006 -0.106 -0.108 
15 0.006 -0.107 -0.111 42 0.018 0.188 0.193 
16 0.006 -0.106 -0.110 43 0.017 0.184 0.188 
17 0.006 -0.106 -0.109 44 0.016 0.180 0.184 
18 0.008 -0.128 -0.131 45 0.016 0.182 0.186 
19 0.011 -0.145 -0.149 46 0.016 0.181 0.185 
20 0.025 -0.226 -0.236 47 0.016 0.182 0.186 
21 0.006 -0.105 -0. l 08 48 0.017 0.187 0.191 
22 0.007 -0.120 -0.122 49 0.017 0.185 0.190 

23 0.025 0.222 0.232 50 0.017 0.187 0.191 

24 2.075 -2.149 -3.619 51 0.016 0.181 0.184 

25 0.044 0.294 0.343 52 0.020 0.198 0.204 

26 0.017 0.185 0.190 53 0.040 0.281 0.316 

27 0.006 -0.110 -0.115 
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Modified Brown data 

Here we modify the Brown (1980) data by putting two more unusual observations as 

cases 54 and 55 and this data set is presented in table (A.7) in the appendix. Scatter plot 

of figure 6.2 (a) shows the isolation of these points. Now we apply above three diagnostic 

measures again. Cook's distance and DFFITS do not identify the unusual observations 

properly. DFFITS identifies only 2 observations (54, 55), but SDFBETA identifies 3 

observations (24, 54 and 55) correctly but at the same time swamps one (case 25) more, 

and CD is totally failed to identify the influential cases. That is, none of them are reliable 

for the identification of the multiple influential cases. Though the figures 6.2 (b,c,d), we 

show the separation of the cases regular and unusual but table 6.2 (by using cut-off 

values) shows the clear indication of failure of the measures. 
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Table 6.2 Diagnostics measures for modi"fied B d t 3 1· rown a a; out 1ers 

Index IDFFITSI CD ISDFBETAI Index IDFFITSI CD ISDFBETAI (0.572) (1.000) (0.340) (0.572) (1.000) (0.340) 
1 -0.119 0.007 -0.123 29 -0.117 0.007 -0.120 
2 -0.110 0.006 -0.112 30 -0.13 I 0.009 -0.136 
3 -0.117 0.007 -0.120 31 -0.l 11 0.006 -0.113 
4 -0.114 0.007 -0.117 32 -0.107 0.006 -0.109 
5 -0.117 0.007 -0.120 33 0.232 0.026 0.239 
6 r -0.118 0.007 -0.121 34 0.222 0.024 0.228 
7 -0.122 0.008 -0.126 35 0.229 0.026 0.235 
8 -0.105 0.006 -0.107 36 -0.119 0.007 -0.123 
9 0.207 0.021 0.212 37 -0.104 0.005 -0.106 

IO -0.111 0.006 -0.113 38 -0.136 0.009 -0.140 
11 -0.105 0.006 -0.107 39 -0.102 0.005 -0.104 
12 -0.101 0.005 -0.103 40 -0.122 0.008 -0.125 
13 -0.103 0.005 -0.105 41 -0.103 0.005 -0.105 
14 0.186 0.017 0.189 42 0.184 0.017 0.187 
15 -0.121 0.007 -0.124 43 0.181 0.016 0. 185 
16 -0.1 I 8 0.007 -0.121 44 0.180 0.016 0.183 
17 -0.117 0.007 -0.120 45 0.182 0.016 0.186 
18 -0.103 0.005 -0.105 46 0.180 0.016 0.183 
19 -0.106 0.006 -0. 109 47 0.182 0.016 0.186 
20 -0.128 0.008 -0.131 48 0.186 0.017 0.189 
21 -0.114 0.007 -0.117 49 0.182 0.016 0.186 
22 , -0.102 0.005 -0.104 50 0.186 0.017 0.189 

23 0.211 0.022 0.217 51 0.181 0.016 0.184 

24 -0.498 0.124 -0.614 52 0.190 0.018 0.194 

25 0.341 0.058 0.366 53 0.300 0.045 0.318 

26 0.182 0.016 0.186 54 -0.594 0.176 -0.773 
27 -0.13 I 0.009 -0.136 55 -0.782 0.303 -1.123 

28 -0.117 0.007 -0. I 20 
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6.3 Identification of Multiple Influential Observations 

In this section we propose two group deleted . · f · • 
version o diagnostic measures for identifying 

multiple influential observations in logistic regression The d h • se propose measures are very muc 

similar to the group deletion idea of Hadi and Simonoff (1993) and Atkinson (1994). 

As noted earlier, a general approach of unusual observations identification is to form a clean 

subset of data and a subset of suspect group of unusual (outliers/high leverage points) 

observations, and then test the sensitivity of the observations on the estimated parameters and 

on the model analysis before and after the deletion of suspect group of cases. This is essential 

to find out the suspect group of d cases with the minimum residual sum of squares. Problem 

with this approach is that d is rarely known and some times even impossible to compute, it 

mostly depends upon the value of d comparing with total number of observations (n). Some 

times grap~ical displays like scatter plot, index plot and character plot (two or three regressors 

and a response variable) of explanatory and response variables may give us an idea about the 

suspect group of unusual observations, but these plots are not helpful for higher dimension of 

regressors. Like many others Atkinson ( 1986), Rousseeuw and Leroy (1987) and Rousseeuw 

and van Zomeren (1990) suggest to use robust regression and/or diagnostic techniques to find 

the suspects. As Rousseeuw and Leroy (1987), we suggest to use robust techniques for 

overcoming the problem of masking/swamping and it is now evident that most of the times 

results are fmitful to identify outliers in presence of a number of unusual observations. Here 

one can use robust regression techniques like LMS (Rousseeuw, 1984), L TS (Rousseeuw, 

1985), and re-weighted least squares (RLS) (Rousseeuw and Leroy 1987) for finding the 

suspect unusual observations. 

We assume that d observations among a set of n observations are identified as suspect cases. 

Let us denote a set of cases 'remaining' in the analysis by R and a set of cases 'deleted' by D. 

Hence R contains (n-d) cases after d cases (group D) are deleted. Without loss of generality, we 

assume that these observations are the last of d rows of X, Y and V (variance-covariance matrix) 

so that we make 
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Now we co,mpute group-deleted version of the residuals and weights (leverage values) that will 

use later to develop the new diagnostic measures for the identification of multiple influential 

observations in logistic regression. Necessary results from the above arrangements are 

&i(I/) =y; -iii(l/)and h,i(II) =iii(R)(l-iri(ll))x/"(XJi'vRxRrlx;, 

where n\uii is the estimated value for the i-th case after the deletion of d suspect cases, i.e., 

based on the remaining group of observations R. 

6.3.1 Generalized DFFITS (GDFFITS) 

In this sub section we would like to introduce a generalized version of DFFITS, designed for 

logistic regression model, we name this GDFFITS. When a group of observations D is omitted, 

the fitted values for the entire logistic regression model based on R set are defined as 

_ exp(x/' Puii) . 
n;u1i = 1 + exp(x/' Puo); l = 1,2, ... , n . 

We also define the i-th residual variance and the i-th diagonal element of the leverage matrix as 

V;u1i = ii;u1i (l - ir;u1J) 

and hil(R) = Ri(R)(I - ii,(11) )x/' (x/v11X,1 t X; respectively. 

Using the above results and also using linear-regression like approximation, we define 

generalized DFFITS for the logistic regression model as 

GDFFITS; 

- -
Y;<R) - Y;(R-il for i E R 

,.jv;<R-i) h;;(R) 

Y;cR+i) - Y;(R) for i ~ R 

,.jv;cR) h;;(R+i) 

(6.38) 
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Results are 

- = - hiiUI> _ Y,(R+i) Yi(//) + --'--'--B 
1 + h ,uii ' 

11(/I) 
(6.39) 

- (XTV X ) -I 
/3 - /3- II II II -i(ll+i) - i ( II) + --'-'--.!..:........._~- B 

1 h 1(/1) 
+ ii(//) 

(6.40) 

h . - hii(/1) 
,i(/1+1> - 1 h ' 

+ Ii(//) 

and (6.41) 

help us to re-express the GDFFJIS quantities in tem1s of GSPR and deleted leverages as 

GDFFITS, =r_,i(lllji;:;; i=l,2, ... ,n (6.42) 

where 

hiiU1> fi or 
1- hii(II> 

hi,u1> fi or 
1 + hiiUI> 

i ER 

(6.43) 

The detection rule of influential observations suggested for GDFFJIS in linear regression (as 

lmon 2005) may apply for GDFFITS in logistic regression. We consider i-th observation as 

influential if 

(6.44) 

6.3.2 Generalized Squared Difference in Beta (GSDFBETA) 

In a similar fashion of linear regression we suggest a generalized version of the squared 

difference in beta (GSDFBETA) for the identification of multiple influential observations in 

logistic regression. 

We can define the generalized squared difference in beta (GSDFBETA) for the entire data set, 

in presence of a group of influential observations, as 

('/3(/1) - fiu1- i) y (XII T vl/x II )('fJ(/1) - ftu1~i)). 

vi(/1-i) (1 - hii(R) ) ' 
GSDFBETAi == ( )r ( - - ) 

ficn+il - ftull (Xi/VoX,y) f3u1+il - f3ull . 

vi(lll (1 - h,i(ll+il) ' 

i ER 

(6.45) 
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It also can re-express in tenns of generalized stand ct· d p . 
ar 1ze earson residuals (GSPR) and 

deleted leverages h;: as 

GSDFBETA = 
I (6.46) 

Using the relationship of GSDFBETA with other diagnostic GDFFITS as given in linear 

regression, we get the relation for logistic regression as follows: 

GDFFITS 2 

------''-; iER 
GSDFBETA; = l-h,i (/I) 

GDFFJTS}. 
i rt R 

1 + h;,u1> , 

(6.47) 

Cut-off value: Observations conesponding to large GSDFBET A compruing with maximum 

regular observations are declared as influential observations. Since the theoretical distribution 

of GSDFBETA is not so easy we should make a boundary value type cut-off for them. We 

may consisler the ith observation to be influential in logistic regression as like as linear 

regression of GSDFBETA, if it satisfies the condition, 

6.3.3 Exam pies 

Modified Brown Data 

IGSDFBETAI ~ C3.Jk!(n-d))
2 

1-[3 p /(n - d)] 

9k 
=----

n - d-3p 
(6.48) 

The discussion about modified Brown data is given by the 2
nd 

exan1ple in the section 6.2.4. 

Now we ar,ply our two newly proposed group deletion measures GDFFITS and GSDFBETA. 

Both of the methods identify all of the three suspect cases as influential properly. Besides that 
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both identify one more case (38) as influential which makes the decision that the case (38) 

might be masked before the deletion of original 3 influential cases. 

Table 6.3 Proposed diagnostic measures for modified Brown data 

Index IGDFFITSI IGSDFBETAI Index I GDFFITS I IGSDFBETAI J0.588) (0.367) (0.588) (0.367} 
1 -0.0969 0.0097 29 -0.0984 0.0100 
2 -0.1021 0.0107 30 -0.0892 0.0083 
3 -0.0984 0.0100 31 -0.1015 0.0106 
4 -0.0996 0.0102 32 -0.1045 0.0112 
5 -0.0984 0.0100 33 0.3944 0.1613 
6 -0.0977 0.0099 34 0.3498 0.1264 
7 -0.0953 0.0094 35 0.3791 0.1488 
8 -0.1082 0.0120 36 -0.0969 0.0097 
9 0.2851 0.0836 37 -0.1098 0.0123 

10 -0.1015 0.0106 38 -0.5811 0.3710 
11 -0.1082 0.0120 39 -0.1711 0.0302 
12 -0.1369 0.0192 40 -0.4386 0.2076 
13 -0.1141 0.0133 41 -0.1167 0.0139 
14 0.1993 0.0406 42 0.1932 0.0391 
15 -0.0962 0.0096 43 0.1903 0.0377 
16 -0.0977 0.0099 44 0.1864 0.0358 
17 -0.0984 0.0100 45 0.1905 0.0372 
18 -0.1892 0.0370 46 0.1876 0.0364 

' 19 -0.2453 0.0629 47 0.1905 0.0372 

20 -0.4976 0.2694 48 0.1993 0.0406 

21 -0.0996 0.0102 49 0.1913 0.0381 

22 -0.1630 0.0274 50 0.1993 0.0406 

23 0.1912 0.0399 51 0.1874 0.0360 

24 -2.1214 4.3782 52 0.1964 0.0410 

25 0.0860 0.0082 53 0.1160 0.0150 

26 0.1913 0.0381 54 -2.3757 5.5408 

27 -0.0892 0.0083 55 -2.7589 7.5386 

28 -0.0984 0.0100 
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Modified Finney data 

We now consider another data set given by Finney (1947). The original data set was 

obtained to study the effect of the rate and volume of air inspired on a transient vaso­

constriction in the skin of the digits. The nature of the measurement process was such that 

only the occurrence and nonoccurrence of vaso-constriction could be reliably measured. 

We modify the data by putting five more outliers ( cases 3, 4, 10, 11, 18, 20 and 21) 

where occurrence and nonoccurrence are replaced with each other. The modified data set 

is presented in table 5, appendix (A). Following scatter type character plot gives us the 4 

dimensional information of the data set. The index of the cases are given by using 

respective numbers to the cases and colors red and blue respectively mean occurrence 

and nonoccurrence of vaso-constriction. 
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Figure 6.4 Character plot of modified Finney data 
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Application of single case deletion measures 

This data set was analyzed extensively by Pregibon (1981 ). Looking at the pattern of 

occurrence and nonoccurrence with 25% and 75% contours in relation to rate and volume 

of the original data, Pregibon (1981) pointed out that this data set might contain two 

outliers (cases 4 and 18) in it. 

Table 6.4 presents influence diagnostics for the modified Finney data. We see from this 

table that the singe-deletion diagnostics CD and DFFITS fail totally to detect the 

influential observations. 

Table 6.4 Influence diagnostics for modified Finney data 

Index CD DFFITS Ind. CD DFFITS 

(1.0) (0.832) (1.0) (0.832) 

1 0.0154 0.2147 21 0.1362 -0.6392 
2 0.0141 0.2060 22 0.0110 -0.1820 
J. 0.0228 -0.2613 23 0.0108 -0.1796 
4 0.0431 0.3596 24 0.0119 -0.1886 
5 0.0300 0.3001 25 0.0089 0.1634 
6 0.0400 0.3464 26 0.0663 -0.4460 
7 0.0143 -0.2068 27 0.0104 0.1767 
8 0.0093 -0.1674 28 0.0099 -0.1726 
9 0.0151 -0.2128 29 0.0186 0.2360 
10 0.1398 0.6477 30 0.0245 -0.2711 
11 0.1386 0.6449 31 0.0228 0.2615 
12 0.0221 -0.2575 32 0.0695 -0.4567 

13 0.0312 -0.3060 33 0.0094 -0.1683 

14 0.0106 0.1781 34 0.0122 0.1913 

15 0.0434 0.3609 35 0.0106 0.1785 

16 0.0124 0.1927 36 0.0325 0.3122 

17 0.0119 0.1890 37 0.0099 -0.1726 

18 0.0384 0.3395 38 0.0110 -0.1813 

19 0.0171 -0.2265 39 0.0116 0.1865 

20 0.0239 -0.2680 

165 



0.12 

0.08 

s 

0 .04 + 
0 

0 

+ 

0.00 -

0 

0 .5 

+ 0 
0 

Oo 

~ 
u: 0 .0 u. 
0 

+ 

-0 5 

0 

O 0 
0 

0 
0 0 

+ + 

10 

++ 

10 

0 

0 

0 

o oo 

0 

0 00 

0 
0 

+ 

0 
0 

+ 
0 

0 

' 
20 30 40 

Index 

(a) 

+ 0 

0 
0 

0 0 Oo 0 

ooo 0 0 Oo 
0 

+ 0 

D 0 

+ 

20 30 40 

Index 

(b) 

Figure 6.5 (a) Index plot of Cook's distance, (b) Index plot ofDFFITS 

166 



Application of group deletion measures 

Our newly proposed GDFFJT and GSDFBETA successfully identify all 7 influential 

cases and at the same time both of them swamp 3 same cases (13, 32 and 39). Figures 6.6 

(a and b) show the same evidence clearly. 

Table 6.5 Influence diagnostics GDFFITS and GSDFBETA for modified Finney data 

Index I GDFFITS I IGSDFBETAI Index I GDFFITS I IGSDFBETAI 
(0.918) (1.038) (0.918) (1.038) 

1 0.0000 0.0000 21 -12.6585 160.2379 
2 0.0000 0.0000 22 -0.0001 0.0000 
J. -3.7293 13.6700 - 23 -0.0467 0.0024 
4 6.7722 45.8560 24 -0.2572 0.0777 
5 0.0065 0.0000 25 0.0189 0.0004 
6 0.0018 0.0000 26 0.0000 0.0000 
7 t 0.0000 0.0000 27 0.0126 0.0002 
8 -0.0293 0.0009 28 -0.0202 0.0004 
9 0.0000 0.0000 29 0.3810 0.2080 

10 11.3037 127.7730 30 -0.0003 0.0000 
11 11.5619 133.6776 31 0.0000 0.0000 
12 -0.1454 0.0270 32 -1.2930 3.8080 
13 -1.9011 6.8922 33 -0.0886 0.0090 
14 0.0023 0.0000 34 0.4066 0.2162 
15 0.0001 0.0000 35 0.4288 0.2284 
16 0.0000 0.0000 36 0.0019 0.0000 

17 0.0000 0.0000 37 -0.0202 0.0004 

18 6.3102 39.8080 38 -0.0010 0.0000 

19 -0.3332 0.1349 39 1.1413 1.5432 

20 -4.9304 24.2208 
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Figure 6.6(a) Index plot of GDFFITS, (b) Index plot ofGSDFBETA 
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Chapter 7 

"A h l · h w O e is w at has beginning, middle and end." 

Aristotle 

Findings, Conclusions and Areas of Future 
Research 

This chapter consists of three sections: the first and second ones depict our findings and 

conclusions, while the other presents areas of further research. 

7.1 Fh1dings 

In this dissertation we endeavor to make three contributions: identification of influential 

observations in linear regression, classification of unusual observations in linear 

regression and identification of influential observations in logistic regression. 

7.1.1 Identification of Influential Observations in Linear Regression 

At the name of the topic, 'Identification of Influential Observations in Linear 

Regression', we develop two diagnostic measures: one is generalized SDFBET A 

(GSDFBETA), originated from squared difference in beta (SDFBETA), based on the idea 

of group deletion diagnostic, and the other is a new measure M; that is developed by the 

idea of Pena (2005). We see that SDFBET A performs as well as a single case deletion 

measure like cook's distance and DFFITS and generalized measure GSDFBETA can 

successfully identify multiple influential observations even in presence of masking and/or 

swamping phenomena. 
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The new measure Mi extends the idea of Pena (2005) to the group deletion concept. It 

measures the influence of an observation based on how this observation is being 

influenced by the rest of the data. A number of well-referred data sets support the merit 

of our proposed method for the identification of influential observations where the 

commonly used methods fail. Moreover, this method is quite effective in finding 

influential observations from high dimensional large data sets and when there is evidence 

of variance heterogeneity in the data set. A simulation study shows the efficient 

performance of the new measure. 

7.1.2 Classification of Unusual Observations in Linear Regression 

Under this topic we have proposed a new type of plotting procedure that is exploratory in 

nature and which is able to identify and classify the multiple unusual observations: 

outliers, high-leverage points and influential observations at a time in a same graph. This 

method can make the five-fold plot by only one click in our computer key. Applications 

of our pr~posed method on a number of well-referred data sets show its efficient 

performance. Moreover, this method performs well for identifying unusual observations 

in case of high-dimensional large data set. We think this plotting technique may be a 

good addition to diagnostic literature and in statistical software packages for 

identification and at the same time for classification tasks of multiple unusual 

observations in linear regression. 

7.1.3 Identification of Influential Observations in Logistic Regression 

We also propose two new methods GDFFITS and GSDFBETA for the identification of 

influential observations in logistic regression, originated from the same measures of 

linear regression and based on the idea of group deletion. We see, most of the time the 

new measures identify the multiple influential observations properly even in presence 

misclassification of the response variable of the binomial logistic regression model, 

where as we show the existing methods almost fail to do so. Hence the methods are based 
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on group deletion of the suspect cases show nice perc-orm · f k" 
11 ance m presence o mas mg 

and/or swamping phenomena. A number of examples have made the success story of the 

proposed methods. 

7.2 Conclusions 

This disse11ation shows that proposed diagnostic measures successfully identify 

influential cases for linear and logistic regression in presence of masking and swamping. 

The methods based on robust regression in their construction process make them reliable 

in sense of robustness. Classification task for unusual observations in linear regression 

can give the accurate ideas about their consequences on the analysis and the decision 

making process. This study reaches the conclusion, ' robust regression and regression 

diagnostics are two complementary approaches and anyone is not good enough without 

the other'. 

7.3 Areas of Future Research 

I intend to continue the present work here along several main directions. 

First of all, we intend to extend our proposed diagnostic measures to identify influential 

observations for high dimensional large data sets in data mining contexts. That may helps 

us to construct outliers free and fair observations in predictive modeling. 

We plan to extend the identification techniques of influential observations for the 

Generalized Linear Model (GLM) (McCullagh and Nelder, 1989), multivariate, and non­

linear regression. 

We want to extend our ideas of classification of unusual observations in linear regression 

to the logistic regression and for GLM and we hope it also be applicable in non-linear 

regression., 
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We want to extend the view that identification of outliers or unusual observations in 

logistic regression can be performed for the classification tasks in data mining and pattern 

recognition. The tasks of classification by logistic regression may be extended to the area 

of kernel logistic regression (KLS), support vector machine (SVM) and import vector 

machine (IVM) for performing multi class and non-linear classification. 
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Appendix A 

Data Sets Used in the Thesis 

173 



Table A.1 Monthly Payments Data 

Month Payment 
X 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

3.22 
9.62 
4.50 
4.94 
4.02 
4.20 
11.24 
4.53 
3.05 
3.76 
4.23 

42.69 

Source: Rousseeuw et al., (J 984a) 
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Table A.2 Hawkins et al. (1984) Data 

Index y X1 X2 x3 Index y X1 X2 X3 
1 9.7 10.1 19.6 28.3 39 -0.7 2.1 0 1.2 2 10.1 9.5 20.5 28.9 40 -0.5 0.5 2 1.2 3 10.3 10.7 20.2 31 41 -0.1 3.4 1.6 2.9 4 9.5 9.9 21 .5 31 .7 42 -0.7 0.3 1 2.7 
5 10 10.3 21.1 31.1 43 0.6 0.1 3.3 0.9 
6 10 10.8 20.4 29.2 44 -0.7 1.8 0.5 3.2 
7 10.8 10.5 20.9 29.1 45 -0.5 1.9 0.1 0.6 
8 , 10.3 9.9 19.6 28.8 46 -0.4 1.8 0.5 3 
9 9.6 9.7 20.7 31 47 -0.9 3 0.1 0.8 

10 9.9 9.3 19.7 30.3 48 0.1 3.1 1.6 3 
11 -0.2 11 24 35 49 0.9 3.1 2.5 1.9 
12 -0.4 12 23 37 50 -0.4 2.1 2.8 2.9 
13 0.7 12 26 34 51 0.7 2.3 1.5 0.4 
14 0.1 11 34 34 52 -0.5 3.3 0.6 1.2 
15 -0.4 3.4 2.9 2.1 53 0.7 0.3 0.4 3.3 
16 0.6 3.1 2.2 0.3 54 0.7 1.1 3 0.3 
17 -0.2 0 1.6 0.2 55 0 0.5 2.4 0.9 
18 0 2.3 1.6 2 56 0.1 1.8 3.2 0.9 
19 0.1 0.8 2.9 1.6 57 0.7 1.8 0.7 0.7 
20 0.4 3.1 3.4 2.2 58 -0.1 2.4 3.4 1.5 
21 0.9 2.6 2.2 1.9 59 -0.3 1.6 2.1 3 
22 0.3 0.4 3.2 1.9 60 -0.9 0.3 1.5 3.3 
23 -0.8 2 2.3 0.8 61 -0.3 0.4 3.4 3 
24 0.7 1.3 2.3 0.5 62 0.6 0.9 0.1 0.3 
25 · -0.3 1 0 0.4 63 -0.3 1.1 2.7 0.2 
26 -0.8 0.9 3.3 2.5 64 -0.5 2.8 3 2.9 
27 -0.7 3.3 2.5 2.9 65 0.6 2 0.7 2.7 

28 0.3 1.8 0.8 2 66 -0.9 0.2 1.8 0.8 

29 0.3 1.2 0.9 0.8 67 -0.7 1.6 2 1.2 

30 -0.3 1.2 0.7 3.4 68 0.6 0.1 0 1.1 

31 0 3.1 1.4 1 69 0.2 2 0.6 0.3 

32 -0.4 0.5 2.4 0.3 70 0.7 1 2.2 2.9 

33 -0.6 1.5 3.1 1.5 71 0.2 2.2 2.5 2.3 

34 -0.7 0.4 0 0.7 72 -0.2 0.6 2 1.5 

35 0.3 3.1 2.4 3 73 0.4 0.3 1.7 2.2 

36 -1 1.1 2.2 2.7 74 -0.9 0 2.2 1.6 

37 -0.6 0.1 3 2.6 75 0.2 0.3 0.4 2.6 

38 0.9 1.5 1.2 0.2 
; Source: Hawkins et al. (1984) 
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Table A.3 Stack loss Data 

Stack Acid Index loss Rate Temperature Cone. 

1 42 80 27 89 2 37 80 27 88 
3 37 75 25 90 
4 28 62 24 87 
5 18 62 22 87 
6 18 62 23 87 
7 19 62 24 93 
8 20 62 24 93 
9 15 62 23 87 

10 14 58 18 80 
11 14 58 18 89 
12 13 58 17 88 
13 11 58 18 82 
14 12 58 19 93 
15 8 50 18 89 
16 7 50 18 86 
17 8 50 19 72 
18 8 50 19 89 
19 9 50 20 80 
20 15 56 20 82 
21 15 70 20 91 

Source: Brownlee (1965) 
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Table A. 4 Hurtzs-Prung Russel Diagram Data 

Index Log T. Log L. In. Index Log T. Log L. In. (i) (X,) CY,) (i) (X,) CY,) 
1 4.37 5.23 25 4.38 5.02 2 4.56 5.74 26 4.42 4.66 3 4.26 4.93 27 4.29 4.66 
4 4.56 5.74 28 4.38 4.9 
5 4.3 5.19 29 4.22 4.39 
6 4.46 5.46 30 3.48 6.05 
7 3.84 4.65 31 4.38 4.42 
8 4.57 5.27 32 4.56 5.1 
9 4.26 5.57 33 4.45 5.22 

10 4.37 5.12 34 3.49 6.29 
11 3.49 5.73 35 4.23 4.34 
12 4.43 5.45 36 4.62 5.62 
13 4.48 5.42 37 4.53 5.1 
14 4.01 4.05 38 4.45 5.22 
15 4.29 4.26 39 4.53 5.18 
16 4.42 4.58 40 4.43 5.57 
17 4.23 3.94 41 4.38 4.62 
18 4.42 4.18 42 4.45 5.06 
19 4.23 4.18 43 4.5 5.34 
20 3.49 5.89 44 4.45 5.34 
21 4.29 4.38 45 4.55 5.54 
22 4.29 4.22 46 4.45 4.98 
23 4.42 4.42 47 4.42 4.5 
24 4.49 4.85 

Source: Rousseeuw and Leroy (1987) 
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Table A. S Aircraft Data 

Index Cost Aspect Lift-to-drag Weight Thrust Ratio Ratio 
1 2.76 6.3 1.7 8176 4500 2 4.76 6.0 1.9 6699 3120 3 8.75 5.9 1.5 9663 6300 4 7.78 3.0 1.2 12837 9800 
5 6.18 5.0 1.8 10205 4900 
6 9.5 6.3 2.0 14890 6500 
7 5.14 5.6 1.6 13836 8920 
8 4.76 3.6 1.2 11628 14500 
9 16.7 2.0 1.4 15225 14800 

10 27.68 2.9 2.3 18691 10900 
' 11 26.64 2.2 1.9 19350 16000 

12 13.71 3.9 2.6 20638 16000 
13 12.31 4.5 2.0 12843 7800 
14 15.73 4.3 9.7 13384 17900 
15 13.59 4.0 2.9 13307 10500 
16 51 .9 3.2 4.3 29855 24500 
17 20.78 4.3 4.3 29277 30000 
18 29.82 2.4 2.6 24651 24500 
19 32.78 2.8 3.7 28539 34000 
20 10.12 3.9 3.3 8085 8160 
21 27.84 2.8 3.9 30328 35800 
22 107.1 1.6 4.1 46172 37000 
23 11.19 3.4 2.5 17836 19600 

Source: Gray (1985) 
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Table A. 6 Brown Data 

Index l.N.1 A.P. Index L.N.I A.P. 

1 0 48 28 0 50 
2 0 56 29 0 50 
3 0 50 30 0 40 
4 0 52 31 0 55 
5 0 50 32 0 59 
6 0 49 33 1 48 
7 0 46 34 1 51 
8 0 62 35 1 49 
9 1 56 36 0 48 

10 0 55 37 0 63 
11 0 62 38 0 102 
12 0 71 39 0 76 
13 0 65 40 0 95 
14 1 67 41 0 66 
15 0 47 42 1 84 
16 0 49 43 1 81 
17 0 50 44 1 76 
18 0 78 45 1 70 
19 0 83 46 1 78 
20 . 0 98 47 1 70 
21 0 52 48 1 67 
22 0 75 49 1 82 
23 1 99 50 1 67 
24 0 187 51 1 72 
25 1 136 52 1 89 
26 1 82 53 1 126 
27 0 40 

Source: Brown et al. (1980) 

179 



Table A. 7 Modified Brown Data 

Index L.N.1. A.P. Index L.N.1. A.P. 

1 0 48 29 0 50 2 0 56 30 0 40 3 0 50 31 0 55 
4 0 52 32 0 59 
5 0 50 33 1 48 
6 0 49 34 1 51 
7 0 46 35 1 49 
8 0 62 36 0 48 
9 1 56 37 0 63 

10 0 55 38 0 102 
11 0 62 39 0 76 
12 0 71 40 0 95 
13 0 65 41 0 66 
14 1 67 42 1 84 
15 0 47 43 1 81 
16 0 49 44 1 76 
17 0 50 45 1 70 
18 0 78 46 1 78 
19 0 83 47 1 70 
20 0 98 48 1 67 
21 0 52 49 1 82 
22 0 75 50 1 67 
23 1 99 51 1 72 
24 0 187 52 1 89 
25 1 136 53 1 126 
26 1 82 54 0 200 
27 0 40 55 0 220 
28 0 50 

Source: Brown et al. (1980) 
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Table A. 8 Modified Finney Data 

-Index Response Volume Rate Index Response Volume Rate 
-

1 1 3.70 0.820 21 0 2.50 2.000 2 1 3.50 1.090 22 0 0.95 1.360 3 0 1.25 2.500 23 0 1.35 1.350 
4 1 0.75 1.500 24 0 1.50 1.360 
5 1 0.80 3.200 25 1 1.60 1.780 
6 1 0.70 3.500 26 0 0.60 1.500 
7 0 0.60 0.750 27 1 1.80 1.500 
8 0 1.10 1.700 28 0 0.95 1.900 
9 0 0.90 0.750 29 1 1.90 0.950 

10 1 0.90 0.450 30 0 1.60 0.400 
11 1 0.80 0.570 31 1 2.70 0.750 
12 0 0.55 2.750 32 0 2.35 0.030 
13 0 0.60 3.000 33 0 1.10 1.830 
14 1 1.40 2.330 34 1 1.10 2.200 
15 1 0.75 3.750 35 1 1.20 2.000 
16 1 2.30 1.640 36 1 0.80 3.330 
17 1 3.20 1.600 37 0 0.95 1.900 
18 1 0.85 1.420 38 0 0.75 1.900 
19 0 1.70 1.060 39 1 1.30 1.630 
20 0 1.80 1.800 

Source: Finney (1947) 
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Application of Robust Regression and Bootstrapping 

in Purchasing Power Parity Analysis 

A. A. M. Nurunnabi*, Mohammed Nasser** 

Abstract: This article is an attempt to show how robust regression, a 

computer based statistical technique introduced by P.J.Huber in 1973 and later 

developed by Rousseeuw ( 1984 ), Rousseeuw and Y ohai ( 1984 ), and many 

others, can helps us in cases where OLS totally fails due to outliers, leverage 

points and non-normality of error distribution. But to infer from the estimators 

obtained from robust regression we generally need, especially for small 

samples, bootstrapping (resampling) technique that is also a computer 

intensive statistical technique introduced by Efron (1979), and later developed 

in many directions. This talk illustrates the whole thing by an example using 

data e,:tracted from the Big Mac. Index, with a purchasing power parity 

analysis. 

* Assistant Professor, Department of Business Administration, Uttara Univ~rsity_, . 
Dhaka- I 230. •• Professor, Depa1tment of Statistics, University of Raj shah 1, RaJshahi-6205 

Article Published in 
Daffodil Intl. University Journal of 

Business and Economics, 
Vol. 2, No. 1, January 2007 
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Knowledge Inequality between Male and Female 
on HIV/ AIDS in Bangladesh 

A.A.M. Nurunnabi
1
, A.H.M. Rahmatullah Imon2 and M h d N 2 , o amme asser 

1 
Assistant Professor, Department of Business Administration , 

Uttara University, Dhaka - 1230, 
2 
Professor, Institute for Mathematical Research 

' 
University Putra Malaysia, 43400 Serdang, Selangor, Malaysia, 

3 
Professor, Department of Statistics, University of Rajshahi, Rajshahi-6205 

ABSTRACT 

Globally women are becoming infected with HIV at a faster rate than men. 
Women accounted for nearly 41 % of all people living with HIV worldwide 
in 1997, but this figure increased up to more than 50% by 2004. It is 
generally believed that the challenges to fight against HIV/AIDS are 
closely related with many economic and social factors of a country. But it 
is now evident that lack of knowledge and awareness about the causes and 
preventions regarding HIV/AIDS can magnify the risk of infection to a 
greµter extent. Bangladesh is one of the least developed countries with a 
ve1y low literacy rate and it has gender inequality in almost every respect. 
In this paper we tried to show that the knowledge as well as awareness of 
HIV/AIDS differs significantly between women and men based on the data 
extracted from Bangladesh Demographic and Health Survey report 2004. 

Keywords: AIDS; BDHS; Exploratory data analysis; HIV; Knowledge 

difference; Logistic regression. 

Article accepted in South Asian 
Journal of Population and Health 

Vol. 1, No. 1, January 2008 
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APPLICATIONS OF ROBUST REGRESSION IN 
BUSINESS, ECONOMICS AND SOCIAL SCIENCES 

A.A. M. Nurunnabi 
. Department of Business Administration, Uttara University, Dhaka-1230 

Mohammed Nasser 
Department of Statistics, University of Rajshahi, Rajshahi-6205 

A.H.M. Rahmatullah Imon 
Institute of Mathematical Research, University Putra Malaysia, 

43400 Serdang, Selangor, Malaysia 

Abstract 

Robust regression techniques are rarely used in business, economics or in 

social sciences. It is a reliable alternative, where ordinary least squares 

(OLS) totally fails due to unusual observations and the violations of 

normality assumptions of error distributions. We demonstrate the 

imp011ance of robust regression techniques by studying and comparing 

with OLS. Three examples are taken from the literature in areas of 

business, economics and social sciences. 

Kevwords: Influential observation; Least median of squares; Least 
triri1med squares; Leverage point; Outlier; Reweighted least squares. 

Article Accepted for 
The Journal of NSU School of Business, 

North South Business Review, Vol. 1, No. 2, 2007 
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A New Measure for the Identification of Influential 
Observations in Linear Regression 

A.A.M. Nurunnabil, A.H.M. Rahmatullah Imon2, Mohammed Nasser3 

1 
Department of Business Administration, Uttara University, Dhaka-1230, Bangladesh 

2
·
3 
Department of Statistics, University of Rajshahi, Rcy·shahi-6205, Bangladesh 

Abstract, 

In linear regression it is a common practice of measuring influence of an observation is to 

delete the case from the analysis and to investigate the n01m of the change in the parameters or 

in the vector of forecasts resulting from this deletion. Pena (2005) introduced a new idea to 

measure the influence of an observation based on how this observation is being influenced by 

the rest of the data. In this article we would like to extend this idea to a group deletion 

technique suggested by Hadi and Simonoff (1993) and propose a new statistic to identify 

influential observations in linear regression. We investigate the usefulness of the proposed 

technique by two well-referred data sets and an artificial data with high-dimension, 

heterogeneous variances and large number of observations. 

Key Words; Influential observations; group-deleted measure; masking; swamping; high 

dimensional large data; heterogeneous variances. 

th 
Article Presented at the 10 
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Classification of Outliers, High-Leverage Points and 
Influential Observations in Linear Regression 

By A. A. M. NURUNNABI 

Uttara University, Dhaka-I 230, Bangladesh 

M. NASSER and A.H.M. R. IMON 

University of Rajshahi, Rajshahi-6205, Bangladesh 

SUMMARY 

In /his paper we propose a five-fold plotting technique wilh a robust 
distance measure on a potential-residual (P-R) plot that can identify and 
classify outliers, high leverage points and influential observations at the 
same time in a same graph. The proposed technique based on group 
deletion idea shows efficient performance in presence of masking and/or 
swamping phenomena. We demonstrate the proposed technique by using 
three well-referred data sets and an artificial high-dimensional large data 
with heterogeneous variances. 

Keywords: INFLUENTIAL OBSERVATION; LEVERAGE POINT; MAHALANOBIS 

DISTANCE; MASKING; OUTLIER; POTENTIAL-RESIDUAL PLOT; 

SWAMPING 

Article Submitted to the 
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Id~ntification of Multiple Influential Observations in 
Logistic Regression 
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0

·•, A. H. M. Rahmatullah Imon h , Mohammed Nasscrh 
0 Department of Business Administration, Uttara University, Dhaka -1230, Bangladesh 

h Department of Statistics, University of Rajshahi, Rajshahi -6205, Bangladesh 

ABSTRACT The identification of influential observations in logistic regression has 

drawn a great deal of attention in recent years. Most of Lhe available techniques like 

Cook's dislance and DFFITS are based on single case deletion. But there is evidence 

that these techniques suffer from masking and swamping problems and consequently 

fail to detect multiple influential observations. In this paper an attempl has been made 

to develop a new measure for the identification of mulLiple influential observalions 

based on a generalized version of DFFITS The advantage of using the proposed 

method in the identification of mulliple influential cases is then investigaLed through 

several well-referred data sets. 

KEY WORDS: Influential observation, High leverage point, Outlier, Masking, Swamping, 

Generalized D FFITS 

Article Prepared for Submission 
In the Journal of Applied Statistics 
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